/* Definitions of target machine for GNU compiler. Bull DPX/2 200 and 300 systems (m68k, SysVr3). Copyright (C) 1987, 1993, 1994, 1995, 1996, 1999, 2000 Free Software Foundation, Inc. Contributed by Frederic Pierresteguy (F.Pierresteguy@frcl.bull.fr). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef USE_GAS #define MOTOROLA /* Use Motorola syntax rather than "MIT" */ #define SGS_NO_LI /* Suppress jump table label usage */ #define VERSADOS /* This is the name of the assembler we have */ #endif #include "m68k/m68k.h" #undef SELECT_RTX_SECTION #include "svr3.h" /* We use collect2 instead of ctors_section constructors. */ #undef INIT_SECTION_ASM_OP #undef FINI_SECTION_ASM_OP #undef DTORS_SECTION_ASM_OP #undef DO_GLOBAL_CTORS_BODY /* Remove handling for a separate constant data section. We put constant data in text_section, which is the default. */ #undef SELECT_SECTION #undef SELECT_RTX_SECTION #undef EXTRA_SECTIONS #undef EXTRA_SECTION_FUNCTIONS #undef CONST_SECTION_ASM_OP #undef READONLY_DATA_SECTION #define DPX2 /* See m68k.h. 7 means 68020 with 68881. * We really have 68030 and 68882, * but this will get us going. */ #ifndef TARGET_DEFAULT #define TARGET_DEFAULT (MASK_BITFIELD|MASK_68881|MASK_68020) #endif #define OBJECT_FORMAT_COFF #ifdef CPP_PREDEFINES #undef CPP_PREDEFINES #endif /* * define all the things the compiler should */ #ifdef ncl_mr # define CPP_PREDEFINES "-Dunix -Dbull -DDPX2 -DSVR3 -Dmc68000 -Dmc68020 -Dncl_mr=1 -D_BULL_SOURCE -D_POSIX_SOURCE -D_XOPEN_SOURCE -Asystem=unix -Asystem=svr3 -Acpu=m68k -Amachine=m68k" #else # ifdef ncl_el # define CPP_PREDEFINES "-Dunix -Dbull -DDPX2 -DSVR3 -Dmc68000 -Dmc68020 -Dncl_el -D_BULL_SOURCE -D_POSIX_SOURCE -D_XOPEN_SOURCE -Asystem=unix -Asystem=svr3 -Acpu=m68k -Amachine=m68k" # else # define CPP_PREDEFINES "-Dunix -Dbull -DDPX2 -DSVR3 -Dmc68000 -Dmc68020 -D_BULL_SOURCE -D_POSIX_SOURCE -D_XOPEN_SOURCE -Asystem=unix -Asystem=svr3 -Acpu=m68k -Amachine=m68k" # endif #endif #undef CPP_SPEC /* * you can't get a DPX/2 without a 68882 but allow it * to be ignored... */ # define __HAVE_68881__ 1 # define CPP_SPEC "%{!msoft-float:-D__HAVE_68881__ }" #undef DO_GLOBAL_CTORS_BODY /* don't use svr3.h version */ #undef DO_GLOBAL_DTORS_BODY #ifndef USE_GAS /* * handle the native MOTOROLA VERSAdos assembler. */ /* See m68k.h. 3 means 68020 with 68881 and no bitfield * bitfield instructions do not seem to work a clean way. */ #undef TARGET_DEFAULT #define TARGET_DEFAULT (MASK_68881|MASK_68020) /* The native assembler doesn't support fmovecr. */ #define NO_ASM_FMOVECR #undef TEXT_SECTION_ASM_OP #define TEXT_SECTION_ASM_OP "\tsection 10" #undef DATA_SECTION_ASM_OP #define DATA_SECTION_ASM_OP "\tsection 15" #define BSS_SECTION_ASM_OP "\tsection 14" /* Don't try using XFmode. */ #undef LONG_DOUBLE_TYPE_SIZE #define LONG_DOUBLE_TYPE_SIZE 64 /* Define if you don't want extended real, but do want to use the software floating point emulator for REAL_ARITHMETIC and decimal <-> binary conversion. */ #define REAL_ARITHMETIC #undef ASM_OUTPUT_SOURCE_FILENAME #define ASM_OUTPUT_SOURCE_FILENAME(FILE, NA) \ do { fprintf ((FILE), "\t.file\t'%s'\n", (NA)); } while (0) /* Assembler pseudos to introduce constants of various size. */ #undef ASM_BYTE_OP #define ASM_BYTE_OP "\tdc.b\t" #undef ASM_LONG #define ASM_LONG "\tdc.l" /* * we don't seem to support any of: * .globl * .even * .align * .ascii */ #undef ASM_OUTPUT_SKIP #define ASM_OUTPUT_SKIP(FILE,SIZE) \ fprintf (FILE, "\tdcb.b %u,0\n", (SIZE)) #undef GLOBAL_ASM_OP #define GLOBAL_ASM_OP "\txdef\t" #undef ASM_OUTPUT_ALIGN #define ASM_OUTPUT_ALIGN(FILE,LOG) \ if ((LOG) >= 1) \ fprintf (FILE, "\tds.w 0\n"); #define STRING_LIMIT (0) #undef ASM_APP_ON #define ASM_APP_ON "" #undef ASM_APP_OFF #define ASM_APP_OFF "" /* * dc.b 'hello, world!' * dc.b 10,0 * is how we have to output "hello, world!\n" */ #undef ASM_OUTPUT_ASCII #define ASM_OUTPUT_ASCII(asm_out_file, p, thissize) \ do { register int i, c, f=0, len=0; \ for (i = 0; i < thissize; i++) { \ c = p[i]; \ if (c == '\'' || c < ' ' || c > 127) { \ switch(f) { \ case 0: /* need to output dc.b etc */ \ fprintf(asm_out_file, "\tdc.b %d", c); \ f=1; \ break; \ case 1: \ fprintf(asm_out_file, ",%d", c); \ break; \ default: \ /* close a string */ \ fprintf(asm_out_file, "'\n\tdc.b %d", c); \ f=1; \ break; \ } \ } else { \ switch(f) { \ case 0: \ fprintf(asm_out_file, "\tdc.b '%c", c); \ f=2; \ break; \ case 2: \ if (len >= 79) { \ fprintf(asm_out_file, "'\n\tdc.b '%c", c); \ len = 0; } \ else \ fprintf(asm_out_file, "%c", c); \ break; \ default: \ len = 0; \ fprintf(asm_out_file, "\n\tdc.b '%c", c); \ f=2; \ break; \ } \ } \ len++; \ } \ if (f==2) \ putc('\'', asm_out_file); \ putc('\n', asm_out_file); } while (0) /* This is how to output an insn to push a register on the stack. It need not be very fast code. */ #undef ASM_OUTPUT_REG_PUSH #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ fprintf (FILE, "\tmove.l %s,-(sp)\n", reg_names[REGNO]) /* This is how to output an insn to pop a register from the stack. It need not be very fast code. */ #undef ASM_OUTPUT_REG_POP #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ fprintf (FILE, "\tmove.l (sp)+,%s\n", reg_names[REGNO]) #define PUT_SDB_FUNCTION_START(LINE) \ fprintf (asm_out_file, \ "\t.def\t.bf%s\t.val\t*%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_FUNCTION_END(LINE) \ fprintf (asm_out_file, \ "\t.def\t.ef%s\t.val\t*%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_BLOCK_START(LINE) \ fprintf (asm_out_file, \ "\t.def\t.bb%s\t.val\t*%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_BLOCK_END(LINE) \ fprintf (asm_out_file, \ "\t.def\t.eb%s\t.val\t*%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \ SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM) #define PUT_SDB_EPILOGUE_END(NAME) /* Output type in decimal not in octal as done in sdbout.c */ #define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0%d%s", a, SDB_DELIM) /* Translate Motorola opcodes such as `jbeq' into VERSAdos opcodes such as `beq'. Change `fbeq' to `fbseq', `fbne' to `fbsneq'. */ #undef ASM_OUTPUT_OPCODE #define ASM_OUTPUT_OPCODE(FILE, PTR) \ { if ((PTR)[0] == 'j' && (PTR)[1] == 'b') \ { ++(PTR); \ while (*(PTR) != ' ') \ { putc (*(PTR), (FILE)); ++(PTR); } \ } \ else if ((PTR)[0] == 'f') \ { \ if (!strncmp ((PTR), "fbeq", 4)) \ { fprintf ((FILE), "fbseq"); (PTR) += 4; } \ else if (!strncmp ((PTR), "fbne", 4)) \ { fprintf ((FILE), "fbsneq"); (PTR) += 4; } \ } \ else if ((PTR)[0] == 'b' && (PTR)[1] == 'f') \ { \ char *s; \ if ((s = (char*)strchr ((PTR), '{'))) \ while (*s != '}') { \ if (*s == 'b') \ /* hack, I replace it with R ie nothing */ \ *s = '0'; \ s++; } \ } \ } /* This is how to output a `long double' extended real constant. */ #undef ASM_OUTPUT_LONG_DOUBLE #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \ do { long l[3]; \ REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \ if (sizeof (int) == sizeof (long)) \ fprintf (FILE, "\tdc.l $%x,$%x,$%x\n", l[0], l[1], l[2]); \ else \ fprintf (FILE, "\tdc.l $%lx,$%lx,$%lx\n", l[0], l[1], l[2]); \ } while (0) #undef ASM_OUTPUT_DOUBLE #if 0 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ do { char dstr[30]; \ REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \ fprintf (FILE, "\tdc.d %s\n", dstr); \ } while (0) #endif #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ do { long l[2]; \ REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \ fprintf (FILE, "\tdc.l $%x,$%x\n", l[0], l[1]); \ } while (0) /* This is how to output an assembler line defining a `float' constant. */ #undef ASM_OUTPUT_FLOAT #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ do { long l; \ REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \ if (sizeof (int) == sizeof (long)) \ fprintf (FILE, "\tdc.l $%x\n", l); \ else \ fprintf (FILE, "\tdc.l $%lx\n", l); \ } while (0) /* This is how to output an assembler line defining an `int' constant. */ #undef ASM_OUTPUT_INT #define ASM_OUTPUT_INT(FILE,VALUE) \ ( fprintf (FILE, "\tdc.l "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* Likewise for `char' and `short' constants. */ #undef ASM_OUTPUT_SHORT #define ASM_OUTPUT_SHORT(FILE,VALUE) \ ( fprintf (FILE, "\tdc.w "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) #undef ASM_OUTPUT_CHAR #define ASM_OUTPUT_CHAR(FILE,VALUE) \ ( fprintf (FILE, "\tdc.b "), \ output_addr_const (FILE, (VALUE)), \ fprintf (FILE, "\n")) /* This is how to output an assembler line for a numeric constant byte. */ #undef ASM_OUTPUT_BYTE #define ASM_OUTPUT_BYTE(FILE,VALUE) \ fprintf (FILE, "\tdc.b $%x\n", (VALUE)) /* This is how to output an element of a case-vector that is absolute. (The 68000 does not use such vectors, but we must define this macro anyway.) */ #undef ASM_OUTPUT_ADDR_VEC_ELT #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ asm_fprintf (FILE, "\tdc.l %LL%d\n", VALUE) /* This is how to output an element of a case-vector that is relative. */ #undef ASM_OUTPUT_ADDR_DIFF_ELT #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ asm_fprintf (FILE, "\tdc.w %LL%d-%LL%d\n", VALUE, REL) /* Currently, JUMP_TABLES_IN_TEXT_SECTION must be defined in order to keep switch tables in the text section. */ #define JUMP_TABLES_IN_TEXT_SECTION 1 /* Output a float value (represented as a C double) as an immediate operand. This macro is a 68k-specific macro. */ #undef ASM_OUTPUT_FLOAT_OPERAND #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \ do { \ if (CODE == 'f') \ { \ char dstr[30]; \ REAL_VALUE_TO_DECIMAL (VALUE, "%.9g", dstr); \ asm_fprintf ((FILE), "%I%s", dstr); \ } \ else \ { \ long l; \ REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \ if (sizeof (int) == sizeof (long)) \ asm_fprintf ((FILE), "%I$%x", l); \ else \ asm_fprintf ((FILE), "%I$%lx", l); \ } \ } while (0) /* Output a double value (represented as a C double) as an immediate operand. This macro is a 68k-specific macro. */ #undef ASM_OUTPUT_DOUBLE_OPERAND #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \ do { char dstr[30]; \ REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \ asm_fprintf (FILE, "%I%s", dstr); \ } while (0) /* Note, long double immediate operands are not actually generated by m68k.md. */ #undef ASM_OUTPUT_LONG_DOUBLE_OPERAND #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \ do { char dstr[30]; \ REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \ asm_fprintf (FILE, "%I%s", dstr); \ } while (0) #undef ASM_OUTPUT_COMMON #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ( fputs ("\t.comm ", (FILE)), \ assemble_name ((FILE), (NAME)), \ fprintf ((FILE), ",%u\n", (ROUNDED))) #undef ASM_OUTPUT_LOCAL #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ do { \ int align = exact_log2 (ROUNDED); \ /*fprintf ((FILE), "\tsection 14\n"); */ \ data_section (); \ ASM_OUTPUT_ALIGN ((FILE), align) \ ASM_OUTPUT_LABEL ((FILE), (NAME)); \ fprintf ((FILE), "\tdcb.b %u,0\n", (ROUNDED)); \ /* fprintf ((FILE), "\tsection 10\n"); */ \ } while (0) #undef PRINT_OPERAND_ADDRESS #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ { register rtx reg1, reg2, breg, ireg; \ register rtx addr = ADDR; \ rtx offset; \ switch (GET_CODE (addr)) \ { \ case REG: \ fprintf (FILE, "(%s)", reg_names[REGNO (addr)]); \ break; \ case PRE_DEC: \ fprintf (FILE, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]); \ break; \ case POST_INC: \ fprintf (FILE, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]); \ break; \ case PLUS: \ reg1 = 0; reg2 = 0; \ ireg = 0; breg = 0; \ offset = 0; \ if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \ { \ offset = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \ { \ offset = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ if (GET_CODE (addr) != PLUS) ; \ else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \ { \ reg1 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \ { \ reg1 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ else if (GET_CODE (XEXP (addr, 0)) == MULT) \ { \ reg1 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == MULT) \ { \ reg1 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ else if (GET_CODE (XEXP (addr, 0)) == REG) \ { \ reg1 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == REG) \ { \ reg1 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \ || GET_CODE (addr) == SIGN_EXTEND) \ { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \ /* for OLD_INDEXING \ else if (GET_CODE (addr) == PLUS) \ { \ if (GET_CODE (XEXP (addr, 0)) == REG) \ { \ reg2 = XEXP (addr, 0); \ addr = XEXP (addr, 1); \ } \ else if (GET_CODE (XEXP (addr, 1)) == REG) \ { \ reg2 = XEXP (addr, 1); \ addr = XEXP (addr, 0); \ } \ } \ */ \ if (offset != 0) { if (addr != 0) abort (); addr = offset; } \ if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \ || GET_CODE (reg1) == MULT)) \ || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \ { breg = reg2; ireg = reg1; } \ else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \ { breg = reg1; ireg = reg2; } \ if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \ { int scale = 1; \ if (GET_CODE (ireg) == MULT) \ { scale = INTVAL (XEXP (ireg, 1)); \ ireg = XEXP (ireg, 0); } \ if (GET_CODE (ireg) == SIGN_EXTEND) \ fprintf (FILE, "(.L%d,pc,%s.w", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (XEXP (ireg, 0))]); \ else \ fprintf (FILE, "(.L%d,pc,%s.l", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (ireg)]); \ if (scale != 1) fprintf (FILE, "*%d", scale); \ putc (')', FILE); \ break; } \ if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF \ && ! (flag_pic && breg == pic_offset_table_rtx)) \ { \ fprintf (FILE, "(.L%d,pc,%s.l", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (breg)]); \ putc (')', FILE); \ break; } \ if (ireg != 0 || breg != 0) \ { int scale = 1; \ if (breg == 0) \ abort (); \ putc ('(', FILE); \ if (addr != 0) \ { \ output_addr_const (FILE, addr); \ putc (',', FILE); \ } \ fprintf (FILE, "%s", reg_names[REGNO (breg)]); \ if (ireg != 0) \ putc (',', FILE); \ if (ireg != 0 && GET_CODE (ireg) == MULT) \ { scale = INTVAL (XEXP (ireg, 1)); \ ireg = XEXP (ireg, 0); } \ if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \ fprintf (FILE, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]); \ else if (ireg != 0) \ fprintf (FILE, "%s.l", reg_names[REGNO (ireg)]); \ if (scale != 1) fprintf (FILE, "*%d", scale); \ putc (')', FILE); \ break; \ } \ else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \ { fprintf (FILE, "(.L%d,pc,%s.w)", \ CODE_LABEL_NUMBER (XEXP (addr, 0)), \ reg_names[REGNO (reg1)]); \ break; } \ default: \ if (GET_CODE (addr) == CONST_INT \ && INTVAL (addr) < 0x8000 \ && INTVAL (addr) >= -0x8000) \ fprintf (FILE, "%d.w", INTVAL (addr)); \ else \ output_addr_const (FILE, addr); \ }} #endif /* ! use gas */