;; Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . ;; For the internal conditional math routines: ;; operand 0 is always the result ;; operand 1 is always the predicate ;; operand 2, 3, and sometimes 4 are the input values. ;; operand 4 or 5 is the floating point status register to use. ;; operand 5 or 6 is the rounding to do. (0 = single, 1 = double, 2 = none) ;; ;; addrf3_cond - F0 = F2 + F3 ;; subrf3_cond - F0 = F2 - F3 ;; mulrf3_cond - F0 = F2 * F3 ;; nmulrf3_cond - F0 = - (F2 * F3) ;; m1addrf4_cond - F0 = (F2 * F3) + F4 ;; m1subrf4_cond - F0 = (F2 * F3) - F4 ;; m2addrf4_cond - F0 = F2 + (F3 * F4) ;; m2subrf4_cond - F0 = F2 - (F3 * F4) ;; Basic plus/minus/mult operations (define_insn "addrf3_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (plus:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")) (match_operand:RF 4 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 5 "const_int_operand" "")) (use (match_operand:SI 6 "const_int_operand" ""))] "" "(%1) fadd%R6.s%5 %0 = %F2, %F3" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) (define_insn "subrf3_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (minus:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")) (match_operand:RF 4 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 5 "const_int_operand" "")) (use (match_operand:SI 6 "const_int_operand" ""))] "" "(%1) fsub%R6.s%5 %0 = %F2, %F3" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) (define_insn "mulrf3_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (mult:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")) (match_operand:RF 4 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 5 "const_int_operand" "")) (use (match_operand:SI 6 "const_int_operand" ""))] "" "(%1) fmpy%R6.s%5 %0 = %F2, %F3" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) ;; neg-mult operation (define_insn "nmulrf3_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (neg:RF (mult:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG"))) (match_operand:RF 4 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 5 "const_int_operand" "")) (use (match_operand:SI 6 "const_int_operand" ""))] "" "(%1) fnmpy%R6.s%5 %0 = %F2, %F3" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) ;; add-mult/sub-mult operations (mult as op1) (define_insn "m1addrf4_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (plus:RF (mult:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")) (match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG")) (match_operand:RF 5 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 6 "const_int_operand" "")) (use (match_operand:SI 7 "const_int_operand" ""))] "" "(%1) fma%R7.s%6 %0 = %F2, %F3, %F4" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) (define_insn "m1subrf4_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (minus:RF (mult:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")) (match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG")) (match_operand:RF 5 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 6 "const_int_operand" "")) (use (match_operand:SI 7 "const_int_operand" ""))] "" "(%1) fms%R7.s%6 %0 = %F2, %F3, %F4" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) ;; add-mult/sub-mult operations (mult as op2) (define_insn "m2addrf4_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (plus:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (mult:RF (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG"))) (match_operand:RF 5 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 6 "const_int_operand" "")) (use (match_operand:SI 7 "const_int_operand" ""))] "" "(%1) fma%R7.s%6 %0 = %F3, %F4, %F2" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) (define_insn "m2subrf4_cond" [(set (match_operand:RF 0 "fr_register_operand" "=f,f") (if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c") (const_int 0)) (minus:RF (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG") (mult:RF (match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG") (match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG"))) (match_operand:RF 5 "fr_reg_or_0_operand" "0,H"))) (use (match_operand:SI 6 "const_int_operand" "")) (use (match_operand:SI 7 "const_int_operand" ""))] "" "(%1) fnma%R7.s%6 %0 = %F3, %F4, %F2" [(set_attr "itanium_class" "fmac") (set_attr "predicable" "no")]) ;; Conversions to/from RF and SF/DF/XF ;; These conversions should not generate any code but make it possible ;; for all the instructions used to implement floating point division ;; to be written for RFmode only and to not have to handle multiple ;; modes or to have to handle a register in more than one mode. (define_mode_iterator SDX_F [SF DF XF]) (define_insn "extendrf2" [(set (match_operand:RF 0 "fr_register_operand" "=f") (float_extend:RF (match_operand:SDX_F 1 "fr_reg_or_fp01_operand" "fG")))] "" "#" [(set_attr "itanium_class" "fmisc") (set_attr "predicable" "yes")]) (define_split [(set (match_operand:RF 0 "fr_register_operand" "") (float_extend:RF (match_operand:SDX_F 1 "fr_reg_or_fp01_operand" "")))] "reload_completed" [(set (match_dup 0) (match_dup 2))] { if (operands[1] == CONST0_RTX (mode)) operands[2] = gen_rtx_REG (RFmode, FR_REG (0)); else if (operands[1] == CONST1_RTX (mode)) operands[2] = gen_rtx_REG (RFmode, FR_REG (1)); else operands[2] = gen_rtx_REG (RFmode, REGNO (operands[1])); }) (define_insn "truncrf2" [(set (match_operand:SDX_F 0 "fr_register_operand" "=f") (float_truncate:SDX_F (match_operand:RF 1 "fr_reg_or_fp01_operand" "fG")))] "" "#" [(set_attr "itanium_class" "fmisc") (set_attr "predicable" "yes")]) (define_split [(set (match_operand:SDX_F 0 "fr_register_operand" "") (float_truncate:SDX_F (match_operand:RF 1 "fr_reg_or_fp01_operand" "")))] "reload_completed" [(set (match_dup 0) (match_dup 2))] { if (operands[1] == CONST0_RTX (RFmode)) operands[2] = gen_rtx_REG (mode, FR_REG (0)); else if (operands[1] == CONST1_RTX (RFmode)) operands[2] = gen_rtx_REG (mode, FR_REG (1)); else operands[2] = gen_rtx_REG (mode, REGNO (operands[1])); }) ;; Reciprocal approximation (define_insn "recip_approx_rf" [(set (match_operand:RF 0 "fr_register_operand" "=f") (unspec:RF [(match_operand:RF 1 "fr_reg_or_fp01_operand" "fG") (match_operand:RF 2 "fr_reg_or_fp01_operand" "fG")] UNSPEC_FR_RECIP_APPROX_RES)) (set (match_operand:BI 3 "register_operand" "=c") (unspec:BI [(match_dup 1) (match_dup 2)] UNSPEC_FR_RECIP_APPROX)) (use (match_operand:SI 4 "const_int_operand" ""))] "" "frcpa.s%4 %0, %3 = %F1, %F2" [(set_attr "itanium_class" "fmisc") (set_attr "predicable" "no")]) ;; Single precision floating point division (maximum throughput algorithm). (define_expand "divsf3_internal_thr" [(set (match_operand:SF 0 "fr_register_operand" "") (div:SF (match_operand:SF 1 "fr_reg_or_fp01_operand" "") (match_operand:SF 2 "fr_reg_or_fp01_operand" "")))] "TARGET_INLINE_FLOAT_DIV" { rtx y = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx q_res = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (BImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_sgl = CONST0_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); /* Empty conversions to put inputs into RFmode. */ emit_insn (gen_extendsfrf2 (a, operands[1])); emit_insn (gen_extendsfrf2 (b, operands[2])); /* y = 1 / b */ emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); /* e = 1 - (b * y) */ emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); /* y1 = y + (y * e) */ emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); /* y2 = y + (y1 * e) */ emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e, zero, status1, trunc_off)); /* q = single(a * y2) */ emit_insn (gen_mulrf3_cond (q, cond, a, y2, zero, status1, trunc_sgl)); /* r = a - (q * b) */ emit_insn (gen_m2subrf4_cond (r, cond, a, q, b, zero, status1, trunc_off)); /* Q = single (q + (r * y2)) */ emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y2, y, status0, trunc_sgl)); /* Conversion back into SFmode. */ emit_insn (gen_truncrfsf2 (operands[0], q_res)); DONE; }) ;; Single precision floating point division (minimum latency algorithm). (define_expand "divsf3_internal_lat" [(set (match_operand:SF 0 "fr_register_operand" "") (div:SF (match_operand:SF 1 "fr_reg_or_fp01_operand" "") (match_operand:SF 2 "fr_reg_or_fp01_operand" "")))] "TARGET_INLINE_FLOAT_DIV" { rtx y = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx q_res = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (BImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_sgl = CONST0_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); /* Empty conversions to put inputs into RFmode. */ emit_insn (gen_extendsfrf2 (a, operands[1])); emit_insn (gen_extendsfrf2 (b, operands[2])); /* y = 1 / b */ emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); /* q = a * y */ emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); /* e = 1 - (b * y) */ emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); /* e1 = e + (e * e) */ emit_insn (gen_m2addrf4_cond (e1, cond, e, e, e, zero, status1, trunc_off)); /* q1 = single(q + (q * e1)) */ emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e1, zero, status1, trunc_sgl)); /* y1 = y + (y * e1) */ emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e1, zero, status1, trunc_off)); /* r = a - (q1 * b) */ emit_insn (gen_m2subrf4_cond (r, cond, a, q1, b, zero, status1, trunc_off)); /* Q = single (q1 + (r * y1)) */ emit_insn (gen_m2addrf4_cond (q_res, cond, q1, r, y1, y, status0, trunc_sgl)); /* Conversion back into SFmode. */ emit_insn (gen_truncrfsf2 (operands[0], q_res)); DONE; }) ;; Double precision floating point division (maximum throughput algorithm). (define_expand "divdf3_internal_thr" [(set (match_operand:DF 0 "fr_register_operand" "") (div:DF (match_operand:DF 1 "fr_reg_or_fp01_operand" "") (match_operand:DF 2 "fr_reg_or_fp01_operand" "")))] "TARGET_INLINE_FLOAT_DIV" { rtx q_res = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx y3 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (BImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_dbl = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); /* Empty conversions to put inputs into RFmode */ emit_insn (gen_extenddfrf2 (a, operands[1])); emit_insn (gen_extenddfrf2 (b, operands[2])); /* y = 1 / b */ emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); /* e = 1 - (b * y) */ emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); /* y1 = y + (y * e) */ emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); /* e1 = e * e */ emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); /* y2 = y1 + (y1 * e1) */ emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off)); /* e2 = e1 * e1 */ emit_insn (gen_mulrf3_cond (e2, cond, e1, e1, zero, status1, trunc_off)); /* y3 = y2 + (y2 * e2) */ emit_insn (gen_m2addrf4_cond (y3, cond, y2, y2, e2, zero, status1, trunc_off)); /* q = double (a * y3) */ emit_insn (gen_mulrf3_cond (q, cond, a, y3, zero, status1, trunc_dbl)); /* r = a - (b * q) */ emit_insn (gen_m2subrf4_cond (r, cond, a, b, q, zero, status1, trunc_off)); /* Q = double (q + (r * y3)) */ emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y3, y, status0, trunc_dbl)); /* Conversion back into DFmode */ emit_insn (gen_truncrfdf2 (operands[0], q_res)); DONE; }) ;; Double precision floating point division (minimum latency algorithm). (define_expand "divdf3_internal_lat" [(set (match_operand:DF 0 "fr_register_operand" "") (div:DF (match_operand:DF 1 "fr_reg_or_fp01_operand" "") (match_operand:DF 2 "fr_reg_or_fp01_operand" "")))] "TARGET_INLINE_FLOAT_DIV" { rtx q_res = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx q2 = gen_reg_rtx (RFmode); rtx e3 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r1 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (BImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_dbl = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); /* Empty conversions to put inputs into RFmode */ emit_insn (gen_extenddfrf2 (a, operands[1])); emit_insn (gen_extenddfrf2 (b, operands[2])); /* y = 1 / b */ emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); /* e = 1 - (b * y) */ emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); /* q = a * y */ emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); /* e2 = e + (e * e) */ emit_insn (gen_m2addrf4_cond (e2, cond, e, e, e, zero, status1, trunc_off)); /* e1 = e * e */ emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); /* e3 = e + (e1 * e1) */ emit_insn (gen_m2addrf4_cond (e3, cond, e, e1, e1, zero, status1, trunc_off)); /* q1 = q + (q * e2) */ emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e2, zero, status1, trunc_off)); /* y1 = y + (y * e2) */ emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e2, zero, status1, trunc_off)); /* q2 = double(q + (q1 * e3)) */ emit_insn (gen_m2addrf4_cond (q2, cond, q, q1, e3, zero, status1, trunc_dbl)); /* y2 = y + (y1 * e3) */ emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e3, zero, status1, trunc_off)); /* r1 = a - (b * q2) */ emit_insn (gen_m2subrf4_cond (r1, cond, a, b, q2, zero, status1, trunc_off)); /* Q = double (q2 + (r1 * y2)) */ emit_insn (gen_m2addrf4_cond (q_res, cond, q2, r1, y2, y, status0, trunc_dbl)); /* Conversion back into DFmode */ emit_insn (gen_truncrfdf2 (operands[0], q_res)); DONE; }) ;; Extended precision floating point division. (define_expand "divxf3_internal" [(set (match_operand:XF 0 "fr_register_operand" "") (div:XF (match_operand:XF 1 "fr_reg_or_fp01_operand" "") (match_operand:XF 2 "fr_reg_or_fp01_operand" "")))] "TARGET_INLINE_FLOAT_DIV" { rtx q_res = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx y3 = gen_reg_rtx (RFmode); rtx e3 = gen_reg_rtx (RFmode); rtx e4 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx r1 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (BImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); /* Empty conversions to put inputs into RFmode */ emit_insn (gen_extendxfrf2 (a, operands[1])); emit_insn (gen_extendxfrf2 (b, operands[2])); /* y = 1 / b */ emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); /* e = 1 - (b * y) */ emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); /* q = a * y */ emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); /* e2 = e + (e * e) */ emit_insn (gen_m2addrf4_cond (e2, cond, e, e, e, zero, status1, trunc_off)); /* e1 = e * e */ emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); /* y1 = y + (y * e2) */ emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e2, zero, status1, trunc_off)); /* e3 = e + (e1 * e1) */ emit_insn (gen_m2addrf4_cond (e3, cond, e, e1, e1, zero, status1, trunc_off)); /* y2 = y + (y1 * e3) */ emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e3, zero, status1, trunc_off)); /* r = a - (b * q) */ emit_insn (gen_m2subrf4_cond (r, cond, a, b, q, zero, status1, trunc_off)); /* e4 = 1 - (b * y2) */ emit_insn (gen_m2subrf4_cond (e4, cond, one, b, y2, zero, status1, trunc_off)); /* q1 = q + (r * y2) */ emit_insn (gen_m2addrf4_cond (q1, cond, q, r, y2, zero, status1, trunc_off)); /* y3 = y2 + (y2 * e4) */ emit_insn (gen_m2addrf4_cond (y3, cond, y2, y2, e4, zero, status1, trunc_off)); /* r1 = a - (b * q1) */ emit_insn (gen_m2subrf4_cond (r1, cond, a, b, q1, zero, status1, trunc_off)); /* Q = q1 + (r1 * y3) */ emit_insn (gen_m2addrf4_cond (q_res, cond, q1, r1, y3, y, status0, trunc_off)); /* Conversion back into XFmode */ emit_insn (gen_truncrfxf2 (operands[0], q_res)); DONE; })