;; GCC machine description for i386 synchronization instructions.
;; Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
;; Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; .
(define_c_enum "unspec" [
UNSPEC_LFENCE
UNSPEC_SFENCE
UNSPEC_MFENCE
UNSPEC_MOVA ; For __atomic support
UNSPEC_LDA
UNSPEC_STA
])
(define_c_enum "unspecv" [
UNSPECV_CMPXCHG
UNSPECV_XCHG
UNSPECV_LOCK
])
(define_expand "sse2_lfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
"TARGET_SSE2"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*sse2_lfence"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_LFENCE))]
"TARGET_SSE2"
"lfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "lfence")
(set_attr "memory" "unknown")])
(define_expand "sse_sfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
"TARGET_SSE || TARGET_3DNOW_A"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "*sse_sfence"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_SFENCE))]
"TARGET_SSE || TARGET_3DNOW_A"
"sfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "fence")
(set_attr "memory" "unknown")])
(define_expand "sse2_mfence"
[(set (match_dup 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
"TARGET_SSE2"
{
operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (operands[0]) = 1;
})
(define_insn "mfence_sse2"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))]
"TARGET_64BIT || TARGET_SSE2"
"mfence"
[(set_attr "type" "sse")
(set_attr "length_address" "0")
(set_attr "atom_sse_attr" "fence")
(set_attr "memory" "unknown")])
(define_insn "mfence_nosse"
[(set (match_operand:BLK 0)
(unspec:BLK [(match_dup 0)] UNSPEC_MFENCE))
(clobber (reg:CC FLAGS_REG))]
"!(TARGET_64BIT || TARGET_SSE2)"
"lock{%;} or{l}\t{$0, (%%esp)|DWORD PTR [esp], 0}"
[(set_attr "memory" "unknown")])
(define_expand "mem_thread_fence"
[(match_operand:SI 0 "const_int_operand")] ;; model
""
{
/* Unless this is a SEQ_CST fence, the i386 memory model is strong
enough not to require barriers of any kind. */
if (INTVAL (operands[0]) == MEMMODEL_SEQ_CST)
{
rtx (*mfence_insn)(rtx);
rtx mem;
if (TARGET_64BIT || TARGET_SSE2)
mfence_insn = gen_mfence_sse2;
else
mfence_insn = gen_mfence_nosse;
mem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode));
MEM_VOLATILE_P (mem) = 1;
emit_insn (mfence_insn (mem));
}
DONE;
})
;; ??? From volume 3 section 8.1.1 Guaranteed Atomic Operations,
;; Only beginning at Pentium family processors do we get any guarantee of
;; atomicity in aligned 64-bit quantities. Beginning at P6, we get a
;; guarantee for 64-bit accesses that do not cross a cacheline boundary.
;;
;; Note that the TARGET_CMPXCHG8B test below is a stand-in for "Pentium".
;;
;; Importantly, *no* processor makes atomicity guarantees for larger
;; accesses. In particular, there's no way to perform an atomic TImode
;; move, despite the apparent applicability of MOVDQA et al.
(define_mode_iterator ATOMIC
[QI HI SI
(DI "TARGET_64BIT || (TARGET_CMPXCHG8B && (TARGET_80387 || TARGET_SSE))")
])
(define_expand "atomic_load"
[(set (match_operand:ATOMIC 0 "register_operand")
(unspec:ATOMIC [(match_operand:ATOMIC 1 "memory_operand")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_MOVA))]
""
{
/* For DImode on 32-bit, we can use the FPU to perform the load. */
if (mode == DImode && !TARGET_64BIT)
emit_insn (gen_atomic_loaddi_fpu
(operands[0], operands[1],
assign_386_stack_local (DImode,
(virtuals_instantiated
? SLOT_TEMP : SLOT_VIRTUAL))));
else
emit_move_insn (operands[0], operands[1]);
DONE;
})
(define_insn_and_split "atomic_loaddi_fpu"
[(set (match_operand:DI 0 "nonimmediate_operand" "=x,m,?r")
(unspec:DI [(match_operand:DI 1 "memory_operand" "m,m,m")]
UNSPEC_MOVA))
(clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
(clobber (match_scratch:DF 3 "=X,xf,xf"))]
"!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
"#"
"&& reload_completed"
[(const_int 0)]
{
rtx dst = operands[0], src = operands[1];
rtx mem = operands[2], tmp = operands[3];
if (SSE_REG_P (dst))
emit_move_insn (dst, src);
else
{
if (MEM_P (dst))
mem = dst;
if (STACK_REG_P (tmp))
{
emit_insn (gen_loaddi_via_fpu (tmp, src));
emit_insn (gen_storedi_via_fpu (mem, tmp));
}
else
{
adjust_reg_mode (tmp, DImode);
emit_move_insn (tmp, src);
emit_move_insn (mem, tmp);
}
if (mem != dst)
emit_move_insn (dst, mem);
}
DONE;
})
(define_expand "atomic_store"
[(set (match_operand:ATOMIC 0 "memory_operand")
(unspec:ATOMIC [(match_operand:ATOMIC 1 "register_operand")
(match_operand:SI 2 "const_int_operand")]
UNSPEC_MOVA))]
""
{
enum memmodel model = (enum memmodel) INTVAL (operands[2]);
if (mode == DImode && !TARGET_64BIT)
{
/* For DImode on 32-bit, we can use the FPU to perform the store. */
/* Note that while we could perform a cmpxchg8b loop, that turns
out to be significantly larger than this plus a barrier. */
emit_insn (gen_atomic_storedi_fpu
(operands[0], operands[1],
assign_386_stack_local (DImode,
(virtuals_instantiated
? SLOT_TEMP : SLOT_VIRTUAL))));
}
else
{
/* For seq-cst stores, when we lack MFENCE, use XCHG. */
if (model == MEMMODEL_SEQ_CST && !(TARGET_64BIT || TARGET_SSE2))
{
emit_insn (gen_atomic_exchange (gen_reg_rtx (mode),
operands[0], operands[1],
operands[2]));
DONE;
}
/* Otherwise use a normal store. */
emit_move_insn (operands[0], operands[1]);
}
/* ... followed by an MFENCE, if required. */
if (model == MEMMODEL_SEQ_CST)
emit_insn (gen_mem_thread_fence (operands[2]));
DONE;
})
(define_insn_and_split "atomic_storedi_fpu"
[(set (match_operand:DI 0 "memory_operand" "=m,m,m")
(unspec:DI [(match_operand:DI 1 "register_operand" "x,m,?r")]
UNSPEC_MOVA))
(clobber (match_operand:DI 2 "memory_operand" "=X,X,m"))
(clobber (match_scratch:DF 3 "=X,xf,xf"))]
"!TARGET_64BIT && (TARGET_80387 || TARGET_SSE)"
"#"
"&& reload_completed"
[(const_int 0)]
{
rtx dst = operands[0], src = operands[1];
rtx mem = operands[2], tmp = operands[3];
if (!SSE_REG_P (src))
{
if (REG_P (src))
{
emit_move_insn (mem, src);
src = mem;
}
if (STACK_REG_P (tmp))
{
emit_insn (gen_loaddi_via_fpu (tmp, src));
emit_insn (gen_storedi_via_fpu (dst, tmp));
DONE;
}
else
{
adjust_reg_mode (tmp, DImode);
emit_move_insn (tmp, mem);
src = tmp;
}
}
emit_move_insn (dst, src);
DONE;
})
;; ??? You'd think that we'd be able to perform this via FLOAT + FIX_TRUNC
;; operations. But the fix_trunc patterns want way more setup than we want
;; to provide. Note that the scratch is DFmode instead of XFmode in order
;; to make it easy to allocate a scratch in either SSE or FP_REGs above.
(define_insn "loaddi_via_fpu"
[(set (match_operand:DF 0 "register_operand" "=f")
(unspec:DF [(match_operand:DI 1 "memory_operand" "m")] UNSPEC_LDA))]
"TARGET_80387"
"fild%Z1\t%1"
[(set_attr "type" "fmov")
(set_attr "mode" "DF")
(set_attr "fp_int_src" "true")])
(define_insn "storedi_via_fpu"
[(set (match_operand:DI 0 "memory_operand" "=m")
(unspec:DI [(match_operand:DF 1 "register_operand" "f")] UNSPEC_STA))]
"TARGET_80387"
{
gcc_assert (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != NULL_RTX);
return "fistp%Z0\t%0";
}
[(set_attr "type" "fmov")
(set_attr "mode" "DI")])
(define_expand "atomic_compare_and_swap"
[(match_operand:QI 0 "register_operand") ;; bool success output
(match_operand:SWI124 1 "register_operand") ;; oldval output
(match_operand:SWI124 2 "memory_operand") ;; memory
(match_operand:SWI124 3 "register_operand") ;; expected input
(match_operand:SWI124 4 "register_operand") ;; newval input
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; success model
(match_operand:SI 7 "const_int_operand")] ;; failure model
"TARGET_CMPXCHG"
{
emit_insn
(gen_atomic_compare_and_swap_1
(operands[1], operands[2], operands[3], operands[4], operands[6]));
ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
const0_rtx);
DONE;
})
(define_mode_iterator CASMODE
[(DI "TARGET_64BIT || TARGET_CMPXCHG8B")
(TI "TARGET_64BIT && TARGET_CMPXCHG16B")])
(define_mode_attr CASHMODE [(DI "SI") (TI "DI")])
(define_expand "atomic_compare_and_swap"
[(match_operand:QI 0 "register_operand") ;; bool success output
(match_operand:CASMODE 1 "register_operand") ;; oldval output
(match_operand:CASMODE 2 "memory_operand") ;; memory
(match_operand:CASMODE 3 "register_operand") ;; expected input
(match_operand:CASMODE 4 "register_operand") ;; newval input
(match_operand:SI 5 "const_int_operand") ;; is_weak
(match_operand:SI 6 "const_int_operand") ;; success model
(match_operand:SI 7 "const_int_operand")] ;; failure model
"TARGET_CMPXCHG"
{
if (mode == DImode && TARGET_64BIT)
{
emit_insn
(gen_atomic_compare_and_swapdi_1
(operands[1], operands[2], operands[3], operands[4], operands[6]));
}
else
{
enum machine_mode hmode = mode;
rtx lo_o, lo_e, lo_n, hi_o, hi_e, hi_n, mem;
lo_o = operands[1];
mem = operands[2];
lo_e = operands[3];
lo_n = operands[4];
hi_o = gen_highpart (hmode, lo_o);
hi_e = gen_highpart (hmode, lo_e);
hi_n = gen_highpart (hmode, lo_n);
lo_o = gen_lowpart (hmode, lo_o);
lo_e = gen_lowpart (hmode, lo_e);
lo_n = gen_lowpart (hmode, lo_n);
if (!cmpxchg8b_pic_memory_operand (mem, mode))
mem = replace_equiv_address (mem, force_reg (Pmode, XEXP (mem, 0)));
emit_insn
(gen_atomic_compare_and_swap_doubleword
(lo_o, hi_o, mem, lo_e, hi_e, lo_n, hi_n, operands[6]));
}
ix86_expand_setcc (operands[0], EQ, gen_rtx_REG (CCZmode, FLAGS_REG),
const0_rtx);
DONE;
})
(define_insn "atomic_compare_and_swap_1"
[(set (match_operand:SWI 0 "register_operand" "=a")
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m")
(match_operand:SWI 2 "register_operand" "0")
(match_operand:SWI 3 "register_operand" "")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_CMPXCHG))
(set (match_dup 1)
(unspec_volatile:SWI [(const_int 0)] UNSPECV_CMPXCHG))
(set (reg:CCZ FLAGS_REG)
(unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG))]
"TARGET_CMPXCHG"
"lock{%;} %K4cmpxchg{}\t{%3, %1|%1, %3}")
;; For double-word compare and swap, we are obliged to play tricks with
;; the input newval (op5:op6) because the Intel register numbering does
;; not match the gcc register numbering, so the pair must be CX:BX.
;; That said, in order to take advantage of possible lower-subreg opts,
;; treat all of the integral operands in the same way.
;; Operands 5 and 6 really need to be different registers, which in
;; this case means op5 must not be ecx. If op5 and op6 are the same
;; (like when the input is -1LL) GCC might chose to allocate op5 to ecx,
;; like op6. This breaks, as the xchg will move the PIC register
;; contents to %ecx then --> boom.
(define_mode_attr doublemodesuffix [(SI "8") (DI "16")])
(define_mode_attr regprefix [(SI "e") (DI "r")])
(define_insn "atomic_compare_and_swap_doubleword"
[(set (match_operand:DWIH 0 "register_operand" "=a,a")
(unspec_volatile:DWIH
[(match_operand: 2 "cmpxchg8b_pic_memory_operand" "+m,m")
(match_operand:DWIH 3 "register_operand" "0,0")
(match_operand:DWIH 4 "register_operand" "1,1")
(match_operand:DWIH 5 "register_operand" "b,!*r")
(match_operand:DWIH 6 "register_operand" "c,c")
(match_operand:SI 7 "const_int_operand")]
UNSPECV_CMPXCHG))
(set (match_operand:DWIH 1 "register_operand" "=d,d")
(unspec_volatile:DWIH [(const_int 0)] UNSPECV_CMPXCHG))
(set (match_dup 2)
(unspec_volatile: [(const_int 0)] UNSPECV_CMPXCHG))
(set (reg:CCZ FLAGS_REG)
(unspec_volatile:CCZ [(const_int 0)] UNSPECV_CMPXCHG))
(clobber (match_scratch:DWIH 8 "=X,&5"))]
"TARGET_CMPXCHGB"
{
bool swap = REGNO (operands[5]) != BX_REG;
const char *xchg = "xchg{}\t%%bx, %5";
if (swap)
output_asm_insn (xchg, operands);
output_asm_insn ("lock{%;} %K7cmpxchgb\t%2", operands);
if (swap)
output_asm_insn (xchg, operands);
return "";
})
;; For operand 2 nonmemory_operand predicate is used instead of
;; register_operand to allow combiner to better optimize atomic
;; additions of constants.
(define_insn "atomic_fetch_add"
[(set (match_operand:SWI 0 "register_operand" "=")
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m")
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_operand:SWI 2 "nonmemory_operand" "0")))
(clobber (reg:CC FLAGS_REG))]
"TARGET_XADD"
"lock{%;} %K3xadd{}\t{%0, %1|%1, %0}")
;; This peephole2 and following insn optimize
;; __sync_fetch_and_add (x, -N) == N into just lock {add,sub,inc,dec}
;; followed by testing of flags instead of lock xadd and comparisons.
(define_peephole2
[(set (match_operand:SWI 0 "register_operand")
(match_operand:SWI 2 "const_int_operand"))
(parallel [(set (match_dup 0)
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand")
(match_operand:SI 4 "const_int_operand")]
UNSPECV_XCHG))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 0)))
(clobber (reg:CC FLAGS_REG))])
(set (reg:CCZ FLAGS_REG)
(compare:CCZ (match_dup 0)
(match_operand:SWI 3 "const_int_operand")))]
"peep2_reg_dead_p (3, operands[0])
&& (unsigned HOST_WIDE_INT) INTVAL (operands[2])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[3])
&& !reg_overlap_mentioned_p (operands[0], operands[1])"
[(parallel [(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI [(match_dup 1) (match_dup 4)]
UNSPECV_XCHG)
(match_dup 3)))
(set (match_dup 1)
(plus:SWI (match_dup 1)
(match_dup 2)))])])
(define_insn "*atomic_fetch_add_cmp"
[(set (reg:CCZ FLAGS_REG)
(compare:CCZ
(unspec_volatile:SWI
[(match_operand:SWI 0 "memory_operand" "+m")
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG)
(match_operand:SWI 2 "const_int_operand" "i")))
(set (match_dup 0)
(plus:SWI (match_dup 0)
(match_operand:SWI 1 "const_int_operand" "i")))]
"(unsigned HOST_WIDE_INT) INTVAL (operands[1])
== -(unsigned HOST_WIDE_INT) INTVAL (operands[2])"
{
if (incdec_operand (operands[1], mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K3inc{}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K3dec{}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], mode))
return "lock{%;} %K3sub{}\t{%1, %0|%0, %1}";
return "lock{%;} %K3add{}\t{%1, %0|%0, %1}";
})
;; Recall that xchg implicitly sets LOCK#, so adding it again wastes space.
;; In addition, it is always a full barrier, so we can ignore the memory model.
(define_insn "atomic_exchange"
[(set (match_operand:SWI 0 "register_operand" "=") ;; output
(unspec_volatile:SWI
[(match_operand:SWI 1 "memory_operand" "+m") ;; memory
(match_operand:SI 3 "const_int_operand")] ;; model
UNSPECV_XCHG))
(set (match_dup 1)
(match_operand:SWI 2 "register_operand" "0"))] ;; input
""
"%K3xchg{}\t{%1, %0|%0, %1}")
(define_insn "atomic_add"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(plus:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" ""))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
{
if (incdec_operand (operands[1], mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K2inc{}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K2dec{}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], mode))
return "lock{%;} %K2sub{}\t{%1, %0|%0, %1}";
return "lock{%;} %K2add{}\t{%1, %0|%0, %1}";
})
(define_insn "atomic_sub"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(minus:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" ""))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
{
if (incdec_operand (operands[1], mode))
{
if (operands[1] == const1_rtx)
return "lock{%;} %K2dec{}\t%0";
else
{
gcc_assert (operands[1] == constm1_rtx);
return "lock{%;} %K2inc{}\t%0";
}
}
if (x86_maybe_negate_const_int (&operands[1], mode))
return "lock{%;} %K2add{}\t{%1, %0|%0, %1}";
return "lock{%;} %K2sub{}\t{%1, %0|%0, %1}";
})
(define_insn "atomic_"
[(set (match_operand:SWI 0 "memory_operand" "+m")
(unspec_volatile:SWI
[(any_logic:SWI (match_dup 0)
(match_operand:SWI 1 "nonmemory_operand" ""))
(match_operand:SI 2 "const_int_operand")] ;; model
UNSPECV_LOCK))
(clobber (reg:CC FLAGS_REG))]
""
"lock{%;} %K2{}\t{%1, %0|%0, %1}")