/* Definitions of target machine for GNU compiler. Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. Contributed by James E. Wilson and David Mosberger . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "recog.h" #include "expr.h" #include "optabs.h" #include "except.h" #include "function.h" #include "ggc.h" #include "basic-block.h" #include "toplev.h" #include "sched-int.h" #include "timevar.h" #include "target.h" #include "target-def.h" #include "tm_p.h" #include "hashtab.h" #include "langhooks.h" #include "cfglayout.h" /* This is used for communication between ASM_OUTPUT_LABEL and ASM_OUTPUT_LABELREF. */ int ia64_asm_output_label = 0; /* Define the information needed to generate branch and scc insns. This is stored from the compare operation. */ struct rtx_def * ia64_compare_op0; struct rtx_def * ia64_compare_op1; /* Register names for ia64_expand_prologue. */ static const char * const ia64_reg_numbers[96] = { "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", "r96", "r97", "r98", "r99", "r100","r101","r102","r103", "r104","r105","r106","r107","r108","r109","r110","r111", "r112","r113","r114","r115","r116","r117","r118","r119", "r120","r121","r122","r123","r124","r125","r126","r127"}; /* ??? These strings could be shared with REGISTER_NAMES. */ static const char * const ia64_input_reg_names[8] = { "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7" }; /* ??? These strings could be shared with REGISTER_NAMES. */ static const char * const ia64_local_reg_names[80] = { "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79" }; /* ??? These strings could be shared with REGISTER_NAMES. */ static const char * const ia64_output_reg_names[8] = { "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7" }; /* String used with the -mfixed-range= option. */ const char *ia64_fixed_range_string; /* Determines whether we use adds, addl, or movl to generate our TLS immediate offsets. */ int ia64_tls_size = 22; /* String used with the -mtls-size= option. */ const char *ia64_tls_size_string; /* Which cpu are we scheduling for. */ enum processor_type ia64_tune; /* String used with the -tune= option. */ const char *ia64_tune_string; /* Determines whether we run our final scheduling pass or not. We always avoid the normal second scheduling pass. */ static int ia64_flag_schedule_insns2; /* Variables which are this size or smaller are put in the sdata/sbss sections. */ unsigned int ia64_section_threshold; /* The following variable is used by the DFA insn scheduler. The value is TRUE if we do insn bundling instead of insn scheduling. */ int bundling_p = 0; /* Structure to be filled in by ia64_compute_frame_size with register save masks and offsets for the current function. */ struct ia64_frame_info { HOST_WIDE_INT total_size; /* size of the stack frame, not including the caller's scratch area. */ HOST_WIDE_INT spill_cfa_off; /* top of the reg spill area from the cfa. */ HOST_WIDE_INT spill_size; /* size of the gr/br/fr spill area. */ HOST_WIDE_INT extra_spill_size; /* size of spill area for others. */ HARD_REG_SET mask; /* mask of saved registers. */ unsigned int gr_used_mask; /* mask of registers in use as gr spill registers or long-term scratches. */ int n_spilled; /* number of spilled registers. */ int reg_fp; /* register for fp. */ int reg_save_b0; /* save register for b0. */ int reg_save_pr; /* save register for prs. */ int reg_save_ar_pfs; /* save register for ar.pfs. */ int reg_save_ar_unat; /* save register for ar.unat. */ int reg_save_ar_lc; /* save register for ar.lc. */ int reg_save_gp; /* save register for gp. */ int n_input_regs; /* number of input registers used. */ int n_local_regs; /* number of local registers used. */ int n_output_regs; /* number of output registers used. */ int n_rotate_regs; /* number of rotating registers used. */ char need_regstk; /* true if a .regstk directive needed. */ char initialized; /* true if the data is finalized. */ }; /* Current frame information calculated by ia64_compute_frame_size. */ static struct ia64_frame_info current_frame_info; static int ia64_use_dfa_pipeline_interface PARAMS ((void)); static int ia64_first_cycle_multipass_dfa_lookahead PARAMS ((void)); static void ia64_dependencies_evaluation_hook PARAMS ((rtx, rtx)); static void ia64_init_dfa_pre_cycle_insn PARAMS ((void)); static rtx ia64_dfa_pre_cycle_insn PARAMS ((void)); static int ia64_first_cycle_multipass_dfa_lookahead_guard PARAMS ((rtx)); static int ia64_dfa_new_cycle PARAMS ((FILE *, int, rtx, int, int, int *)); static rtx gen_tls_get_addr PARAMS ((void)); static rtx gen_thread_pointer PARAMS ((void)); static rtx ia64_expand_tls_address PARAMS ((enum tls_model, rtx, rtx)); static int find_gr_spill PARAMS ((int)); static int next_scratch_gr_reg PARAMS ((void)); static void mark_reg_gr_used_mask PARAMS ((rtx, void *)); static void ia64_compute_frame_size PARAMS ((HOST_WIDE_INT)); static void setup_spill_pointers PARAMS ((int, rtx, HOST_WIDE_INT)); static void finish_spill_pointers PARAMS ((void)); static rtx spill_restore_mem PARAMS ((rtx, HOST_WIDE_INT)); static void do_spill PARAMS ((rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT, rtx)); static void do_restore PARAMS ((rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT)); static rtx gen_movdi_x PARAMS ((rtx, rtx, rtx)); static rtx gen_fr_spill_x PARAMS ((rtx, rtx, rtx)); static rtx gen_fr_restore_x PARAMS ((rtx, rtx, rtx)); static enum machine_mode hfa_element_mode PARAMS ((tree, int)); static bool ia64_function_ok_for_sibcall PARAMS ((tree, tree)); static bool ia64_rtx_costs PARAMS ((rtx, int, int, int *)); static void fix_range PARAMS ((const char *)); static struct machine_function * ia64_init_machine_status PARAMS ((void)); static void emit_insn_group_barriers PARAMS ((FILE *)); static void emit_all_insn_group_barriers PARAMS ((FILE *)); static void final_emit_insn_group_barriers PARAMS ((FILE *)); static void emit_predicate_relation_info PARAMS ((void)); static void ia64_reorg PARAMS ((void)); static bool ia64_in_small_data_p PARAMS ((tree)); static void process_epilogue PARAMS ((void)); static int process_set PARAMS ((FILE *, rtx)); static rtx ia64_expand_fetch_and_op PARAMS ((optab, enum machine_mode, tree, rtx)); static rtx ia64_expand_op_and_fetch PARAMS ((optab, enum machine_mode, tree, rtx)); static rtx ia64_expand_compare_and_swap PARAMS ((enum machine_mode, enum machine_mode, int, tree, rtx)); static rtx ia64_expand_lock_test_and_set PARAMS ((enum machine_mode, tree, rtx)); static rtx ia64_expand_lock_release PARAMS ((enum machine_mode, tree, rtx)); static bool ia64_assemble_integer PARAMS ((rtx, unsigned int, int)); static void ia64_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT)); static void ia64_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT)); static void ia64_output_function_end_prologue PARAMS ((FILE *)); static int ia64_issue_rate PARAMS ((void)); static int ia64_adjust_cost PARAMS ((rtx, rtx, rtx, int)); static void ia64_sched_init PARAMS ((FILE *, int, int)); static void ia64_sched_finish PARAMS ((FILE *, int)); static int ia64_dfa_sched_reorder PARAMS ((FILE *, int, rtx *, int *, int, int)); static int ia64_sched_reorder PARAMS ((FILE *, int, rtx *, int *, int)); static int ia64_sched_reorder2 PARAMS ((FILE *, int, rtx *, int *, int)); static int ia64_variable_issue PARAMS ((FILE *, int, rtx, int)); static struct bundle_state *get_free_bundle_state PARAMS ((void)); static void free_bundle_state PARAMS ((struct bundle_state *)); static void initiate_bundle_states PARAMS ((void)); static void finish_bundle_states PARAMS ((void)); static unsigned bundle_state_hash PARAMS ((const void *)); static int bundle_state_eq_p PARAMS ((const void *, const void *)); static int insert_bundle_state PARAMS ((struct bundle_state *)); static void initiate_bundle_state_table PARAMS ((void)); static void finish_bundle_state_table PARAMS ((void)); static int try_issue_nops PARAMS ((struct bundle_state *, int)); static int try_issue_insn PARAMS ((struct bundle_state *, rtx)); static void issue_nops_and_insn PARAMS ((struct bundle_state *, int, rtx, int, int)); static int get_max_pos PARAMS ((state_t)); static int get_template PARAMS ((state_t, int)); static rtx get_next_important_insn PARAMS ((rtx, rtx)); static void bundling PARAMS ((FILE *, int, rtx, rtx)); static void ia64_output_mi_thunk PARAMS ((FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree)); static void ia64_file_start PARAMS ((void)); static void ia64_select_rtx_section PARAMS ((enum machine_mode, rtx, unsigned HOST_WIDE_INT)); static void ia64_rwreloc_select_section PARAMS ((tree, int, unsigned HOST_WIDE_INT)) ATTRIBUTE_UNUSED; static void ia64_rwreloc_unique_section PARAMS ((tree, int)) ATTRIBUTE_UNUSED; static void ia64_rwreloc_select_rtx_section PARAMS ((enum machine_mode, rtx, unsigned HOST_WIDE_INT)) ATTRIBUTE_UNUSED; static unsigned int ia64_rwreloc_section_type_flags PARAMS ((tree, const char *, int)) ATTRIBUTE_UNUSED; static void ia64_hpux_add_extern_decl PARAMS ((const char *name)) ATTRIBUTE_UNUSED; static void ia64_hpux_file_end PARAMS ((void)) ATTRIBUTE_UNUSED; /* Table of valid machine attributes. */ static const struct attribute_spec ia64_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ { "syscall_linkage", 0, 0, false, true, true, NULL }, { NULL, 0, 0, false, false, false, NULL } }; /* Initialize the GCC target structure. */ #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE ia64_attribute_table #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS ia64_init_builtins #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN ia64_expand_builtin #undef TARGET_ASM_BYTE_OP #define TARGET_ASM_BYTE_OP "\tdata1\t" #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\tdata2\t" #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\tdata4\t" #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP "\tdata8\t" #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP "\tdata2.ua\t" #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP "\tdata4.ua\t" #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP "\tdata8.ua\t" #undef TARGET_ASM_INTEGER #define TARGET_ASM_INTEGER ia64_assemble_integer #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE ia64_output_function_prologue #undef TARGET_ASM_FUNCTION_END_PROLOGUE #define TARGET_ASM_FUNCTION_END_PROLOGUE ia64_output_function_end_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE ia64_output_function_epilogue #undef TARGET_IN_SMALL_DATA_P #define TARGET_IN_SMALL_DATA_P ia64_in_small_data_p #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST ia64_adjust_cost #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE ia64_issue_rate #undef TARGET_SCHED_VARIABLE_ISSUE #define TARGET_SCHED_VARIABLE_ISSUE ia64_variable_issue #undef TARGET_SCHED_INIT #define TARGET_SCHED_INIT ia64_sched_init #undef TARGET_SCHED_FINISH #define TARGET_SCHED_FINISH ia64_sched_finish #undef TARGET_SCHED_REORDER #define TARGET_SCHED_REORDER ia64_sched_reorder #undef TARGET_SCHED_REORDER2 #define TARGET_SCHED_REORDER2 ia64_sched_reorder2 #undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK #define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK ia64_dependencies_evaluation_hook #undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE #define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE ia64_use_dfa_pipeline_interface #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ia64_first_cycle_multipass_dfa_lookahead #undef TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN #define TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN ia64_init_dfa_pre_cycle_insn #undef TARGET_SCHED_DFA_PRE_CYCLE_INSN #define TARGET_SCHED_DFA_PRE_CYCLE_INSN ia64_dfa_pre_cycle_insn #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD\ ia64_first_cycle_multipass_dfa_lookahead_guard #undef TARGET_SCHED_DFA_NEW_CYCLE #define TARGET_SCHED_DFA_NEW_CYCLE ia64_dfa_new_cycle #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL ia64_function_ok_for_sibcall #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK ia64_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START ia64_file_start #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS ia64_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST hook_int_rtx_0 #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG ia64_reorg struct gcc_target targetm = TARGET_INITIALIZER; /* Return 1 if OP is a valid operand for the MEM of a CALL insn. */ int call_operand (op, mode) rtx op; enum machine_mode mode; { if (mode != GET_MODE (op) && mode != VOIDmode) return 0; return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG || (GET_CODE (op) == SUBREG && GET_CODE (XEXP (op, 0)) == REG)); } /* Return 1 if OP refers to a symbol in the sdata section. */ int sdata_symbolic_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case CONST: if (GET_CODE (XEXP (op, 0)) != PLUS || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF) break; op = XEXP (XEXP (op, 0), 0); /* FALLTHRU */ case SYMBOL_REF: if (CONSTANT_POOL_ADDRESS_P (op)) return GET_MODE_SIZE (get_pool_mode (op)) <= ia64_section_threshold; else return SYMBOL_REF_LOCAL_P (op) && SYMBOL_REF_SMALL_P (op); default: break; } return 0; } /* Return 1 if OP refers to a symbol, and is appropriate for a GOT load. */ int got_symbolic_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case CONST: op = XEXP (op, 0); if (GET_CODE (op) != PLUS) return 0; if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF) return 0; op = XEXP (op, 1); if (GET_CODE (op) != CONST_INT) return 0; return 1; /* Ok if we're not using GOT entries at all. */ if (TARGET_NO_PIC || TARGET_AUTO_PIC) return 1; /* "Ok" while emitting rtl, since otherwise we won't be provided with the entire offset during emission, which makes it very hard to split the offset into high and low parts. */ if (rtx_equal_function_value_matters) return 1; /* Force the low 14 bits of the constant to zero so that we do not use up so many GOT entries. */ return (INTVAL (op) & 0x3fff) == 0; case SYMBOL_REF: case LABEL_REF: return 1; default: break; } return 0; } /* Return 1 if OP refers to a symbol. */ int symbolic_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case CONST: case SYMBOL_REF: case LABEL_REF: return 1; default: break; } return 0; } /* Return tls_model if OP refers to a TLS symbol. */ int tls_symbolic_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != SYMBOL_REF) return 0; return SYMBOL_REF_TLS_MODEL (op); } /* Return 1 if OP refers to a function. */ int function_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (op)) return 1; else return 0; } /* Return 1 if OP is setjmp or a similar function. */ /* ??? This is an unsatisfying solution. Should rethink. */ int setjmp_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { const char *name; int retval = 0; if (GET_CODE (op) != SYMBOL_REF) return 0; name = XSTR (op, 0); /* The following code is borrowed from special_function_p in calls.c. */ /* Disregard prefix _, __ or __x. */ if (name[0] == '_') { if (name[1] == '_' && name[2] == 'x') name += 3; else if (name[1] == '_') name += 2; else name += 1; } if (name[0] == 's') { retval = ((name[1] == 'e' && (! strcmp (name, "setjmp") || ! strcmp (name, "setjmp_syscall"))) || (name[1] == 'i' && ! strcmp (name, "sigsetjmp")) || (name[1] == 'a' && ! strcmp (name, "savectx"))); } else if ((name[0] == 'q' && name[1] == 's' && ! strcmp (name, "qsetjmp")) || (name[0] == 'v' && name[1] == 'f' && ! strcmp (name, "vfork"))) retval = 1; return retval; } /* Return 1 if OP is a general operand, excluding tls symbolic operands. */ int move_operand (op, mode) rtx op; enum machine_mode mode; { return general_operand (op, mode) && !tls_symbolic_operand (op, mode); } /* Return 1 if OP is a register operand that is (or could be) a GR reg. */ int gr_register_operand (op, mode) rtx op; enum machine_mode mode; { if (! register_operand (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) == REG) { unsigned int regno = REGNO (op); if (regno < FIRST_PSEUDO_REGISTER) return GENERAL_REGNO_P (regno); } return 1; } /* Return 1 if OP is a register operand that is (or could be) an FR reg. */ int fr_register_operand (op, mode) rtx op; enum machine_mode mode; { if (! register_operand (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) == REG) { unsigned int regno = REGNO (op); if (regno < FIRST_PSEUDO_REGISTER) return FR_REGNO_P (regno); } return 1; } /* Return 1 if OP is a register operand that is (or could be) a GR/FR reg. */ int grfr_register_operand (op, mode) rtx op; enum machine_mode mode; { if (! register_operand (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) == REG) { unsigned int regno = REGNO (op); if (regno < FIRST_PSEUDO_REGISTER) return GENERAL_REGNO_P (regno) || FR_REGNO_P (regno); } return 1; } /* Return 1 if OP is a nonimmediate operand that is (or could be) a GR reg. */ int gr_nonimmediate_operand (op, mode) rtx op; enum machine_mode mode; { if (! nonimmediate_operand (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) == REG) { unsigned int regno = REGNO (op); if (regno < FIRST_PSEUDO_REGISTER) return GENERAL_REGNO_P (regno); } return 1; } /* Return 1 if OP is a nonimmediate operand that is (or could be) a FR reg. */ int fr_nonimmediate_operand (op, mode) rtx op; enum machine_mode mode; { if (! nonimmediate_operand (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) == REG) { unsigned int regno = REGNO (op); if (regno < FIRST_PSEUDO_REGISTER) return FR_REGNO_P (regno); } return 1; } /* Return 1 if OP is a nonimmediate operand that is a GR/FR reg. */ int grfr_nonimmediate_operand (op, mode) rtx op; enum machine_mode mode; { if (! nonimmediate_operand (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) == REG) { unsigned int regno = REGNO (op); if (regno < FIRST_PSEUDO_REGISTER) return GENERAL_REGNO_P (regno) || FR_REGNO_P (regno); } return 1; } /* Return 1 if OP is a GR register operand, or zero. */ int gr_reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { return (op == const0_rtx || gr_register_operand (op, mode)); } /* Return 1 if OP is a GR register operand, or a 5 bit immediate operand. */ int gr_reg_or_5bit_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && INTVAL (op) >= 0 && INTVAL (op) < 32) || GET_CODE (op) == CONSTANT_P_RTX || gr_register_operand (op, mode)); } /* Return 1 if OP is a GR register operand, or a 6 bit immediate operand. */ int gr_reg_or_6bit_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_M (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX || gr_register_operand (op, mode)); } /* Return 1 if OP is a GR register operand, or an 8 bit immediate operand. */ int gr_reg_or_8bit_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_K (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX || gr_register_operand (op, mode)); } /* Return 1 if OP is a GR/FR register operand, or an 8 bit immediate. */ int grfr_reg_or_8bit_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_K (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX || grfr_register_operand (op, mode)); } /* Return 1 if OP is a register operand, or an 8 bit adjusted immediate operand. */ int gr_reg_or_8bit_adjusted_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_L (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX || gr_register_operand (op, mode)); } /* Return 1 if OP is a register operand, or is valid for both an 8 bit immediate and an 8 bit adjusted immediate operand. This is necessary because when we emit a compare, we don't know what the condition will be, so we need the union of the immediates accepted by GT and LT. */ int gr_reg_or_8bit_and_adjusted_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_K (INTVAL (op)) && CONST_OK_FOR_L (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX || gr_register_operand (op, mode)); } /* Return 1 if OP is a register operand, or a 14 bit immediate operand. */ int gr_reg_or_14bit_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_I (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX || gr_register_operand (op, mode)); } /* Return 1 if OP is a register operand, or a 22 bit immediate operand. */ int gr_reg_or_22bit_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_J (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX || gr_register_operand (op, mode)); } /* Return 1 if OP is a 6 bit immediate operand. */ int shift_count_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT && CONST_OK_FOR_M (INTVAL (op))) || GET_CODE (op) == CONSTANT_P_RTX); } /* Return 1 if OP is a 5 bit immediate operand. */ int shift_32bit_count_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT && (INTVAL (op) >= 0 && INTVAL (op) < 32)) || GET_CODE (op) == CONSTANT_P_RTX); } /* Return 1 if OP is a 2, 4, 8, or 16 immediate operand. */ int shladd_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && (INTVAL (op) == 2 || INTVAL (op) == 4 || INTVAL (op) == 8 || INTVAL (op) == 16)); } /* Return 1 if OP is a -16, -8, -4, -1, 1, 4, 8, or 16 immediate operand. */ int fetchadd_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && (INTVAL (op) == -16 || INTVAL (op) == -8 || INTVAL (op) == -4 || INTVAL (op) == -1 || INTVAL (op) == 1 || INTVAL (op) == 4 || INTVAL (op) == 8 || INTVAL (op) == 16)); } /* Return 1 if OP is a floating-point constant zero, one, or a register. */ int fr_reg_or_fp01_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_G (op)) || fr_register_operand (op, mode)); } /* Like nonimmediate_operand, but don't allow MEMs that try to use a POST_MODIFY with a REG as displacement. */ int destination_operand (op, mode) rtx op; enum machine_mode mode; { if (! nonimmediate_operand (op, mode)) return 0; if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == POST_MODIFY && GET_CODE (XEXP (XEXP (XEXP (op, 0), 1), 1)) == REG) return 0; return 1; } /* Like memory_operand, but don't allow post-increments. */ int not_postinc_memory_operand (op, mode) rtx op; enum machine_mode mode; { return (memory_operand (op, mode) && GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != 'a'); } /* Return 1 if this is a comparison operator, which accepts a normal 8-bit signed immediate operand. */ int normal_comparison_operator (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); return ((mode == VOIDmode || GET_MODE (op) == mode) && (code == EQ || code == NE || code == GT || code == LE || code == GTU || code == LEU)); } /* Return 1 if this is a comparison operator, which accepts an adjusted 8-bit signed immediate operand. */ int adjusted_comparison_operator (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); return ((mode == VOIDmode || GET_MODE (op) == mode) && (code == LT || code == GE || code == LTU || code == GEU)); } /* Return 1 if this is a signed inequality operator. */ int signed_inequality_operator (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); return ((mode == VOIDmode || GET_MODE (op) == mode) && (code == GE || code == GT || code == LE || code == LT)); } /* Return 1 if this operator is valid for predication. */ int predicate_operator (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); return ((GET_MODE (op) == mode || mode == VOIDmode) && (code == EQ || code == NE)); } /* Return 1 if this operator can be used in a conditional operation. */ int condop_operator (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); return ((GET_MODE (op) == mode || mode == VOIDmode) && (code == PLUS || code == MINUS || code == AND || code == IOR || code == XOR)); } /* Return 1 if this is the ar.lc register. */ int ar_lc_reg_operand (op, mode) register rtx op; enum machine_mode mode; { return (GET_MODE (op) == DImode && (mode == DImode || mode == VOIDmode) && GET_CODE (op) == REG && REGNO (op) == AR_LC_REGNUM); } /* Return 1 if this is the ar.ccv register. */ int ar_ccv_reg_operand (op, mode) register rtx op; enum machine_mode mode; { return ((GET_MODE (op) == mode || mode == VOIDmode) && GET_CODE (op) == REG && REGNO (op) == AR_CCV_REGNUM); } /* Return 1 if this is the ar.pfs register. */ int ar_pfs_reg_operand (op, mode) register rtx op; enum machine_mode mode; { return ((GET_MODE (op) == mode || mode == VOIDmode) && GET_CODE (op) == REG && REGNO (op) == AR_PFS_REGNUM); } /* Like general_operand, but don't allow (mem (addressof)). */ int general_tfmode_operand (op, mode) rtx op; enum machine_mode mode; { if (! general_operand (op, mode)) return 0; if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == ADDRESSOF) return 0; return 1; } /* Similarly. */ int destination_tfmode_operand (op, mode) rtx op; enum machine_mode mode; { if (! destination_operand (op, mode)) return 0; if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == ADDRESSOF) return 0; return 1; } /* Similarly. */ int tfreg_or_fp01_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == SUBREG) return 0; return fr_reg_or_fp01_operand (op, mode); } /* Return 1 if OP is valid as a base register in a reg + offset address. */ int basereg_operand (op, mode) rtx op; enum machine_mode mode; { /* ??? Should I copy the flag_omit_frame_pointer and cse_not_expected checks from pa.c basereg_operand as well? Seems to be OK without them in test runs. */ return (register_operand (op, mode) && REG_POINTER ((GET_CODE (op) == SUBREG) ? SUBREG_REG (op) : op)); } /* Return 1 if the operands of a move are ok. */ int ia64_move_ok (dst, src) rtx dst, src; { /* If we're under init_recog_no_volatile, we'll not be able to use memory_operand. So check the code directly and don't worry about the validity of the underlying address, which should have been checked elsewhere anyway. */ if (GET_CODE (dst) != MEM) return 1; if (GET_CODE (src) == MEM) return 0; if (register_operand (src, VOIDmode)) return 1; /* Otherwise, this must be a constant, and that either 0 or 0.0 or 1.0. */ if (INTEGRAL_MODE_P (GET_MODE (dst))) return src == const0_rtx; else return GET_CODE (src) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_G (src); } /* Return 0 if we are doing C++ code. This optimization fails with C++ because of GNAT c++/6685. */ int addp4_optimize_ok (op1, op2) rtx op1, op2; { if (!strcmp (lang_hooks.name, "GNU C++")) return 0; return (basereg_operand (op1, GET_MODE(op1)) != basereg_operand (op2, GET_MODE(op2))); } /* Check if OP is a mask suitable for use with SHIFT in a dep.z instruction. Return the length of the field, or <= 0 on failure. */ int ia64_depz_field_mask (rop, rshift) rtx rop, rshift; { unsigned HOST_WIDE_INT op = INTVAL (rop); unsigned HOST_WIDE_INT shift = INTVAL (rshift); /* Get rid of the zero bits we're shifting in. */ op >>= shift; /* We must now have a solid block of 1's at bit 0. */ return exact_log2 (op + 1); } /* Expand a symbolic constant load. */ void ia64_expand_load_address (dest, src) rtx dest, src; { if (tls_symbolic_operand (src, VOIDmode)) abort (); if (GET_CODE (dest) != REG) abort (); /* ILP32 mode still loads 64-bits of data from the GOT. This avoids having to pointer-extend the value afterward. Other forms of address computation below are also more natural to compute as 64-bit quantities. If we've been given an SImode destination register, change it. */ if (GET_MODE (dest) != Pmode) dest = gen_rtx_REG (Pmode, REGNO (dest)); if (TARGET_AUTO_PIC) { emit_insn (gen_load_gprel64 (dest, src)); return; } else if (GET_CODE (src) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (src)) { emit_insn (gen_load_fptr (dest, src)); return; } else if (sdata_symbolic_operand (src, VOIDmode)) { emit_insn (gen_load_gprel (dest, src)); return; } if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT && (INTVAL (XEXP (XEXP (src, 0), 1)) & 0x1fff) != 0) { rtx sym = XEXP (XEXP (src, 0), 0); HOST_WIDE_INT ofs, hi, lo; /* Split the offset into a sign extended 14-bit low part and a complementary high part. */ ofs = INTVAL (XEXP (XEXP (src, 0), 1)); lo = ((ofs & 0x3fff) ^ 0x2000) - 0x2000; hi = ofs - lo; ia64_expand_load_address (dest, plus_constant (sym, hi)); emit_insn (gen_adddi3 (dest, dest, GEN_INT (lo))); } else { rtx tmp; tmp = gen_rtx_HIGH (Pmode, src); tmp = gen_rtx_PLUS (Pmode, tmp, pic_offset_table_rtx); emit_insn (gen_rtx_SET (VOIDmode, dest, tmp)); tmp = gen_rtx_LO_SUM (GET_MODE (dest), dest, src); emit_insn (gen_rtx_SET (VOIDmode, dest, tmp)); } } static GTY(()) rtx gen_tls_tga; static rtx gen_tls_get_addr () { if (!gen_tls_tga) gen_tls_tga = init_one_libfunc ("__tls_get_addr"); return gen_tls_tga; } static GTY(()) rtx thread_pointer_rtx; static rtx gen_thread_pointer () { if (!thread_pointer_rtx) { thread_pointer_rtx = gen_rtx_REG (Pmode, 13); RTX_UNCHANGING_P (thread_pointer_rtx) = 1; } return thread_pointer_rtx; } static rtx ia64_expand_tls_address (tls_kind, op0, op1) enum tls_model tls_kind; rtx op0, op1; { rtx tga_op1, tga_op2, tga_ret, tga_eqv, tmp, insns; switch (tls_kind) { case TLS_MODEL_GLOBAL_DYNAMIC: start_sequence (); tga_op1 = gen_reg_rtx (Pmode); emit_insn (gen_load_ltoff_dtpmod (tga_op1, op1)); tga_op1 = gen_rtx_MEM (Pmode, tga_op1); RTX_UNCHANGING_P (tga_op1) = 1; tga_op2 = gen_reg_rtx (Pmode); emit_insn (gen_load_ltoff_dtprel (tga_op2, op1)); tga_op2 = gen_rtx_MEM (Pmode, tga_op2); RTX_UNCHANGING_P (tga_op2) = 1; tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX, LCT_CONST, Pmode, 2, tga_op1, Pmode, tga_op2, Pmode); insns = get_insns (); end_sequence (); emit_libcall_block (insns, op0, tga_ret, op1); return NULL_RTX; case TLS_MODEL_LOCAL_DYNAMIC: /* ??? This isn't the completely proper way to do local-dynamic If the call to __tls_get_addr is used only by a single symbol, then we should (somehow) move the dtprel to the second arg to avoid the extra add. */ start_sequence (); tga_op1 = gen_reg_rtx (Pmode); emit_insn (gen_load_ltoff_dtpmod (tga_op1, op1)); tga_op1 = gen_rtx_MEM (Pmode, tga_op1); RTX_UNCHANGING_P (tga_op1) = 1; tga_op2 = const0_rtx; tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX, LCT_CONST, Pmode, 2, tga_op1, Pmode, tga_op2, Pmode); insns = get_insns (); end_sequence (); tga_eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_LD_BASE); tmp = gen_reg_rtx (Pmode); emit_libcall_block (insns, tmp, tga_ret, tga_eqv); if (register_operand (op0, Pmode)) tga_ret = op0; else tga_ret = gen_reg_rtx (Pmode); if (TARGET_TLS64) { emit_insn (gen_load_dtprel (tga_ret, op1)); emit_insn (gen_adddi3 (tga_ret, tmp, tga_ret)); } else emit_insn (gen_add_dtprel (tga_ret, tmp, op1)); return (tga_ret == op0 ? NULL_RTX : tga_ret); case TLS_MODEL_INITIAL_EXEC: tmp = gen_reg_rtx (Pmode); emit_insn (gen_load_ltoff_tprel (tmp, op1)); tmp = gen_rtx_MEM (Pmode, tmp); RTX_UNCHANGING_P (tmp) = 1; tmp = force_reg (Pmode, tmp); if (register_operand (op0, Pmode)) op1 = op0; else op1 = gen_reg_rtx (Pmode); emit_insn (gen_adddi3 (op1, tmp, gen_thread_pointer ())); return (op1 == op0 ? NULL_RTX : op1); case TLS_MODEL_LOCAL_EXEC: if (register_operand (op0, Pmode)) tmp = op0; else tmp = gen_reg_rtx (Pmode); if (TARGET_TLS64) { emit_insn (gen_load_tprel (tmp, op1)); emit_insn (gen_adddi3 (tmp, gen_thread_pointer (), tmp)); } else emit_insn (gen_add_tprel (tmp, gen_thread_pointer (), op1)); return (tmp == op0 ? NULL_RTX : tmp); default: abort (); } } rtx ia64_expand_move (op0, op1) rtx op0, op1; { enum machine_mode mode = GET_MODE (op0); if (!reload_in_progress && !reload_completed && !ia64_move_ok (op0, op1)) op1 = force_reg (mode, op1); if ((mode == Pmode || mode == ptr_mode) && symbolic_operand (op1, VOIDmode)) { enum tls_model tls_kind; if ((tls_kind = tls_symbolic_operand (op1, VOIDmode))) return ia64_expand_tls_address (tls_kind, op0, op1); if (!TARGET_NO_PIC && reload_completed) { ia64_expand_load_address (op0, op1); return NULL_RTX; } } return op1; } /* Split a move from OP1 to OP0 conditional on COND. */ void ia64_emit_cond_move (op0, op1, cond) rtx op0, op1, cond; { rtx insn, first = get_last_insn (); emit_move_insn (op0, op1); for (insn = get_last_insn (); insn != first; insn = PREV_INSN (insn)) if (INSN_P (insn)) PATTERN (insn) = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond), PATTERN (insn)); } /* Split a post-reload TImode reference into two DImode components. */ rtx ia64_split_timode (out, in, scratch) rtx out[2]; rtx in, scratch; { switch (GET_CODE (in)) { case REG: out[0] = gen_rtx_REG (DImode, REGNO (in)); out[1] = gen_rtx_REG (DImode, REGNO (in) + 1); return NULL_RTX; case MEM: { rtx base = XEXP (in, 0); switch (GET_CODE (base)) { case REG: out[0] = adjust_address (in, DImode, 0); break; case POST_MODIFY: base = XEXP (base, 0); out[0] = adjust_address (in, DImode, 0); break; /* Since we're changing the mode, we need to change to POST_MODIFY as well to preserve the size of the increment. Either that or do the update in two steps, but we've already got this scratch register handy so let's use it. */ case POST_INC: base = XEXP (base, 0); out[0] = change_address (in, DImode, gen_rtx_POST_MODIFY (Pmode, base, plus_constant (base, 16))); break; case POST_DEC: base = XEXP (base, 0); out[0] = change_address (in, DImode, gen_rtx_POST_MODIFY (Pmode, base, plus_constant (base, -16))); break; default: abort (); } if (scratch == NULL_RTX) abort (); out[1] = change_address (in, DImode, scratch); return gen_adddi3 (scratch, base, GEN_INT (8)); } case CONST_INT: case CONST_DOUBLE: split_double (in, &out[0], &out[1]); return NULL_RTX; default: abort (); } } /* ??? Fixing GR->FR TFmode moves during reload is hard. You need to go through memory plus an extra GR scratch register. Except that you can either get the first from SECONDARY_MEMORY_NEEDED or the second from SECONDARY_RELOAD_CLASS, but not both. We got into problems in the first place by allowing a construct like (subreg:TF (reg:TI)), which we got from a union containing a long double. This solution attempts to prevent this situation from occurring. When we see something like the above, we spill the inner register to memory. */ rtx spill_tfmode_operand (in, force) rtx in; int force; { if (GET_CODE (in) == SUBREG && GET_MODE (SUBREG_REG (in)) == TImode && GET_CODE (SUBREG_REG (in)) == REG) { rtx mem = gen_mem_addressof (SUBREG_REG (in), NULL_TREE, /*rescan=*/true); return gen_rtx_MEM (TFmode, copy_to_reg (XEXP (mem, 0))); } else if (force && GET_CODE (in) == REG) { rtx mem = gen_mem_addressof (in, NULL_TREE, /*rescan=*/true); return gen_rtx_MEM (TFmode, copy_to_reg (XEXP (mem, 0))); } else if (GET_CODE (in) == MEM && GET_CODE (XEXP (in, 0)) == ADDRESSOF) return change_address (in, TFmode, copy_to_reg (XEXP (in, 0))); else return in; } /* Emit comparison instruction if necessary, returning the expression that holds the compare result in the proper mode. */ rtx ia64_expand_compare (code, mode) enum rtx_code code; enum machine_mode mode; { rtx op0 = ia64_compare_op0, op1 = ia64_compare_op1; rtx cmp; /* If we have a BImode input, then we already have a compare result, and do not need to emit another comparison. */ if (GET_MODE (op0) == BImode) { if ((code == NE || code == EQ) && op1 == const0_rtx) cmp = op0; else abort (); } else { cmp = gen_reg_rtx (BImode); emit_insn (gen_rtx_SET (VOIDmode, cmp, gen_rtx_fmt_ee (code, BImode, op0, op1))); code = NE; } return gen_rtx_fmt_ee (code, mode, cmp, const0_rtx); } /* Emit the appropriate sequence for a call. */ void ia64_expand_call (retval, addr, nextarg, sibcall_p) rtx retval; rtx addr; rtx nextarg ATTRIBUTE_UNUSED; int sibcall_p; { rtx insn, b0; addr = XEXP (addr, 0); b0 = gen_rtx_REG (DImode, R_BR (0)); /* ??? Should do this for functions known to bind local too. */ if (TARGET_NO_PIC || TARGET_AUTO_PIC) { if (sibcall_p) insn = gen_sibcall_nogp (addr); else if (! retval) insn = gen_call_nogp (addr, b0); else insn = gen_call_value_nogp (retval, addr, b0); insn = emit_call_insn (insn); } else { if (sibcall_p) insn = gen_sibcall_gp (addr); else if (! retval) insn = gen_call_gp (addr, b0); else insn = gen_call_value_gp (retval, addr, b0); insn = emit_call_insn (insn); use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx); } if (sibcall_p) use_reg (&CALL_INSN_FUNCTION_USAGE (insn), b0); } void ia64_reload_gp () { rtx tmp; if (current_frame_info.reg_save_gp) tmp = gen_rtx_REG (DImode, current_frame_info.reg_save_gp); else { HOST_WIDE_INT offset; offset = (current_frame_info.spill_cfa_off + current_frame_info.spill_size); if (frame_pointer_needed) { tmp = hard_frame_pointer_rtx; offset = -offset; } else { tmp = stack_pointer_rtx; offset = current_frame_info.total_size - offset; } if (CONST_OK_FOR_I (offset)) emit_insn (gen_adddi3 (pic_offset_table_rtx, tmp, GEN_INT (offset))); else { emit_move_insn (pic_offset_table_rtx, GEN_INT (offset)); emit_insn (gen_adddi3 (pic_offset_table_rtx, pic_offset_table_rtx, tmp)); } tmp = gen_rtx_MEM (DImode, pic_offset_table_rtx); } emit_move_insn (pic_offset_table_rtx, tmp); } void ia64_split_call (retval, addr, retaddr, scratch_r, scratch_b, noreturn_p, sibcall_p) rtx retval, addr, retaddr, scratch_r, scratch_b; int noreturn_p, sibcall_p; { rtx insn; bool is_desc = false; /* If we find we're calling through a register, then we're actually calling through a descriptor, so load up the values. */ if (REG_P (addr) && GR_REGNO_P (REGNO (addr))) { rtx tmp; bool addr_dead_p; /* ??? We are currently constrained to *not* use peep2, because we can legitimiately change the global lifetime of the GP (in the form of killing where previously live). This is because a call through a descriptor doesn't use the previous value of the GP, while a direct call does, and we do not commit to either form until the split here. That said, this means that we lack precise life info for whether ADDR is dead after this call. This is not terribly important, since we can fix things up essentially for free with the POST_DEC below, but it's nice to not use it when we can immediately tell it's not necessary. */ addr_dead_p = ((noreturn_p || sibcall_p || TEST_HARD_REG_BIT (regs_invalidated_by_call, REGNO (addr))) && !FUNCTION_ARG_REGNO_P (REGNO (addr))); /* Load the code address into scratch_b. */ tmp = gen_rtx_POST_INC (Pmode, addr); tmp = gen_rtx_MEM (Pmode, tmp); emit_move_insn (scratch_r, tmp); emit_move_insn (scratch_b, scratch_r); /* Load the GP address. If ADDR is not dead here, then we must revert the change made above via the POST_INCREMENT. */ if (!addr_dead_p) tmp = gen_rtx_POST_DEC (Pmode, addr); else tmp = addr; tmp = gen_rtx_MEM (Pmode, tmp); emit_move_insn (pic_offset_table_rtx, tmp); is_desc = true; addr = scratch_b; } if (sibcall_p) insn = gen_sibcall_nogp (addr); else if (retval) insn = gen_call_value_nogp (retval, addr, retaddr); else insn = gen_call_nogp (addr, retaddr); emit_call_insn (insn); if ((!TARGET_CONST_GP || is_desc) && !noreturn_p && !sibcall_p) ia64_reload_gp (); } /* Begin the assembly file. */ static void ia64_file_start () { default_file_start (); emit_safe_across_calls (); } void emit_safe_across_calls () { unsigned int rs, re; int out_state; rs = 1; out_state = 0; while (1) { while (rs < 64 && call_used_regs[PR_REG (rs)]) rs++; if (rs >= 64) break; for (re = rs + 1; re < 64 && ! call_used_regs[PR_REG (re)]; re++) continue; if (out_state == 0) { fputs ("\t.pred.safe_across_calls ", asm_out_file); out_state = 1; } else fputc (',', asm_out_file); if (re == rs + 1) fprintf (asm_out_file, "p%u", rs); else fprintf (asm_out_file, "p%u-p%u", rs, re - 1); rs = re + 1; } if (out_state) fputc ('\n', asm_out_file); } /* Helper function for ia64_compute_frame_size: find an appropriate general register to spill some special register to. SPECIAL_SPILL_MASK contains bits in GR0 to GR31 that have already been allocated by this routine. TRY_LOCALS is true if we should attempt to locate a local regnum. */ static int find_gr_spill (try_locals) int try_locals; { int regno; /* If this is a leaf function, first try an otherwise unused call-clobbered register. */ if (current_function_is_leaf) { for (regno = GR_REG (1); regno <= GR_REG (31); regno++) if (! regs_ever_live[regno] && call_used_regs[regno] && ! fixed_regs[regno] && ! global_regs[regno] && ((current_frame_info.gr_used_mask >> regno) & 1) == 0) { current_frame_info.gr_used_mask |= 1 << regno; return regno; } } if (try_locals) { regno = current_frame_info.n_local_regs; /* If there is a frame pointer, then we can't use loc79, because that is HARD_FRAME_POINTER_REGNUM. In particular, see the reg_name switching code in ia64_expand_prologue. */ if (regno < (80 - frame_pointer_needed)) { current_frame_info.n_local_regs = regno + 1; return LOC_REG (0) + regno; } } /* Failed to find a general register to spill to. Must use stack. */ return 0; } /* In order to make for nice schedules, we try to allocate every temporary to a different register. We must of course stay away from call-saved, fixed, and global registers. We must also stay away from registers allocated in current_frame_info.gr_used_mask, since those include regs used all through the prologue. Any register allocated here must be used immediately. The idea is to aid scheduling, not to solve data flow problems. */ static int last_scratch_gr_reg; static int next_scratch_gr_reg () { int i, regno; for (i = 0; i < 32; ++i) { regno = (last_scratch_gr_reg + i + 1) & 31; if (call_used_regs[regno] && ! fixed_regs[regno] && ! global_regs[regno] && ((current_frame_info.gr_used_mask >> regno) & 1) == 0) { last_scratch_gr_reg = regno; return regno; } } /* There must be _something_ available. */ abort (); } /* Helper function for ia64_compute_frame_size, called through diddle_return_value. Mark REG in current_frame_info.gr_used_mask. */ static void mark_reg_gr_used_mask (reg, data) rtx reg; void *data ATTRIBUTE_UNUSED; { unsigned int regno = REGNO (reg); if (regno < 32) { unsigned int i, n = HARD_REGNO_NREGS (regno, GET_MODE (reg)); for (i = 0; i < n; ++i) current_frame_info.gr_used_mask |= 1 << (regno + i); } } /* Returns the number of bytes offset between the frame pointer and the stack pointer for the current function. SIZE is the number of bytes of space needed for local variables. */ static void ia64_compute_frame_size (size) HOST_WIDE_INT size; { HOST_WIDE_INT total_size; HOST_WIDE_INT spill_size = 0; HOST_WIDE_INT extra_spill_size = 0; HOST_WIDE_INT pretend_args_size; HARD_REG_SET mask; int n_spilled = 0; int spilled_gr_p = 0; int spilled_fr_p = 0; unsigned int regno; int i; if (current_frame_info.initialized) return; memset (¤t_frame_info, 0, sizeof current_frame_info); CLEAR_HARD_REG_SET (mask); /* Don't allocate scratches to the return register. */ diddle_return_value (mark_reg_gr_used_mask, NULL); /* Don't allocate scratches to the EH scratch registers. */ if (cfun->machine->ia64_eh_epilogue_sp) mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_sp, NULL); if (cfun->machine->ia64_eh_epilogue_bsp) mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_bsp, NULL); /* Find the size of the register stack frame. We have only 80 local registers, because we reserve 8 for the inputs and 8 for the outputs. */ /* Skip HARD_FRAME_POINTER_REGNUM (loc79) when frame_pointer_needed, since we'll be adjusting that down later. */ regno = LOC_REG (78) + ! frame_pointer_needed; for (; regno >= LOC_REG (0); regno--) if (regs_ever_live[regno]) break; current_frame_info.n_local_regs = regno - LOC_REG (0) + 1; /* For functions marked with the syscall_linkage attribute, we must mark all eight input registers as in use, so that locals aren't visible to the caller. */ if (cfun->machine->n_varargs > 0 || lookup_attribute ("syscall_linkage", TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl)))) current_frame_info.n_input_regs = 8; else { for (regno = IN_REG (7); regno >= IN_REG (0); regno--) if (regs_ever_live[regno]) break; current_frame_info.n_input_regs = regno - IN_REG (0) + 1; } for (regno = OUT_REG (7); regno >= OUT_REG (0); regno--) if (regs_ever_live[regno]) break; i = regno - OUT_REG (0) + 1; /* When -p profiling, we need one output register for the mcount argument. Likewise for -a profiling for the bb_init_func argument. For -ax profiling, we need two output registers for the two bb_init_trace_func arguments. */ if (current_function_profile) i = MAX (i, 1); current_frame_info.n_output_regs = i; /* ??? No rotating register support yet. */ current_frame_info.n_rotate_regs = 0; /* Discover which registers need spilling, and how much room that will take. Begin with floating point and general registers, which will always wind up on the stack. */ for (regno = FR_REG (2); regno <= FR_REG (127); regno++) if (regs_ever_live[regno] && ! call_used_regs[regno]) { SET_HARD_REG_BIT (mask, regno); spill_size += 16; n_spilled += 1; spilled_fr_p = 1; } for (regno = GR_REG (1); regno <= GR_REG (31); regno++) if (regs_ever_live[regno] && ! call_used_regs[regno]) { SET_HARD_REG_BIT (mask, regno); spill_size += 8; n_spilled += 1; spilled_gr_p = 1; } for (regno = BR_REG (1); regno <= BR_REG (7); regno++) if (regs_ever_live[regno] && ! call_used_regs[regno]) { SET_HARD_REG_BIT (mask, regno); spill_size += 8; n_spilled += 1; } /* Now come all special registers that might get saved in other general registers. */ if (frame_pointer_needed) { current_frame_info.reg_fp = find_gr_spill (1); /* If we did not get a register, then we take LOC79. This is guaranteed to be free, even if regs_ever_live is already set, because this is HARD_FRAME_POINTER_REGNUM. This requires incrementing n_local_regs, as we don't count loc79 above. */ if (current_frame_info.reg_fp == 0) { current_frame_info.reg_fp = LOC_REG (79); current_frame_info.n_local_regs++; } } if (! current_function_is_leaf) { /* Emit a save of BR0 if we call other functions. Do this even if this function doesn't return, as EH depends on this to be able to unwind the stack. */ SET_HARD_REG_BIT (mask, BR_REG (0)); current_frame_info.reg_save_b0 = find_gr_spill (1); if (current_frame_info.reg_save_b0 == 0) { spill_size += 8; n_spilled += 1; } /* Similarly for ar.pfs. */ SET_HARD_REG_BIT (mask, AR_PFS_REGNUM); current_frame_info.reg_save_ar_pfs = find_gr_spill (1); if (current_frame_info.reg_save_ar_pfs == 0) { extra_spill_size += 8; n_spilled += 1; } /* Similarly for gp. Note that if we're calling setjmp, the stacked registers are clobbered, so we fall back to the stack. */ current_frame_info.reg_save_gp = (current_function_calls_setjmp ? 0 : find_gr_spill (1)); if (current_frame_info.reg_save_gp == 0) { SET_HARD_REG_BIT (mask, GR_REG (1)); spill_size += 8; n_spilled += 1; } } else { if (regs_ever_live[BR_REG (0)] && ! call_used_regs[BR_REG (0)]) { SET_HARD_REG_BIT (mask, BR_REG (0)); spill_size += 8; n_spilled += 1; } if (regs_ever_live[AR_PFS_REGNUM]) { SET_HARD_REG_BIT (mask, AR_PFS_REGNUM); current_frame_info.reg_save_ar_pfs = find_gr_spill (1); if (current_frame_info.reg_save_ar_pfs == 0) { extra_spill_size += 8; n_spilled += 1; } } } /* Unwind descriptor hackery: things are most efficient if we allocate consecutive GR save registers for RP, PFS, FP in that order. However, it is absolutely critical that FP get the only hard register that's guaranteed to be free, so we allocated it first. If all three did happen to be allocated hard regs, and are consecutive, rearrange them into the preferred order now. */ if (current_frame_info.reg_fp != 0 && current_frame_info.reg_save_b0 == current_frame_info.reg_fp + 1 && current_frame_info.reg_save_ar_pfs == current_frame_info.reg_fp + 2) { current_frame_info.reg_save_b0 = current_frame_info.reg_fp; current_frame_info.reg_save_ar_pfs = current_frame_info.reg_fp + 1; current_frame_info.reg_fp = current_frame_info.reg_fp + 2; } /* See if we need to store the predicate register block. */ for (regno = PR_REG (0); regno <= PR_REG (63); regno++) if (regs_ever_live[regno] && ! call_used_regs[regno]) break; if (regno <= PR_REG (63)) { SET_HARD_REG_BIT (mask, PR_REG (0)); current_frame_info.reg_save_pr = find_gr_spill (1); if (current_frame_info.reg_save_pr == 0) { extra_spill_size += 8; n_spilled += 1; } /* ??? Mark them all as used so that register renaming and such are free to use them. */ for (regno = PR_REG (0); regno <= PR_REG (63); regno++) regs_ever_live[regno] = 1; } /* If we're forced to use st8.spill, we're forced to save and restore ar.unat as well. The check for existing liveness allows inline asm to touch ar.unat. */ if (spilled_gr_p || cfun->machine->n_varargs || regs_ever_live[AR_UNAT_REGNUM]) { regs_ever_live[AR_UNAT_REGNUM] = 1; SET_HARD_REG_BIT (mask, AR_UNAT_REGNUM); current_frame_info.reg_save_ar_unat = find_gr_spill (spill_size == 0); if (current_frame_info.reg_save_ar_unat == 0) { extra_spill_size += 8; n_spilled += 1; } } if (regs_ever_live[AR_LC_REGNUM]) { SET_HARD_REG_BIT (mask, AR_LC_REGNUM); current_frame_info.reg_save_ar_lc = find_gr_spill (spill_size == 0); if (current_frame_info.reg_save_ar_lc == 0) { extra_spill_size += 8; n_spilled += 1; } } /* If we have an odd number of words of pretend arguments written to the stack, then the FR save area will be unaligned. We round the size of this area up to keep things 16 byte aligned. */ if (spilled_fr_p) pretend_args_size = IA64_STACK_ALIGN (current_function_pretend_args_size); else pretend_args_size = current_function_pretend_args_size; total_size = (spill_size + extra_spill_size + size + pretend_args_size + current_function_outgoing_args_size); total_size = IA64_STACK_ALIGN (total_size); /* We always use the 16-byte scratch area provided by the caller, but if we are a leaf function, there's no one to which we need to provide a scratch area. */ if (current_function_is_leaf) total_size = MAX (0, total_size - 16); current_frame_info.total_size = total_size; current_frame_info.spill_cfa_off = pretend_args_size - 16; current_frame_info.spill_size = spill_size; current_frame_info.extra_spill_size = extra_spill_size; COPY_HARD_REG_SET (current_frame_info.mask, mask); current_frame_info.n_spilled = n_spilled; current_frame_info.initialized = reload_completed; } /* Compute the initial difference between the specified pair of registers. */ HOST_WIDE_INT ia64_initial_elimination_offset (from, to) int from, to; { HOST_WIDE_INT offset; ia64_compute_frame_size (get_frame_size ()); switch (from) { case FRAME_POINTER_REGNUM: if (to == HARD_FRAME_POINTER_REGNUM) { if (current_function_is_leaf) offset = -current_frame_info.total_size; else offset = -(current_frame_info.total_size - current_function_outgoing_args_size - 16); } else if (to == STACK_POINTER_REGNUM) { if (current_function_is_leaf) offset = 0; else offset = 16 + current_function_outgoing_args_size; } else abort (); break; case ARG_POINTER_REGNUM: /* Arguments start above the 16 byte save area, unless stdarg in which case we store through the 16 byte save area. */ if (to == HARD_FRAME_POINTER_REGNUM) offset = 16 - current_function_pretend_args_size; else if (to == STACK_POINTER_REGNUM) offset = (current_frame_info.total_size + 16 - current_function_pretend_args_size); else abort (); break; case RETURN_ADDRESS_POINTER_REGNUM: offset = 0; break; default: abort (); } return offset; } /* If there are more than a trivial number of register spills, we use two interleaved iterators so that we can get two memory references per insn group. In order to simplify things in the prologue and epilogue expanders, we use helper functions to fix up the memory references after the fact with the appropriate offsets to a POST_MODIFY memory mode. The following data structure tracks the state of the two iterators while insns are being emitted. */ struct spill_fill_data { rtx init_after; /* point at which to emit initializations */ rtx init_reg[2]; /* initial base register */ rtx iter_reg[2]; /* the iterator registers */ rtx *prev_addr[2]; /* address of last memory use */ rtx prev_insn[2]; /* the insn corresponding to prev_addr */ HOST_WIDE_INT prev_off[2]; /* last offset */ int n_iter; /* number of iterators in use */ int next_iter; /* next iterator to use */ unsigned int save_gr_used_mask; }; static struct spill_fill_data spill_fill_data; static void setup_spill_pointers (n_spills, init_reg, cfa_off) int n_spills; rtx init_reg; HOST_WIDE_INT cfa_off; { int i; spill_fill_data.init_after = get_last_insn (); spill_fill_data.init_reg[0] = init_reg; spill_fill_data.init_reg[1] = init_reg; spill_fill_data.prev_addr[0] = NULL; spill_fill_data.prev_addr[1] = NULL; spill_fill_data.prev_insn[0] = NULL; spill_fill_data.prev_insn[1] = NULL; spill_fill_data.prev_off[0] = cfa_off; spill_fill_data.prev_off[1] = cfa_off; spill_fill_data.next_iter = 0; spill_fill_data.save_gr_used_mask = current_frame_info.gr_used_mask; spill_fill_data.n_iter = 1 + (n_spills > 2); for (i = 0; i < spill_fill_data.n_iter; ++i) { int regno = next_scratch_gr_reg (); spill_fill_data.iter_reg[i] = gen_rtx_REG (DImode, regno); current_frame_info.gr_used_mask |= 1 << regno; } } static void finish_spill_pointers () { current_frame_info.gr_used_mask = spill_fill_data.save_gr_used_mask; } static rtx spill_restore_mem (reg, cfa_off) rtx reg; HOST_WIDE_INT cfa_off; { int iter = spill_fill_data.next_iter; HOST_WIDE_INT disp = spill_fill_data.prev_off[iter] - cfa_off; rtx disp_rtx = GEN_INT (disp); rtx mem; if (spill_fill_data.prev_addr[iter]) { if (CONST_OK_FOR_N (disp)) { *spill_fill_data.prev_addr[iter] = gen_rtx_POST_MODIFY (DImode, spill_fill_data.iter_reg[iter], gen_rtx_PLUS (DImode, spill_fill_data.iter_reg[iter], disp_rtx)); REG_NOTES (spill_fill_data.prev_insn[iter]) = gen_rtx_EXPR_LIST (REG_INC, spill_fill_data.iter_reg[iter], REG_NOTES (spill_fill_data.prev_insn[iter])); } else { /* ??? Could use register post_modify for loads. */ if (! CONST_OK_FOR_I (disp)) { rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ()); emit_move_insn (tmp, disp_rtx); disp_rtx = tmp; } emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter], spill_fill_data.iter_reg[iter], disp_rtx)); } } /* Micro-optimization: if we've created a frame pointer, it's at CFA 0, which may allow the real iterator to be initialized lower, slightly increasing parallelism. Also, if there are few saves it may eliminate the iterator entirely. */ else if (disp == 0 && spill_fill_data.init_reg[iter] == stack_pointer_rtx && frame_pointer_needed) { mem = gen_rtx_MEM (GET_MODE (reg), hard_frame_pointer_rtx); set_mem_alias_set (mem, get_varargs_alias_set ()); return mem; } else { rtx seq, insn; if (disp == 0) seq = gen_movdi (spill_fill_data.iter_reg[iter], spill_fill_data.init_reg[iter]); else { start_sequence (); if (! CONST_OK_FOR_I (disp)) { rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ()); emit_move_insn (tmp, disp_rtx); disp_rtx = tmp; } emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter], spill_fill_data.init_reg[iter], disp_rtx)); seq = get_insns (); end_sequence (); } /* Careful for being the first insn in a sequence. */ if (spill_fill_data.init_after) insn = emit_insn_after (seq, spill_fill_data.init_after); else { rtx first = get_insns (); if (first) insn = emit_insn_before (seq, first); else insn = emit_insn (seq); } spill_fill_data.init_after = insn; /* If DISP is 0, we may or may not have a further adjustment afterward. If we do, then the load/store insn may be modified to be a post-modify. If we don't, then this copy may be eliminated by copyprop_hardreg_forward, which makes this insn garbage, which runs afoul of the sanity check in propagate_one_insn. So mark this insn as legal to delete. */ if (disp == 0) REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx, REG_NOTES (insn)); } mem = gen_rtx_MEM (GET_MODE (reg), spill_fill_data.iter_reg[iter]); /* ??? Not all of the spills are for varargs, but some of them are. The rest of the spills belong in an alias set of their own. But it doesn't actually hurt to include them here. */ set_mem_alias_set (mem, get_varargs_alias_set ()); spill_fill_data.prev_addr[iter] = &XEXP (mem, 0); spill_fill_data.prev_off[iter] = cfa_off; if (++iter >= spill_fill_data.n_iter) iter = 0; spill_fill_data.next_iter = iter; return mem; } static void do_spill (move_fn, reg, cfa_off, frame_reg) rtx (*move_fn) PARAMS ((rtx, rtx, rtx)); rtx reg, frame_reg; HOST_WIDE_INT cfa_off; { int iter = spill_fill_data.next_iter; rtx mem, insn; mem = spill_restore_mem (reg, cfa_off); insn = emit_insn ((*move_fn) (mem, reg, GEN_INT (cfa_off))); spill_fill_data.prev_insn[iter] = insn; if (frame_reg) { rtx base; HOST_WIDE_INT off; RTX_FRAME_RELATED_P (insn) = 1; /* Don't even pretend that the unwind code can intuit its way through a pair of interleaved post_modify iterators. Just provide the correct answer. */ if (frame_pointer_needed) { base = hard_frame_pointer_rtx; off = - cfa_off; } else { base = stack_pointer_rtx; off = current_frame_info.total_size - cfa_off; } REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, gen_rtx_MEM (GET_MODE (reg), plus_constant (base, off)), frame_reg), REG_NOTES (insn)); } } static void do_restore (move_fn, reg, cfa_off) rtx (*move_fn) PARAMS ((rtx, rtx, rtx)); rtx reg; HOST_WIDE_INT cfa_off; { int iter = spill_fill_data.next_iter; rtx insn; insn = emit_insn ((*move_fn) (reg, spill_restore_mem (reg, cfa_off), GEN_INT (cfa_off))); spill_fill_data.prev_insn[iter] = insn; } /* Wrapper functions that discards the CONST_INT spill offset. These exist so that we can give gr_spill/gr_fill the offset they need and use a consistent function interface. */ static rtx gen_movdi_x (dest, src, offset) rtx dest, src; rtx offset ATTRIBUTE_UNUSED; { return gen_movdi (dest, src); } static rtx gen_fr_spill_x (dest, src, offset) rtx dest, src; rtx offset ATTRIBUTE_UNUSED; { return gen_fr_spill (dest, src); } static rtx gen_fr_restore_x (dest, src, offset) rtx dest, src; rtx offset ATTRIBUTE_UNUSED; { return gen_fr_restore (dest, src); } /* Called after register allocation to add any instructions needed for the prologue. Using a prologue insn is favored compared to putting all of the instructions in output_function_prologue(), since it allows the scheduler to intermix instructions with the saves of the caller saved registers. In some cases, it might be necessary to emit a barrier instruction as the last insn to prevent such scheduling. Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1 so that the debug info generation code can handle them properly. The register save area is layed out like so: cfa+16 [ varargs spill area ] [ fr register spill area ] [ br register spill area ] [ ar register spill area ] [ pr register spill area ] [ gr register spill area ] */ /* ??? Get inefficient code when the frame size is larger than can fit in an adds instruction. */ void ia64_expand_prologue () { rtx insn, ar_pfs_save_reg, ar_unat_save_reg; int i, epilogue_p, regno, alt_regno, cfa_off, n_varargs; rtx reg, alt_reg; ia64_compute_frame_size (get_frame_size ()); last_scratch_gr_reg = 15; /* If there is no epilogue, then we don't need some prologue insns. We need to avoid emitting the dead prologue insns, because flow will complain about them. */ if (optimize) { edge e; for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next) if ((e->flags & EDGE_FAKE) == 0 && (e->flags & EDGE_FALLTHRU) != 0) break; epilogue_p = (e != NULL); } else epilogue_p = 1; /* Set the local, input, and output register names. We need to do this for GNU libc, which creates crti.S/crtn.S by splitting initfini.c in half. If we use in/loc/out register names, then we get assembler errors in crtn.S because there is no alloc insn or regstk directive in there. */ if (! TARGET_REG_NAMES) { int inputs = current_frame_info.n_input_regs; int locals = current_frame_info.n_local_regs; int outputs = current_frame_info.n_output_regs; for (i = 0; i < inputs; i++) reg_names[IN_REG (i)] = ia64_reg_numbers[i]; for (i = 0; i < locals; i++) reg_names[LOC_REG (i)] = ia64_reg_numbers[inputs + i]; for (i = 0; i < outputs; i++) reg_names[OUT_REG (i)] = ia64_reg_numbers[inputs + locals + i]; } /* Set the frame pointer register name. The regnum is logically loc79, but of course we'll not have allocated that many locals. Rather than worrying about renumbering the existing rtxs, we adjust the name. */ /* ??? This code means that we can never use one local register when there is a frame pointer. loc79 gets wasted in this case, as it is renamed to a register that will never be used. See also the try_locals code in find_gr_spill. */ if (current_frame_info.reg_fp) { const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM]; reg_names[HARD_FRAME_POINTER_REGNUM] = reg_names[current_frame_info.reg_fp]; reg_names[current_frame_info.reg_fp] = tmp; } /* Fix up the return address placeholder. */ /* ??? We can fail if __builtin_return_address is used, and we didn't allocate a register in which to save b0. I can't think of a way to eliminate RETURN_ADDRESS_POINTER_REGNUM to a local register and then be sure that I got the right one. Further, reload doesn't seem to care if an eliminable register isn't used, and "eliminates" it anyway. */ if (regs_ever_live[RETURN_ADDRESS_POINTER_REGNUM] && current_frame_info.reg_save_b0 != 0) XINT (return_address_pointer_rtx, 0) = current_frame_info.reg_save_b0; /* We don't need an alloc instruction if we've used no outputs or locals. */ if (current_frame_info.n_local_regs == 0 && current_frame_info.n_output_regs == 0 && current_frame_info.n_input_regs <= current_function_args_info.int_regs && !TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM)) { /* If there is no alloc, but there are input registers used, then we need a .regstk directive. */ current_frame_info.need_regstk = (TARGET_REG_NAMES != 0); ar_pfs_save_reg = NULL_RTX; } else { current_frame_info.need_regstk = 0; if (current_frame_info.reg_save_ar_pfs) regno = current_frame_info.reg_save_ar_pfs; else regno = next_scratch_gr_reg (); ar_pfs_save_reg = gen_rtx_REG (DImode, regno); insn = emit_insn (gen_alloc (ar_pfs_save_reg, GEN_INT (current_frame_info.n_input_regs), GEN_INT (current_frame_info.n_local_regs), GEN_INT (current_frame_info.n_output_regs), GEN_INT (current_frame_info.n_rotate_regs))); RTX_FRAME_RELATED_P (insn) = (current_frame_info.reg_save_ar_pfs != 0); } /* Set up frame pointer, stack pointer, and spill iterators. */ n_varargs = cfun->machine->n_varargs; setup_spill_pointers (current_frame_info.n_spilled + n_varargs, stack_pointer_rtx, 0); if (frame_pointer_needed) { insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } if (current_frame_info.total_size != 0) { rtx frame_size_rtx = GEN_INT (- current_frame_info.total_size); rtx offset; if (CONST_OK_FOR_I (- current_frame_info.total_size)) offset = frame_size_rtx; else { regno = next_scratch_gr_reg (); offset = gen_rtx_REG (DImode, regno); emit_move_insn (offset, frame_size_rtx); } insn = emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx, offset)); if (! frame_pointer_needed) { RTX_FRAME_RELATED_P (insn) = 1; if (GET_CODE (offset) != CONST_INT) { REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (DImode, stack_pointer_rtx, frame_size_rtx)), REG_NOTES (insn)); } } /* ??? At this point we must generate a magic insn that appears to modify the stack pointer, the frame pointer, and all spill iterators. This would allow the most scheduling freedom. For now, just hard stop. */ emit_insn (gen_blockage ()); } /* Must copy out ar.unat before doing any integer spills. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM)) { if (current_frame_info.reg_save_ar_unat) ar_unat_save_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_unat); else { alt_regno = next_scratch_gr_reg (); ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno); current_frame_info.gr_used_mask |= 1 << alt_regno; } reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM); insn = emit_move_insn (ar_unat_save_reg, reg); RTX_FRAME_RELATED_P (insn) = (current_frame_info.reg_save_ar_unat != 0); /* Even if we're not going to generate an epilogue, we still need to save the register so that EH works. */ if (! epilogue_p && current_frame_info.reg_save_ar_unat) emit_insn (gen_prologue_use (ar_unat_save_reg)); } else ar_unat_save_reg = NULL_RTX; /* Spill all varargs registers. Do this before spilling any GR registers, since we want the UNAT bits for the GR registers to override the UNAT bits from varargs, which we don't care about. */ cfa_off = -16; for (regno = GR_ARG_FIRST + 7; n_varargs > 0; --n_varargs, --regno) { reg = gen_rtx_REG (DImode, regno); do_spill (gen_gr_spill, reg, cfa_off += 8, NULL_RTX); } /* Locate the bottom of the register save area. */ cfa_off = (current_frame_info.spill_cfa_off + current_frame_info.spill_size + current_frame_info.extra_spill_size); /* Save the predicate register block either in a register or in memory. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0))) { reg = gen_rtx_REG (DImode, PR_REG (0)); if (current_frame_info.reg_save_pr != 0) { alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_pr); insn = emit_move_insn (alt_reg, reg); /* ??? Denote pr spill/fill by a DImode move that modifies all 64 hard registers. */ RTX_FRAME_RELATED_P (insn) = 1; REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, alt_reg, reg), REG_NOTES (insn)); /* Even if we're not going to generate an epilogue, we still need to save the register so that EH works. */ if (! epilogue_p) emit_insn (gen_prologue_use (alt_reg)); } else { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); insn = emit_move_insn (alt_reg, reg); do_spill (gen_movdi_x, alt_reg, cfa_off, reg); cfa_off -= 8; } } /* Handle AR regs in numerical order. All of them get special handling. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM) && current_frame_info.reg_save_ar_unat == 0) { reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM); do_spill (gen_movdi_x, ar_unat_save_reg, cfa_off, reg); cfa_off -= 8; } /* The alloc insn already copied ar.pfs into a general register. The only thing we have to do now is copy that register to a stack slot if we'd not allocated a local register for the job. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM) && current_frame_info.reg_save_ar_pfs == 0) { reg = gen_rtx_REG (DImode, AR_PFS_REGNUM); do_spill (gen_movdi_x, ar_pfs_save_reg, cfa_off, reg); cfa_off -= 8; } if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM)) { reg = gen_rtx_REG (DImode, AR_LC_REGNUM); if (current_frame_info.reg_save_ar_lc != 0) { alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_lc); insn = emit_move_insn (alt_reg, reg); RTX_FRAME_RELATED_P (insn) = 1; /* Even if we're not going to generate an epilogue, we still need to save the register so that EH works. */ if (! epilogue_p) emit_insn (gen_prologue_use (alt_reg)); } else { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); emit_move_insn (alt_reg, reg); do_spill (gen_movdi_x, alt_reg, cfa_off, reg); cfa_off -= 8; } } if (current_frame_info.reg_save_gp) { insn = emit_move_insn (gen_rtx_REG (DImode, current_frame_info.reg_save_gp), pic_offset_table_rtx); /* We don't know for sure yet if this is actually needed, since we've not split the PIC call patterns. If all of the calls are indirect, and not followed by any uses of the gp, then this save is dead. Allow it to go away. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx, REG_NOTES (insn)); } /* We should now be at the base of the gr/br/fr spill area. */ if (cfa_off != (current_frame_info.spill_cfa_off + current_frame_info.spill_size)) abort (); /* Spill all general registers. */ for (regno = GR_REG (1); regno <= GR_REG (31); ++regno) if (TEST_HARD_REG_BIT (current_frame_info.mask, regno)) { reg = gen_rtx_REG (DImode, regno); do_spill (gen_gr_spill, reg, cfa_off, reg); cfa_off -= 8; } /* Handle BR0 specially -- it may be getting stored permanently in some GR register. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0))) { reg = gen_rtx_REG (DImode, BR_REG (0)); if (current_frame_info.reg_save_b0 != 0) { alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_b0); insn = emit_move_insn (alt_reg, reg); RTX_FRAME_RELATED_P (insn) = 1; /* Even if we're not going to generate an epilogue, we still need to save the register so that EH works. */ if (! epilogue_p) emit_insn (gen_prologue_use (alt_reg)); } else { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); emit_move_insn (alt_reg, reg); do_spill (gen_movdi_x, alt_reg, cfa_off, reg); cfa_off -= 8; } } /* Spill the rest of the BR registers. */ for (regno = BR_REG (1); regno <= BR_REG (7); ++regno) if (TEST_HARD_REG_BIT (current_frame_info.mask, regno)) { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); reg = gen_rtx_REG (DImode, regno); emit_move_insn (alt_reg, reg); do_spill (gen_movdi_x, alt_reg, cfa_off, reg); cfa_off -= 8; } /* Align the frame and spill all FR registers. */ for (regno = FR_REG (2); regno <= FR_REG (127); ++regno) if (TEST_HARD_REG_BIT (current_frame_info.mask, regno)) { if (cfa_off & 15) abort (); reg = gen_rtx_REG (TFmode, regno); do_spill (gen_fr_spill_x, reg, cfa_off, reg); cfa_off -= 16; } if (cfa_off != current_frame_info.spill_cfa_off) abort (); finish_spill_pointers (); } /* Called after register allocation to add any instructions needed for the epilogue. Using an epilogue insn is favored compared to putting all of the instructions in output_function_prologue(), since it allows the scheduler to intermix instructions with the saves of the caller saved registers. In some cases, it might be necessary to emit a barrier instruction as the last insn to prevent such scheduling. */ void ia64_expand_epilogue (sibcall_p) int sibcall_p; { rtx insn, reg, alt_reg, ar_unat_save_reg; int regno, alt_regno, cfa_off; ia64_compute_frame_size (get_frame_size ()); /* If there is a frame pointer, then we use it instead of the stack pointer, so that the stack pointer does not need to be valid when the epilogue starts. See EXIT_IGNORE_STACK. */ if (frame_pointer_needed) setup_spill_pointers (current_frame_info.n_spilled, hard_frame_pointer_rtx, 0); else setup_spill_pointers (current_frame_info.n_spilled, stack_pointer_rtx, current_frame_info.total_size); if (current_frame_info.total_size != 0) { /* ??? At this point we must generate a magic insn that appears to modify the spill iterators and the frame pointer. This would allow the most scheduling freedom. For now, just hard stop. */ emit_insn (gen_blockage ()); } /* Locate the bottom of the register save area. */ cfa_off = (current_frame_info.spill_cfa_off + current_frame_info.spill_size + current_frame_info.extra_spill_size); /* Restore the predicate registers. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0))) { if (current_frame_info.reg_save_pr != 0) alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_pr); else { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); do_restore (gen_movdi_x, alt_reg, cfa_off); cfa_off -= 8; } reg = gen_rtx_REG (DImode, PR_REG (0)); emit_move_insn (reg, alt_reg); } /* Restore the application registers. */ /* Load the saved unat from the stack, but do not restore it until after the GRs have been restored. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM)) { if (current_frame_info.reg_save_ar_unat != 0) ar_unat_save_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_unat); else { alt_regno = next_scratch_gr_reg (); ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno); current_frame_info.gr_used_mask |= 1 << alt_regno; do_restore (gen_movdi_x, ar_unat_save_reg, cfa_off); cfa_off -= 8; } } else ar_unat_save_reg = NULL_RTX; if (current_frame_info.reg_save_ar_pfs != 0) { alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_pfs); reg = gen_rtx_REG (DImode, AR_PFS_REGNUM); emit_move_insn (reg, alt_reg); } else if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM)) { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); do_restore (gen_movdi_x, alt_reg, cfa_off); cfa_off -= 8; reg = gen_rtx_REG (DImode, AR_PFS_REGNUM); emit_move_insn (reg, alt_reg); } if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM)) { if (current_frame_info.reg_save_ar_lc != 0) alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_lc); else { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); do_restore (gen_movdi_x, alt_reg, cfa_off); cfa_off -= 8; } reg = gen_rtx_REG (DImode, AR_LC_REGNUM); emit_move_insn (reg, alt_reg); } /* We should now be at the base of the gr/br/fr spill area. */ if (cfa_off != (current_frame_info.spill_cfa_off + current_frame_info.spill_size)) abort (); /* The GP may be stored on the stack in the prologue, but it's never restored in the epilogue. Skip the stack slot. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, GR_REG (1))) cfa_off -= 8; /* Restore all general registers. */ for (regno = GR_REG (2); regno <= GR_REG (31); ++regno) if (TEST_HARD_REG_BIT (current_frame_info.mask, regno)) { reg = gen_rtx_REG (DImode, regno); do_restore (gen_gr_restore, reg, cfa_off); cfa_off -= 8; } /* Restore the branch registers. Handle B0 specially, as it may have gotten stored in some GR register. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0))) { if (current_frame_info.reg_save_b0 != 0) alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_b0); else { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); do_restore (gen_movdi_x, alt_reg, cfa_off); cfa_off -= 8; } reg = gen_rtx_REG (DImode, BR_REG (0)); emit_move_insn (reg, alt_reg); } for (regno = BR_REG (1); regno <= BR_REG (7); ++regno) if (TEST_HARD_REG_BIT (current_frame_info.mask, regno)) { alt_regno = next_scratch_gr_reg (); alt_reg = gen_rtx_REG (DImode, alt_regno); do_restore (gen_movdi_x, alt_reg, cfa_off); cfa_off -= 8; reg = gen_rtx_REG (DImode, regno); emit_move_insn (reg, alt_reg); } /* Restore floating point registers. */ for (regno = FR_REG (2); regno <= FR_REG (127); ++regno) if (TEST_HARD_REG_BIT (current_frame_info.mask, regno)) { if (cfa_off & 15) abort (); reg = gen_rtx_REG (TFmode, regno); do_restore (gen_fr_restore_x, reg, cfa_off); cfa_off -= 16; } /* Restore ar.unat for real. */ if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM)) { reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM); emit_move_insn (reg, ar_unat_save_reg); } if (cfa_off != current_frame_info.spill_cfa_off) abort (); finish_spill_pointers (); if (current_frame_info.total_size || cfun->machine->ia64_eh_epilogue_sp) { /* ??? At this point we must generate a magic insn that appears to modify the spill iterators, the stack pointer, and the frame pointer. This would allow the most scheduling freedom. For now, just hard stop. */ emit_insn (gen_blockage ()); } if (cfun->machine->ia64_eh_epilogue_sp) emit_move_insn (stack_pointer_rtx, cfun->machine->ia64_eh_epilogue_sp); else if (frame_pointer_needed) { insn = emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; } else if (current_frame_info.total_size) { rtx offset, frame_size_rtx; frame_size_rtx = GEN_INT (current_frame_info.total_size); if (CONST_OK_FOR_I (current_frame_info.total_size)) offset = frame_size_rtx; else { regno = next_scratch_gr_reg (); offset = gen_rtx_REG (DImode, regno); emit_move_insn (offset, frame_size_rtx); } insn = emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx, offset)); RTX_FRAME_RELATED_P (insn) = 1; if (GET_CODE (offset) != CONST_INT) { REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (DImode, stack_pointer_rtx, frame_size_rtx)), REG_NOTES (insn)); } } if (cfun->machine->ia64_eh_epilogue_bsp) emit_insn (gen_set_bsp (cfun->machine->ia64_eh_epilogue_bsp)); if (! sibcall_p) emit_jump_insn (gen_return_internal (gen_rtx_REG (DImode, BR_REG (0)))); else { int fp = GR_REG (2); /* We need a throw away register here, r0 and r1 are reserved, so r2 is the first available call clobbered register. If there was a frame_pointer register, we may have swapped the names of r2 and HARD_FRAME_POINTER_REGNUM, so we have to make sure we're using the string "r2" when emitting the register name for the assembler. */ if (current_frame_info.reg_fp && current_frame_info.reg_fp == GR_REG (2)) fp = HARD_FRAME_POINTER_REGNUM; /* We must emit an alloc to force the input registers to become output registers. Otherwise, if the callee tries to pass its parameters through to another call without an intervening alloc, then these values get lost. */ /* ??? We don't need to preserve all input registers. We only need to preserve those input registers used as arguments to the sibling call. It is unclear how to compute that number here. */ if (current_frame_info.n_input_regs != 0) emit_insn (gen_alloc (gen_rtx_REG (DImode, fp), GEN_INT (0), GEN_INT (0), GEN_INT (current_frame_info.n_input_regs), GEN_INT (0))); } } /* Return 1 if br.ret can do all the work required to return from a function. */ int ia64_direct_return () { if (reload_completed && ! frame_pointer_needed) { ia64_compute_frame_size (get_frame_size ()); return (current_frame_info.total_size == 0 && current_frame_info.n_spilled == 0 && current_frame_info.reg_save_b0 == 0 && current_frame_info.reg_save_pr == 0 && current_frame_info.reg_save_ar_pfs == 0 && current_frame_info.reg_save_ar_unat == 0 && current_frame_info.reg_save_ar_lc == 0); } return 0; } int ia64_hard_regno_rename_ok (from, to) int from; int to; { /* Don't clobber any of the registers we reserved for the prologue. */ if (to == current_frame_info.reg_fp || to == current_frame_info.reg_save_b0 || to == current_frame_info.reg_save_pr || to == current_frame_info.reg_save_ar_pfs || to == current_frame_info.reg_save_ar_unat || to == current_frame_info.reg_save_ar_lc) return 0; if (from == current_frame_info.reg_fp || from == current_frame_info.reg_save_b0 || from == current_frame_info.reg_save_pr || from == current_frame_info.reg_save_ar_pfs || from == current_frame_info.reg_save_ar_unat || from == current_frame_info.reg_save_ar_lc) return 0; /* Don't use output registers outside the register frame. */ if (OUT_REGNO_P (to) && to >= OUT_REG (current_frame_info.n_output_regs)) return 0; /* Retain even/oddness on predicate register pairs. */ if (PR_REGNO_P (from) && PR_REGNO_P (to)) return (from & 1) == (to & 1); return 1; } /* Target hook for assembling integer objects. Handle word-sized aligned objects and detect the cases when @fptr is needed. */ static bool ia64_assemble_integer (x, size, aligned_p) rtx x; unsigned int size; int aligned_p; { if (size == (TARGET_ILP32 ? 4 : 8) && aligned_p && !(TARGET_NO_PIC || TARGET_AUTO_PIC) && GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (x)) { if (TARGET_ILP32) fputs ("\tdata4\t@fptr(", asm_out_file); else fputs ("\tdata8\t@fptr(", asm_out_file); output_addr_const (asm_out_file, x); fputs (")\n", asm_out_file); return true; } return default_assemble_integer (x, size, aligned_p); } /* Emit the function prologue. */ static void ia64_output_function_prologue (file, size) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { int mask, grsave, grsave_prev; if (current_frame_info.need_regstk) fprintf (file, "\t.regstk %d, %d, %d, %d\n", current_frame_info.n_input_regs, current_frame_info.n_local_regs, current_frame_info.n_output_regs, current_frame_info.n_rotate_regs); if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS)) return; /* Emit the .prologue directive. */ mask = 0; grsave = grsave_prev = 0; if (current_frame_info.reg_save_b0 != 0) { mask |= 8; grsave = grsave_prev = current_frame_info.reg_save_b0; } if (current_frame_info.reg_save_ar_pfs != 0 && (grsave_prev == 0 || current_frame_info.reg_save_ar_pfs == grsave_prev + 1)) { mask |= 4; if (grsave_prev == 0) grsave = current_frame_info.reg_save_ar_pfs; grsave_prev = current_frame_info.reg_save_ar_pfs; } if (current_frame_info.reg_fp != 0 && (grsave_prev == 0 || current_frame_info.reg_fp == grsave_prev + 1)) { mask |= 2; if (grsave_prev == 0) grsave = HARD_FRAME_POINTER_REGNUM; grsave_prev = current_frame_info.reg_fp; } if (current_frame_info.reg_save_pr != 0 && (grsave_prev == 0 || current_frame_info.reg_save_pr == grsave_prev + 1)) { mask |= 1; if (grsave_prev == 0) grsave = current_frame_info.reg_save_pr; } if (mask) fprintf (file, "\t.prologue %d, %d\n", mask, ia64_dbx_register_number (grsave)); else fputs ("\t.prologue\n", file); /* Emit a .spill directive, if necessary, to relocate the base of the register spill area. */ if (current_frame_info.spill_cfa_off != -16) fprintf (file, "\t.spill %ld\n", (long) (current_frame_info.spill_cfa_off + current_frame_info.spill_size)); } /* Emit the .body directive at the scheduled end of the prologue. */ static void ia64_output_function_end_prologue (file) FILE *file; { if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS)) return; fputs ("\t.body\n", file); } /* Emit the function epilogue. */ static void ia64_output_function_epilogue (file, size) FILE *file ATTRIBUTE_UNUSED; HOST_WIDE_INT size ATTRIBUTE_UNUSED; { int i; /* Reset from the function's potential modifications. */ XINT (return_address_pointer_rtx, 0) = RETURN_ADDRESS_POINTER_REGNUM; if (current_frame_info.reg_fp) { const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM]; reg_names[HARD_FRAME_POINTER_REGNUM] = reg_names[current_frame_info.reg_fp]; reg_names[current_frame_info.reg_fp] = tmp; } if (! TARGET_REG_NAMES) { for (i = 0; i < current_frame_info.n_input_regs; i++) reg_names[IN_REG (i)] = ia64_input_reg_names[i]; for (i = 0; i < current_frame_info.n_local_regs; i++) reg_names[LOC_REG (i)] = ia64_local_reg_names[i]; for (i = 0; i < current_frame_info.n_output_regs; i++) reg_names[OUT_REG (i)] = ia64_output_reg_names[i]; } current_frame_info.initialized = 0; } int ia64_dbx_register_number (regno) int regno; { /* In ia64_expand_prologue we quite literally renamed the frame pointer from its home at loc79 to something inside the register frame. We must perform the same renumbering here for the debug info. */ if (current_frame_info.reg_fp) { if (regno == HARD_FRAME_POINTER_REGNUM) regno = current_frame_info.reg_fp; else if (regno == current_frame_info.reg_fp) regno = HARD_FRAME_POINTER_REGNUM; } if (IN_REGNO_P (regno)) return 32 + regno - IN_REG (0); else if (LOC_REGNO_P (regno)) return 32 + current_frame_info.n_input_regs + regno - LOC_REG (0); else if (OUT_REGNO_P (regno)) return (32 + current_frame_info.n_input_regs + current_frame_info.n_local_regs + regno - OUT_REG (0)); else return regno; } void ia64_initialize_trampoline (addr, fnaddr, static_chain) rtx addr, fnaddr, static_chain; { rtx addr_reg, eight = GEN_INT (8); /* Load up our iterator. */ addr_reg = gen_reg_rtx (Pmode); emit_move_insn (addr_reg, addr); /* The first two words are the fake descriptor: __ia64_trampoline, ADDR+16. */ emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), gen_rtx_SYMBOL_REF (Pmode, "__ia64_trampoline")); emit_insn (gen_adddi3 (addr_reg, addr_reg, eight)); emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), copy_to_reg (plus_constant (addr, 16))); emit_insn (gen_adddi3 (addr_reg, addr_reg, eight)); /* The third word is the target descriptor. */ emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), fnaddr); emit_insn (gen_adddi3 (addr_reg, addr_reg, eight)); /* The fourth word is the static chain. */ emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), static_chain); } /* Do any needed setup for a variadic function. CUM has not been updated for the last named argument which has type TYPE and mode MODE. We generate the actual spill instructions during prologue generation. */ void ia64_setup_incoming_varargs (cum, int_mode, type, pretend_size, second_time) CUMULATIVE_ARGS cum; int int_mode; tree type; int * pretend_size; int second_time ATTRIBUTE_UNUSED; { /* Skip the current argument. */ ia64_function_arg_advance (&cum, int_mode, type, 1); if (cum.words < MAX_ARGUMENT_SLOTS) { int n = MAX_ARGUMENT_SLOTS - cum.words; *pretend_size = n * UNITS_PER_WORD; cfun->machine->n_varargs = n; } } /* Check whether TYPE is a homogeneous floating point aggregate. If it is, return the mode of the floating point type that appears in all leafs. If it is not, return VOIDmode. An aggregate is a homogeneous floating point aggregate is if all fields/elements in it have the same floating point type (e.g, SFmode). 128-bit quad-precision floats are excluded. */ static enum machine_mode hfa_element_mode (type, nested) tree type; int nested; { enum machine_mode element_mode = VOIDmode; enum machine_mode mode; enum tree_code code = TREE_CODE (type); int know_element_mode = 0; tree t; switch (code) { case VOID_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: case CHAR_TYPE: case POINTER_TYPE: case OFFSET_TYPE: case REFERENCE_TYPE: case METHOD_TYPE: case FILE_TYPE: case SET_TYPE: case LANG_TYPE: case FUNCTION_TYPE: return VOIDmode; /* Fortran complex types are supposed to be HFAs, so we need to handle gcc's COMPLEX_TYPEs as HFAs. We need to exclude the integral complex types though. */ case COMPLEX_TYPE: if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT && (TYPE_MODE (type) != TCmode || INTEL_EXTENDED_IEEE_FORMAT)) return mode_for_size (GET_MODE_UNIT_SIZE (TYPE_MODE (type)) * BITS_PER_UNIT, MODE_FLOAT, 0); else return VOIDmode; case REAL_TYPE: /* We want to return VOIDmode for raw REAL_TYPEs, but the actual mode if this is contained within an aggregate. */ if (nested && (TYPE_MODE (type) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) return TYPE_MODE (type); else return VOIDmode; case ARRAY_TYPE: return hfa_element_mode (TREE_TYPE (type), 1); case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t)) { if (TREE_CODE (t) != FIELD_DECL) continue; mode = hfa_element_mode (TREE_TYPE (t), 1); if (know_element_mode) { if (mode != element_mode) return VOIDmode; } else if (GET_MODE_CLASS (mode) != MODE_FLOAT) return VOIDmode; else { know_element_mode = 1; element_mode = mode; } } return element_mode; default: /* If we reach here, we probably have some front-end specific type that the backend doesn't know about. This can happen via the aggregate_value_p call in init_function_start. All we can do is ignore unknown tree types. */ return VOIDmode; } return VOIDmode; } /* Return rtx for register where argument is passed, or zero if it is passed on the stack. */ /* ??? 128-bit quad-precision floats are always passed in general registers. */ rtx ia64_function_arg (cum, mode, type, named, incoming) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; int incoming; { int basereg = (incoming ? GR_ARG_FIRST : AR_ARG_FIRST); int words = (((mode == BLKmode ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD); int offset = 0; enum machine_mode hfa_mode = VOIDmode; /* Integer and float arguments larger than 8 bytes start at the next even boundary. Aggregates larger than 8 bytes start at the next even boundary if the aggregate has 16 byte alignment. Net effect is that types with alignment greater than 8 start at the next even boundary. */ /* ??? The ABI does not specify how to handle aggregates with alignment from 9 to 15 bytes, or greater than 16. We handle them all as if they had 16 byte alignment. Such aggregates can occur only if gcc extensions are used. */ if ((type ? (TYPE_ALIGN (type) > 8 * BITS_PER_UNIT) : (words > 1)) && (cum->words & 1)) offset = 1; /* If all argument slots are used, then it must go on the stack. */ if (cum->words + offset >= MAX_ARGUMENT_SLOTS) return 0; /* Check for and handle homogeneous FP aggregates. */ if (type) hfa_mode = hfa_element_mode (type, 0); /* Unnamed prototyped hfas are passed as usual. Named prototyped hfas and unprototyped hfas are passed specially. */ if (hfa_mode != VOIDmode && (! cum->prototype || named)) { rtx loc[16]; int i = 0; int fp_regs = cum->fp_regs; int int_regs = cum->words + offset; int hfa_size = GET_MODE_SIZE (hfa_mode); int byte_size; int args_byte_size; /* If prototyped, pass it in FR regs then GR regs. If not prototyped, pass it in both FR and GR regs. If this is an SFmode aggregate, then it is possible to run out of FR regs while GR regs are still left. In that case, we pass the remaining part in the GR regs. */ /* Fill the FP regs. We do this always. We stop if we reach the end of the argument, the last FP register, or the last argument slot. */ byte_size = ((mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)); args_byte_size = int_regs * UNITS_PER_WORD; offset = 0; for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS && args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD)); i++) { loc[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (hfa_mode, (FR_ARG_FIRST + fp_regs)), GEN_INT (offset)); offset += hfa_size; args_byte_size += hfa_size; fp_regs++; } /* If no prototype, then the whole thing must go in GR regs. */ if (! cum->prototype) offset = 0; /* If this is an SFmode aggregate, then we might have some left over that needs to go in GR regs. */ else if (byte_size != offset) int_regs += offset / UNITS_PER_WORD; /* Fill in the GR regs. We must use DImode here, not the hfa mode. */ for (; offset < byte_size && int_regs < MAX_ARGUMENT_SLOTS; i++) { enum machine_mode gr_mode = DImode; /* If we have an odd 4 byte hunk because we ran out of FR regs, then this goes in a GR reg left adjusted/little endian, right adjusted/big endian. */ /* ??? Currently this is handled wrong, because 4-byte hunks are always right adjusted/little endian. */ if (offset & 0x4) gr_mode = SImode; /* If we have an even 4 byte hunk because the aggregate is a multiple of 4 bytes in size, then this goes in a GR reg right adjusted/little endian. */ else if (byte_size - offset == 4) gr_mode = SImode; /* Complex floats need to have float mode. */ if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) gr_mode = hfa_mode; loc[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (gr_mode, (basereg + int_regs)), GEN_INT (offset)); offset += GET_MODE_SIZE (gr_mode); int_regs += GET_MODE_SIZE (gr_mode) <= UNITS_PER_WORD ? 1 : GET_MODE_SIZE (gr_mode) / UNITS_PER_WORD; } /* If we ended up using just one location, just return that one loc. */ if (i == 1) return XEXP (loc[0], 0); else return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc)); } /* Integral and aggregates go in general registers. If we have run out of FR registers, then FP values must also go in general registers. This can happen when we have a SFmode HFA. */ else if (((mode == TFmode) && ! INTEL_EXTENDED_IEEE_FORMAT) || (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS)) { int byte_size = ((mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)); if (BYTES_BIG_ENDIAN && (mode == BLKmode || (type && AGGREGATE_TYPE_P (type))) && byte_size < UNITS_PER_WORD && byte_size > 0) { rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DImode, (basereg + cum->words + offset)), const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg)); } else return gen_rtx_REG (mode, basereg + cum->words + offset); } /* If there is a prototype, then FP values go in a FR register when named, and in a GR register when unnamed. */ else if (cum->prototype) { if (! named) return gen_rtx_REG (mode, basereg + cum->words + offset); else return gen_rtx_REG (mode, FR_ARG_FIRST + cum->fp_regs); } /* If there is no prototype, then FP values go in both FR and GR registers. */ else { rtx fp_reg = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, (FR_ARG_FIRST + cum->fp_regs)), const0_rtx); rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, (basereg + cum->words + offset)), const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, fp_reg, gr_reg)); } } /* Return number of words, at the beginning of the argument, that must be put in registers. 0 is the argument is entirely in registers or entirely in memory. */ int ia64_function_arg_partial_nregs (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named ATTRIBUTE_UNUSED; { int words = (((mode == BLKmode ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD); int offset = 0; /* Arguments with alignment larger than 8 bytes start at the next even boundary. */ if ((type ? (TYPE_ALIGN (type) > 8 * BITS_PER_UNIT) : (words > 1)) && (cum->words & 1)) offset = 1; /* If all argument slots are used, then it must go on the stack. */ if (cum->words + offset >= MAX_ARGUMENT_SLOTS) return 0; /* It doesn't matter whether the argument goes in FR or GR regs. If it fits within the 8 argument slots, then it goes entirely in registers. If it extends past the last argument slot, then the rest goes on the stack. */ if (words + cum->words + offset <= MAX_ARGUMENT_SLOTS) return 0; return MAX_ARGUMENT_SLOTS - cum->words - offset; } /* Update CUM to point after this argument. This is patterned after ia64_function_arg. */ void ia64_function_arg_advance (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int words = (((mode == BLKmode ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD); int offset = 0; enum machine_mode hfa_mode = VOIDmode; /* If all arg slots are already full, then there is nothing to do. */ if (cum->words >= MAX_ARGUMENT_SLOTS) return; /* Arguments with alignment larger than 8 bytes start at the next even boundary. */ if ((type ? (TYPE_ALIGN (type) > 8 * BITS_PER_UNIT) : (words > 1)) && (cum->words & 1)) offset = 1; cum->words += words + offset; /* Check for and handle homogeneous FP aggregates. */ if (type) hfa_mode = hfa_element_mode (type, 0); /* Unnamed prototyped hfas are passed as usual. Named prototyped hfas and unprototyped hfas are passed specially. */ if (hfa_mode != VOIDmode && (! cum->prototype || named)) { int fp_regs = cum->fp_regs; /* This is the original value of cum->words + offset. */ int int_regs = cum->words - words; int hfa_size = GET_MODE_SIZE (hfa_mode); int byte_size; int args_byte_size; /* If prototyped, pass it in FR regs then GR regs. If not prototyped, pass it in both FR and GR regs. If this is an SFmode aggregate, then it is possible to run out of FR regs while GR regs are still left. In that case, we pass the remaining part in the GR regs. */ /* Fill the FP regs. We do this always. We stop if we reach the end of the argument, the last FP register, or the last argument slot. */ byte_size = ((mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode)); args_byte_size = int_regs * UNITS_PER_WORD; offset = 0; for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS && args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD));) { offset += hfa_size; args_byte_size += hfa_size; fp_regs++; } cum->fp_regs = fp_regs; } /* Integral and aggregates go in general registers. If we have run out of FR registers, then FP values must also go in general registers. This can happen when we have a SFmode HFA. */ else if (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS) cum->int_regs = cum->words; /* If there is a prototype, then FP values go in a FR register when named, and in a GR register when unnamed. */ else if (cum->prototype) { if (! named) cum->int_regs = cum->words; else /* ??? Complex types should not reach here. */ cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1); } /* If there is no prototype, then FP values go in both FR and GR registers. */ else { /* ??? Complex types should not reach here. */ cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1); cum->int_regs = cum->words; } } /* Variable sized types are passed by reference. */ /* ??? At present this is a GCC extension to the IA-64 ABI. */ int ia64_function_arg_pass_by_reference (cum, mode, type, named) CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; tree type; int named ATTRIBUTE_UNUSED; { return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST; } /* True if it is OK to do sibling call optimization for the specified call expression EXP. DECL will be the called function, or NULL if this is an indirect call. */ static bool ia64_function_ok_for_sibcall (decl, exp) tree decl; tree exp ATTRIBUTE_UNUSED; { /* Direct calls are always ok. */ if (decl) return true; /* If TARGET_CONST_GP is in effect, then our caller expects us to return with our current GP. This means that we'll always have a GP reload after an indirect call. */ return !ia64_epilogue_uses (R_GR (1)); } /* Implement va_arg. */ rtx ia64_va_arg (valist, type) tree valist, type; { tree t; /* Variable sized types are passed by reference. */ if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) { rtx addr = std_expand_builtin_va_arg (valist, build_pointer_type (type)); return gen_rtx_MEM (ptr_mode, force_reg (Pmode, addr)); } /* Arguments with alignment larger than 8 bytes start at the next even boundary. */ if (TYPE_ALIGN (type) > 8 * BITS_PER_UNIT) { t = build (PLUS_EXPR, TREE_TYPE (valist), valist, build_int_2 (2 * UNITS_PER_WORD - 1, 0)); t = build (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_2 (-2 * UNITS_PER_WORD, -1)); t = build (MODIFY_EXPR, TREE_TYPE (valist), valist, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } return std_expand_builtin_va_arg (valist, type); } /* Return 1 if function return value returned in memory. Return 0 if it is in a register. */ int ia64_return_in_memory (valtype) tree valtype; { enum machine_mode mode; enum machine_mode hfa_mode; HOST_WIDE_INT byte_size; mode = TYPE_MODE (valtype); byte_size = GET_MODE_SIZE (mode); if (mode == BLKmode) { byte_size = int_size_in_bytes (valtype); if (byte_size < 0) return 1; } /* Hfa's with up to 8 elements are returned in the FP argument registers. */ hfa_mode = hfa_element_mode (valtype, 0); if (hfa_mode != VOIDmode) { int hfa_size = GET_MODE_SIZE (hfa_mode); if (byte_size / hfa_size > MAX_ARGUMENT_SLOTS) return 1; else return 0; } else if (byte_size > UNITS_PER_WORD * MAX_INT_RETURN_SLOTS) return 1; else return 0; } /* Return rtx for register that holds the function return value. */ rtx ia64_function_value (valtype, func) tree valtype; tree func ATTRIBUTE_UNUSED; { enum machine_mode mode; enum machine_mode hfa_mode; mode = TYPE_MODE (valtype); hfa_mode = hfa_element_mode (valtype, 0); if (hfa_mode != VOIDmode) { rtx loc[8]; int i; int hfa_size; int byte_size; int offset; hfa_size = GET_MODE_SIZE (hfa_mode); byte_size = ((mode == BLKmode) ? int_size_in_bytes (valtype) : GET_MODE_SIZE (mode)); offset = 0; for (i = 0; offset < byte_size; i++) { loc[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (hfa_mode, FR_ARG_FIRST + i), GEN_INT (offset)); offset += hfa_size; } if (i == 1) return XEXP (loc[0], 0); else return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc)); } else if (FLOAT_TYPE_P (valtype) && ((mode != TFmode) || INTEL_EXTENDED_IEEE_FORMAT)) return gen_rtx_REG (mode, FR_ARG_FIRST); else { if (BYTES_BIG_ENDIAN && (mode == BLKmode || (valtype && AGGREGATE_TYPE_P (valtype)))) { rtx loc[8]; int offset; int bytesize; int i; offset = 0; bytesize = int_size_in_bytes (valtype); for (i = 0; offset < bytesize; i++) { loc[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DImode, GR_RET_FIRST + i), GEN_INT (offset)); offset += UNITS_PER_WORD; } return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc)); } else return gen_rtx_REG (mode, GR_RET_FIRST); } } /* This is called from dwarf2out.c via ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ void ia64_output_dwarf_dtprel (file, size, x) FILE *file; int size; rtx x; { if (size != 8) abort (); fputs ("\tdata8.ua\t@dtprel(", file); output_addr_const (file, x); fputs (")", file); } /* Print a memory address as an operand to reference that memory location. */ /* ??? Do we need this? It gets used only for 'a' operands. We could perhaps also call this from ia64_print_operand for memory addresses. */ void ia64_print_operand_address (stream, address) FILE * stream ATTRIBUTE_UNUSED; rtx address ATTRIBUTE_UNUSED; { } /* Print an operand to an assembler instruction. C Swap and print a comparison operator. D Print an FP comparison operator. E Print 32 - constant, for SImode shifts as extract. e Print 64 - constant, for DImode rotates. F A floating point constant 0.0 emitted as f0, or 1.0 emitted as f1, or a floating point register emitted normally. I Invert a predicate register by adding 1. J Select the proper predicate register for a condition. j Select the inverse predicate register for a condition. O Append .acq for volatile load. P Postincrement of a MEM. Q Append .rel for volatile store. S Shift amount for shladd instruction. T Print an 8-bit sign extended number (K) as a 32-bit unsigned number for Intel assembler. U Print an 8-bit sign extended number (K) as a 64-bit unsigned number for Intel assembler. r Print register name, or constant 0 as r0. HP compatibility for Linux kernel. */ void ia64_print_operand (file, x, code) FILE * file; rtx x; int code; { const char *str; switch (code) { case 0: /* Handled below. */ break; case 'C': { enum rtx_code c = swap_condition (GET_CODE (x)); fputs (GET_RTX_NAME (c), file); return; } case 'D': switch (GET_CODE (x)) { case NE: str = "neq"; break; case UNORDERED: str = "unord"; break; case ORDERED: str = "ord"; break; default: str = GET_RTX_NAME (GET_CODE (x)); break; } fputs (str, file); return; case 'E': fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (x)); return; case 'e': fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - INTVAL (x)); return; case 'F': if (x == CONST0_RTX (GET_MODE (x))) str = reg_names [FR_REG (0)]; else if (x == CONST1_RTX (GET_MODE (x))) str = reg_names [FR_REG (1)]; else if (GET_CODE (x) == REG) str = reg_names [REGNO (x)]; else abort (); fputs (str, file); return; case 'I': fputs (reg_names [REGNO (x) + 1], file); return; case 'J': case 'j': { unsigned int regno = REGNO (XEXP (x, 0)); if (GET_CODE (x) == EQ) regno += 1; if (code == 'j') regno ^= 1; fputs (reg_names [regno], file); } return; case 'O': if (MEM_VOLATILE_P (x)) fputs(".acq", file); return; case 'P': { HOST_WIDE_INT value; switch (GET_CODE (XEXP (x, 0))) { default: return; case POST_MODIFY: x = XEXP (XEXP (XEXP (x, 0), 1), 1); if (GET_CODE (x) == CONST_INT) value = INTVAL (x); else if (GET_CODE (x) == REG) { fprintf (file, ", %s", reg_names[REGNO (x)]); return; } else abort (); break; case POST_INC: value = GET_MODE_SIZE (GET_MODE (x)); break; case POST_DEC: value = - (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (x)); break; } fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, value); return; } case 'Q': if (MEM_VOLATILE_P (x)) fputs(".rel", file); return; case 'S': fprintf (file, "%d", exact_log2 (INTVAL (x))); return; case 'T': if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT) { fprintf (file, "0x%x", (int) INTVAL (x) & 0xffffffff); return; } break; case 'U': if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT) { const char *prefix = "0x"; if (INTVAL (x) & 0x80000000) { fprintf (file, "0xffffffff"); prefix = ""; } fprintf (file, "%s%x", prefix, (int) INTVAL (x) & 0xffffffff); return; } break; case 'r': /* If this operand is the constant zero, write it as register zero. Any register, zero, or CONST_INT value is OK here. */ if (GET_CODE (x) == REG) fputs (reg_names[REGNO (x)], file); else if (x == CONST0_RTX (GET_MODE (x))) fputs ("r0", file); else if (GET_CODE (x) == CONST_INT) output_addr_const (file, x); else output_operand_lossage ("invalid %%r value"); return; case '+': { const char *which; /* For conditional branches, returns or calls, substitute sptk, dptk, dpnt, or spnt for %s. */ x = find_reg_note (current_output_insn, REG_BR_PROB, 0); if (x) { int pred_val = INTVAL (XEXP (x, 0)); /* Guess top and bottom 10% statically predicted. */ if (pred_val < REG_BR_PROB_BASE / 50) which = ".spnt"; else if (pred_val < REG_BR_PROB_BASE / 2) which = ".dpnt"; else if (pred_val < REG_BR_PROB_BASE / 100 * 98) which = ".dptk"; else which = ".sptk"; } else if (GET_CODE (current_output_insn) == CALL_INSN) which = ".sptk"; else which = ".dptk"; fputs (which, file); return; } case ',': x = current_insn_predicate; if (x) { unsigned int regno = REGNO (XEXP (x, 0)); if (GET_CODE (x) == EQ) regno += 1; fprintf (file, "(%s) ", reg_names [regno]); } return; default: output_operand_lossage ("ia64_print_operand: unknown code"); return; } switch (GET_CODE (x)) { /* This happens for the spill/restore instructions. */ case POST_INC: case POST_DEC: case POST_MODIFY: x = XEXP (x, 0); /* ... fall through ... */ case REG: fputs (reg_names [REGNO (x)], file); break; case MEM: { rtx addr = XEXP (x, 0); if (GET_RTX_CLASS (GET_CODE (addr)) == 'a') addr = XEXP (addr, 0); fprintf (file, "[%s]", reg_names [REGNO (addr)]); break; } default: output_addr_const (file, x); break; } return; } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. */ /* ??? This is incomplete. */ static bool ia64_rtx_costs (x, code, outer_code, total) rtx x; int code, outer_code; int *total; { switch (code) { case CONST_INT: switch (outer_code) { case SET: *total = CONST_OK_FOR_J (INTVAL (x)) ? 0 : COSTS_N_INSNS (1); return true; case PLUS: if (CONST_OK_FOR_I (INTVAL (x))) *total = 0; else if (CONST_OK_FOR_J (INTVAL (x))) *total = 1; else *total = COSTS_N_INSNS (1); return true; default: if (CONST_OK_FOR_K (INTVAL (x)) || CONST_OK_FOR_L (INTVAL (x))) *total = 0; else *total = COSTS_N_INSNS (1); return true; } case CONST_DOUBLE: *total = COSTS_N_INSNS (1); return true; case CONST: case SYMBOL_REF: case LABEL_REF: *total = COSTS_N_INSNS (3); return true; case MULT: /* For multiplies wider than HImode, we have to go to the FPU, which normally involves copies. Plus there's the latency of the multiply itself, and the latency of the instructions to transfer integer regs to FP regs. */ /* ??? Check for FP mode. */ if (GET_MODE_SIZE (GET_MODE (x)) > 2) *total = COSTS_N_INSNS (10); else *total = COSTS_N_INSNS (2); return true; case PLUS: case MINUS: case ASHIFT: case ASHIFTRT: case LSHIFTRT: *total = COSTS_N_INSNS (1); return true; case DIV: case UDIV: case MOD: case UMOD: /* We make divide expensive, so that divide-by-constant will be optimized to a multiply. */ *total = COSTS_N_INSNS (60); return true; default: return false; } } /* Calculate the cost of moving data from a register in class FROM to one in class TO, using MODE. */ int ia64_register_move_cost (mode, from, to) enum machine_mode mode; enum reg_class from, to; { /* ADDL_REGS is the same as GR_REGS for movement purposes. */ if (to == ADDL_REGS) to = GR_REGS; if (from == ADDL_REGS) from = GR_REGS; /* All costs are symmetric, so reduce cases by putting the lower number class as the destination. */ if (from < to) { enum reg_class tmp = to; to = from, from = tmp; } /* Moving from FR<->GR in TFmode must be more expensive than 2, so that we get secondary memory reloads. Between FR_REGS, we have to make this at least as expensive as MEMORY_MOVE_COST to avoid spectacularly poor register class preferencing. */ if (mode == TFmode) { if (to != GR_REGS || from != GR_REGS) return MEMORY_MOVE_COST (mode, to, 0); else return 3; } switch (to) { case PR_REGS: /* Moving between PR registers takes two insns. */ if (from == PR_REGS) return 3; /* Moving between PR and anything but GR is impossible. */ if (from != GR_REGS) return MEMORY_MOVE_COST (mode, to, 0); break; case BR_REGS: /* Moving between BR and anything but GR is impossible. */ if (from != GR_REGS && from != GR_AND_BR_REGS) return MEMORY_MOVE_COST (mode, to, 0); break; case AR_I_REGS: case AR_M_REGS: /* Moving between AR and anything but GR is impossible. */ if (from != GR_REGS) return MEMORY_MOVE_COST (mode, to, 0); break; case GR_REGS: case FR_REGS: case GR_AND_FR_REGS: case GR_AND_BR_REGS: case ALL_REGS: break; default: abort (); } return 2; } /* This function returns the register class required for a secondary register when copying between one of the registers in CLASS, and X, using MODE. A return value of NO_REGS means that no secondary register is required. */ enum reg_class ia64_secondary_reload_class (class, mode, x) enum reg_class class; enum machine_mode mode ATTRIBUTE_UNUSED; rtx x; { int regno = -1; if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG) regno = true_regnum (x); switch (class) { case BR_REGS: case AR_M_REGS: case AR_I_REGS: /* ??? BR<->BR register copies can happen due to a bad gcse/cse/global interaction. We end up with two pseudos with overlapping lifetimes both of which are equiv to the same constant, and both which need to be in BR_REGS. This seems to be a cse bug. cse_basic_block_end changes depending on the path length, which means the qty_first_reg check in make_regs_eqv can give different answers at different times. At some point I'll probably need a reload_indi pattern to handle this. We can also get GR_AND_FR_REGS to BR_REGS/AR_REGS copies, where we wound up with a FP register from GR_AND_FR_REGS. Extend that to all non-general registers for good measure. */ if (regno >= 0 && ! GENERAL_REGNO_P (regno)) return GR_REGS; /* This is needed if a pseudo used as a call_operand gets spilled to a stack slot. */ if (GET_CODE (x) == MEM) return GR_REGS; break; case FR_REGS: /* Need to go through general regsters to get to other class regs. */ if (regno >= 0 && ! (FR_REGNO_P (regno) || GENERAL_REGNO_P (regno))) return GR_REGS; /* This can happen when a paradoxical subreg is an operand to the muldi3 pattern. */ /* ??? This shouldn't be necessary after instruction scheduling is enabled, because paradoxical subregs are not accepted by register_operand when INSN_SCHEDULING is defined. Or alternatively, stop the paradoxical subreg stupidity in the *_operand functions in recog.c. */ if (GET_CODE (x) == MEM && (GET_MODE (x) == SImode || GET_MODE (x) == HImode || GET_MODE (x) == QImode)) return GR_REGS; /* This can happen because of the ior/and/etc patterns that accept FP registers as operands. If the third operand is a constant, then it needs to be reloaded into a FP register. */ if (GET_CODE (x) == CONST_INT) return GR_REGS; /* This can happen because of register elimination in a muldi3 insn. E.g. `26107 * (unsigned long)&u'. */ if (GET_CODE (x) == PLUS) return GR_REGS; break; case PR_REGS: /* ??? This happens if we cse/gcse a BImode value across a call, and the function has a nonlocal goto. This is because global does not allocate call crossing pseudos to hard registers when current_function_has_nonlocal_goto is true. This is relatively common for C++ programs that use exceptions. To reproduce, return NO_REGS and compile libstdc++. */ if (GET_CODE (x) == MEM) return GR_REGS; /* This can happen when we take a BImode subreg of a DImode value, and that DImode value winds up in some non-GR register. */ if (regno >= 0 && ! GENERAL_REGNO_P (regno) && ! PR_REGNO_P (regno)) return GR_REGS; break; case GR_REGS: /* Since we have no offsettable memory addresses, we need a temporary to hold the address of the second word. */ if (mode == TImode) return GR_REGS; break; default: break; } return NO_REGS; } /* Emit text to declare externally defined variables and functions, because the Intel assembler does not support undefined externals. */ void ia64_asm_output_external (file, decl, name) FILE *file; tree decl; const char *name; { int save_referenced; /* GNU as does not need anything here, but the HP linker does need something for external functions. */ if (TARGET_GNU_AS && (!TARGET_HPUX_LD || TREE_CODE (decl) != FUNCTION_DECL || strstr(name, "__builtin_") == name)) return; /* ??? The Intel assembler creates a reference that needs to be satisfied by the linker when we do this, so we need to be careful not to do this for builtin functions which have no library equivalent. Unfortunately, we can't tell here whether or not a function will actually be called by expand_expr, so we pull in library functions even if we may not need them later. */ if (! strcmp (name, "__builtin_next_arg") || ! strcmp (name, "alloca") || ! strcmp (name, "__builtin_constant_p") || ! strcmp (name, "__builtin_args_info")) return; if (TARGET_HPUX_LD) ia64_hpux_add_extern_decl (name); else { /* assemble_name will set TREE_SYMBOL_REFERENCED, so we must save and restore it. */ save_referenced = TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)); if (TREE_CODE (decl) == FUNCTION_DECL) ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function"); (*targetm.asm_out.globalize_label) (file, name); TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)) = save_referenced; } } /* Parse the -mfixed-range= option string. */ static void fix_range (const_str) const char *const_str; { int i, first, last; char *str, *dash, *comma; /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and REG2 are either register names or register numbers. The effect of this option is to mark the registers in the range from REG1 to REG2 as ``fixed'' so they won't be used by the compiler. This is used, e.g., to ensure that kernel mode code doesn't use f32-f127. */ i = strlen (const_str); str = (char *) alloca (i + 1); memcpy (str, const_str, i + 1); while (1) { dash = strchr (str, '-'); if (!dash) { warning ("value of -mfixed-range must have form REG1-REG2"); return; } *dash = '\0'; comma = strchr (dash + 1, ','); if (comma) *comma = '\0'; first = decode_reg_name (str); if (first < 0) { warning ("unknown register name: %s", str); return; } last = decode_reg_name (dash + 1); if (last < 0) { warning ("unknown register name: %s", dash + 1); return; } *dash = '-'; if (first > last) { warning ("%s-%s is an empty range", str, dash + 1); return; } for (i = first; i <= last; ++i) fixed_regs[i] = call_used_regs[i] = 1; if (!comma) break; *comma = ','; str = comma + 1; } } static struct machine_function * ia64_init_machine_status () { return ggc_alloc_cleared (sizeof (struct machine_function)); } /* Handle TARGET_OPTIONS switches. */ void ia64_override_options () { static struct pta { const char *const name; /* processor name or nickname. */ const enum processor_type processor; } const processor_alias_table[] = { {"itanium", PROCESSOR_ITANIUM}, {"itanium1", PROCESSOR_ITANIUM}, {"merced", PROCESSOR_ITANIUM}, {"itanium2", PROCESSOR_ITANIUM2}, {"mckinley", PROCESSOR_ITANIUM2}, }; int const pta_size = ARRAY_SIZE (processor_alias_table); int i; if (TARGET_AUTO_PIC) target_flags |= MASK_CONST_GP; if (TARGET_INLINE_FLOAT_DIV_LAT && TARGET_INLINE_FLOAT_DIV_THR) { warning ("cannot optimize floating point division for both latency and throughput"); target_flags &= ~MASK_INLINE_FLOAT_DIV_THR; } if (TARGET_INLINE_INT_DIV_LAT && TARGET_INLINE_INT_DIV_THR) { warning ("cannot optimize integer division for both latency and throughput"); target_flags &= ~MASK_INLINE_INT_DIV_THR; } if (ia64_fixed_range_string) fix_range (ia64_fixed_range_string); if (ia64_tls_size_string) { char *end; unsigned long tmp = strtoul (ia64_tls_size_string, &end, 10); if (*end || (tmp != 14 && tmp != 22 && tmp != 64)) error ("bad value (%s) for -mtls-size= switch", ia64_tls_size_string); else ia64_tls_size = tmp; } if (!ia64_tune_string) ia64_tune_string = "itanium2"; for (i = 0; i < pta_size; i++) if (! strcmp (ia64_tune_string, processor_alias_table[i].name)) { ia64_tune = processor_alias_table[i].processor; break; } if (i == pta_size) error ("bad value (%s) for -tune= switch", ia64_tune_string); ia64_flag_schedule_insns2 = flag_schedule_insns_after_reload; flag_schedule_insns_after_reload = 0; ia64_section_threshold = g_switch_set ? g_switch_value : IA64_DEFAULT_GVALUE; init_machine_status = ia64_init_machine_status; /* Tell the compiler which flavor of TFmode we're using. */ if (INTEL_EXTENDED_IEEE_FORMAT) real_format_for_mode[TFmode - QFmode] = &ieee_extended_intel_128_format; } static enum attr_itanium_class ia64_safe_itanium_class PARAMS((rtx)); static enum attr_type ia64_safe_type PARAMS((rtx)); static enum attr_itanium_class ia64_safe_itanium_class (insn) rtx insn; { if (recog_memoized (insn) >= 0) return get_attr_itanium_class (insn); else return ITANIUM_CLASS_UNKNOWN; } static enum attr_type ia64_safe_type (insn) rtx insn; { if (recog_memoized (insn) >= 0) return get_attr_type (insn); else return TYPE_UNKNOWN; } /* The following collection of routines emit instruction group stop bits as necessary to avoid dependencies. */ /* Need to track some additional registers as far as serialization is concerned so we can properly handle br.call and br.ret. We could make these registers visible to gcc, but since these registers are never explicitly used in gcc generated code, it seems wasteful to do so (plus it would make the call and return patterns needlessly complex). */ #define REG_GP (GR_REG (1)) #define REG_RP (BR_REG (0)) #define REG_AR_CFM (FIRST_PSEUDO_REGISTER + 1) /* This is used for volatile asms which may require a stop bit immediately before and after them. */ #define REG_VOLATILE (FIRST_PSEUDO_REGISTER + 2) #define AR_UNAT_BIT_0 (FIRST_PSEUDO_REGISTER + 3) #define NUM_REGS (AR_UNAT_BIT_0 + 64) /* For each register, we keep track of how it has been written in the current instruction group. If a register is written unconditionally (no qualifying predicate), WRITE_COUNT is set to 2 and FIRST_PRED is ignored. If a register is written if its qualifying predicate P is true, we set WRITE_COUNT to 1 and FIRST_PRED to P. Later on, the same register may be written again by the complement of P (P^1) and when this happens, WRITE_COUNT gets set to 2. The result of this is that whenever an insn attempts to write a register whose WRITE_COUNT is two, we need to issue an insn group barrier first. If a predicate register is written by a floating-point insn, we set WRITTEN_BY_FP to true. If a predicate register is written by an AND.ORCM we set WRITTEN_BY_AND to true; if it was written by an OR.ANDCM we set WRITTEN_BY_OR to true. */ struct reg_write_state { unsigned int write_count : 2; unsigned int first_pred : 16; unsigned int written_by_fp : 1; unsigned int written_by_and : 1; unsigned int written_by_or : 1; }; /* Cumulative info for the current instruction group. */ struct reg_write_state rws_sum[NUM_REGS]; /* Info for the current instruction. This gets copied to rws_sum after a stop bit is emitted. */ struct reg_write_state rws_insn[NUM_REGS]; /* Indicates whether this is the first instruction after a stop bit, in which case we don't need another stop bit. Without this, we hit the abort in ia64_variable_issue when scheduling an alloc. */ static int first_instruction; /* Misc flags needed to compute RAW/WAW dependencies while we are traversing RTL for one instruction. */ struct reg_flags { unsigned int is_write : 1; /* Is register being written? */ unsigned int is_fp : 1; /* Is register used as part of an fp op? */ unsigned int is_branch : 1; /* Is register used as part of a branch? */ unsigned int is_and : 1; /* Is register used as part of and.orcm? */ unsigned int is_or : 1; /* Is register used as part of or.andcm? */ unsigned int is_sibcall : 1; /* Is this a sibling or normal call? */ }; static void rws_update PARAMS ((struct reg_write_state *, int, struct reg_flags, int)); static int rws_access_regno PARAMS ((int, struct reg_flags, int)); static int rws_access_reg PARAMS ((rtx, struct reg_flags, int)); static void update_set_flags PARAMS ((rtx, struct reg_flags *, int *, rtx *)); static int set_src_needs_barrier PARAMS ((rtx, struct reg_flags, int, rtx)); static int rtx_needs_barrier PARAMS ((rtx, struct reg_flags, int)); static void init_insn_group_barriers PARAMS ((void)); static int group_barrier_needed_p PARAMS ((rtx)); static int safe_group_barrier_needed_p PARAMS ((rtx)); /* Update *RWS for REGNO, which is being written by the current instruction, with predicate PRED, and associated register flags in FLAGS. */ static void rws_update (rws, regno, flags, pred) struct reg_write_state *rws; int regno; struct reg_flags flags; int pred; { if (pred) rws[regno].write_count++; else rws[regno].write_count = 2; rws[regno].written_by_fp |= flags.is_fp; /* ??? Not tracking and/or across differing predicates. */ rws[regno].written_by_and = flags.is_and; rws[regno].written_by_or = flags.is_or; rws[regno].first_pred = pred; } /* Handle an access to register REGNO of type FLAGS using predicate register PRED. Update rws_insn and rws_sum arrays. Return 1 if this access creates a dependency with an earlier instruction in the same group. */ static int rws_access_regno (regno, flags, pred) int regno; struct reg_flags flags; int pred; { int need_barrier = 0; if (regno >= NUM_REGS) abort (); if (! PR_REGNO_P (regno)) flags.is_and = flags.is_or = 0; if (flags.is_write) { int write_count; /* One insn writes same reg multiple times? */ if (rws_insn[regno].write_count > 0) abort (); /* Update info for current instruction. */ rws_update (rws_insn, regno, flags, pred); write_count = rws_sum[regno].write_count; switch (write_count) { case 0: /* The register has not been written yet. */ rws_update (rws_sum, regno, flags, pred); break; case 1: /* The register has been written via a predicate. If this is not a complementary predicate, then we need a barrier. */ /* ??? This assumes that P and P+1 are always complementary predicates for P even. */ if (flags.is_and && rws_sum[regno].written_by_and) ; else if (flags.is_or && rws_sum[regno].written_by_or) ; else if ((rws_sum[regno].first_pred ^ 1) != pred) need_barrier = 1; rws_update (rws_sum, regno, flags, pred); break; case 2: /* The register has been unconditionally written already. We need a barrier. */ if (flags.is_and && rws_sum[regno].written_by_and) ; else if (flags.is_or && rws_sum[regno].written_by_or) ; else need_barrier = 1; rws_sum[regno].written_by_and = flags.is_and; rws_sum[regno].written_by_or = flags.is_or; break; default: abort (); } } else { if (flags.is_branch) { /* Branches have several RAW exceptions that allow to avoid barriers. */ if (REGNO_REG_CLASS (regno) == BR_REGS || regno == AR_PFS_REGNUM) /* RAW dependencies on branch regs are permissible as long as the writer is a non-branch instruction. Since we never generate code that uses a branch register written by a branch instruction, handling this case is easy. */ return 0; if (REGNO_REG_CLASS (regno) == PR_REGS && ! rws_sum[regno].written_by_fp) /* The predicates of a branch are available within the same insn group as long as the predicate was written by something other than a floating-point instruction. */ return 0; } if (flags.is_and && rws_sum[regno].written_by_and) return 0; if (flags.is_or && rws_sum[regno].written_by_or) return 0; switch (rws_sum[regno].write_count) { case 0: /* The register has not been written yet. */ break; case 1: /* The register has been written via a predicate. If this is not a complementary predicate, then we need a barrier. */ /* ??? This assumes that P and P+1 are always complementary predicates for P even. */ if ((rws_sum[regno].first_pred ^ 1) != pred) need_barrier = 1; break; case 2: /* The register has been unconditionally written already. We need a barrier. */ need_barrier = 1; break; default: abort (); } } return need_barrier; } static int rws_access_reg (reg, flags, pred) rtx reg; struct reg_flags flags; int pred; { int regno = REGNO (reg); int n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)); if (n == 1) return rws_access_regno (regno, flags, pred); else { int need_barrier = 0; while (--n >= 0) need_barrier |= rws_access_regno (regno + n, flags, pred); return need_barrier; } } /* Examine X, which is a SET rtx, and update the flags, the predicate, and the condition, stored in *PFLAGS, *PPRED and *PCOND. */ static void update_set_flags (x, pflags, ppred, pcond) rtx x; struct reg_flags *pflags; int *ppred; rtx *pcond; { rtx src = SET_SRC (x); *pcond = 0; switch (GET_CODE (src)) { case CALL: return; case IF_THEN_ELSE: if (SET_DEST (x) == pc_rtx) /* X is a conditional branch. */ return; else { int is_complemented = 0; /* X is a conditional move. */ rtx cond = XEXP (src, 0); if (GET_CODE (cond) == EQ) is_complemented = 1; cond = XEXP (cond, 0); if (GET_CODE (cond) != REG && REGNO_REG_CLASS (REGNO (cond)) != PR_REGS) abort (); *pcond = cond; if (XEXP (src, 1) == SET_DEST (x) || XEXP (src, 2) == SET_DEST (x)) { /* X is a conditional move that conditionally writes the destination. */ /* We need another complement in this case. */ if (XEXP (src, 1) == SET_DEST (x)) is_complemented = ! is_complemented; *ppred = REGNO (cond); if (is_complemented) ++*ppred; } /* ??? If this is a conditional write to the dest, then this instruction does not actually read one source. This probably doesn't matter, because that source is also the dest. */ /* ??? Multiple writes to predicate registers are allowed if they are all AND type compares, or if they are all OR type compares. We do not generate such instructions currently. */ } /* ... fall through ... */ default: if (GET_RTX_CLASS (GET_CODE (src)) == '<' && GET_MODE_CLASS (GET_MODE (XEXP (src, 0))) == MODE_FLOAT) /* Set pflags->is_fp to 1 so that we know we're dealing with a floating point comparison when processing the destination of the SET. */ pflags->is_fp = 1; /* Discover if this is a parallel comparison. We only handle and.orcm and or.andcm at present, since we must retain a strict inverse on the predicate pair. */ else if (GET_CODE (src) == AND) pflags->is_and = 1; else if (GET_CODE (src) == IOR) pflags->is_or = 1; break; } } /* Subroutine of rtx_needs_barrier; this function determines whether the source of a given SET rtx found in X needs a barrier. FLAGS and PRED are as in rtx_needs_barrier. COND is an rtx that holds the condition for this insn. */ static int set_src_needs_barrier (x, flags, pred, cond) rtx x; struct reg_flags flags; int pred; rtx cond; { int need_barrier = 0; rtx dst; rtx src = SET_SRC (x); if (GET_CODE (src) == CALL) /* We don't need to worry about the result registers that get written by subroutine call. */ return rtx_needs_barrier (src, flags, pred); else if (SET_DEST (x) == pc_rtx) { /* X is a conditional branch. */ /* ??? This seems redundant, as the caller sets this bit for all JUMP_INSNs. */ flags.is_branch = 1; return rtx_needs_barrier (src, flags, pred); } need_barrier = rtx_needs_barrier (src, flags, pred); /* This instruction unconditionally uses a predicate register. */ if (cond) need_barrier |= rws_access_reg (cond, flags, 0); dst = SET_DEST (x); if (GET_CODE (dst) == ZERO_EXTRACT) { need_barrier |= rtx_needs_barrier (XEXP (dst, 1), flags, pred); need_barrier |= rtx_needs_barrier (XEXP (dst, 2), flags, pred); dst = XEXP (dst, 0); } return need_barrier; } /* Handle an access to rtx X of type FLAGS using predicate register PRED. Return 1 is this access creates a dependency with an earlier instruction in the same group. */ static int rtx_needs_barrier (x, flags, pred) rtx x; struct reg_flags flags; int pred; { int i, j; int is_complemented = 0; int need_barrier = 0; const char *format_ptr; struct reg_flags new_flags; rtx cond = 0; if (! x) return 0; new_flags = flags; switch (GET_CODE (x)) { case SET: update_set_flags (x, &new_flags, &pred, &cond); need_barrier = set_src_needs_barrier (x, new_flags, pred, cond); if (GET_CODE (SET_SRC (x)) != CALL) { new_flags.is_write = 1; need_barrier |= rtx_needs_barrier (SET_DEST (x), new_flags, pred); } break; case CALL: new_flags.is_write = 0; need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred); /* Avoid multiple register writes, in case this is a pattern with multiple CALL rtx. This avoids an abort in rws_access_reg. */ if (! flags.is_sibcall && ! rws_insn[REG_AR_CFM].write_count) { new_flags.is_write = 1; need_barrier |= rws_access_regno (REG_RP, new_flags, pred); need_barrier |= rws_access_regno (AR_PFS_REGNUM, new_flags, pred); need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred); } break; case COND_EXEC: /* X is a predicated instruction. */ cond = COND_EXEC_TEST (x); if (pred) abort (); need_barrier = rtx_needs_barrier (cond, flags, 0); if (GET_CODE (cond) == EQ) is_complemented = 1; cond = XEXP (cond, 0); if (GET_CODE (cond) != REG && REGNO_REG_CLASS (REGNO (cond)) != PR_REGS) abort (); pred = REGNO (cond); if (is_complemented) ++pred; need_barrier |= rtx_needs_barrier (COND_EXEC_CODE (x), flags, pred); return need_barrier; case CLOBBER: case USE: /* Clobber & use are for earlier compiler-phases only. */ break; case ASM_OPERANDS: case ASM_INPUT: /* We always emit stop bits for traditional asms. We emit stop bits for volatile extended asms if TARGET_VOL_ASM_STOP is true. */ if (GET_CODE (x) != ASM_OPERANDS || (MEM_VOLATILE_P (x) && TARGET_VOL_ASM_STOP)) { /* Avoid writing the register multiple times if we have multiple asm outputs. This avoids an abort in rws_access_reg. */ if (! rws_insn[REG_VOLATILE].write_count) { new_flags.is_write = 1; rws_access_regno (REG_VOLATILE, new_flags, pred); } return 1; } /* For all ASM_OPERANDS, we must traverse the vector of input operands. We can not just fall through here since then we would be confused by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate traditional asms unlike their normal usage. */ for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; --i) if (rtx_needs_barrier (ASM_OPERANDS_INPUT (x, i), flags, pred)) need_barrier = 1; break; case PARALLEL: for (i = XVECLEN (x, 0) - 1; i >= 0; --i) { rtx pat = XVECEXP (x, 0, i); if (GET_CODE (pat) == SET) { update_set_flags (pat, &new_flags, &pred, &cond); need_barrier |= set_src_needs_barrier (pat, new_flags, pred, cond); } else if (GET_CODE (pat) == USE || GET_CODE (pat) == CALL || GET_CODE (pat) == ASM_OPERANDS) need_barrier |= rtx_needs_barrier (pat, flags, pred); else if (GET_CODE (pat) != CLOBBER && GET_CODE (pat) != RETURN) abort (); } for (i = XVECLEN (x, 0) - 1; i >= 0; --i) { rtx pat = XVECEXP (x, 0, i); if (GET_CODE (pat) == SET) { if (GET_CODE (SET_SRC (pat)) != CALL) { new_flags.is_write = 1; need_barrier |= rtx_needs_barrier (SET_DEST (pat), new_flags, pred); } } else if (GET_CODE (pat) == CLOBBER || GET_CODE (pat) == RETURN) need_barrier |= rtx_needs_barrier (pat, flags, pred); } break; case SUBREG: x = SUBREG_REG (x); /* FALLTHRU */ case REG: if (REGNO (x) == AR_UNAT_REGNUM) { for (i = 0; i < 64; ++i) need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + i, flags, pred); } else need_barrier = rws_access_reg (x, flags, pred); break; case MEM: /* Find the regs used in memory address computation. */ new_flags.is_write = 0; need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred); break; case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case LABEL_REF: case CONST: break; /* Operators with side-effects. */ case POST_INC: case POST_DEC: if (GET_CODE (XEXP (x, 0)) != REG) abort (); new_flags.is_write = 0; need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred); new_flags.is_write = 1; need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred); break; case POST_MODIFY: if (GET_CODE (XEXP (x, 0)) != REG) abort (); new_flags.is_write = 0; need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred); need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred); new_flags.is_write = 1; need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred); break; /* Handle common unary and binary ops for efficiency. */ case COMPARE: case PLUS: case MINUS: case MULT: case DIV: case MOD: case UDIV: case UMOD: case AND: case IOR: case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT: case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX: case NE: case EQ: case GE: case GT: case LE: case LT: case GEU: case GTU: case LEU: case LTU: need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred); need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred); break; case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND: case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT: case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS: case SQRT: case FFS: case POPCOUNT: need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred); break; case UNSPEC: switch (XINT (x, 1)) { case UNSPEC_LTOFF_DTPMOD: case UNSPEC_LTOFF_DTPREL: case UNSPEC_DTPREL: case UNSPEC_LTOFF_TPREL: case UNSPEC_TPREL: case UNSPEC_PRED_REL_MUTEX: case UNSPEC_PIC_CALL: case UNSPEC_MF: case UNSPEC_FETCHADD_ACQ: case UNSPEC_BSP_VALUE: case UNSPEC_FLUSHRS: case UNSPEC_BUNDLE_SELECTOR: break; case UNSPEC_GR_SPILL: case UNSPEC_GR_RESTORE: { HOST_WIDE_INT offset = INTVAL (XVECEXP (x, 0, 1)); HOST_WIDE_INT bit = (offset >> 3) & 63; need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred); new_flags.is_write = (XINT (x, 1) == 1); need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + bit, new_flags, pred); break; } case UNSPEC_FR_SPILL: case UNSPEC_FR_RESTORE: case UNSPEC_GETF_EXP: case UNSPEC_ADDP4: need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred); break; case UNSPEC_FR_RECIP_APPROX: need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred); need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred); break; case UNSPEC_CMPXCHG_ACQ: need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred); need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 2), flags, pred); break; default: abort (); } break; case UNSPEC_VOLATILE: switch (XINT (x, 1)) { case UNSPECV_ALLOC: /* Alloc must always be the first instruction of a group. We force this by always returning true. */ /* ??? We might get better scheduling if we explicitly check for input/local/output register dependencies, and modify the scheduler so that alloc is always reordered to the start of the current group. We could then eliminate all of the first_instruction code. */ rws_access_regno (AR_PFS_REGNUM, flags, pred); new_flags.is_write = 1; rws_access_regno (REG_AR_CFM, new_flags, pred); return 1; case UNSPECV_SET_BSP: need_barrier = 1; break; case UNSPECV_BLOCKAGE: case UNSPECV_INSN_GROUP_BARRIER: case UNSPECV_BREAK: case UNSPECV_PSAC_ALL: case UNSPECV_PSAC_NORMAL: return 0; default: abort (); } break; case RETURN: new_flags.is_write = 0; need_barrier = rws_access_regno (REG_RP, flags, pred); need_barrier |= rws_access_regno (AR_PFS_REGNUM, flags, pred); new_flags.is_write = 1; need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred); need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred); break; default: format_ptr = GET_RTX_FORMAT (GET_CODE (x)); for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) switch (format_ptr[i]) { case '0': /* unused field */ case 'i': /* integer */ case 'n': /* note */ case 'w': /* wide integer */ case 's': /* pointer to string */ case 'S': /* optional pointer to string */ break; case 'e': if (rtx_needs_barrier (XEXP (x, i), flags, pred)) need_barrier = 1; break; case 'E': for (j = XVECLEN (x, i) - 1; j >= 0; --j) if (rtx_needs_barrier (XVECEXP (x, i, j), flags, pred)) need_barrier = 1; break; default: abort (); } break; } return need_barrier; } /* Clear out the state for group_barrier_needed_p at the start of a sequence of insns. */ static void init_insn_group_barriers () { memset (rws_sum, 0, sizeof (rws_sum)); first_instruction = 1; } /* Given the current state, recorded by previous calls to this function, determine whether a group barrier (a stop bit) is necessary before INSN. Return nonzero if so. */ static int group_barrier_needed_p (insn) rtx insn; { rtx pat; int need_barrier = 0; struct reg_flags flags; memset (&flags, 0, sizeof (flags)); switch (GET_CODE (insn)) { case NOTE: break; case BARRIER: /* A barrier doesn't imply an instruction group boundary. */ break; case CODE_LABEL: memset (rws_insn, 0, sizeof (rws_insn)); return 1; case CALL_INSN: flags.is_branch = 1; flags.is_sibcall = SIBLING_CALL_P (insn); memset (rws_insn, 0, sizeof (rws_insn)); /* Don't bundle a call following another call. */ if ((pat = prev_active_insn (insn)) && GET_CODE (pat) == CALL_INSN) { need_barrier = 1; break; } need_barrier = rtx_needs_barrier (PATTERN (insn), flags, 0); break; case JUMP_INSN: flags.is_branch = 1; /* Don't bundle a jump following a call. */ if ((pat = prev_active_insn (insn)) && GET_CODE (pat) == CALL_INSN) { need_barrier = 1; break; } /* FALLTHRU */ case INSN: if (GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER) /* Don't care about USE and CLOBBER "insns"---those are used to indicate to the optimizer that it shouldn't get rid of certain operations. */ break; pat = PATTERN (insn); /* Ug. Hack hacks hacked elsewhere. */ switch (recog_memoized (insn)) { /* We play dependency tricks with the epilogue in order to get proper schedules. Undo this for dv analysis. */ case CODE_FOR_epilogue_deallocate_stack: case CODE_FOR_prologue_allocate_stack: pat = XVECEXP (pat, 0, 0); break; /* The pattern we use for br.cloop confuses the code above. The second element of the vector is representative. */ case CODE_FOR_doloop_end_internal: pat = XVECEXP (pat, 0, 1); break; /* Doesn't generate code. */ case CODE_FOR_pred_rel_mutex: case CODE_FOR_prologue_use: return 0; default: break; } memset (rws_insn, 0, sizeof (rws_insn)); need_barrier = rtx_needs_barrier (pat, flags, 0); /* Check to see if the previous instruction was a volatile asm. */ if (! need_barrier) need_barrier = rws_access_regno (REG_VOLATILE, flags, 0); break; default: abort (); } if (first_instruction && INSN_P (insn) && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER) { need_barrier = 0; first_instruction = 0; } return need_barrier; } /* Like group_barrier_needed_p, but do not clobber the current state. */ static int safe_group_barrier_needed_p (insn) rtx insn; { struct reg_write_state rws_saved[NUM_REGS]; int saved_first_instruction; int t; memcpy (rws_saved, rws_sum, NUM_REGS * sizeof *rws_saved); saved_first_instruction = first_instruction; t = group_barrier_needed_p (insn); memcpy (rws_sum, rws_saved, NUM_REGS * sizeof *rws_saved); first_instruction = saved_first_instruction; return t; } /* Scan the current function and insert stop bits as necessary to eliminate dependencies. This function assumes that a final instruction scheduling pass has been run which has already inserted most of the necessary stop bits. This function only inserts new ones at basic block boundaries, since these are invisible to the scheduler. */ static void emit_insn_group_barriers (dump) FILE *dump; { rtx insn; rtx last_label = 0; int insns_since_last_label = 0; init_insn_group_barriers (); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == CODE_LABEL) { if (insns_since_last_label) last_label = insn; insns_since_last_label = 0; } else if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK) { if (insns_since_last_label) last_label = insn; insns_since_last_label = 0; } else if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER) { init_insn_group_barriers (); last_label = 0; } else if (INSN_P (insn)) { insns_since_last_label = 1; if (group_barrier_needed_p (insn)) { if (last_label) { if (dump) fprintf (dump, "Emitting stop before label %d\n", INSN_UID (last_label)); emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), last_label); insn = last_label; init_insn_group_barriers (); last_label = 0; } } } } } /* Like emit_insn_group_barriers, but run if no final scheduling pass was run. This function has to emit all necessary group barriers. */ static void emit_all_insn_group_barriers (dump) FILE *dump ATTRIBUTE_UNUSED; { rtx insn; init_insn_group_barriers (); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == BARRIER) { rtx last = prev_active_insn (insn); if (! last) continue; if (GET_CODE (last) == JUMP_INSN && GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC) last = prev_active_insn (last); if (recog_memoized (last) != CODE_FOR_insn_group_barrier) emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last); init_insn_group_barriers (); } else if (INSN_P (insn)) { if (recog_memoized (insn) == CODE_FOR_insn_group_barrier) init_insn_group_barriers (); else if (group_barrier_needed_p (insn)) { emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); init_insn_group_barriers (); group_barrier_needed_p (insn); } } } } static int errata_find_address_regs PARAMS ((rtx *, void *)); static void errata_emit_nops PARAMS ((rtx)); static void fixup_errata PARAMS ((void)); /* This structure is used to track some details about the previous insns groups so we can determine if it may be necessary to insert NOPs to workaround hardware errata. */ static struct group { HARD_REG_SET p_reg_set; HARD_REG_SET gr_reg_conditionally_set; } last_group[2]; /* Index into the last_group array. */ static int group_idx; /* Called through for_each_rtx; determines if a hard register that was conditionally set in the previous group is used as an address register. It ensures that for_each_rtx returns 1 in that case. */ static int errata_find_address_regs (xp, data) rtx *xp; void *data ATTRIBUTE_UNUSED; { rtx x = *xp; if (GET_CODE (x) != MEM) return 0; x = XEXP (x, 0); if (GET_CODE (x) == POST_MODIFY) x = XEXP (x, 0); if (GET_CODE (x) == REG) { struct group *prev_group = last_group + (group_idx ^ 1); if (TEST_HARD_REG_BIT (prev_group->gr_reg_conditionally_set, REGNO (x))) return 1; return -1; } return 0; } /* Called for each insn; this function keeps track of the state in last_group and emits additional NOPs if necessary to work around an Itanium A/B step erratum. */ static void errata_emit_nops (insn) rtx insn; { struct group *this_group = last_group + group_idx; struct group *prev_group = last_group + (group_idx ^ 1); rtx pat = PATTERN (insn); rtx cond = GET_CODE (pat) == COND_EXEC ? COND_EXEC_TEST (pat) : 0; rtx real_pat = cond ? COND_EXEC_CODE (pat) : pat; enum attr_type type; rtx set = real_pat; if (GET_CODE (real_pat) == USE || GET_CODE (real_pat) == CLOBBER || GET_CODE (real_pat) == ASM_INPUT || GET_CODE (real_pat) == ADDR_VEC || GET_CODE (real_pat) == ADDR_DIFF_VEC || asm_noperands (PATTERN (insn)) >= 0) return; /* single_set doesn't work for COND_EXEC insns, so we have to duplicate parts of it. */ if (GET_CODE (set) == PARALLEL) { int i; set = XVECEXP (real_pat, 0, 0); for (i = 1; i < XVECLEN (real_pat, 0); i++) if (GET_CODE (XVECEXP (real_pat, 0, i)) != USE && GET_CODE (XVECEXP (real_pat, 0, i)) != CLOBBER) { set = 0; break; } } if (set && GET_CODE (set) != SET) set = 0; type = get_attr_type (insn); if (type == TYPE_F && set && REG_P (SET_DEST (set)) && PR_REGNO_P (REGNO (SET_DEST (set)))) SET_HARD_REG_BIT (this_group->p_reg_set, REGNO (SET_DEST (set))); if ((type == TYPE_M || type == TYPE_A) && cond && set && REG_P (SET_DEST (set)) && GET_CODE (SET_SRC (set)) != PLUS && GET_CODE (SET_SRC (set)) != MINUS && (GET_CODE (SET_SRC (set)) != ASHIFT || !shladd_operand (XEXP (SET_SRC (set), 1), VOIDmode)) && (GET_CODE (SET_SRC (set)) != MEM || GET_CODE (XEXP (SET_SRC (set), 0)) != POST_MODIFY) && GENERAL_REGNO_P (REGNO (SET_DEST (set)))) { if (GET_RTX_CLASS (GET_CODE (cond)) != '<' || ! REG_P (XEXP (cond, 0))) abort (); if (TEST_HARD_REG_BIT (prev_group->p_reg_set, REGNO (XEXP (cond, 0)))) SET_HARD_REG_BIT (this_group->gr_reg_conditionally_set, REGNO (SET_DEST (set))); } if (for_each_rtx (&real_pat, errata_find_address_regs, NULL)) { emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); emit_insn_before (gen_nop (), insn); emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); group_idx = 0; memset (last_group, 0, sizeof last_group); } } /* Emit extra nops if they are required to work around hardware errata. */ static void fixup_errata () { rtx insn; if (! TARGET_B_STEP) return; group_idx = 0; memset (last_group, 0, sizeof last_group); for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (!INSN_P (insn)) continue; if (ia64_safe_type (insn) == TYPE_S) { group_idx ^= 1; memset (last_group + group_idx, 0, sizeof last_group[group_idx]); } else errata_emit_nops (insn); } } /* Instruction scheduling support. */ #define NR_BUNDLES 10 /* A list of names of all available bundles. */ static const char *bundle_name [NR_BUNDLES] = { ".mii", ".mmi", ".mfi", ".mmf", #if NR_BUNDLES == 10 ".bbb", ".mbb", #endif ".mib", ".mmb", ".mfb", ".mlx" }; /* Nonzero if we should insert stop bits into the schedule. */ int ia64_final_schedule = 0; /* Codes of the corresponding quieryied units: */ static int _0mii_, _0mmi_, _0mfi_, _0mmf_; static int _0bbb_, _0mbb_, _0mib_, _0mmb_, _0mfb_, _0mlx_; static int _1mii_, _1mmi_, _1mfi_, _1mmf_; static int _1bbb_, _1mbb_, _1mib_, _1mmb_, _1mfb_, _1mlx_; static int pos_1, pos_2, pos_3, pos_4, pos_5, pos_6; /* The following variable value is an insn group barrier. */ static rtx dfa_stop_insn; /* The following variable value is the last issued insn. */ static rtx last_scheduled_insn; /* The following variable value is size of the DFA state. */ static size_t dfa_state_size; /* The following variable value is pointer to a DFA state used as temporary variable. */ static state_t temp_dfa_state = NULL; /* The following variable value is DFA state after issuing the last insn. */ static state_t prev_cycle_state = NULL; /* The following array element values are TRUE if the corresponding insn requires to add stop bits before it. */ static char *stops_p; /* The following variable is used to set up the mentioned above array. */ static int stop_before_p = 0; /* The following variable value is length of the arrays `clocks' and `add_cycles'. */ static int clocks_length; /* The following array element values are cycles on which the corresponding insn will be issued. The array is used only for Itanium1. */ static int *clocks; /* The following array element values are numbers of cycles should be added to improve insn scheduling for MM_insns for Itanium1. */ static int *add_cycles; static rtx ia64_single_set PARAMS ((rtx)); static void ia64_emit_insn_before PARAMS ((rtx, rtx)); /* Map a bundle number to its pseudo-op. */ const char * get_bundle_name (b) int b; { return bundle_name[b]; } /* Return the maximum number of instructions a cpu can issue. */ static int ia64_issue_rate () { return 6; } /* Helper function - like single_set, but look inside COND_EXEC. */ static rtx ia64_single_set (insn) rtx insn; { rtx x = PATTERN (insn), ret; if (GET_CODE (x) == COND_EXEC) x = COND_EXEC_CODE (x); if (GET_CODE (x) == SET) return x; /* Special case here prologue_allocate_stack and epilogue_deallocate_stack. Although they are not classical single set, the second set is there just to protect it from moving past FP-relative stack accesses. */ switch (recog_memoized (insn)) { case CODE_FOR_prologue_allocate_stack: case CODE_FOR_epilogue_deallocate_stack: ret = XVECEXP (x, 0, 0); break; default: ret = single_set_2 (insn, x); break; } return ret; } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ static int ia64_adjust_cost (insn, link, dep_insn, cost) rtx insn, link, dep_insn; int cost; { enum attr_itanium_class dep_class; enum attr_itanium_class insn_class; if (REG_NOTE_KIND (link) != REG_DEP_OUTPUT) return cost; insn_class = ia64_safe_itanium_class (insn); dep_class = ia64_safe_itanium_class (dep_insn); if (dep_class == ITANIUM_CLASS_ST || dep_class == ITANIUM_CLASS_STF || insn_class == ITANIUM_CLASS_ST || insn_class == ITANIUM_CLASS_STF) return 0; return cost; } /* Like emit_insn_before, but skip cycle_display notes. ??? When cycle display notes are implemented, update this. */ static void ia64_emit_insn_before (insn, before) rtx insn, before; { emit_insn_before (insn, before); } /* The following function marks insns who produce addresses for load and store insns. Such insns will be placed into M slots because it decrease latency time for Itanium1 (see function `ia64_produce_address_p' and the DFA descriptions). */ static void ia64_dependencies_evaluation_hook (head, tail) rtx head, tail; { rtx insn, link, next, next_tail; next_tail = NEXT_INSN (tail); for (insn = head; insn != next_tail; insn = NEXT_INSN (insn)) if (INSN_P (insn)) insn->call = 0; for (insn = head; insn != next_tail; insn = NEXT_INSN (insn)) if (INSN_P (insn) && ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IALU) { for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1)) { next = XEXP (link, 0); if ((ia64_safe_itanium_class (next) == ITANIUM_CLASS_ST || ia64_safe_itanium_class (next) == ITANIUM_CLASS_STF) && ia64_st_address_bypass_p (insn, next)) break; else if ((ia64_safe_itanium_class (next) == ITANIUM_CLASS_LD || ia64_safe_itanium_class (next) == ITANIUM_CLASS_FLD) && ia64_ld_address_bypass_p (insn, next)) break; } insn->call = link != 0; } } /* We're beginning a new block. Initialize data structures as necessary. */ static void ia64_sched_init (dump, sched_verbose, max_ready) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; int max_ready ATTRIBUTE_UNUSED; { #ifdef ENABLE_CHECKING rtx insn; if (reload_completed) for (insn = NEXT_INSN (current_sched_info->prev_head); insn != current_sched_info->next_tail; insn = NEXT_INSN (insn)) if (SCHED_GROUP_P (insn)) abort (); #endif last_scheduled_insn = NULL_RTX; init_insn_group_barriers (); } /* We are about to being issuing insns for this clock cycle. Override the default sort algorithm to better slot instructions. */ static int ia64_dfa_sched_reorder (dump, sched_verbose, ready, pn_ready, clock_var, reorder_type) FILE *dump; int sched_verbose; rtx *ready; int *pn_ready; int clock_var ATTRIBUTE_UNUSED; int reorder_type; { int n_asms; int n_ready = *pn_ready; rtx *e_ready = ready + n_ready; rtx *insnp; if (sched_verbose) fprintf (dump, "// ia64_dfa_sched_reorder (type %d):\n", reorder_type); if (reorder_type == 0) { /* First, move all USEs, CLOBBERs and other crud out of the way. */ n_asms = 0; for (insnp = ready; insnp < e_ready; insnp++) if (insnp < e_ready) { rtx insn = *insnp; enum attr_type t = ia64_safe_type (insn); if (t == TYPE_UNKNOWN) { if (GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0) { rtx lowest = ready[n_asms]; ready[n_asms] = insn; *insnp = lowest; n_asms++; } else { rtx highest = ready[n_ready - 1]; ready[n_ready - 1] = insn; *insnp = highest; return 1; } } } if (n_asms < n_ready) { /* Some normal insns to process. Skip the asms. */ ready += n_asms; n_ready -= n_asms; } else if (n_ready > 0) return 1; } if (ia64_final_schedule) { int deleted = 0; int nr_need_stop = 0; for (insnp = ready; insnp < e_ready; insnp++) if (safe_group_barrier_needed_p (*insnp)) nr_need_stop++; if (reorder_type == 1 && n_ready == nr_need_stop) return 0; if (reorder_type == 0) return 1; insnp = e_ready; /* Move down everything that needs a stop bit, preserving relative order. */ while (insnp-- > ready + deleted) while (insnp >= ready + deleted) { rtx insn = *insnp; if (! safe_group_barrier_needed_p (insn)) break; memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx)); *ready = insn; deleted++; } n_ready -= deleted; ready += deleted; } return 1; } /* We are about to being issuing insns for this clock cycle. Override the default sort algorithm to better slot instructions. */ static int ia64_sched_reorder (dump, sched_verbose, ready, pn_ready, clock_var) FILE *dump; int sched_verbose; rtx *ready; int *pn_ready; int clock_var; { return ia64_dfa_sched_reorder (dump, sched_verbose, ready, pn_ready, clock_var, 0); } /* Like ia64_sched_reorder, but called after issuing each insn. Override the default sort algorithm to better slot instructions. */ static int ia64_sched_reorder2 (dump, sched_verbose, ready, pn_ready, clock_var) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; rtx *ready; int *pn_ready; int clock_var; { if (ia64_tune == PROCESSOR_ITANIUM && reload_completed && last_scheduled_insn) clocks [INSN_UID (last_scheduled_insn)] = clock_var; return ia64_dfa_sched_reorder (dump, sched_verbose, ready, pn_ready, clock_var, 1); } /* We are about to issue INSN. Return the number of insns left on the ready queue that can be issued this cycle. */ static int ia64_variable_issue (dump, sched_verbose, insn, can_issue_more) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; rtx insn ATTRIBUTE_UNUSED; int can_issue_more ATTRIBUTE_UNUSED; { last_scheduled_insn = insn; memcpy (prev_cycle_state, curr_state, dfa_state_size); if (reload_completed) { if (group_barrier_needed_p (insn)) abort (); if (GET_CODE (insn) == CALL_INSN) init_insn_group_barriers (); stops_p [INSN_UID (insn)] = stop_before_p; stop_before_p = 0; } return 1; } /* We are choosing insn from the ready queue. Return nonzero if INSN can be chosen. */ static int ia64_first_cycle_multipass_dfa_lookahead_guard (insn) rtx insn; { if (insn == NULL_RTX || !INSN_P (insn)) abort (); return (!reload_completed || !safe_group_barrier_needed_p (insn)); } /* The following variable value is pseudo-insn used by the DFA insn scheduler to change the DFA state when the simulated clock is increased. */ static rtx dfa_pre_cycle_insn; /* We are about to being issuing INSN. Return nonzero if we can not issue it on given cycle CLOCK and return zero if we should not sort the ready queue on the next clock start. */ static int ia64_dfa_new_cycle (dump, verbose, insn, last_clock, clock, sort_p) FILE *dump; int verbose; rtx insn; int last_clock, clock; int *sort_p; { int setup_clocks_p = FALSE; if (insn == NULL_RTX || !INSN_P (insn)) abort (); if ((reload_completed && safe_group_barrier_needed_p (insn)) || (last_scheduled_insn && (GET_CODE (last_scheduled_insn) == CALL_INSN || GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT || asm_noperands (PATTERN (last_scheduled_insn)) >= 0))) { init_insn_group_barriers (); if (verbose && dump) fprintf (dump, "// Stop should be before %d%s\n", INSN_UID (insn), last_clock == clock ? " + cycle advance" : ""); stop_before_p = 1; if (last_clock == clock) { state_transition (curr_state, dfa_stop_insn); if (TARGET_EARLY_STOP_BITS) *sort_p = (last_scheduled_insn == NULL_RTX || GET_CODE (last_scheduled_insn) != CALL_INSN); else *sort_p = 0; return 1; } else if (reload_completed) setup_clocks_p = TRUE; memcpy (curr_state, prev_cycle_state, dfa_state_size); state_transition (curr_state, dfa_stop_insn); state_transition (curr_state, dfa_pre_cycle_insn); state_transition (curr_state, NULL); } else if (reload_completed) setup_clocks_p = TRUE; if (setup_clocks_p && ia64_tune == PROCESSOR_ITANIUM) { enum attr_itanium_class c = ia64_safe_itanium_class (insn); if (c != ITANIUM_CLASS_MMMUL && c != ITANIUM_CLASS_MMSHF) { rtx link; int d = -1; for (link = LOG_LINKS (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == 0) { enum attr_itanium_class dep_class; rtx dep_insn = XEXP (link, 0); dep_class = ia64_safe_itanium_class (dep_insn); if ((dep_class == ITANIUM_CLASS_MMMUL || dep_class == ITANIUM_CLASS_MMSHF) && last_clock - clocks [INSN_UID (dep_insn)] < 4 && (d < 0 || last_clock - clocks [INSN_UID (dep_insn)] < d)) d = last_clock - clocks [INSN_UID (dep_insn)]; } if (d >= 0) add_cycles [INSN_UID (insn)] = 3 - d; } } return 0; } /* The following page contains abstract data `bundle states' which are used for bundling insns (inserting nops and template generation). */ /* The following describes state of insn bundling. */ struct bundle_state { /* Unique bundle state number to identify them in the debugging output */ int unique_num; rtx insn; /* corresponding insn, NULL for the 1st and the last state */ /* number nops before and after the insn */ short before_nops_num, after_nops_num; int insn_num; /* insn number (0 - for initial state, 1 - for the 1st insn */ int cost; /* cost of the state in cycles */ int accumulated_insns_num; /* number of all previous insns including nops. L is considered as 2 insns */ int branch_deviation; /* deviation of previous branches from 3rd slots */ struct bundle_state *next; /* next state with the same insn_num */ struct bundle_state *originator; /* originator (previous insn state) */ /* All bundle states are in the following chain. */ struct bundle_state *allocated_states_chain; /* The DFA State after issuing the insn and the nops. */ state_t dfa_state; }; /* The following is map insn number to the corresponding bundle state. */ static struct bundle_state **index_to_bundle_states; /* The unique number of next bundle state. */ static int bundle_states_num; /* All allocated bundle states are in the following chain. */ static struct bundle_state *allocated_bundle_states_chain; /* All allocated but not used bundle states are in the following chain. */ static struct bundle_state *free_bundle_state_chain; /* The following function returns a free bundle state. */ static struct bundle_state * get_free_bundle_state () { struct bundle_state *result; if (free_bundle_state_chain != NULL) { result = free_bundle_state_chain; free_bundle_state_chain = result->next; } else { result = xmalloc (sizeof (struct bundle_state)); result->dfa_state = xmalloc (dfa_state_size); result->allocated_states_chain = allocated_bundle_states_chain; allocated_bundle_states_chain = result; } result->unique_num = bundle_states_num++; return result; } /* The following function frees given bundle state. */ static void free_bundle_state (state) struct bundle_state *state; { state->next = free_bundle_state_chain; free_bundle_state_chain = state; } /* Start work with abstract data `bundle states'. */ static void initiate_bundle_states () { bundle_states_num = 0; free_bundle_state_chain = NULL; allocated_bundle_states_chain = NULL; } /* Finish work with abstract data `bundle states'. */ static void finish_bundle_states () { struct bundle_state *curr_state, *next_state; for (curr_state = allocated_bundle_states_chain; curr_state != NULL; curr_state = next_state) { next_state = curr_state->allocated_states_chain; free (curr_state->dfa_state); free (curr_state); } } /* Hash table of the bundle states. The key is dfa_state and insn_num of the bundle states. */ static htab_t bundle_state_table; /* The function returns hash of BUNDLE_STATE. */ static unsigned bundle_state_hash (bundle_state) const void *bundle_state; { const struct bundle_state *state = (struct bundle_state *) bundle_state; unsigned result, i; for (result = i = 0; i < dfa_state_size; i++) result += (((unsigned char *) state->dfa_state) [i] << ((i % CHAR_BIT) * 3 + CHAR_BIT)); return result + state->insn_num; } /* The function returns nonzero if the bundle state keys are equal. */ static int bundle_state_eq_p (bundle_state_1, bundle_state_2) const void *bundle_state_1; const void *bundle_state_2; { const struct bundle_state * state1 = (struct bundle_state *) bundle_state_1; const struct bundle_state * state2 = (struct bundle_state *) bundle_state_2; return (state1->insn_num == state2->insn_num && memcmp (state1->dfa_state, state2->dfa_state, dfa_state_size) == 0); } /* The function inserts the BUNDLE_STATE into the hash table. The function returns nonzero if the bundle has been inserted into the table. The table contains the best bundle state with given key. */ static int insert_bundle_state (bundle_state) struct bundle_state *bundle_state; { void **entry_ptr; entry_ptr = htab_find_slot (bundle_state_table, bundle_state, 1); if (*entry_ptr == NULL) { bundle_state->next = index_to_bundle_states [bundle_state->insn_num]; index_to_bundle_states [bundle_state->insn_num] = bundle_state; *entry_ptr = (void *) bundle_state; return TRUE; } else if (bundle_state->cost < ((struct bundle_state *) *entry_ptr)->cost || (bundle_state->cost == ((struct bundle_state *) *entry_ptr)->cost && (((struct bundle_state *)*entry_ptr)->accumulated_insns_num > bundle_state->accumulated_insns_num || (((struct bundle_state *) *entry_ptr)->accumulated_insns_num == bundle_state->accumulated_insns_num && ((struct bundle_state *) *entry_ptr)->branch_deviation > bundle_state->branch_deviation)))) { struct bundle_state temp; temp = *(struct bundle_state *) *entry_ptr; *(struct bundle_state *) *entry_ptr = *bundle_state; ((struct bundle_state *) *entry_ptr)->next = temp.next; *bundle_state = temp; } return FALSE; } /* Start work with the hash table. */ static void initiate_bundle_state_table () { bundle_state_table = htab_create (50, bundle_state_hash, bundle_state_eq_p, (htab_del) 0); } /* Finish work with the hash table. */ static void finish_bundle_state_table () { htab_delete (bundle_state_table); } /* The following variable is a insn `nop' used to check bundle states with different number of inserted nops. */ static rtx ia64_nop; /* The following function tries to issue NOPS_NUM nops for the current state without advancing processor cycle. If it failed, the function returns FALSE and frees the current state. */ static int try_issue_nops (curr_state, nops_num) struct bundle_state *curr_state; int nops_num; { int i; for (i = 0; i < nops_num; i++) if (state_transition (curr_state->dfa_state, ia64_nop) >= 0) { free_bundle_state (curr_state); return FALSE; } return TRUE; } /* The following function tries to issue INSN for the current state without advancing processor cycle. If it failed, the function returns FALSE and frees the current state. */ static int try_issue_insn (curr_state, insn) struct bundle_state *curr_state; rtx insn; { if (insn && state_transition (curr_state->dfa_state, insn) >= 0) { free_bundle_state (curr_state); return FALSE; } return TRUE; } /* The following function tries to issue BEFORE_NOPS_NUM nops and INSN starting with ORIGINATOR without advancing processor cycle. If TRY_BUNDLE_END_P is TRUE, the function also/only (if ONLY_BUNDLE_END_P is TRUE) tries to issue nops to fill all bundle. If it was successful, the function creates new bundle state and insert into the hash table and into `index_to_bundle_states'. */ static void issue_nops_and_insn (originator, before_nops_num, insn, try_bundle_end_p, only_bundle_end_p) struct bundle_state *originator; int before_nops_num; rtx insn; int try_bundle_end_p, only_bundle_end_p; { struct bundle_state *curr_state; curr_state = get_free_bundle_state (); memcpy (curr_state->dfa_state, originator->dfa_state, dfa_state_size); curr_state->insn = insn; curr_state->insn_num = originator->insn_num + 1; curr_state->cost = originator->cost; curr_state->originator = originator; curr_state->before_nops_num = before_nops_num; curr_state->after_nops_num = 0; curr_state->accumulated_insns_num = originator->accumulated_insns_num + before_nops_num; curr_state->branch_deviation = originator->branch_deviation; if (insn == NULL_RTX) abort (); else if (INSN_CODE (insn) == CODE_FOR_insn_group_barrier) { if (GET_MODE (insn) == TImode) abort (); if (!try_issue_nops (curr_state, before_nops_num)) return; if (!try_issue_insn (curr_state, insn)) return; memcpy (temp_dfa_state, curr_state->dfa_state, dfa_state_size); if (state_transition (temp_dfa_state, dfa_pre_cycle_insn) >= 0 && curr_state->accumulated_insns_num % 3 != 0) { free_bundle_state (curr_state); return; } } else if (GET_MODE (insn) != TImode) { if (!try_issue_nops (curr_state, before_nops_num)) return; if (!try_issue_insn (curr_state, insn)) return; curr_state->accumulated_insns_num++; if (GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0) abort (); if (ia64_safe_type (insn) == TYPE_L) curr_state->accumulated_insns_num++; } else { state_transition (curr_state->dfa_state, dfa_pre_cycle_insn); state_transition (curr_state->dfa_state, NULL); curr_state->cost++; if (!try_issue_nops (curr_state, before_nops_num)) return; if (!try_issue_insn (curr_state, insn)) return; curr_state->accumulated_insns_num++; if (GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0) { /* Finish bundle containing asm insn. */ curr_state->after_nops_num = 3 - curr_state->accumulated_insns_num % 3; curr_state->accumulated_insns_num += 3 - curr_state->accumulated_insns_num % 3; } else if (ia64_safe_type (insn) == TYPE_L) curr_state->accumulated_insns_num++; } if (ia64_safe_type (insn) == TYPE_B) curr_state->branch_deviation += 2 - (curr_state->accumulated_insns_num - 1) % 3; if (try_bundle_end_p && curr_state->accumulated_insns_num % 3 != 0) { if (!only_bundle_end_p && insert_bundle_state (curr_state)) { state_t dfa_state; struct bundle_state *curr_state1; struct bundle_state *allocated_states_chain; curr_state1 = get_free_bundle_state (); dfa_state = curr_state1->dfa_state; allocated_states_chain = curr_state1->allocated_states_chain; *curr_state1 = *curr_state; curr_state1->dfa_state = dfa_state; curr_state1->allocated_states_chain = allocated_states_chain; memcpy (curr_state1->dfa_state, curr_state->dfa_state, dfa_state_size); curr_state = curr_state1; } if (!try_issue_nops (curr_state, 3 - curr_state->accumulated_insns_num % 3)) return; curr_state->after_nops_num = 3 - curr_state->accumulated_insns_num % 3; curr_state->accumulated_insns_num += 3 - curr_state->accumulated_insns_num % 3; } if (!insert_bundle_state (curr_state)) free_bundle_state (curr_state); return; } /* The following function returns position in the two window bundle for given STATE. */ static int get_max_pos (state) state_t state; { if (cpu_unit_reservation_p (state, pos_6)) return 6; else if (cpu_unit_reservation_p (state, pos_5)) return 5; else if (cpu_unit_reservation_p (state, pos_4)) return 4; else if (cpu_unit_reservation_p (state, pos_3)) return 3; else if (cpu_unit_reservation_p (state, pos_2)) return 2; else if (cpu_unit_reservation_p (state, pos_1)) return 1; else return 0; } /* The function returns code of a possible template for given position and state. The function should be called only with 2 values of position equal to 3 or 6. */ static int get_template (state, pos) state_t state; int pos; { switch (pos) { case 3: if (cpu_unit_reservation_p (state, _0mii_)) return 0; else if (cpu_unit_reservation_p (state, _0mmi_)) return 1; else if (cpu_unit_reservation_p (state, _0mfi_)) return 2; else if (cpu_unit_reservation_p (state, _0mmf_)) return 3; else if (cpu_unit_reservation_p (state, _0bbb_)) return 4; else if (cpu_unit_reservation_p (state, _0mbb_)) return 5; else if (cpu_unit_reservation_p (state, _0mib_)) return 6; else if (cpu_unit_reservation_p (state, _0mmb_)) return 7; else if (cpu_unit_reservation_p (state, _0mfb_)) return 8; else if (cpu_unit_reservation_p (state, _0mlx_)) return 9; else abort (); case 6: if (cpu_unit_reservation_p (state, _1mii_)) return 0; else if (cpu_unit_reservation_p (state, _1mmi_)) return 1; else if (cpu_unit_reservation_p (state, _1mfi_)) return 2; else if (_1mmf_ >= 0 && cpu_unit_reservation_p (state, _1mmf_)) return 3; else if (cpu_unit_reservation_p (state, _1bbb_)) return 4; else if (cpu_unit_reservation_p (state, _1mbb_)) return 5; else if (cpu_unit_reservation_p (state, _1mib_)) return 6; else if (cpu_unit_reservation_p (state, _1mmb_)) return 7; else if (cpu_unit_reservation_p (state, _1mfb_)) return 8; else if (cpu_unit_reservation_p (state, _1mlx_)) return 9; else abort (); default: abort (); } } /* The following function returns an insn important for insn bundling followed by INSN and before TAIL. */ static rtx get_next_important_insn (insn, tail) rtx insn, tail; { for (; insn && insn != tail; insn = NEXT_INSN (insn)) if (INSN_P (insn) && ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER) return insn; return NULL_RTX; } /* The following function does insn bundling. Bundling algorithm is based on dynamic programming. It tries to insert different number of nop insns before/after the real insns. At the end of EBB, it chooses the best alternative and then, moving back in EBB, inserts templates for the best alternative. The algorithm is directed by information (changes of simulated processor cycle) created by the 2nd insn scheduling. */ static void bundling (dump, verbose, prev_head_insn, tail) FILE *dump; int verbose; rtx prev_head_insn, tail; { struct bundle_state *curr_state, *next_state, *best_state; rtx insn, next_insn; int insn_num; int i, bundle_end_p, only_bundle_end_p, asm_p; int pos = 0, max_pos, template0, template1; rtx b; rtx nop; enum attr_type type; insn_num = 0; for (insn = NEXT_INSN (prev_head_insn); insn && insn != tail; insn = NEXT_INSN (insn)) if (INSN_P (insn)) insn_num++; if (insn_num == 0) return; bundling_p = 1; dfa_clean_insn_cache (); initiate_bundle_state_table (); index_to_bundle_states = xmalloc ((insn_num + 2) * sizeof (struct bundle_state *)); /* First (forward) pass -- generates states. */ curr_state = get_free_bundle_state (); curr_state->insn = NULL; curr_state->before_nops_num = 0; curr_state->after_nops_num = 0; curr_state->insn_num = 0; curr_state->cost = 0; curr_state->accumulated_insns_num = 0; curr_state->branch_deviation = 0; curr_state->next = NULL; curr_state->originator = NULL; state_reset (curr_state->dfa_state); index_to_bundle_states [0] = curr_state; insn_num = 0; for (insn = NEXT_INSN (prev_head_insn); insn != tail; insn = NEXT_INSN (insn)) if (INSN_P (insn) && (ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE || GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER) && GET_MODE (insn) == TImode) { PUT_MODE (insn, VOIDmode); for (next_insn = NEXT_INSN (insn); next_insn != tail; next_insn = NEXT_INSN (next_insn)) if (INSN_P (next_insn) && ia64_safe_itanium_class (next_insn) != ITANIUM_CLASS_IGNORE && GET_CODE (PATTERN (next_insn)) != USE && GET_CODE (PATTERN (next_insn)) != CLOBBER) { PUT_MODE (next_insn, TImode); break; } } for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail); insn != NULL_RTX; insn = next_insn) { if (!INSN_P (insn) || ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE || GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER) abort (); type = ia64_safe_type (insn); next_insn = get_next_important_insn (NEXT_INSN (insn), tail); insn_num++; index_to_bundle_states [insn_num] = NULL; for (curr_state = index_to_bundle_states [insn_num - 1]; curr_state != NULL; curr_state = next_state) { pos = curr_state->accumulated_insns_num % 3; next_state = curr_state->next; /* Finish the current bundle in order to start a subsequent asm insn in a new bundle. */ only_bundle_end_p = (next_insn != NULL_RTX && INSN_CODE (insn) == CODE_FOR_insn_group_barrier && ia64_safe_type (next_insn) == TYPE_UNKNOWN); bundle_end_p = (only_bundle_end_p || next_insn == NULL_RTX || (GET_MODE (next_insn) == TImode && INSN_CODE (insn) != CODE_FOR_insn_group_barrier)); if (type == TYPE_F || type == TYPE_B || type == TYPE_L || type == TYPE_S /* We need to insert 2 Nops for cases like M_MII. */ || (type == TYPE_M && ia64_tune == PROCESSOR_ITANIUM && !bundle_end_p && pos == 1)) issue_nops_and_insn (curr_state, 2, insn, bundle_end_p, only_bundle_end_p); issue_nops_and_insn (curr_state, 1, insn, bundle_end_p, only_bundle_end_p); issue_nops_and_insn (curr_state, 0, insn, bundle_end_p, only_bundle_end_p); } if (index_to_bundle_states [insn_num] == NULL) abort (); for (curr_state = index_to_bundle_states [insn_num]; curr_state != NULL; curr_state = curr_state->next) if (verbose >= 2 && dump) { struct DFA_chip { unsigned short one_automaton_state; unsigned short oneb_automaton_state; unsigned short two_automaton_state; unsigned short twob_automaton_state; }; fprintf (dump, "// Bundle state %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n", curr_state->unique_num, (curr_state->originator == NULL ? -1 : curr_state->originator->unique_num), curr_state->cost, curr_state->before_nops_num, curr_state->after_nops_num, curr_state->accumulated_insns_num, curr_state->branch_deviation, (ia64_tune == PROCESSOR_ITANIUM ? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state : ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state), INSN_UID (insn)); } } if (index_to_bundle_states [insn_num] == NULL) abort (); /* Finding state with a minimal cost: */ best_state = NULL; for (curr_state = index_to_bundle_states [insn_num]; curr_state != NULL; curr_state = curr_state->next) if (curr_state->accumulated_insns_num % 3 == 0 && (best_state == NULL || best_state->cost > curr_state->cost || (best_state->cost == curr_state->cost && (curr_state->accumulated_insns_num < best_state->accumulated_insns_num || (curr_state->accumulated_insns_num == best_state->accumulated_insns_num && curr_state->branch_deviation < best_state->branch_deviation))))) best_state = curr_state; /* Second (backward) pass: adding nops and templates: */ insn_num = best_state->before_nops_num; template0 = template1 = -1; for (curr_state = best_state; curr_state->originator != NULL; curr_state = curr_state->originator) { insn = curr_state->insn; asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0); insn_num++; if (verbose >= 2 && dump) { struct DFA_chip { unsigned short one_automaton_state; unsigned short oneb_automaton_state; unsigned short two_automaton_state; unsigned short twob_automaton_state; }; fprintf (dump, "// Best %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n", curr_state->unique_num, (curr_state->originator == NULL ? -1 : curr_state->originator->unique_num), curr_state->cost, curr_state->before_nops_num, curr_state->after_nops_num, curr_state->accumulated_insns_num, curr_state->branch_deviation, (ia64_tune == PROCESSOR_ITANIUM ? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state : ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state), INSN_UID (insn)); } max_pos = get_max_pos (curr_state->dfa_state); if (max_pos == 6 || (max_pos == 3 && template0 < 0)) { pos = max_pos; if (max_pos == 3) template0 = get_template (curr_state->dfa_state, 3); else { template1 = get_template (curr_state->dfa_state, 3); template0 = get_template (curr_state->dfa_state, 6); } } if (max_pos > 3 && template1 < 0) { if (pos > 3) abort (); template1 = get_template (curr_state->dfa_state, 3); pos += 3; } if (!asm_p) for (i = 0; i < curr_state->after_nops_num; i++) { nop = gen_nop (); emit_insn_after (nop, insn); pos--; if (pos < 0) abort (); if (pos % 3 == 0) { if (template0 < 0) abort (); b = gen_bundle_selector (GEN_INT (template0)); ia64_emit_insn_before (b, nop); template0 = template1; template1 = -1; } } if (INSN_CODE (insn) != CODE_FOR_insn_group_barrier && GET_CODE (PATTERN (insn)) != ASM_INPUT && asm_noperands (PATTERN (insn)) < 0) pos--; if (ia64_safe_type (insn) == TYPE_L) pos--; if (pos < 0) abort (); if (pos % 3 == 0 && INSN_CODE (insn) != CODE_FOR_insn_group_barrier && GET_CODE (PATTERN (insn)) != ASM_INPUT && asm_noperands (PATTERN (insn)) < 0) { if (template0 < 0) abort (); b = gen_bundle_selector (GEN_INT (template0)); ia64_emit_insn_before (b, insn); b = PREV_INSN (insn); insn = b; template0 = template1; template1 = -1; } for (i = 0; i < curr_state->before_nops_num; i++) { nop = gen_nop (); ia64_emit_insn_before (nop, insn); nop = PREV_INSN (insn); insn = nop; pos--; if (pos < 0) abort (); if (pos % 3 == 0) { if (template0 < 0) abort (); b = gen_bundle_selector (GEN_INT (template0)); ia64_emit_insn_before (b, insn); b = PREV_INSN (insn); insn = b; template0 = template1; template1 = -1; } } } if (ia64_tune == PROCESSOR_ITANIUM) /* Insert additional cycles for MM-insns: */ for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail); insn != NULL_RTX; insn = next_insn) { if (!INSN_P (insn) || ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE || GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER) abort (); next_insn = get_next_important_insn (NEXT_INSN (insn), tail); if (INSN_UID (insn) < clocks_length && add_cycles [INSN_UID (insn)]) { rtx last; int i, j, n; int pred_stop_p; last = prev_active_insn (insn); pred_stop_p = recog_memoized (last) == CODE_FOR_insn_group_barrier; if (pred_stop_p) last = prev_active_insn (last); n = 0; for (;; last = prev_active_insn (last)) if (recog_memoized (last) == CODE_FOR_bundle_selector) { template0 = XINT (XVECEXP (PATTERN (last), 0, 0), 0); if (template0 == 9) PATTERN (last) = gen_bundle_selector (GEN_INT (2)); /* -> MFI */ break; } else if (recog_memoized (last) != CODE_FOR_insn_group_barrier) n++; if ((pred_stop_p && n == 0) || n > 2 || (template0 == 9 && n != 0)) abort (); for (j = 3 - n; j > 0; j --) ia64_emit_insn_before (gen_nop (), insn); add_cycles [INSN_UID (insn)]--; if (!pred_stop_p || add_cycles [INSN_UID (insn)]) ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); if (pred_stop_p) add_cycles [INSN_UID (insn)]--; for (i = add_cycles [INSN_UID (insn)]; i > 0; i--) { /* Insert .MII bundle. */ ia64_emit_insn_before (gen_bundle_selector (GEN_INT (0)), insn); ia64_emit_insn_before (gen_nop (), insn); ia64_emit_insn_before (gen_nop (), insn); if (i > 1) { ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); i--; } ia64_emit_insn_before (gen_nop (), insn); ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); } ia64_emit_insn_before (gen_bundle_selector (GEN_INT (template0)), insn); for (j = n; j > 0; j --) ia64_emit_insn_before (gen_nop (), insn); if (pred_stop_p) ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); } } free (index_to_bundle_states); finish_bundle_state_table (); bundling_p = 0; dfa_clean_insn_cache (); } /* The following function is called at the end of scheduling BB or EBB. After reload, it inserts stop bits and does insn bundling. */ static void ia64_sched_finish (dump, sched_verbose) FILE *dump; int sched_verbose; { if (sched_verbose) fprintf (dump, "// Finishing schedule.\n"); if (!reload_completed) return; if (reload_completed) { final_emit_insn_group_barriers (dump); bundling (dump, sched_verbose, current_sched_info->prev_head, current_sched_info->next_tail); if (sched_verbose && dump) fprintf (dump, "// finishing %d-%d\n", INSN_UID (NEXT_INSN (current_sched_info->prev_head)), INSN_UID (PREV_INSN (current_sched_info->next_tail))); return; } } /* The following function inserts stop bits in scheduled BB or EBB. */ static void final_emit_insn_group_barriers (dump) FILE *dump ATTRIBUTE_UNUSED; { rtx insn; int need_barrier_p = 0; rtx prev_insn = NULL_RTX; init_insn_group_barriers (); for (insn = NEXT_INSN (current_sched_info->prev_head); insn != current_sched_info->next_tail; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == BARRIER) { rtx last = prev_active_insn (insn); if (! last) continue; if (GET_CODE (last) == JUMP_INSN && GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC) last = prev_active_insn (last); if (recog_memoized (last) != CODE_FOR_insn_group_barrier) emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last); init_insn_group_barriers (); need_barrier_p = 0; prev_insn = NULL_RTX; } else if (INSN_P (insn)) { if (recog_memoized (insn) == CODE_FOR_insn_group_barrier) { init_insn_group_barriers (); need_barrier_p = 0; prev_insn = NULL_RTX; } else if (need_barrier_p || group_barrier_needed_p (insn)) { if (TARGET_EARLY_STOP_BITS) { rtx last; for (last = insn; last != current_sched_info->prev_head; last = PREV_INSN (last)) if (INSN_P (last) && GET_MODE (last) == TImode && stops_p [INSN_UID (last)]) break; if (last == current_sched_info->prev_head) last = insn; last = prev_active_insn (last); if (last && recog_memoized (last) != CODE_FOR_insn_group_barrier) emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last); init_insn_group_barriers (); for (last = NEXT_INSN (last); last != insn; last = NEXT_INSN (last)) if (INSN_P (last)) group_barrier_needed_p (last); } else { emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn); init_insn_group_barriers (); } group_barrier_needed_p (insn); prev_insn = NULL_RTX; } else if (recog_memoized (insn) >= 0) prev_insn = insn; need_barrier_p = (GET_CODE (insn) == CALL_INSN || GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0); } } } /* If the following function returns TRUE, we will use the the DFA insn scheduler. */ static int ia64_use_dfa_pipeline_interface () { return 1; } /* If the following function returns TRUE, we will use the the DFA insn scheduler. */ static int ia64_first_cycle_multipass_dfa_lookahead () { return (reload_completed ? 6 : 4); } /* The following function initiates variable `dfa_pre_cycle_insn'. */ static void ia64_init_dfa_pre_cycle_insn () { if (temp_dfa_state == NULL) { dfa_state_size = state_size (); temp_dfa_state = xmalloc (dfa_state_size); prev_cycle_state = xmalloc (dfa_state_size); } dfa_pre_cycle_insn = make_insn_raw (gen_pre_cycle ()); PREV_INSN (dfa_pre_cycle_insn) = NEXT_INSN (dfa_pre_cycle_insn) = NULL_RTX; recog_memoized (dfa_pre_cycle_insn); dfa_stop_insn = make_insn_raw (gen_insn_group_barrier (GEN_INT (3))); PREV_INSN (dfa_stop_insn) = NEXT_INSN (dfa_stop_insn) = NULL_RTX; recog_memoized (dfa_stop_insn); } /* The following function returns the pseudo insn DFA_PRE_CYCLE_INSN used by the DFA insn scheduler. */ static rtx ia64_dfa_pre_cycle_insn () { return dfa_pre_cycle_insn; } /* The following function returns TRUE if PRODUCER (of type ilog or ld) produces address for CONSUMER (of type st or stf). */ int ia64_st_address_bypass_p (producer, consumer) rtx producer; rtx consumer; { rtx dest, reg, mem; if (producer == NULL_RTX || consumer == NULL_RTX) abort (); dest = ia64_single_set (producer); if (dest == NULL_RTX || (reg = SET_DEST (dest)) == NULL_RTX || (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)) abort (); if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); dest = ia64_single_set (consumer); if (dest == NULL_RTX || (mem = SET_DEST (dest)) == NULL_RTX || GET_CODE (mem) != MEM) abort (); return reg_mentioned_p (reg, mem); } /* The following function returns TRUE if PRODUCER (of type ilog or ld) produces address for CONSUMER (of type ld or fld). */ int ia64_ld_address_bypass_p (producer, consumer) rtx producer; rtx consumer; { rtx dest, src, reg, mem; if (producer == NULL_RTX || consumer == NULL_RTX) abort (); dest = ia64_single_set (producer); if (dest == NULL_RTX || (reg = SET_DEST (dest)) == NULL_RTX || (GET_CODE (reg) != REG && GET_CODE (reg) != SUBREG)) abort (); if (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); src = ia64_single_set (consumer); if (src == NULL_RTX || (mem = SET_SRC (src)) == NULL_RTX) abort (); if (GET_CODE (mem) == UNSPEC && XVECLEN (mem, 0) > 0) mem = XVECEXP (mem, 0, 0); while (GET_CODE (mem) == SUBREG || GET_CODE (mem) == ZERO_EXTEND) mem = XEXP (mem, 0); /* Note that LO_SUM is used for GOT loads. */ if (GET_CODE (mem) != LO_SUM && GET_CODE (mem) != MEM) abort (); return reg_mentioned_p (reg, mem); } /* The following function returns TRUE if INSN produces address for a load/store insn. We will place such insns into M slot because it decreases its latency time. */ int ia64_produce_address_p (insn) rtx insn; { return insn->call; } /* Emit pseudo-ops for the assembler to describe predicate relations. At present this assumes that we only consider predicate pairs to be mutex, and that the assembler can deduce proper values from straight-line code. */ static void emit_predicate_relation_info () { basic_block bb; FOR_EACH_BB_REVERSE (bb) { int r; rtx head = bb->head; /* We only need such notes at code labels. */ if (GET_CODE (head) != CODE_LABEL) continue; if (GET_CODE (NEXT_INSN (head)) == NOTE && NOTE_LINE_NUMBER (NEXT_INSN (head)) == NOTE_INSN_BASIC_BLOCK) head = NEXT_INSN (head); for (r = PR_REG (0); r < PR_REG (64); r += 2) if (REGNO_REG_SET_P (bb->global_live_at_start, r)) { rtx p = gen_rtx_REG (BImode, r); rtx n = emit_insn_after (gen_pred_rel_mutex (p), head); if (head == bb->end) bb->end = n; head = n; } } /* Look for conditional calls that do not return, and protect predicate relations around them. Otherwise the assembler will assume the call returns, and complain about uses of call-clobbered predicates after the call. */ FOR_EACH_BB_REVERSE (bb) { rtx insn = bb->head; while (1) { if (GET_CODE (insn) == CALL_INSN && GET_CODE (PATTERN (insn)) == COND_EXEC && find_reg_note (insn, REG_NORETURN, NULL_RTX)) { rtx b = emit_insn_before (gen_safe_across_calls_all (), insn); rtx a = emit_insn_after (gen_safe_across_calls_normal (), insn); if (bb->head == insn) bb->head = b; if (bb->end == insn) bb->end = a; } if (insn == bb->end) break; insn = NEXT_INSN (insn); } } } /* Perform machine dependent operations on the rtl chain INSNS. */ static void ia64_reorg () { /* We are freeing block_for_insn in the toplev to keep compatibility with old MDEP_REORGS that are not CFG based. Recompute it now. */ compute_bb_for_insn (); /* If optimizing, we'll have split before scheduling. */ if (optimize == 0) split_all_insns (0); /* ??? update_life_info_in_dirty_blocks fails to terminate during non-optimizing bootstrap. */ update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES); if (ia64_flag_schedule_insns2) { timevar_push (TV_SCHED2); ia64_final_schedule = 1; initiate_bundle_states (); ia64_nop = make_insn_raw (gen_nop ()); PREV_INSN (ia64_nop) = NEXT_INSN (ia64_nop) = NULL_RTX; recog_memoized (ia64_nop); clocks_length = get_max_uid () + 1; stops_p = (char *) xmalloc (clocks_length); memset (stops_p, 0, clocks_length); if (ia64_tune == PROCESSOR_ITANIUM) { clocks = (int *) xmalloc (clocks_length * sizeof (int)); memset (clocks, 0, clocks_length * sizeof (int)); add_cycles = (int *) xmalloc (clocks_length * sizeof (int)); memset (add_cycles, 0, clocks_length * sizeof (int)); } if (ia64_tune == PROCESSOR_ITANIUM2) { pos_1 = get_cpu_unit_code ("2_1"); pos_2 = get_cpu_unit_code ("2_2"); pos_3 = get_cpu_unit_code ("2_3"); pos_4 = get_cpu_unit_code ("2_4"); pos_5 = get_cpu_unit_code ("2_5"); pos_6 = get_cpu_unit_code ("2_6"); _0mii_ = get_cpu_unit_code ("2b_0mii."); _0mmi_ = get_cpu_unit_code ("2b_0mmi."); _0mfi_ = get_cpu_unit_code ("2b_0mfi."); _0mmf_ = get_cpu_unit_code ("2b_0mmf."); _0bbb_ = get_cpu_unit_code ("2b_0bbb."); _0mbb_ = get_cpu_unit_code ("2b_0mbb."); _0mib_ = get_cpu_unit_code ("2b_0mib."); _0mmb_ = get_cpu_unit_code ("2b_0mmb."); _0mfb_ = get_cpu_unit_code ("2b_0mfb."); _0mlx_ = get_cpu_unit_code ("2b_0mlx."); _1mii_ = get_cpu_unit_code ("2b_1mii."); _1mmi_ = get_cpu_unit_code ("2b_1mmi."); _1mfi_ = get_cpu_unit_code ("2b_1mfi."); _1mmf_ = get_cpu_unit_code ("2b_1mmf."); _1bbb_ = get_cpu_unit_code ("2b_1bbb."); _1mbb_ = get_cpu_unit_code ("2b_1mbb."); _1mib_ = get_cpu_unit_code ("2b_1mib."); _1mmb_ = get_cpu_unit_code ("2b_1mmb."); _1mfb_ = get_cpu_unit_code ("2b_1mfb."); _1mlx_ = get_cpu_unit_code ("2b_1mlx."); } else { pos_1 = get_cpu_unit_code ("1_1"); pos_2 = get_cpu_unit_code ("1_2"); pos_3 = get_cpu_unit_code ("1_3"); pos_4 = get_cpu_unit_code ("1_4"); pos_5 = get_cpu_unit_code ("1_5"); pos_6 = get_cpu_unit_code ("1_6"); _0mii_ = get_cpu_unit_code ("1b_0mii."); _0mmi_ = get_cpu_unit_code ("1b_0mmi."); _0mfi_ = get_cpu_unit_code ("1b_0mfi."); _0mmf_ = get_cpu_unit_code ("1b_0mmf."); _0bbb_ = get_cpu_unit_code ("1b_0bbb."); _0mbb_ = get_cpu_unit_code ("1b_0mbb."); _0mib_ = get_cpu_unit_code ("1b_0mib."); _0mmb_ = get_cpu_unit_code ("1b_0mmb."); _0mfb_ = get_cpu_unit_code ("1b_0mfb."); _0mlx_ = get_cpu_unit_code ("1b_0mlx."); _1mii_ = get_cpu_unit_code ("1b_1mii."); _1mmi_ = get_cpu_unit_code ("1b_1mmi."); _1mfi_ = get_cpu_unit_code ("1b_1mfi."); _1mmf_ = get_cpu_unit_code ("1b_1mmf."); _1bbb_ = get_cpu_unit_code ("1b_1bbb."); _1mbb_ = get_cpu_unit_code ("1b_1mbb."); _1mib_ = get_cpu_unit_code ("1b_1mib."); _1mmb_ = get_cpu_unit_code ("1b_1mmb."); _1mfb_ = get_cpu_unit_code ("1b_1mfb."); _1mlx_ = get_cpu_unit_code ("1b_1mlx."); } schedule_ebbs (rtl_dump_file); finish_bundle_states (); if (ia64_tune == PROCESSOR_ITANIUM) { free (add_cycles); free (clocks); } free (stops_p); emit_insn_group_barriers (rtl_dump_file); ia64_final_schedule = 0; timevar_pop (TV_SCHED2); } else emit_all_insn_group_barriers (rtl_dump_file); /* A call must not be the last instruction in a function, so that the return address is still within the function, so that unwinding works properly. Note that IA-64 differs from dwarf2 on this point. */ if (flag_unwind_tables || (flag_exceptions && !USING_SJLJ_EXCEPTIONS)) { rtx insn; int saw_stop = 0; insn = get_last_insn (); if (! INSN_P (insn)) insn = prev_active_insn (insn); if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER) { saw_stop = 1; insn = prev_active_insn (insn); } if (GET_CODE (insn) == CALL_INSN) { if (! saw_stop) emit_insn (gen_insn_group_barrier (GEN_INT (3))); emit_insn (gen_break_f ()); emit_insn (gen_insn_group_barrier (GEN_INT (3))); } } fixup_errata (); emit_predicate_relation_info (); } /* Return true if REGNO is used by the epilogue. */ int ia64_epilogue_uses (regno) int regno; { switch (regno) { case R_GR (1): /* When a function makes a call through a function descriptor, we will write a (potentially) new value to "gp". After returning from such a call, we need to make sure the function restores the original gp-value, even if the function itself does not use the gp anymore. */ return (TARGET_CONST_GP && !(TARGET_AUTO_PIC || TARGET_NO_PIC)); case IN_REG (0): case IN_REG (1): case IN_REG (2): case IN_REG (3): case IN_REG (4): case IN_REG (5): case IN_REG (6): case IN_REG (7): /* For functions defined with the syscall_linkage attribute, all input registers are marked as live at all function exits. This prevents the register allocator from using the input registers, which in turn makes it possible to restart a system call after an interrupt without having to save/restore the input registers. This also prevents kernel data from leaking to application code. */ return lookup_attribute ("syscall_linkage", TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))) != NULL; case R_BR (0): /* Conditional return patterns can't represent the use of `b0' as the return address, so we force the value live this way. */ return 1; case AR_PFS_REGNUM: /* Likewise for ar.pfs, which is used by br.ret. */ return 1; default: return 0; } } /* Return true if REGNO is used by the frame unwinder. */ int ia64_eh_uses (regno) int regno; { if (! reload_completed) return 0; if (current_frame_info.reg_save_b0 && regno == current_frame_info.reg_save_b0) return 1; if (current_frame_info.reg_save_pr && regno == current_frame_info.reg_save_pr) return 1; if (current_frame_info.reg_save_ar_pfs && regno == current_frame_info.reg_save_ar_pfs) return 1; if (current_frame_info.reg_save_ar_unat && regno == current_frame_info.reg_save_ar_unat) return 1; if (current_frame_info.reg_save_ar_lc && regno == current_frame_info.reg_save_ar_lc) return 1; return 0; } /* Return true if this goes in small data/bss. */ /* ??? We could also support own long data here. Generating movl/add/ld8 instead of addl,ld8/ld8. This makes the code bigger, but should make the code faster because there is one less load. This also includes incomplete types which can't go in sdata/sbss. */ static bool ia64_in_small_data_p (exp) tree exp; { if (TARGET_NO_SDATA) return false; /* We want to merge strings, so we never consider them small data. */ if (TREE_CODE (exp) == STRING_CST) return false; if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp)) { const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp)); if (strcmp (section, ".sdata") == 0 || strcmp (section, ".sbss") == 0) return true; } else { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); /* If this is an incomplete type with size 0, then we can't put it in sdata because it might be too big when completed. */ if (size > 0 && size <= ia64_section_threshold) return true; } return false; } /* Output assembly directives for prologue regions. */ /* The current basic block number. */ static bool last_block; /* True if we need a copy_state command at the start of the next block. */ static bool need_copy_state; /* The function emits unwind directives for the start of an epilogue. */ static void process_epilogue () { /* If this isn't the last block of the function, then we need to label the current state, and copy it back in at the start of the next block. */ if (!last_block) { fprintf (asm_out_file, "\t.label_state 1\n"); need_copy_state = true; } fprintf (asm_out_file, "\t.restore sp\n"); } /* This function processes a SET pattern looking for specific patterns which result in emitting an assembly directive required for unwinding. */ static int process_set (asm_out_file, pat) FILE *asm_out_file; rtx pat; { rtx src = SET_SRC (pat); rtx dest = SET_DEST (pat); int src_regno, dest_regno; /* Look for the ALLOC insn. */ if (GET_CODE (src) == UNSPEC_VOLATILE && XINT (src, 1) == UNSPECV_ALLOC && GET_CODE (dest) == REG) { dest_regno = REGNO (dest); /* If this isn't the final destination for ar.pfs, the alloc shouldn't have been marked frame related. */ if (dest_regno != current_frame_info.reg_save_ar_pfs) abort (); fprintf (asm_out_file, "\t.save ar.pfs, r%d\n", ia64_dbx_register_number (dest_regno)); return 1; } /* Look for SP = .... */ if (GET_CODE (dest) == REG && REGNO (dest) == STACK_POINTER_REGNUM) { if (GET_CODE (src) == PLUS) { rtx op0 = XEXP (src, 0); rtx op1 = XEXP (src, 1); if (op0 == dest && GET_CODE (op1) == CONST_INT) { if (INTVAL (op1) < 0) fprintf (asm_out_file, "\t.fframe "HOST_WIDE_INT_PRINT_DEC"\n", -INTVAL (op1)); else process_epilogue (); } else abort (); } else if (GET_CODE (src) == REG && REGNO (src) == HARD_FRAME_POINTER_REGNUM) process_epilogue (); else abort (); return 1; } /* Register move we need to look at. */ if (GET_CODE (dest) == REG && GET_CODE (src) == REG) { src_regno = REGNO (src); dest_regno = REGNO (dest); switch (src_regno) { case BR_REG (0): /* Saving return address pointer. */ if (dest_regno != current_frame_info.reg_save_b0) abort (); fprintf (asm_out_file, "\t.save rp, r%d\n", ia64_dbx_register_number (dest_regno)); return 1; case PR_REG (0): if (dest_regno != current_frame_info.reg_save_pr) abort (); fprintf (asm_out_file, "\t.save pr, r%d\n", ia64_dbx_register_number (dest_regno)); return 1; case AR_UNAT_REGNUM: if (dest_regno != current_frame_info.reg_save_ar_unat) abort (); fprintf (asm_out_file, "\t.save ar.unat, r%d\n", ia64_dbx_register_number (dest_regno)); return 1; case AR_LC_REGNUM: if (dest_regno != current_frame_info.reg_save_ar_lc) abort (); fprintf (asm_out_file, "\t.save ar.lc, r%d\n", ia64_dbx_register_number (dest_regno)); return 1; case STACK_POINTER_REGNUM: if (dest_regno != HARD_FRAME_POINTER_REGNUM || ! frame_pointer_needed) abort (); fprintf (asm_out_file, "\t.vframe r%d\n", ia64_dbx_register_number (dest_regno)); return 1; default: /* Everything else should indicate being stored to memory. */ abort (); } } /* Memory store we need to look at. */ if (GET_CODE (dest) == MEM && GET_CODE (src) == REG) { long off; rtx base; const char *saveop; if (GET_CODE (XEXP (dest, 0)) == REG) { base = XEXP (dest, 0); off = 0; } else if (GET_CODE (XEXP (dest, 0)) == PLUS && GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT) { base = XEXP (XEXP (dest, 0), 0); off = INTVAL (XEXP (XEXP (dest, 0), 1)); } else abort (); if (base == hard_frame_pointer_rtx) { saveop = ".savepsp"; off = - off; } else if (base == stack_pointer_rtx) saveop = ".savesp"; else abort (); src_regno = REGNO (src); switch (src_regno) { case BR_REG (0): if (current_frame_info.reg_save_b0 != 0) abort (); fprintf (asm_out_file, "\t%s rp, %ld\n", saveop, off); return 1; case PR_REG (0): if (current_frame_info.reg_save_pr != 0) abort (); fprintf (asm_out_file, "\t%s pr, %ld\n", saveop, off); return 1; case AR_LC_REGNUM: if (current_frame_info.reg_save_ar_lc != 0) abort (); fprintf (asm_out_file, "\t%s ar.lc, %ld\n", saveop, off); return 1; case AR_PFS_REGNUM: if (current_frame_info.reg_save_ar_pfs != 0) abort (); fprintf (asm_out_file, "\t%s ar.pfs, %ld\n", saveop, off); return 1; case AR_UNAT_REGNUM: if (current_frame_info.reg_save_ar_unat != 0) abort (); fprintf (asm_out_file, "\t%s ar.unat, %ld\n", saveop, off); return 1; case GR_REG (4): case GR_REG (5): case GR_REG (6): case GR_REG (7): fprintf (asm_out_file, "\t.save.g 0x%x\n", 1 << (src_regno - GR_REG (4))); return 1; case BR_REG (1): case BR_REG (2): case BR_REG (3): case BR_REG (4): case BR_REG (5): fprintf (asm_out_file, "\t.save.b 0x%x\n", 1 << (src_regno - BR_REG (1))); return 1; case FR_REG (2): case FR_REG (3): case FR_REG (4): case FR_REG (5): fprintf (asm_out_file, "\t.save.f 0x%x\n", 1 << (src_regno - FR_REG (2))); return 1; case FR_REG (16): case FR_REG (17): case FR_REG (18): case FR_REG (19): case FR_REG (20): case FR_REG (21): case FR_REG (22): case FR_REG (23): case FR_REG (24): case FR_REG (25): case FR_REG (26): case FR_REG (27): case FR_REG (28): case FR_REG (29): case FR_REG (30): case FR_REG (31): fprintf (asm_out_file, "\t.save.gf 0x0, 0x%x\n", 1 << (src_regno - FR_REG (12))); return 1; default: return 0; } } return 0; } /* This function looks at a single insn and emits any directives required to unwind this insn. */ void process_for_unwind_directive (asm_out_file, insn) FILE *asm_out_file; rtx insn; { if (flag_unwind_tables || (flag_exceptions && !USING_SJLJ_EXCEPTIONS)) { rtx pat; if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK) { last_block = NOTE_BASIC_BLOCK (insn)->next_bb == EXIT_BLOCK_PTR; /* Restore unwind state from immediately before the epilogue. */ if (need_copy_state) { fprintf (asm_out_file, "\t.body\n"); fprintf (asm_out_file, "\t.copy_state 1\n"); need_copy_state = false; } } if (GET_CODE (insn) == NOTE || ! RTX_FRAME_RELATED_P (insn)) return; pat = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX); if (pat) pat = XEXP (pat, 0); else pat = PATTERN (insn); switch (GET_CODE (pat)) { case SET: process_set (asm_out_file, pat); break; case PARALLEL: { int par_index; int limit = XVECLEN (pat, 0); for (par_index = 0; par_index < limit; par_index++) { rtx x = XVECEXP (pat, 0, par_index); if (GET_CODE (x) == SET) process_set (asm_out_file, x); } break; } default: abort (); } } } void ia64_init_builtins () { tree psi_type_node = build_pointer_type (integer_type_node); tree pdi_type_node = build_pointer_type (long_integer_type_node); /* __sync_val_compare_and_swap_si, __sync_bool_compare_and_swap_si */ tree si_ftype_psi_si_si = build_function_type_list (integer_type_node, psi_type_node, integer_type_node, integer_type_node, NULL_TREE); /* __sync_val_compare_and_swap_di */ tree di_ftype_pdi_di_di = build_function_type_list (long_integer_type_node, pdi_type_node, long_integer_type_node, long_integer_type_node, NULL_TREE); /* __sync_bool_compare_and_swap_di */ tree si_ftype_pdi_di_di = build_function_type_list (integer_type_node, pdi_type_node, long_integer_type_node, long_integer_type_node, NULL_TREE); /* __sync_synchronize */ tree void_ftype_void = build_function_type (void_type_node, void_list_node); /* __sync_lock_test_and_set_si */ tree si_ftype_psi_si = build_function_type_list (integer_type_node, psi_type_node, integer_type_node, NULL_TREE); /* __sync_lock_test_and_set_di */ tree di_ftype_pdi_di = build_function_type_list (long_integer_type_node, pdi_type_node, long_integer_type_node, NULL_TREE); /* __sync_lock_release_si */ tree void_ftype_psi = build_function_type_list (void_type_node, psi_type_node, NULL_TREE); /* __sync_lock_release_di */ tree void_ftype_pdi = build_function_type_list (void_type_node, pdi_type_node, NULL_TREE); #define def_builtin(name, type, code) \ builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL_TREE) def_builtin ("__sync_val_compare_and_swap_si", si_ftype_psi_si_si, IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI); def_builtin ("__sync_val_compare_and_swap_di", di_ftype_pdi_di_di, IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI); def_builtin ("__sync_bool_compare_and_swap_si", si_ftype_psi_si_si, IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI); def_builtin ("__sync_bool_compare_and_swap_di", si_ftype_pdi_di_di, IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI); def_builtin ("__sync_synchronize", void_ftype_void, IA64_BUILTIN_SYNCHRONIZE); def_builtin ("__sync_lock_test_and_set_si", si_ftype_psi_si, IA64_BUILTIN_LOCK_TEST_AND_SET_SI); def_builtin ("__sync_lock_test_and_set_di", di_ftype_pdi_di, IA64_BUILTIN_LOCK_TEST_AND_SET_DI); def_builtin ("__sync_lock_release_si", void_ftype_psi, IA64_BUILTIN_LOCK_RELEASE_SI); def_builtin ("__sync_lock_release_di", void_ftype_pdi, IA64_BUILTIN_LOCK_RELEASE_DI); def_builtin ("__builtin_ia64_bsp", build_function_type (ptr_type_node, void_list_node), IA64_BUILTIN_BSP); def_builtin ("__builtin_ia64_flushrs", build_function_type (void_type_node, void_list_node), IA64_BUILTIN_FLUSHRS); def_builtin ("__sync_fetch_and_add_si", si_ftype_psi_si, IA64_BUILTIN_FETCH_AND_ADD_SI); def_builtin ("__sync_fetch_and_sub_si", si_ftype_psi_si, IA64_BUILTIN_FETCH_AND_SUB_SI); def_builtin ("__sync_fetch_and_or_si", si_ftype_psi_si, IA64_BUILTIN_FETCH_AND_OR_SI); def_builtin ("__sync_fetch_and_and_si", si_ftype_psi_si, IA64_BUILTIN_FETCH_AND_AND_SI); def_builtin ("__sync_fetch_and_xor_si", si_ftype_psi_si, IA64_BUILTIN_FETCH_AND_XOR_SI); def_builtin ("__sync_fetch_and_nand_si", si_ftype_psi_si, IA64_BUILTIN_FETCH_AND_NAND_SI); def_builtin ("__sync_add_and_fetch_si", si_ftype_psi_si, IA64_BUILTIN_ADD_AND_FETCH_SI); def_builtin ("__sync_sub_and_fetch_si", si_ftype_psi_si, IA64_BUILTIN_SUB_AND_FETCH_SI); def_builtin ("__sync_or_and_fetch_si", si_ftype_psi_si, IA64_BUILTIN_OR_AND_FETCH_SI); def_builtin ("__sync_and_and_fetch_si", si_ftype_psi_si, IA64_BUILTIN_AND_AND_FETCH_SI); def_builtin ("__sync_xor_and_fetch_si", si_ftype_psi_si, IA64_BUILTIN_XOR_AND_FETCH_SI); def_builtin ("__sync_nand_and_fetch_si", si_ftype_psi_si, IA64_BUILTIN_NAND_AND_FETCH_SI); def_builtin ("__sync_fetch_and_add_di", di_ftype_pdi_di, IA64_BUILTIN_FETCH_AND_ADD_DI); def_builtin ("__sync_fetch_and_sub_di", di_ftype_pdi_di, IA64_BUILTIN_FETCH_AND_SUB_DI); def_builtin ("__sync_fetch_and_or_di", di_ftype_pdi_di, IA64_BUILTIN_FETCH_AND_OR_DI); def_builtin ("__sync_fetch_and_and_di", di_ftype_pdi_di, IA64_BUILTIN_FETCH_AND_AND_DI); def_builtin ("__sync_fetch_and_xor_di", di_ftype_pdi_di, IA64_BUILTIN_FETCH_AND_XOR_DI); def_builtin ("__sync_fetch_and_nand_di", di_ftype_pdi_di, IA64_BUILTIN_FETCH_AND_NAND_DI); def_builtin ("__sync_add_and_fetch_di", di_ftype_pdi_di, IA64_BUILTIN_ADD_AND_FETCH_DI); def_builtin ("__sync_sub_and_fetch_di", di_ftype_pdi_di, IA64_BUILTIN_SUB_AND_FETCH_DI); def_builtin ("__sync_or_and_fetch_di", di_ftype_pdi_di, IA64_BUILTIN_OR_AND_FETCH_DI); def_builtin ("__sync_and_and_fetch_di", di_ftype_pdi_di, IA64_BUILTIN_AND_AND_FETCH_DI); def_builtin ("__sync_xor_and_fetch_di", di_ftype_pdi_di, IA64_BUILTIN_XOR_AND_FETCH_DI); def_builtin ("__sync_nand_and_fetch_di", di_ftype_pdi_di, IA64_BUILTIN_NAND_AND_FETCH_DI); #undef def_builtin } /* Expand fetch_and_op intrinsics. The basic code sequence is: mf tmp = [ptr]; do { ret = tmp; ar.ccv = tmp; tmp = value; cmpxchgsz.acq tmp = [ptr], tmp } while (tmp != ret) */ static rtx ia64_expand_fetch_and_op (binoptab, mode, arglist, target) optab binoptab; enum machine_mode mode; tree arglist; rtx target; { rtx ret, label, tmp, ccv, insn, mem, value; tree arg0, arg1; arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); mem = expand_expr (arg0, NULL_RTX, Pmode, 0); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE(mem) != Pmode) mem = convert_memory_address (Pmode, mem); #endif value = expand_expr (arg1, NULL_RTX, mode, 0); mem = gen_rtx_MEM (mode, force_reg (Pmode, mem)); MEM_VOLATILE_P (mem) = 1; if (target && register_operand (target, mode)) ret = target; else ret = gen_reg_rtx (mode); emit_insn (gen_mf ()); /* Special case for fetchadd instructions. */ if (binoptab == add_optab && fetchadd_operand (value, VOIDmode)) { if (mode == SImode) insn = gen_fetchadd_acq_si (ret, mem, value); else insn = gen_fetchadd_acq_di (ret, mem, value); emit_insn (insn); return ret; } tmp = gen_reg_rtx (mode); ccv = gen_rtx_REG (mode, AR_CCV_REGNUM); emit_move_insn (tmp, mem); label = gen_label_rtx (); emit_label (label); emit_move_insn (ret, tmp); emit_move_insn (ccv, tmp); /* Perform the specific operation. Special case NAND by noticing one_cmpl_optab instead. */ if (binoptab == one_cmpl_optab) { tmp = expand_unop (mode, binoptab, tmp, NULL, OPTAB_WIDEN); binoptab = and_optab; } tmp = expand_binop (mode, binoptab, tmp, value, tmp, 1, OPTAB_WIDEN); if (mode == SImode) insn = gen_cmpxchg_acq_si (tmp, mem, tmp, ccv); else insn = gen_cmpxchg_acq_di (tmp, mem, tmp, ccv); emit_insn (insn); emit_cmp_and_jump_insns (tmp, ret, NE, 0, mode, 1, label); return ret; } /* Expand op_and_fetch intrinsics. The basic code sequence is: mf tmp = [ptr]; do { old = tmp; ar.ccv = tmp; ret = tmp value; cmpxchgsz.acq tmp = [ptr], ret } while (tmp != old) */ static rtx ia64_expand_op_and_fetch (binoptab, mode, arglist, target) optab binoptab; enum machine_mode mode; tree arglist; rtx target; { rtx old, label, tmp, ret, ccv, insn, mem, value; tree arg0, arg1; arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); mem = expand_expr (arg0, NULL_RTX, Pmode, 0); #ifdef POINTERS_EXTEND_UNSIGNED if (GET_MODE(mem) != Pmode) mem = convert_memory_address (Pmode, mem); #endif value = expand_expr (arg1, NULL_RTX, mode, 0); mem = gen_rtx_MEM (mode, force_reg (Pmode, mem)); MEM_VOLATILE_P (mem) = 1; if (target && ! register_operand (target, mode)) target = NULL_RTX; emit_insn (gen_mf ()); tmp = gen_reg_rtx (mode); old = gen_reg_rtx (mode); ccv = gen_rtx_REG (mode, AR_CCV_REGNUM); emit_move_insn (tmp, mem); label = gen_label_rtx (); emit_label (label); emit_move_insn (old, tmp); emit_move_insn (ccv, tmp); /* Perform the specific operation. Special case NAND by noticing one_cmpl_optab instead. */ if (binoptab == one_cmpl_optab) { tmp = expand_unop (mode, binoptab, tmp, NULL, OPTAB_WIDEN); binoptab = and_optab; } ret = expand_binop (mode, binoptab, tmp, value, target, 1, OPTAB_WIDEN); if (mode == SImode) insn = gen_cmpxchg_acq_si (tmp, mem, ret, ccv); else insn = gen_cmpxchg_acq_di (tmp, mem, ret, ccv); emit_insn (insn); emit_cmp_and_jump_insns (tmp, old, NE, 0, mode, 1, label); return ret; } /* Expand val_ and bool_compare_and_swap. For val_ we want: ar.ccv = oldval mf cmpxchgsz.acq ret = [ptr], newval, ar.ccv return ret For bool_ it's the same except return ret == oldval. */ static rtx ia64_expand_compare_and_swap (rmode, mode, boolp, arglist, target) enum machine_mode rmode; enum machine_mode mode; int boolp; tree arglist; rtx target; { tree arg0, arg1, arg2; rtx mem, old, new, ccv, tmp, insn; arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); mem = expand_expr (arg0, NULL_RTX, ptr_mode, 0); old = expand_expr (arg1, NULL_RTX, mode, 0); new = expand_expr (arg2, NULL_RTX, mode, 0); mem = gen_rtx_MEM (mode, force_reg (ptr_mode, mem)); MEM_VOLATILE_P (mem) = 1; if (! register_operand (old, mode)) old = copy_to_mode_reg (mode, old); if (! register_operand (new, mode)) new = copy_to_mode_reg (mode, new); if (! boolp && target && register_operand (target, mode)) tmp = target; else tmp = gen_reg_rtx (mode); ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM); if (mode == DImode) emit_move_insn (ccv, old); else { rtx ccvtmp = gen_reg_rtx (DImode); emit_insn (gen_zero_extendsidi2 (ccvtmp, old)); emit_move_insn (ccv, ccvtmp); } emit_insn (gen_mf ()); if (mode == SImode) insn = gen_cmpxchg_acq_si (tmp, mem, new, ccv); else insn = gen_cmpxchg_acq_di (tmp, mem, new, ccv); emit_insn (insn); if (boolp) { if (! target) target = gen_reg_rtx (rmode); return emit_store_flag_force (target, EQ, tmp, old, mode, 1, 1); } else return tmp; } /* Expand lock_test_and_set. I.e. `xchgsz ret = [ptr], new'. */ static rtx ia64_expand_lock_test_and_set (mode, arglist, target) enum machine_mode mode; tree arglist; rtx target; { tree arg0, arg1; rtx mem, new, ret, insn; arg0 = TREE_VALUE (arglist); arg1 = TREE_VALUE (TREE_CHAIN (arglist)); mem = expand_expr (arg0, NULL_RTX, ptr_mode, 0); new = expand_expr (arg1, NULL_RTX, mode, 0); mem = gen_rtx_MEM (mode, force_reg (ptr_mode, mem)); MEM_VOLATILE_P (mem) = 1; if (! register_operand (new, mode)) new = copy_to_mode_reg (mode, new); if (target && register_operand (target, mode)) ret = target; else ret = gen_reg_rtx (mode); if (mode == SImode) insn = gen_xchgsi (ret, mem, new); else insn = gen_xchgdi (ret, mem, new); emit_insn (insn); return ret; } /* Expand lock_release. I.e. `stsz.rel [ptr] = r0'. */ static rtx ia64_expand_lock_release (mode, arglist, target) enum machine_mode mode; tree arglist; rtx target ATTRIBUTE_UNUSED; { tree arg0; rtx mem; arg0 = TREE_VALUE (arglist); mem = expand_expr (arg0, NULL_RTX, ptr_mode, 0); mem = gen_rtx_MEM (mode, force_reg (ptr_mode, mem)); MEM_VOLATILE_P (mem) = 1; emit_move_insn (mem, const0_rtx); return const0_rtx; } rtx ia64_expand_builtin (exp, target, subtarget, mode, ignore) tree exp; rtx target; rtx subtarget ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; int ignore ATTRIBUTE_UNUSED; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); unsigned int fcode = DECL_FUNCTION_CODE (fndecl); tree arglist = TREE_OPERAND (exp, 1); enum machine_mode rmode = VOIDmode; switch (fcode) { case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI: case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI: mode = SImode; rmode = SImode; break; case IA64_BUILTIN_LOCK_TEST_AND_SET_SI: case IA64_BUILTIN_LOCK_RELEASE_SI: case IA64_BUILTIN_FETCH_AND_ADD_SI: case IA64_BUILTIN_FETCH_AND_SUB_SI: case IA64_BUILTIN_FETCH_AND_OR_SI: case IA64_BUILTIN_FETCH_AND_AND_SI: case IA64_BUILTIN_FETCH_AND_XOR_SI: case IA64_BUILTIN_FETCH_AND_NAND_SI: case IA64_BUILTIN_ADD_AND_FETCH_SI: case IA64_BUILTIN_SUB_AND_FETCH_SI: case IA64_BUILTIN_OR_AND_FETCH_SI: case IA64_BUILTIN_AND_AND_FETCH_SI: case IA64_BUILTIN_XOR_AND_FETCH_SI: case IA64_BUILTIN_NAND_AND_FETCH_SI: mode = SImode; break; case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI: mode = DImode; rmode = SImode; break; case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI: mode = DImode; rmode = DImode; break; case IA64_BUILTIN_LOCK_TEST_AND_SET_DI: case IA64_BUILTIN_LOCK_RELEASE_DI: case IA64_BUILTIN_FETCH_AND_ADD_DI: case IA64_BUILTIN_FETCH_AND_SUB_DI: case IA64_BUILTIN_FETCH_AND_OR_DI: case IA64_BUILTIN_FETCH_AND_AND_DI: case IA64_BUILTIN_FETCH_AND_XOR_DI: case IA64_BUILTIN_FETCH_AND_NAND_DI: case IA64_BUILTIN_ADD_AND_FETCH_DI: case IA64_BUILTIN_SUB_AND_FETCH_DI: case IA64_BUILTIN_OR_AND_FETCH_DI: case IA64_BUILTIN_AND_AND_FETCH_DI: case IA64_BUILTIN_XOR_AND_FETCH_DI: case IA64_BUILTIN_NAND_AND_FETCH_DI: mode = DImode; break; default: break; } switch (fcode) { case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI: case IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI: return ia64_expand_compare_and_swap (rmode, mode, 1, arglist, target); case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI: case IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI: return ia64_expand_compare_and_swap (rmode, mode, 0, arglist, target); case IA64_BUILTIN_SYNCHRONIZE: emit_insn (gen_mf ()); return const0_rtx; case IA64_BUILTIN_LOCK_TEST_AND_SET_SI: case IA64_BUILTIN_LOCK_TEST_AND_SET_DI: return ia64_expand_lock_test_and_set (mode, arglist, target); case IA64_BUILTIN_LOCK_RELEASE_SI: case IA64_BUILTIN_LOCK_RELEASE_DI: return ia64_expand_lock_release (mode, arglist, target); case IA64_BUILTIN_BSP: if (! target || ! register_operand (target, DImode)) target = gen_reg_rtx (DImode); emit_insn (gen_bsp_value (target)); #ifdef POINTERS_EXTEND_UNSIGNED target = convert_memory_address (ptr_mode, target); #endif return target; case IA64_BUILTIN_FLUSHRS: emit_insn (gen_flushrs ()); return const0_rtx; case IA64_BUILTIN_FETCH_AND_ADD_SI: case IA64_BUILTIN_FETCH_AND_ADD_DI: return ia64_expand_fetch_and_op (add_optab, mode, arglist, target); case IA64_BUILTIN_FETCH_AND_SUB_SI: case IA64_BUILTIN_FETCH_AND_SUB_DI: return ia64_expand_fetch_and_op (sub_optab, mode, arglist, target); case IA64_BUILTIN_FETCH_AND_OR_SI: case IA64_BUILTIN_FETCH_AND_OR_DI: return ia64_expand_fetch_and_op (ior_optab, mode, arglist, target); case IA64_BUILTIN_FETCH_AND_AND_SI: case IA64_BUILTIN_FETCH_AND_AND_DI: return ia64_expand_fetch_and_op (and_optab, mode, arglist, target); case IA64_BUILTIN_FETCH_AND_XOR_SI: case IA64_BUILTIN_FETCH_AND_XOR_DI: return ia64_expand_fetch_and_op (xor_optab, mode, arglist, target); case IA64_BUILTIN_FETCH_AND_NAND_SI: case IA64_BUILTIN_FETCH_AND_NAND_DI: return ia64_expand_fetch_and_op (one_cmpl_optab, mode, arglist, target); case IA64_BUILTIN_ADD_AND_FETCH_SI: case IA64_BUILTIN_ADD_AND_FETCH_DI: return ia64_expand_op_and_fetch (add_optab, mode, arglist, target); case IA64_BUILTIN_SUB_AND_FETCH_SI: case IA64_BUILTIN_SUB_AND_FETCH_DI: return ia64_expand_op_and_fetch (sub_optab, mode, arglist, target); case IA64_BUILTIN_OR_AND_FETCH_SI: case IA64_BUILTIN_OR_AND_FETCH_DI: return ia64_expand_op_and_fetch (ior_optab, mode, arglist, target); case IA64_BUILTIN_AND_AND_FETCH_SI: case IA64_BUILTIN_AND_AND_FETCH_DI: return ia64_expand_op_and_fetch (and_optab, mode, arglist, target); case IA64_BUILTIN_XOR_AND_FETCH_SI: case IA64_BUILTIN_XOR_AND_FETCH_DI: return ia64_expand_op_and_fetch (xor_optab, mode, arglist, target); case IA64_BUILTIN_NAND_AND_FETCH_SI: case IA64_BUILTIN_NAND_AND_FETCH_DI: return ia64_expand_op_and_fetch (one_cmpl_optab, mode, arglist, target); default: break; } return NULL_RTX; } /* For the HP-UX IA64 aggregate parameters are passed stored in the most significant bits of the stack slot. */ enum direction ia64_hpux_function_arg_padding (mode, type) enum machine_mode mode; tree type; { /* Exception to normal case for structures/unions/etc. */ if (type && AGGREGATE_TYPE_P (type) && int_size_in_bytes (type) < UNITS_PER_WORD) return upward; /* This is the standard FUNCTION_ARG_PADDING with !BYTES_BIG_ENDIAN hardwired to be true. */ return((mode == BLKmode ? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT)) : GET_MODE_BITSIZE (mode) < PARM_BOUNDARY) ? downward : upward); } /* Linked list of all external functions that are to be emitted by GCC. We output the name if and only if TREE_SYMBOL_REFERENCED is set in order to avoid putting out names that are never really used. */ struct extern_func_list { struct extern_func_list *next; /* next external */ char *name; /* name of the external */ } *extern_func_head = 0; static void ia64_hpux_add_extern_decl (name) const char *name; { struct extern_func_list *p; p = (struct extern_func_list *) xmalloc (sizeof (struct extern_func_list)); p->name = xmalloc (strlen (name) + 1); strcpy(p->name, name); p->next = extern_func_head; extern_func_head = p; } /* Print out the list of used global functions. */ static void ia64_hpux_file_end () { while (extern_func_head) { const char *real_name; tree decl; real_name = (* targetm.strip_name_encoding) (extern_func_head->name); decl = maybe_get_identifier (real_name); if (!decl || (! TREE_ASM_WRITTEN (decl) && TREE_SYMBOL_REFERENCED (decl))) { if (decl) TREE_ASM_WRITTEN (decl) = 1; (*targetm.asm_out.globalize_label) (asm_out_file, extern_func_head->name); fputs (TYPE_ASM_OP, asm_out_file); assemble_name (asm_out_file, extern_func_head->name); putc (',', asm_out_file); fprintf (asm_out_file, TYPE_OPERAND_FMT, "function"); putc ('\n', asm_out_file); } extern_func_head = extern_func_head->next; } } /* Switch to the section to which we should output X. The only thing special we do here is to honor small data. */ static void ia64_select_rtx_section (mode, x, align) enum machine_mode mode; rtx x; unsigned HOST_WIDE_INT align; { if (GET_MODE_SIZE (mode) > 0 && GET_MODE_SIZE (mode) <= ia64_section_threshold) sdata_section (); else default_elf_select_rtx_section (mode, x, align); } /* It is illegal to have relocations in shared segments on AIX and HPUX. Pretend flag_pic is always set. */ static void ia64_rwreloc_select_section (exp, reloc, align) tree exp; int reloc; unsigned HOST_WIDE_INT align; { default_elf_select_section_1 (exp, reloc, align, true); } static void ia64_rwreloc_unique_section (decl, reloc) tree decl; int reloc; { default_unique_section_1 (decl, reloc, true); } static void ia64_rwreloc_select_rtx_section (mode, x, align) enum machine_mode mode; rtx x; unsigned HOST_WIDE_INT align; { int save_pic = flag_pic; flag_pic = 1; ia64_select_rtx_section (mode, x, align); flag_pic = save_pic; } static unsigned int ia64_rwreloc_section_type_flags (decl, name, reloc) tree decl; const char *name; int reloc; { return default_section_type_flags_1 (decl, name, reloc, true); } /* Output the assembler code for a thunk function. THUNK_DECL is the declaration for the thunk function itself, FUNCTION is the decl for the target function. DELTA is an immediate constant offset to be added to THIS. If VCALL_OFFSET is nonzero, the word at *(*this + vcall_offset) should be added to THIS. */ static void ia64_output_mi_thunk (file, thunk, delta, vcall_offset, function) FILE *file; tree thunk ATTRIBUTE_UNUSED; HOST_WIDE_INT delta; HOST_WIDE_INT vcall_offset; tree function; { rtx this, insn, funexp; reload_completed = 1; epilogue_completed = 1; no_new_pseudos = 1; /* Set things up as ia64_expand_prologue might. */ last_scratch_gr_reg = 15; memset (¤t_frame_info, 0, sizeof (current_frame_info)); current_frame_info.spill_cfa_off = -16; current_frame_info.n_input_regs = 1; current_frame_info.need_regstk = (TARGET_REG_NAMES != 0); if (!TARGET_REG_NAMES) reg_names[IN_REG (0)] = ia64_reg_numbers[0]; /* Mark the end of the (empty) prologue. */ emit_note (NOTE_INSN_PROLOGUE_END); this = gen_rtx_REG (Pmode, IN_REG (0)); /* Apply the constant offset, if required. */ if (delta) { rtx delta_rtx = GEN_INT (delta); if (!CONST_OK_FOR_I (delta)) { rtx tmp = gen_rtx_REG (Pmode, 2); emit_move_insn (tmp, delta_rtx); delta_rtx = tmp; } emit_insn (gen_adddi3 (this, this, delta_rtx)); } /* Apply the offset from the vtable, if required. */ if (vcall_offset) { rtx vcall_offset_rtx = GEN_INT (vcall_offset); rtx tmp = gen_rtx_REG (Pmode, 2); emit_move_insn (tmp, gen_rtx_MEM (Pmode, this)); if (!CONST_OK_FOR_J (vcall_offset)) { rtx tmp2 = gen_rtx_REG (Pmode, next_scratch_gr_reg ()); emit_move_insn (tmp2, vcall_offset_rtx); vcall_offset_rtx = tmp2; } emit_insn (gen_adddi3 (tmp, tmp, vcall_offset_rtx)); emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp)); emit_insn (gen_adddi3 (this, this, tmp)); } /* Generate a tail call to the target function. */ if (! TREE_USED (function)) { assemble_external (function); TREE_USED (function) = 1; } funexp = XEXP (DECL_RTL (function), 0); funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); ia64_expand_call (NULL_RTX, funexp, NULL_RTX, 1); insn = get_last_insn (); SIBLING_CALL_P (insn) = 1; /* Code generation for calls relies on splitting. */ reload_completed = 1; epilogue_completed = 1; try_split (PATTERN (insn), insn, 0); emit_barrier (); /* Run just enough of rest_of_compilation to get the insns emitted. There's not really enough bulk here to make other passes such as instruction scheduling worth while. Note that use_thunk calls assemble_start_function and assemble_end_function. */ insn_locators_initialize (); emit_all_insn_group_barriers (NULL); insn = get_insns (); shorten_branches (insn); final_start_function (insn, file, 1); final (insn, file, 1, 0); final_end_function (); reload_completed = 0; epilogue_completed = 0; no_new_pseudos = 0; } #include "gt-ia64.h"