/* libgcc routines for 68000 w/o floating-point hardware. Copyright (C) 1994, 1996, 1997, 1998, 2008 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file with other programs, and to distribute those programs without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into another program.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* As a special exception, if you link this library with files compiled with GCC to produce an executable, this does not cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* Use this one for any 680x0; assumes no floating point hardware. The trailing " '" appearing on some lines is for ANSI preprocessors. Yuk. Some of this code comes from MINIX, via the folks at ericsson. D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992 */ /* These are predefined by new versions of GNU cpp. */ #ifndef __USER_LABEL_PREFIX__ #define __USER_LABEL_PREFIX__ _ #endif #ifndef __REGISTER_PREFIX__ #define __REGISTER_PREFIX__ #endif #ifndef __IMMEDIATE_PREFIX__ #define __IMMEDIATE_PREFIX__ # #endif /* ANSI concatenation macros. */ #define CONCAT1(a, b) CONCAT2(a, b) #define CONCAT2(a, b) a ## b /* Use the right prefix for global labels. */ #define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x) /* Note that X is a function. */ #ifdef __ELF__ #define FUNC(x) .type SYM(x),function #else /* The .proc pseudo-op is accepted, but ignored, by GAS. We could just define this to the empty string for non-ELF systems, but defining it to .proc means that the information is available to the assembler if the need arises. */ #define FUNC(x) .proc #endif /* Use the right prefix for registers. */ #define REG(x) CONCAT1 (__REGISTER_PREFIX__, x) /* Use the right prefix for immediate values. */ #define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x) #define d0 REG (d0) #define d1 REG (d1) #define d2 REG (d2) #define d3 REG (d3) #define d4 REG (d4) #define d5 REG (d5) #define d6 REG (d6) #define d7 REG (d7) #define a0 REG (a0) #define a1 REG (a1) #define a2 REG (a2) #define a3 REG (a3) #define a4 REG (a4) #define a5 REG (a5) #define a6 REG (a6) #define fp REG (fp) #define sp REG (sp) #define pc REG (pc) /* Provide a few macros to allow for PIC code support. * With PIC, data is stored A5 relative so we've got to take a bit of special * care to ensure that all loads of global data is via A5. PIC also requires * jumps and subroutine calls to be PC relative rather than absolute. We cheat * a little on this and in the PIC case, we use short offset branches and * hope that the final object code is within range (which it should be). */ #ifndef __PIC__ /* Non PIC (absolute/relocatable) versions */ .macro PICCALL addr jbsr \addr .endm .macro PICJUMP addr jmp \addr .endm .macro PICLEA sym, reg lea \sym, \reg .endm .macro PICPEA sym, areg pea \sym .endm #else /* __PIC__ */ # if defined (__uClinux__) /* Versions for uClinux */ # if defined(__ID_SHARED_LIBRARY__) /* -mid-shared-library versions */ .macro PICLEA sym, reg movel a5@(_current_shared_library_a5_offset_), \reg movel \sym@GOT(\reg), \reg .endm .macro PICPEA sym, areg movel a5@(_current_shared_library_a5_offset_), \areg movel \sym@GOT(\areg), sp@- .endm .macro PICCALL addr PICLEA \addr,a0 jsr a0@ .endm .macro PICJUMP addr PICLEA \addr,a0 jmp a0@ .endm # else /* !__ID_SHARED_LIBRARY__ */ /* Versions for -msep-data */ .macro PICLEA sym, reg movel \sym@GOT(a5), \reg .endm .macro PICPEA sym, areg movel \sym@GOT(a5), sp@- .endm .macro PICCALL addr #if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__) lea \addr-.-8,a0 jsr pc@(a0) #else bsr \addr #endif .endm .macro PICJUMP addr /* ISA C has no bra.l instruction, and since this assembly file gets assembled into multiple object files, we avoid the bra instruction entirely. */ #if defined (__mcoldfire__) && !defined (__mcfisab__) lea \addr-.-8,a0 jmp pc@(a0) #else bra \addr #endif .endm # endif # else /* !__uClinux__ */ /* Versions for Linux */ .macro PICLEA sym, reg movel #_GLOBAL_OFFSET_TABLE_@GOTPC, \reg lea (-6, pc, \reg), \reg movel \sym@GOT(\reg), \reg .endm .macro PICPEA sym, areg movel #_GLOBAL_OFFSET_TABLE_@GOTPC, \areg lea (-6, pc, \areg), \areg movel \sym@GOT(\areg), sp@- .endm .macro PICCALL addr #if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__) lea \addr-.-8,a0 jsr pc@(a0) #else bsr \addr #endif .endm .macro PICJUMP addr /* ISA C has no bra.l instruction, and since this assembly file gets assembled into multiple object files, we avoid the bra instruction entirely. */ #if defined (__mcoldfire__) && !defined (__mcfisab__) lea \addr-.-8,a0 jmp pc@(a0) #else bra \addr #endif .endm # endif #endif /* __PIC__ */ #ifdef L_floatex | This is an attempt at a decent floating point (single, double and | extended double) code for the GNU C compiler. It should be easy to | adapt to other compilers (but beware of the local labels!). | Starting date: 21 October, 1990 | It is convenient to introduce the notation (s,e,f) for a floating point | number, where s=sign, e=exponent, f=fraction. We will call a floating | point number fpn to abbreviate, independently of the precision. | Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023 | for doubles and 16383 for long doubles). We then have the following | different cases: | 1. Normalized fpns have 0 < e < MAX_EXP. They correspond to | (-1)^s x 1.f x 2^(e-bias-1). | 2. Denormalized fpns have e=0. They correspond to numbers of the form | (-1)^s x 0.f x 2^(-bias). | 3. +/-INFINITY have e=MAX_EXP, f=0. | 4. Quiet NaN (Not a Number) have all bits set. | 5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1. |============================================================================= | exceptions |============================================================================= | This is the floating point condition code register (_fpCCR): | | struct { | short _exception_bits; | short _trap_enable_bits; | short _sticky_bits; | short _rounding_mode; | short _format; | short _last_operation; | union { | float sf; | double df; | } _operand1; | union { | float sf; | double df; | } _operand2; | } _fpCCR; .data .even .globl SYM (_fpCCR) SYM (_fpCCR): __exception_bits: .word 0 __trap_enable_bits: .word 0 __sticky_bits: .word 0 __rounding_mode: .word ROUND_TO_NEAREST __format: .word NIL __last_operation: .word NOOP __operand1: .long 0 .long 0 __operand2: .long 0 .long 0 | Offsets: EBITS = __exception_bits - SYM (_fpCCR) TRAPE = __trap_enable_bits - SYM (_fpCCR) STICK = __sticky_bits - SYM (_fpCCR) ROUND = __rounding_mode - SYM (_fpCCR) FORMT = __format - SYM (_fpCCR) LASTO = __last_operation - SYM (_fpCCR) OPER1 = __operand1 - SYM (_fpCCR) OPER2 = __operand2 - SYM (_fpCCR) | The following exception types are supported: INEXACT_RESULT = 0x0001 UNDERFLOW = 0x0002 OVERFLOW = 0x0004 DIVIDE_BY_ZERO = 0x0008 INVALID_OPERATION = 0x0010 | The allowed rounding modes are: UNKNOWN = -1 ROUND_TO_NEAREST = 0 | round result to nearest representable value ROUND_TO_ZERO = 1 | round result towards zero ROUND_TO_PLUS = 2 | round result towards plus infinity ROUND_TO_MINUS = 3 | round result towards minus infinity | The allowed values of format are: NIL = 0 SINGLE_FLOAT = 1 DOUBLE_FLOAT = 2 LONG_FLOAT = 3 | The allowed values for the last operation are: NOOP = 0 ADD = 1 MULTIPLY = 2 DIVIDE = 3 NEGATE = 4 COMPARE = 5 EXTENDSFDF = 6 TRUNCDFSF = 7 |============================================================================= | __clear_sticky_bits |============================================================================= | The sticky bits are normally not cleared (thus the name), whereas the | exception type and exception value reflect the last computation. | This routine is provided to clear them (you can also write to _fpCCR, | since it is globally visible). .globl SYM (__clear_sticky_bit) .text .even | void __clear_sticky_bits(void); SYM (__clear_sticky_bit): PICLEA SYM (_fpCCR),a0 #ifndef __mcoldfire__ movew IMM (0),a0@(STICK) #else clr.w a0@(STICK) #endif rts |============================================================================= | $_exception_handler |============================================================================= .globl $_exception_handler .text .even | This is the common exit point if an exception occurs. | NOTE: it is NOT callable from C! | It expects the exception type in d7, the format (SINGLE_FLOAT, | DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5. | It sets the corresponding exception and sticky bits, and the format. | Depending on the format if fills the corresponding slots for the | operands which produced the exception (all this information is provided | so if you write your own exception handlers you have enough information | to deal with the problem). | Then checks to see if the corresponding exception is trap-enabled, | in which case it pushes the address of _fpCCR and traps through | trap FPTRAP (15 for the moment). FPTRAP = 15 $_exception_handler: PICLEA SYM (_fpCCR),a0 movew d7,a0@(EBITS) | set __exception_bits #ifndef __mcoldfire__ orw d7,a0@(STICK) | and __sticky_bits #else movew a0@(STICK),d4 orl d7,d4 movew d4,a0@(STICK) #endif movew d6,a0@(FORMT) | and __format movew d5,a0@(LASTO) | and __last_operation | Now put the operands in place: #ifndef __mcoldfire__ cmpw IMM (SINGLE_FLOAT),d6 #else cmpl IMM (SINGLE_FLOAT),d6 #endif beq 1f movel a6@(8),a0@(OPER1) movel a6@(12),a0@(OPER1+4) movel a6@(16),a0@(OPER2) movel a6@(20),a0@(OPER2+4) bra 2f 1: movel a6@(8),a0@(OPER1) movel a6@(12),a0@(OPER2) 2: | And check whether the exception is trap-enabled: #ifndef __mcoldfire__ andw a0@(TRAPE),d7 | is exception trap-enabled? #else clrl d6 movew a0@(TRAPE),d6 andl d6,d7 #endif beq 1f | no, exit PICPEA SYM (_fpCCR),a1 | yes, push address of _fpCCR trap IMM (FPTRAP) | and trap #ifndef __mcoldfire__ 1: moveml sp@+,d2-d7 | restore data registers #else 1: moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | and return rts #endif /* L_floatex */ #ifdef L_mulsi3 .text FUNC(__mulsi3) .globl SYM (__mulsi3) SYM (__mulsi3): movew sp@(4), d0 /* x0 -> d0 */ muluw sp@(10), d0 /* x0*y1 */ movew sp@(6), d1 /* x1 -> d1 */ muluw sp@(8), d1 /* x1*y0 */ #ifndef __mcoldfire__ addw d1, d0 #else addl d1, d0 #endif swap d0 clrw d0 movew sp@(6), d1 /* x1 -> d1 */ muluw sp@(10), d1 /* x1*y1 */ addl d1, d0 rts #endif /* L_mulsi3 */ #ifdef L_udivsi3 .text FUNC(__udivsi3) .globl SYM (__udivsi3) SYM (__udivsi3): #ifndef __mcoldfire__ movel d2, sp@- movel sp@(12), d1 /* d1 = divisor */ movel sp@(8), d0 /* d0 = dividend */ cmpl IMM (0x10000), d1 /* divisor >= 2 ^ 16 ? */ jcc L3 /* then try next algorithm */ movel d0, d2 clrw d2 swap d2 divu d1, d2 /* high quotient in lower word */ movew d2, d0 /* save high quotient */ swap d0 movew sp@(10), d2 /* get low dividend + high rest */ divu d1, d2 /* low quotient */ movew d2, d0 jra L6 L3: movel d1, d2 /* use d2 as divisor backup */ L4: lsrl IMM (1), d1 /* shift divisor */ lsrl IMM (1), d0 /* shift dividend */ cmpl IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ? */ jcc L4 divu d1, d0 /* now we have 16-bit divisor */ andl IMM (0xffff), d0 /* mask out divisor, ignore remainder */ /* Multiply the 16-bit tentative quotient with the 32-bit divisor. Because of the operand ranges, this might give a 33-bit product. If this product is greater than the dividend, the tentative quotient was too large. */ movel d2, d1 mulu d0, d1 /* low part, 32 bits */ swap d2 mulu d0, d2 /* high part, at most 17 bits */ swap d2 /* align high part with low part */ tstw d2 /* high part 17 bits? */ jne L5 /* if 17 bits, quotient was too large */ addl d2, d1 /* add parts */ jcs L5 /* if sum is 33 bits, quotient was too large */ cmpl sp@(8), d1 /* compare the sum with the dividend */ jls L6 /* if sum > dividend, quotient was too large */ L5: subql IMM (1), d0 /* adjust quotient */ L6: movel sp@+, d2 rts #else /* __mcoldfire__ */ /* ColdFire implementation of non-restoring division algorithm from Hennessy & Patterson, Appendix A. */ link a6,IMM (-12) moveml d2-d4,sp@ movel a6@(8),d0 movel a6@(12),d1 clrl d2 | clear p moveq IMM (31),d4 L1: addl d0,d0 | shift reg pair (p,a) one bit left addxl d2,d2 movl d2,d3 | subtract b from p, store in tmp. subl d1,d3 jcs L2 | if no carry, bset IMM (0),d0 | set the low order bit of a to 1, movl d3,d2 | and store tmp in p. L2: subql IMM (1),d4 jcc L1 moveml sp@,d2-d4 | restore data registers unlk a6 | and return rts #endif /* __mcoldfire__ */ #endif /* L_udivsi3 */ #ifdef L_divsi3 .text FUNC(__divsi3) .globl SYM (__divsi3) SYM (__divsi3): movel d2, sp@- moveq IMM (1), d2 /* sign of result stored in d2 (=1 or =-1) */ movel sp@(12), d1 /* d1 = divisor */ jpl L1 negl d1 #ifndef __mcoldfire__ negb d2 /* change sign because divisor <0 */ #else negl d2 /* change sign because divisor <0 */ #endif L1: movel sp@(8), d0 /* d0 = dividend */ jpl L2 negl d0 #ifndef __mcoldfire__ negb d2 #else negl d2 #endif L2: movel d1, sp@- movel d0, sp@- PICCALL SYM (__udivsi3) /* divide abs(dividend) by abs(divisor) */ addql IMM (8), sp tstb d2 jpl L3 negl d0 L3: movel sp@+, d2 rts #endif /* L_divsi3 */ #ifdef L_umodsi3 .text FUNC(__umodsi3) .globl SYM (__umodsi3) SYM (__umodsi3): movel sp@(8), d1 /* d1 = divisor */ movel sp@(4), d0 /* d0 = dividend */ movel d1, sp@- movel d0, sp@- PICCALL SYM (__udivsi3) addql IMM (8), sp movel sp@(8), d1 /* d1 = divisor */ #ifndef __mcoldfire__ movel d1, sp@- movel d0, sp@- PICCALL SYM (__mulsi3) /* d0 = (a/b)*b */ addql IMM (8), sp #else mulsl d1,d0 #endif movel sp@(4), d1 /* d1 = dividend */ subl d0, d1 /* d1 = a - (a/b)*b */ movel d1, d0 rts #endif /* L_umodsi3 */ #ifdef L_modsi3 .text FUNC(__modsi3) .globl SYM (__modsi3) SYM (__modsi3): movel sp@(8), d1 /* d1 = divisor */ movel sp@(4), d0 /* d0 = dividend */ movel d1, sp@- movel d0, sp@- PICCALL SYM (__divsi3) addql IMM (8), sp movel sp@(8), d1 /* d1 = divisor */ #ifndef __mcoldfire__ movel d1, sp@- movel d0, sp@- PICCALL SYM (__mulsi3) /* d0 = (a/b)*b */ addql IMM (8), sp #else mulsl d1,d0 #endif movel sp@(4), d1 /* d1 = dividend */ subl d0, d1 /* d1 = a - (a/b)*b */ movel d1, d0 rts #endif /* L_modsi3 */ #ifdef L_double .globl SYM (_fpCCR) .globl $_exception_handler QUIET_NaN = 0xffffffff D_MAX_EXP = 0x07ff D_BIAS = 1022 DBL_MAX_EXP = D_MAX_EXP - D_BIAS DBL_MIN_EXP = 1 - D_BIAS DBL_MANT_DIG = 53 INEXACT_RESULT = 0x0001 UNDERFLOW = 0x0002 OVERFLOW = 0x0004 DIVIDE_BY_ZERO = 0x0008 INVALID_OPERATION = 0x0010 DOUBLE_FLOAT = 2 NOOP = 0 ADD = 1 MULTIPLY = 2 DIVIDE = 3 NEGATE = 4 COMPARE = 5 EXTENDSFDF = 6 TRUNCDFSF = 7 UNKNOWN = -1 ROUND_TO_NEAREST = 0 | round result to nearest representable value ROUND_TO_ZERO = 1 | round result towards zero ROUND_TO_PLUS = 2 | round result towards plus infinity ROUND_TO_MINUS = 3 | round result towards minus infinity | Entry points: .globl SYM (__adddf3) .globl SYM (__subdf3) .globl SYM (__muldf3) .globl SYM (__divdf3) .globl SYM (__negdf2) .globl SYM (__cmpdf2) .globl SYM (__cmpdf2_internal) .hidden SYM (__cmpdf2_internal) .text .even | These are common routines to return and signal exceptions. Ld$den: | Return and signal a denormalized number orl d7,d0 movew IMM (INEXACT_RESULT+UNDERFLOW),d7 moveq IMM (DOUBLE_FLOAT),d6 PICJUMP $_exception_handler Ld$infty: Ld$overflow: | Return a properly signed INFINITY and set the exception flags movel IMM (0x7ff00000),d0 movel IMM (0),d1 orl d7,d0 movew IMM (INEXACT_RESULT+OVERFLOW),d7 moveq IMM (DOUBLE_FLOAT),d6 PICJUMP $_exception_handler Ld$underflow: | Return 0 and set the exception flags movel IMM (0),d0 movel d0,d1 movew IMM (INEXACT_RESULT+UNDERFLOW),d7 moveq IMM (DOUBLE_FLOAT),d6 PICJUMP $_exception_handler Ld$inop: | Return a quiet NaN and set the exception flags movel IMM (QUIET_NaN),d0 movel d0,d1 movew IMM (INEXACT_RESULT+INVALID_OPERATION),d7 moveq IMM (DOUBLE_FLOAT),d6 PICJUMP $_exception_handler Ld$div$0: | Return a properly signed INFINITY and set the exception flags movel IMM (0x7ff00000),d0 movel IMM (0),d1 orl d7,d0 movew IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7 moveq IMM (DOUBLE_FLOAT),d6 PICJUMP $_exception_handler |============================================================================= |============================================================================= | double precision routines |============================================================================= |============================================================================= | A double precision floating point number (double) has the format: | | struct _double { | unsigned int sign : 1; /* sign bit */ | unsigned int exponent : 11; /* exponent, shifted by 126 */ | unsigned int fraction : 52; /* fraction */ | } double; | | Thus sizeof(double) = 8 (64 bits). | | All the routines are callable from C programs, and return the result | in the register pair d0-d1. They also preserve all registers except | d0-d1 and a0-a1. |============================================================================= | __subdf3 |============================================================================= | double __subdf3(double, double); FUNC(__subdf3) SYM (__subdf3): bchg IMM (31),sp@(12) | change sign of second operand | and fall through, so we always add |============================================================================= | __adddf3 |============================================================================= | double __adddf3(double, double); FUNC(__adddf3) SYM (__adddf3): #ifndef __mcoldfire__ link a6,IMM (0) | everything will be done in registers moveml d2-d7,sp@- | save all data registers and a2 (but d0-d1) #else link a6,IMM (-24) moveml d2-d7,sp@ #endif movel a6@(8),d0 | get first operand movel a6@(12),d1 | movel a6@(16),d2 | get second operand movel a6@(20),d3 | movel d0,d7 | get d0's sign bit in d7 ' addl d1,d1 | check and clear sign bit of a, and gain one addxl d0,d0 | bit of extra precision beq Ladddf$b | if zero return second operand movel d2,d6 | save sign in d6 addl d3,d3 | get rid of sign bit and gain one bit of addxl d2,d2 | extra precision beq Ladddf$a | if zero return first operand andl IMM (0x80000000),d7 | isolate a's sign bit ' swap d6 | and also b's sign bit ' #ifndef __mcoldfire__ andw IMM (0x8000),d6 | orw d6,d7 | and combine them into d7, so that a's sign ' | bit is in the high word and b's is in the ' | low word, so d6 is free to be used #else andl IMM (0x8000),d6 orl d6,d7 #endif movel d7,a0 | now save d7 into a0, so d7 is free to | be used also | Get the exponents and check for denormalized and/or infinity. movel IMM (0x001fffff),d6 | mask for the fraction movel IMM (0x00200000),d7 | mask to put hidden bit back movel d0,d4 | andl d6,d0 | get fraction in d0 notl d6 | make d6 into mask for the exponent andl d6,d4 | get exponent in d4 beq Ladddf$a$den | branch if a is denormalized cmpl d6,d4 | check for INFINITY or NaN beq Ladddf$nf | orl d7,d0 | and put hidden bit back Ladddf$1: swap d4 | shift right exponent so that it starts #ifndef __mcoldfire__ lsrw IMM (5),d4 | in bit 0 and not bit 20 #else lsrl IMM (5),d4 | in bit 0 and not bit 20 #endif | Now we have a's exponent in d4 and fraction in d0-d1 ' movel d2,d5 | save b to get exponent andl d6,d5 | get exponent in d5 beq Ladddf$b$den | branch if b is denormalized cmpl d6,d5 | check for INFINITY or NaN beq Ladddf$nf notl d6 | make d6 into mask for the fraction again andl d6,d2 | and get fraction in d2 orl d7,d2 | and put hidden bit back Ladddf$2: swap d5 | shift right exponent so that it starts #ifndef __mcoldfire__ lsrw IMM (5),d5 | in bit 0 and not bit 20 #else lsrl IMM (5),d5 | in bit 0 and not bit 20 #endif | Now we have b's exponent in d5 and fraction in d2-d3. ' | The situation now is as follows: the signs are combined in a0, the | numbers are in d0-d1 (a) and d2-d3 (b), and the exponents in d4 (a) | and d5 (b). To do the rounding correctly we need to keep all the | bits until the end, so we need to use d0-d1-d2-d3 for the first number | and d4-d5-d6-d7 for the second. To do this we store (temporarily) the | exponents in a2-a3. #ifndef __mcoldfire__ moveml a2-a3,sp@- | save the address registers #else movel a2,sp@- movel a3,sp@- movel a4,sp@- #endif movel d4,a2 | save the exponents movel d5,a3 | movel IMM (0),d7 | and move the numbers around movel d7,d6 | movel d3,d5 | movel d2,d4 | movel d7,d3 | movel d7,d2 | | Here we shift the numbers until the exponents are the same, and put | the largest exponent in a2. #ifndef __mcoldfire__ exg d4,a2 | get exponents back exg d5,a3 | cmpw d4,d5 | compare the exponents #else movel d4,a4 | get exponents back movel a2,d4 movel a4,a2 movel d5,a4 movel a3,d5 movel a4,a3 cmpl d4,d5 | compare the exponents #endif beq Ladddf$3 | if equal don't shift ' bhi 9f | branch if second exponent is higher | Here we have a's exponent larger than b's, so we have to shift b. We do | this by using as counter d2: 1: movew d4,d2 | move largest exponent to d2 #ifndef __mcoldfire__ subw d5,d2 | and subtract second exponent exg d4,a2 | get back the longs we saved exg d5,a3 | #else subl d5,d2 | and subtract second exponent movel d4,a4 | get back the longs we saved movel a2,d4 movel a4,a2 movel d5,a4 movel a3,d5 movel a4,a3 #endif | if difference is too large we don't shift (actually, we can just exit) ' #ifndef __mcoldfire__ cmpw IMM (DBL_MANT_DIG+2),d2 #else cmpl IMM (DBL_MANT_DIG+2),d2 #endif bge Ladddf$b$small #ifndef __mcoldfire__ cmpw IMM (32),d2 | if difference >= 32, shift by longs #else cmpl IMM (32),d2 | if difference >= 32, shift by longs #endif bge 5f 2: #ifndef __mcoldfire__ cmpw IMM (16),d2 | if difference >= 16, shift by words #else cmpl IMM (16),d2 | if difference >= 16, shift by words #endif bge 6f bra 3f | enter dbra loop 4: #ifndef __mcoldfire__ lsrl IMM (1),d4 roxrl IMM (1),d5 roxrl IMM (1),d6 roxrl IMM (1),d7 #else lsrl IMM (1),d7 btst IMM (0),d6 beq 10f bset IMM (31),d7 10: lsrl IMM (1),d6 btst IMM (0),d5 beq 11f bset IMM (31),d6 11: lsrl IMM (1),d5 btst IMM (0),d4 beq 12f bset IMM (31),d5 12: lsrl IMM (1),d4 #endif 3: #ifndef __mcoldfire__ dbra d2,4b #else subql IMM (1),d2 bpl 4b #endif movel IMM (0),d2 movel d2,d3 bra Ladddf$4 5: movel d6,d7 movel d5,d6 movel d4,d5 movel IMM (0),d4 #ifndef __mcoldfire__ subw IMM (32),d2 #else subl IMM (32),d2 #endif bra 2b 6: movew d6,d7 swap d7 movew d5,d6 swap d6 movew d4,d5 swap d5 movew IMM (0),d4 swap d4 #ifndef __mcoldfire__ subw IMM (16),d2 #else subl IMM (16),d2 #endif bra 3b 9: #ifndef __mcoldfire__ exg d4,d5 movew d4,d6 subw d5,d6 | keep d5 (largest exponent) in d4 exg d4,a2 exg d5,a3 #else movel d5,d6 movel d4,d5 movel d6,d4 subl d5,d6 movel d4,a4 movel a2,d4 movel a4,a2 movel d5,a4 movel a3,d5 movel a4,a3 #endif | if difference is too large we don't shift (actually, we can just exit) ' #ifndef __mcoldfire__ cmpw IMM (DBL_MANT_DIG+2),d6 #else cmpl IMM (DBL_MANT_DIG+2),d6 #endif bge Ladddf$a$small #ifndef __mcoldfire__ cmpw IMM (32),d6 | if difference >= 32, shift by longs #else cmpl IMM (32),d6 | if difference >= 32, shift by longs #endif bge 5f 2: #ifndef __mcoldfire__ cmpw IMM (16),d6 | if difference >= 16, shift by words #else cmpl IMM (16),d6 | if difference >= 16, shift by words #endif bge 6f bra 3f | enter dbra loop 4: #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 roxrl IMM (1),d2 roxrl IMM (1),d3 #else lsrl IMM (1),d3 btst IMM (0),d2 beq 10f bset IMM (31),d3 10: lsrl IMM (1),d2 btst IMM (0),d1 beq 11f bset IMM (31),d2 11: lsrl IMM (1),d1 btst IMM (0),d0 beq 12f bset IMM (31),d1 12: lsrl IMM (1),d0 #endif 3: #ifndef __mcoldfire__ dbra d6,4b #else subql IMM (1),d6 bpl 4b #endif movel IMM (0),d7 movel d7,d6 bra Ladddf$4 5: movel d2,d3 movel d1,d2 movel d0,d1 movel IMM (0),d0 #ifndef __mcoldfire__ subw IMM (32),d6 #else subl IMM (32),d6 #endif bra 2b 6: movew d2,d3 swap d3 movew d1,d2 swap d2 movew d0,d1 swap d1 movew IMM (0),d0 swap d0 #ifndef __mcoldfire__ subw IMM (16),d6 #else subl IMM (16),d6 #endif bra 3b Ladddf$3: #ifndef __mcoldfire__ exg d4,a2 exg d5,a3 #else movel d4,a4 movel a2,d4 movel a4,a2 movel d5,a4 movel a3,d5 movel a4,a3 #endif Ladddf$4: | Now we have the numbers in d0--d3 and d4--d7, the exponent in a2, and | the signs in a4. | Here we have to decide whether to add or subtract the numbers: #ifndef __mcoldfire__ exg d7,a0 | get the signs exg d6,a3 | a3 is free to be used #else movel d7,a4 movel a0,d7 movel a4,a0 movel d6,a4 movel a3,d6 movel a4,a3 #endif movel d7,d6 | movew IMM (0),d7 | get a's sign in d7 ' swap d6 | movew IMM (0),d6 | and b's sign in d6 ' eorl d7,d6 | compare the signs bmi Lsubdf$0 | if the signs are different we have | to subtract #ifndef __mcoldfire__ exg d7,a0 | else we add the numbers exg d6,a3 | #else movel d7,a4 movel a0,d7 movel a4,a0 movel d6,a4 movel a3,d6 movel a4,a3 #endif addl d7,d3 | addxl d6,d2 | addxl d5,d1 | addxl d4,d0 | movel a2,d4 | return exponent to d4 movel a0,d7 | andl IMM (0x80000000),d7 | d7 now has the sign #ifndef __mcoldfire__ moveml sp@+,a2-a3 #else movel sp@+,a4 movel sp@+,a3 movel sp@+,a2 #endif | Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider | the case of denormalized numbers in the rounding routine itself). | As in the addition (not in the subtraction!) we could have set | one more bit we check this: btst IMM (DBL_MANT_DIG+1),d0 beq 1f #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 roxrl IMM (1),d2 roxrl IMM (1),d3 addw IMM (1),d4 #else lsrl IMM (1),d3 btst IMM (0),d2 beq 10f bset IMM (31),d3 10: lsrl IMM (1),d2 btst IMM (0),d1 beq 11f bset IMM (31),d2 11: lsrl IMM (1),d1 btst IMM (0),d0 beq 12f bset IMM (31),d1 12: lsrl IMM (1),d0 addl IMM (1),d4 #endif 1: lea pc@(Ladddf$5),a0 | to return from rounding routine PICLEA SYM (_fpCCR),a1 | check the rounding mode #ifdef __mcoldfire__ clrl d6 #endif movew a1@(6),d6 | rounding mode in d6 beq Lround$to$nearest #ifndef __mcoldfire__ cmpw IMM (ROUND_TO_PLUS),d6 #else cmpl IMM (ROUND_TO_PLUS),d6 #endif bhi Lround$to$minus blt Lround$to$zero bra Lround$to$plus Ladddf$5: | Put back the exponent and check for overflow #ifndef __mcoldfire__ cmpw IMM (0x7ff),d4 | is the exponent big? #else cmpl IMM (0x7ff),d4 | is the exponent big? #endif bge 1f bclr IMM (DBL_MANT_DIG-1),d0 #ifndef __mcoldfire__ lslw IMM (4),d4 | put exponent back into position #else lsll IMM (4),d4 | put exponent back into position #endif swap d0 | #ifndef __mcoldfire__ orw d4,d0 | #else orl d4,d0 | #endif swap d0 | bra Ladddf$ret 1: moveq IMM (ADD),d5 bra Ld$overflow Lsubdf$0: | Here we do the subtraction. #ifndef __mcoldfire__ exg d7,a0 | put sign back in a0 exg d6,a3 | #else movel d7,a4 movel a0,d7 movel a4,a0 movel d6,a4 movel a3,d6 movel a4,a3 #endif subl d7,d3 | subxl d6,d2 | subxl d5,d1 | subxl d4,d0 | beq Ladddf$ret$1 | if zero just exit bpl 1f | if positive skip the following movel a0,d7 | bchg IMM (31),d7 | change sign bit in d7 movel d7,a0 | negl d3 | negxl d2 | negxl d1 | and negate result negxl d0 | 1: movel a2,d4 | return exponent to d4 movel a0,d7 andl IMM (0x80000000),d7 | isolate sign bit #ifndef __mcoldfire__ moveml sp@+,a2-a3 | #else movel sp@+,a4 movel sp@+,a3 movel sp@+,a2 #endif | Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider | the case of denormalized numbers in the rounding routine itself). | As in the addition (not in the subtraction!) we could have set | one more bit we check this: btst IMM (DBL_MANT_DIG+1),d0 beq 1f #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 roxrl IMM (1),d2 roxrl IMM (1),d3 addw IMM (1),d4 #else lsrl IMM (1),d3 btst IMM (0),d2 beq 10f bset IMM (31),d3 10: lsrl IMM (1),d2 btst IMM (0),d1 beq 11f bset IMM (31),d2 11: lsrl IMM (1),d1 btst IMM (0),d0 beq 12f bset IMM (31),d1 12: lsrl IMM (1),d0 addl IMM (1),d4 #endif 1: lea pc@(Lsubdf$1),a0 | to return from rounding routine PICLEA SYM (_fpCCR),a1 | check the rounding mode #ifdef __mcoldfire__ clrl d6 #endif movew a1@(6),d6 | rounding mode in d6 beq Lround$to$nearest #ifndef __mcoldfire__ cmpw IMM (ROUND_TO_PLUS),d6 #else cmpl IMM (ROUND_TO_PLUS),d6 #endif bhi Lround$to$minus blt Lround$to$zero bra Lround$to$plus Lsubdf$1: | Put back the exponent and sign (we don't have overflow). ' bclr IMM (DBL_MANT_DIG-1),d0 #ifndef __mcoldfire__ lslw IMM (4),d4 | put exponent back into position #else lsll IMM (4),d4 | put exponent back into position #endif swap d0 | #ifndef __mcoldfire__ orw d4,d0 | #else orl d4,d0 | #endif swap d0 | bra Ladddf$ret | If one of the numbers was too small (difference of exponents >= | DBL_MANT_DIG+1) we return the other (and now we don't have to ' | check for finiteness or zero). Ladddf$a$small: #ifndef __mcoldfire__ moveml sp@+,a2-a3 #else movel sp@+,a4 movel sp@+,a3 movel sp@+,a2 #endif movel a6@(16),d0 movel a6@(20),d1 PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 | restore data registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | and return rts Ladddf$b$small: #ifndef __mcoldfire__ moveml sp@+,a2-a3 #else movel sp@+,a4 movel sp@+,a3 movel sp@+,a2 #endif movel a6@(8),d0 movel a6@(12),d1 PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 | restore data registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | and return rts Ladddf$a$den: movel d7,d4 | d7 contains 0x00200000 bra Ladddf$1 Ladddf$b$den: movel d7,d5 | d7 contains 0x00200000 notl d6 bra Ladddf$2 Ladddf$b: | Return b (if a is zero) movel d2,d0 movel d3,d1 bne 1f | Check if b is -0 cmpl IMM (0x80000000),d0 bne 1f andl IMM (0x80000000),d7 | Use the sign of a clrl d0 bra Ladddf$ret Ladddf$a: movel a6@(8),d0 movel a6@(12),d1 1: moveq IMM (ADD),d5 | Check for NaN and +/-INFINITY. movel d0,d7 | andl IMM (0x80000000),d7 | bclr IMM (31),d0 | cmpl IMM (0x7ff00000),d0 | bge 2f | movel d0,d0 | check for zero, since we don't ' bne Ladddf$ret | want to return -0 by mistake bclr IMM (31),d7 | bra Ladddf$ret | 2: andl IMM (0x000fffff),d0 | check for NaN (nonzero fraction) orl d1,d0 | bne Ld$inop | bra Ld$infty | Ladddf$ret$1: #ifndef __mcoldfire__ moveml sp@+,a2-a3 | restore regs and exit #else movel sp@+,a4 movel sp@+,a3 movel sp@+,a2 #endif Ladddf$ret: | Normal exit. PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ orl d7,d0 | put sign bit back #ifndef __mcoldfire__ moveml sp@+,d2-d7 #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts Ladddf$ret$den: | Return a denormalized number. #ifndef __mcoldfire__ lsrl IMM (1),d0 | shift right once more roxrl IMM (1),d1 | #else lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 #endif bra Ladddf$ret Ladddf$nf: moveq IMM (ADD),d5 | This could be faster but it is not worth the effort, since it is not | executed very often. We sacrifice speed for clarity here. movel a6@(8),d0 | get the numbers back (remember that we movel a6@(12),d1 | did some processing already) movel a6@(16),d2 | movel a6@(20),d3 | movel IMM (0x7ff00000),d4 | useful constant (INFINITY) movel d0,d7 | save sign bits movel d2,d6 | bclr IMM (31),d0 | clear sign bits bclr IMM (31),d2 | | We know that one of them is either NaN of +/-INFINITY | Check for NaN (if either one is NaN return NaN) cmpl d4,d0 | check first a (d0) bhi Ld$inop | if d0 > 0x7ff00000 or equal and bne 2f tstl d1 | d1 > 0, a is NaN bne Ld$inop | 2: cmpl d4,d2 | check now b (d1) bhi Ld$inop | bne 3f tstl d3 | bne Ld$inop | 3: | Now comes the check for +/-INFINITY. We know that both are (maybe not | finite) numbers, but we have to check if both are infinite whether we | are adding or subtracting them. eorl d7,d6 | to check sign bits bmi 1f andl IMM (0x80000000),d7 | get (common) sign bit bra Ld$infty 1: | We know one (or both) are infinite, so we test for equality between the | two numbers (if they are equal they have to be infinite both, so we | return NaN). cmpl d2,d0 | are both infinite? bne 1f | if d0 <> d2 they are not equal cmpl d3,d1 | if d0 == d2 test d3 and d1 beq Ld$inop | if equal return NaN 1: andl IMM (0x80000000),d7 | get a's sign bit ' cmpl d4,d0 | test now for infinity beq Ld$infty | if a is INFINITY return with this sign bchg IMM (31),d7 | else we know b is INFINITY and has bra Ld$infty | the opposite sign |============================================================================= | __muldf3 |============================================================================= | double __muldf3(double, double); FUNC(__muldf3) SYM (__muldf3): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- #else link a6,IMM (-24) moveml d2-d7,sp@ #endif movel a6@(8),d0 | get a into d0-d1 movel a6@(12),d1 | movel a6@(16),d2 | and b into d2-d3 movel a6@(20),d3 | movel d0,d7 | d7 will hold the sign of the product eorl d2,d7 | andl IMM (0x80000000),d7 | movel d7,a0 | save sign bit into a0 movel IMM (0x7ff00000),d7 | useful constant (+INFINITY) movel d7,d6 | another (mask for fraction) notl d6 | bclr IMM (31),d0 | get rid of a's sign bit ' movel d0,d4 | orl d1,d4 | beq Lmuldf$a$0 | branch if a is zero movel d0,d4 | bclr IMM (31),d2 | get rid of b's sign bit ' movel d2,d5 | orl d3,d5 | beq Lmuldf$b$0 | branch if b is zero movel d2,d5 | cmpl d7,d0 | is a big? bhi Lmuldf$inop | if a is NaN return NaN beq Lmuldf$a$nf | we still have to check d1 and b ... cmpl d7,d2 | now compare b with INFINITY bhi Lmuldf$inop | is b NaN? beq Lmuldf$b$nf | we still have to check d3 ... | Here we have both numbers finite and nonzero (and with no sign bit). | Now we get the exponents into d4 and d5. andl d7,d4 | isolate exponent in d4 beq Lmuldf$a$den | if exponent zero, have denormalized andl d6,d0 | isolate fraction orl IMM (0x00100000),d0 | and put hidden bit back swap d4 | I like exponents in the first byte #ifndef __mcoldfire__ lsrw IMM (4),d4 | #else lsrl IMM (4),d4 | #endif Lmuldf$1: andl d7,d5 | beq Lmuldf$b$den | andl d6,d2 | orl IMM (0x00100000),d2 | and put hidden bit back swap d5 | #ifndef __mcoldfire__ lsrw IMM (4),d5 | #else lsrl IMM (4),d5 | #endif Lmuldf$2: | #ifndef __mcoldfire__ addw d5,d4 | add exponents subw IMM (D_BIAS+1),d4 | and subtract bias (plus one) #else addl d5,d4 | add exponents subl IMM (D_BIAS+1),d4 | and subtract bias (plus one) #endif | We are now ready to do the multiplication. The situation is as follows: | both a and b have bit 52 ( bit 20 of d0 and d2) set (even if they were | denormalized to start with!), which means that in the product bit 104 | (which will correspond to bit 8 of the fourth long) is set. | Here we have to do the product. | To do it we have to juggle the registers back and forth, as there are not | enough to keep everything in them. So we use the address registers to keep | some intermediate data. #ifndef __mcoldfire__ moveml a2-a3,sp@- | save a2 and a3 for temporary use #else movel a2,sp@- movel a3,sp@- movel a4,sp@- #endif movel IMM (0),a2 | a2 is a null register movel d4,a3 | and a3 will preserve the exponent | First, shift d2-d3 so bit 20 becomes bit 31: #ifndef __mcoldfire__ rorl IMM (5),d2 | rotate d2 5 places right swap d2 | and swap it rorl IMM (5),d3 | do the same thing with d3 swap d3 | movew d3,d6 | get the rightmost 11 bits of d3 andw IMM (0x07ff),d6 | orw d6,d2 | and put them into d2 andw IMM (0xf800),d3 | clear those bits in d3 #else moveq IMM (11),d7 | left shift d2 11 bits lsll d7,d2 movel d3,d6 | get a copy of d3 lsll d7,d3 | left shift d3 11 bits andl IMM (0xffe00000),d6 | get the top 11 bits of d3 moveq IMM (21),d7 | right shift them 21 bits lsrl d7,d6 orl d6,d2 | stick them at the end of d2 #endif movel d2,d6 | move b into d6-d7 movel d3,d7 | move a into d4-d5 movel d0,d4 | and clear d0-d1-d2-d3 (to put result) movel d1,d5 | movel IMM (0),d3 | movel d3,d2 | movel d3,d1 | movel d3,d0 | | We use a1 as counter: movel IMM (DBL_MANT_DIG-1),a1 #ifndef __mcoldfire__ exg d7,a1 #else movel d7,a4 movel a1,d7 movel a4,a1 #endif 1: #ifndef __mcoldfire__ exg d7,a1 | put counter back in a1 #else movel d7,a4 movel a1,d7 movel a4,a1 #endif addl d3,d3 | shift sum once left addxl d2,d2 | addxl d1,d1 | addxl d0,d0 | addl d7,d7 | addxl d6,d6 | bcc 2f | if bit clear skip the following #ifndef __mcoldfire__ exg d7,a2 | #else movel d7,a4 movel a2,d7 movel a4,a2 #endif addl d5,d3 | else add a to the sum addxl d4,d2 | addxl d7,d1 | addxl d7,d0 | #ifndef __mcoldfire__ exg d7,a2 | #else movel d7,a4 movel a2,d7 movel a4,a2 #endif 2: #ifndef __mcoldfire__ exg d7,a1 | put counter in d7 dbf d7,1b | decrement and branch #else movel d7,a4 movel a1,d7 movel a4,a1 subql IMM (1),d7 bpl 1b #endif movel a3,d4 | restore exponent #ifndef __mcoldfire__ moveml sp@+,a2-a3 #else movel sp@+,a4 movel sp@+,a3 movel sp@+,a2 #endif | Now we have the product in d0-d1-d2-d3, with bit 8 of d0 set. The | first thing to do now is to normalize it so bit 8 becomes bit | DBL_MANT_DIG-32 (to do the rounding); later we will shift right. swap d0 swap d1 movew d1,d0 swap d2 movew d2,d1 swap d3 movew d3,d2 movew IMM (0),d3 #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 roxrl IMM (1),d2 roxrl IMM (1),d3 lsrl IMM (1),d0 roxrl IMM (1),d1 roxrl IMM (1),d2 roxrl IMM (1),d3 lsrl IMM (1),d0 roxrl IMM (1),d1 roxrl IMM (1),d2 roxrl IMM (1),d3 #else moveq IMM (29),d6 lsrl IMM (3),d3 movel d2,d7 lsll d6,d7 orl d7,d3 lsrl IMM (3),d2 movel d1,d7 lsll d6,d7 orl d7,d2 lsrl IMM (3),d1 movel d0,d7 lsll d6,d7 orl d7,d1 lsrl IMM (3),d0 #endif | Now round, check for over- and underflow, and exit. movel a0,d7 | get sign bit back into d7 moveq IMM (MULTIPLY),d5 btst IMM (DBL_MANT_DIG+1-32),d0 beq Lround$exit #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 addw IMM (1),d4 #else lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 addl IMM (1),d4 #endif bra Lround$exit Lmuldf$inop: moveq IMM (MULTIPLY),d5 bra Ld$inop Lmuldf$b$nf: moveq IMM (MULTIPLY),d5 movel a0,d7 | get sign bit back into d7 tstl d3 | we know d2 == 0x7ff00000, so check d3 bne Ld$inop | if d3 <> 0 b is NaN bra Ld$overflow | else we have overflow (since a is finite) Lmuldf$a$nf: moveq IMM (MULTIPLY),d5 movel a0,d7 | get sign bit back into d7 tstl d1 | we know d0 == 0x7ff00000, so check d1 bne Ld$inop | if d1 <> 0 a is NaN bra Ld$overflow | else signal overflow | If either number is zero return zero, unless the other is +/-INFINITY or | NaN, in which case we return NaN. Lmuldf$b$0: moveq IMM (MULTIPLY),d5 #ifndef __mcoldfire__ exg d2,d0 | put b (==0) into d0-d1 exg d3,d1 | and a (with sign bit cleared) into d2-d3 movel a0,d0 | set result sign #else movel d0,d2 | put a into d2-d3 movel d1,d3 movel a0,d0 | put result zero into d0-d1 movq IMM(0),d1 #endif bra 1f Lmuldf$a$0: movel a0,d0 | set result sign movel a6@(16),d2 | put b into d2-d3 again movel a6@(20),d3 | bclr IMM (31),d2 | clear sign bit 1: cmpl IMM (0x7ff00000),d2 | check for non-finiteness bge Ld$inop | in case NaN or +/-INFINITY return NaN PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts | If a number is denormalized we put an exponent of 1 but do not put the | hidden bit back into the fraction; instead we shift left until bit 21 | (the hidden bit) is set, adjusting the exponent accordingly. We do this | to ensure that the product of the fractions is close to 1. Lmuldf$a$den: movel IMM (1),d4 andl d6,d0 1: addl d1,d1 | shift a left until bit 20 is set addxl d0,d0 | #ifndef __mcoldfire__ subw IMM (1),d4 | and adjust exponent #else subl IMM (1),d4 | and adjust exponent #endif btst IMM (20),d0 | bne Lmuldf$1 | bra 1b Lmuldf$b$den: movel IMM (1),d5 andl d6,d2 1: addl d3,d3 | shift b left until bit 20 is set addxl d2,d2 | #ifndef __mcoldfire__ subw IMM (1),d5 | and adjust exponent #else subql IMM (1),d5 | and adjust exponent #endif btst IMM (20),d2 | bne Lmuldf$2 | bra 1b |============================================================================= | __divdf3 |============================================================================= | double __divdf3(double, double); FUNC(__divdf3) SYM (__divdf3): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- #else link a6,IMM (-24) moveml d2-d7,sp@ #endif movel a6@(8),d0 | get a into d0-d1 movel a6@(12),d1 | movel a6@(16),d2 | and b into d2-d3 movel a6@(20),d3 | movel d0,d7 | d7 will hold the sign of the result eorl d2,d7 | andl IMM (0x80000000),d7 movel d7,a0 | save sign into a0 movel IMM (0x7ff00000),d7 | useful constant (+INFINITY) movel d7,d6 | another (mask for fraction) notl d6 | bclr IMM (31),d0 | get rid of a's sign bit ' movel d0,d4 | orl d1,d4 | beq Ldivdf$a$0 | branch if a is zero movel d0,d4 | bclr IMM (31),d2 | get rid of b's sign bit ' movel d2,d5 | orl d3,d5 | beq Ldivdf$b$0 | branch if b is zero movel d2,d5 cmpl d7,d0 | is a big? bhi Ldivdf$inop | if a is NaN return NaN beq Ldivdf$a$nf | if d0 == 0x7ff00000 we check d1 cmpl d7,d2 | now compare b with INFINITY bhi Ldivdf$inop | if b is NaN return NaN beq Ldivdf$b$nf | if d2 == 0x7ff00000 we check d3 | Here we have both numbers finite and nonzero (and with no sign bit). | Now we get the exponents into d4 and d5 and normalize the numbers to | ensure that the ratio of the fractions is around 1. We do this by | making sure that both numbers have bit #DBL_MANT_DIG-32-1 (hidden bit) | set, even if they were denormalized to start with. | Thus, the result will satisfy: 2 > result > 1/2. andl d7,d4 | and isolate exponent in d4 beq Ldivdf$a$den | if exponent is zero we have a denormalized andl d6,d0 | and isolate fraction orl IMM (0x00100000),d0 | and put hidden bit back swap d4 | I like exponents in the first byte #ifndef __mcoldfire__ lsrw IMM (4),d4 | #else lsrl IMM (4),d4 | #endif Ldivdf$1: | andl d7,d5 | beq Ldivdf$b$den | andl d6,d2 | orl IMM (0x00100000),d2 swap d5 | #ifndef __mcoldfire__ lsrw IMM (4),d5 | #else lsrl IMM (4),d5 | #endif Ldivdf$2: | #ifndef __mcoldfire__ subw d5,d4 | subtract exponents addw IMM (D_BIAS),d4 | and add bias #else subl d5,d4 | subtract exponents addl IMM (D_BIAS),d4 | and add bias #endif | We are now ready to do the division. We have prepared things in such a way | that the ratio of the fractions will be less than 2 but greater than 1/2. | At this point the registers in use are: | d0-d1 hold a (first operand, bit DBL_MANT_DIG-32=0, bit | DBL_MANT_DIG-1-32=1) | d2-d3 hold b (second operand, bit DBL_MANT_DIG-32=1) | d4 holds the difference of the exponents, corrected by the bias | a0 holds the sign of the ratio | To do the rounding correctly we need to keep information about the | nonsignificant bits. One way to do this would be to do the division | using four registers; another is to use two registers (as originally | I did), but use a sticky bit to preserve information about the | fractional part. Note that we can keep that info in a1, which is not | used. movel IMM (0),d6 | d6-d7 will hold the result movel d6,d7 | movel IMM (0),a1 | and a1 will hold the sticky bit movel IMM (DBL_MANT_DIG-32+1),d5 1: cmpl d0,d2 | is a < b? bhi 3f | if b > a skip the following beq 4f | if d0==d2 check d1 and d3 2: subl d3,d1 | subxl d2,d0 | a <-- a - b bset d5,d6 | set the corresponding bit in d6 3: addl d1,d1 | shift a by 1 addxl d0,d0 | #ifndef __mcoldfire__ dbra d5,1b | and branch back #else subql IMM (1), d5 bpl 1b #endif bra 5f 4: cmpl d1,d3 | here d0==d2, so check d1 and d3 bhi 3b | if d1 > d2 skip the subtraction bra 2b | else go do it 5: | Here we have to start setting the bits in the second long. movel IMM (31),d5 | again d5 is counter 1: cmpl d0,d2 | is a < b? bhi 3f | if b > a skip the following beq 4f | if d0==d2 check d1 and d3 2: subl d3,d1 | subxl d2,d0 | a <-- a - b bset d5,d7 | set the corresponding bit in d7 3: addl d1,d1 | shift a by 1 addxl d0,d0 | #ifndef __mcoldfire__ dbra d5,1b | and branch back #else subql IMM (1), d5 bpl 1b #endif bra 5f 4: cmpl d1,d3 | here d0==d2, so check d1 and d3 bhi 3b | if d1 > d2 skip the subtraction bra 2b | else go do it 5: | Now go ahead checking until we hit a one, which we store in d2. movel IMM (DBL_MANT_DIG),d5 1: cmpl d2,d0 | is a < b? bhi 4f | if b < a, exit beq 3f | if d0==d2 check d1 and d3 2: addl d1,d1 | shift a by 1 addxl d0,d0 | #ifndef __mcoldfire__ dbra d5,1b | and branch back #else subql IMM (1), d5 bpl 1b #endif movel IMM (0),d2 | here no sticky bit was found movel d2,d3 bra 5f 3: cmpl d1,d3 | here d0==d2, so check d1 and d3 bhi 2b | if d1 > d2 go back 4: | Here put the sticky bit in d2-d3 (in the position which actually corresponds | to it; if you don't do this the algorithm loses in some cases). ' movel IMM (0),d2 movel d2,d3 #ifndef __mcoldfire__ subw IMM (DBL_MANT_DIG),d5 addw IMM (63),d5 cmpw IMM (31),d5 #else subl IMM (DBL_MANT_DIG),d5 addl IMM (63),d5 cmpl IMM (31),d5 #endif bhi 2f 1: bset d5,d3 bra 5f #ifndef __mcoldfire__ subw IMM (32),d5 #else subl IMM (32),d5 #endif 2: bset d5,d2 5: | Finally we are finished! Move the longs in the address registers to | their final destination: movel d6,d0 movel d7,d1 movel IMM (0),d3 | Here we have finished the division, with the result in d0-d1-d2-d3, with | 2^21 <= d6 < 2^23. Thus bit 23 is not set, but bit 22 could be set. | If it is not, then definitely bit 21 is set. Normalize so bit 22 is | not set: btst IMM (DBL_MANT_DIG-32+1),d0 beq 1f #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 roxrl IMM (1),d2 roxrl IMM (1),d3 addw IMM (1),d4 #else lsrl IMM (1),d3 btst IMM (0),d2 beq 10f bset IMM (31),d3 10: lsrl IMM (1),d2 btst IMM (0),d1 beq 11f bset IMM (31),d2 11: lsrl IMM (1),d1 btst IMM (0),d0 beq 12f bset IMM (31),d1 12: lsrl IMM (1),d0 addl IMM (1),d4 #endif 1: | Now round, check for over- and underflow, and exit. movel a0,d7 | restore sign bit to d7 moveq IMM (DIVIDE),d5 bra Lround$exit Ldivdf$inop: moveq IMM (DIVIDE),d5 bra Ld$inop Ldivdf$a$0: | If a is zero check to see whether b is zero also. In that case return | NaN; then check if b is NaN, and return NaN also in that case. Else | return a properly signed zero. moveq IMM (DIVIDE),d5 bclr IMM (31),d2 | movel d2,d4 | orl d3,d4 | beq Ld$inop | if b is also zero return NaN cmpl IMM (0x7ff00000),d2 | check for NaN bhi Ld$inop | blt 1f | tstl d3 | bne Ld$inop | 1: movel a0,d0 | else return signed zero moveq IMM(0),d1 | PICLEA SYM (_fpCCR),a0 | clear exception flags movew IMM (0),a0@ | #ifndef __mcoldfire__ moveml sp@+,d2-d7 | #else moveml sp@,d2-d7 | | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | rts | Ldivdf$b$0: moveq IMM (DIVIDE),d5 | If we got here a is not zero. Check if a is NaN; in that case return NaN, | else return +/-INFINITY. Remember that a is in d0 with the sign bit | cleared already. movel a0,d7 | put a's sign bit back in d7 ' cmpl IMM (0x7ff00000),d0 | compare d0 with INFINITY bhi Ld$inop | if larger it is NaN tstl d1 | bne Ld$inop | bra Ld$div$0 | else signal DIVIDE_BY_ZERO Ldivdf$b$nf: moveq IMM (DIVIDE),d5 | If d2 == 0x7ff00000 we have to check d3. tstl d3 | bne Ld$inop | if d3 <> 0, b is NaN bra Ld$underflow | else b is +/-INFINITY, so signal underflow Ldivdf$a$nf: moveq IMM (DIVIDE),d5 | If d0 == 0x7ff00000 we have to check d1. tstl d1 | bne Ld$inop | if d1 <> 0, a is NaN | If a is INFINITY we have to check b cmpl d7,d2 | compare b with INFINITY bge Ld$inop | if b is NaN or INFINITY return NaN tstl d3 | bne Ld$inop | bra Ld$overflow | else return overflow | If a number is denormalized we put an exponent of 1 but do not put the | bit back into the fraction. Ldivdf$a$den: movel IMM (1),d4 andl d6,d0 1: addl d1,d1 | shift a left until bit 20 is set addxl d0,d0 #ifndef __mcoldfire__ subw IMM (1),d4 | and adjust exponent #else subl IMM (1),d4 | and adjust exponent #endif btst IMM (DBL_MANT_DIG-32-1),d0 bne Ldivdf$1 bra 1b Ldivdf$b$den: movel IMM (1),d5 andl d6,d2 1: addl d3,d3 | shift b left until bit 20 is set addxl d2,d2 #ifndef __mcoldfire__ subw IMM (1),d5 | and adjust exponent #else subql IMM (1),d5 | and adjust exponent #endif btst IMM (DBL_MANT_DIG-32-1),d2 bne Ldivdf$2 bra 1b Lround$exit: | This is a common exit point for __muldf3 and __divdf3. When they enter | this point the sign of the result is in d7, the result in d0-d1, normalized | so that 2^21 <= d0 < 2^22, and the exponent is in the lower byte of d4. | First check for underlow in the exponent: #ifndef __mcoldfire__ cmpw IMM (-DBL_MANT_DIG-1),d4 #else cmpl IMM (-DBL_MANT_DIG-1),d4 #endif blt Ld$underflow | It could happen that the exponent is less than 1, in which case the | number is denormalized. In this case we shift right and adjust the | exponent until it becomes 1 or the fraction is zero (in the latter case | we signal underflow and return zero). movel d7,a0 | movel IMM (0),d6 | use d6-d7 to collect bits flushed right movel d6,d7 | use d6-d7 to collect bits flushed right #ifndef __mcoldfire__ cmpw IMM (1),d4 | if the exponent is less than 1 we #else cmpl IMM (1),d4 | if the exponent is less than 1 we #endif bge 2f | have to shift right (denormalize) 1: #ifndef __mcoldfire__ addw IMM (1),d4 | adjust the exponent lsrl IMM (1),d0 | shift right once roxrl IMM (1),d1 | roxrl IMM (1),d2 | roxrl IMM (1),d3 | roxrl IMM (1),d6 | roxrl IMM (1),d7 | cmpw IMM (1),d4 | is the exponent 1 already? #else addl IMM (1),d4 | adjust the exponent lsrl IMM (1),d7 btst IMM (0),d6 beq 13f bset IMM (31),d7 13: lsrl IMM (1),d6 btst IMM (0),d3 beq 14f bset IMM (31),d6 14: lsrl IMM (1),d3 btst IMM (0),d2 beq 10f bset IMM (31),d3 10: lsrl IMM (1),d2 btst IMM (0),d1 beq 11f bset IMM (31),d2 11: lsrl IMM (1),d1 btst IMM (0),d0 beq 12f bset IMM (31),d1 12: lsrl IMM (1),d0 cmpl IMM (1),d4 | is the exponent 1 already? #endif beq 2f | if not loop back bra 1b | bra Ld$underflow | safety check, shouldn't execute ' 2: orl d6,d2 | this is a trick so we don't lose ' orl d7,d3 | the bits which were flushed right movel a0,d7 | get back sign bit into d7 | Now call the rounding routine (which takes care of denormalized numbers): lea pc@(Lround$0),a0 | to return from rounding routine PICLEA SYM (_fpCCR),a1 | check the rounding mode #ifdef __mcoldfire__ clrl d6 #endif movew a1@(6),d6 | rounding mode in d6 beq Lround$to$nearest #ifndef __mcoldfire__ cmpw IMM (ROUND_TO_PLUS),d6 #else cmpl IMM (ROUND_TO_PLUS),d6 #endif bhi Lround$to$minus blt Lround$to$zero bra Lround$to$plus Lround$0: | Here we have a correctly rounded result (either normalized or denormalized). | Here we should have either a normalized number or a denormalized one, and | the exponent is necessarily larger or equal to 1 (so we don't have to ' | check again for underflow!). We have to check for overflow or for a | denormalized number (which also signals underflow). | Check for overflow (i.e., exponent >= 0x7ff). #ifndef __mcoldfire__ cmpw IMM (0x07ff),d4 #else cmpl IMM (0x07ff),d4 #endif bge Ld$overflow | Now check for a denormalized number (exponent==0): movew d4,d4 beq Ld$den 1: | Put back the exponents and sign and return. #ifndef __mcoldfire__ lslw IMM (4),d4 | exponent back to fourth byte #else lsll IMM (4),d4 | exponent back to fourth byte #endif bclr IMM (DBL_MANT_DIG-32-1),d0 swap d0 | and put back exponent #ifndef __mcoldfire__ orw d4,d0 | #else orl d4,d0 | #endif swap d0 | orl d7,d0 | and sign also PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts |============================================================================= | __negdf2 |============================================================================= | double __negdf2(double, double); FUNC(__negdf2) SYM (__negdf2): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- #else link a6,IMM (-24) moveml d2-d7,sp@ #endif moveq IMM (NEGATE),d5 movel a6@(8),d0 | get number to negate in d0-d1 movel a6@(12),d1 | bchg IMM (31),d0 | negate movel d0,d2 | make a positive copy (for the tests) bclr IMM (31),d2 | movel d2,d4 | check for zero orl d1,d4 | beq 2f | if zero (either sign) return +zero cmpl IMM (0x7ff00000),d2 | compare to +INFINITY blt 1f | if finite, return bhi Ld$inop | if larger (fraction not zero) is NaN tstl d1 | if d2 == 0x7ff00000 check d1 bne Ld$inop | movel d0,d7 | else get sign and return INFINITY andl IMM (0x80000000),d7 bra Ld$infty 1: PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts 2: bclr IMM (31),d0 bra 1b |============================================================================= | __cmpdf2 |============================================================================= GREATER = 1 LESS = -1 EQUAL = 0 | int __cmpdf2_internal(double, double, int); SYM (__cmpdf2_internal): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- | save registers #else link a6,IMM (-24) moveml d2-d7,sp@ #endif moveq IMM (COMPARE),d5 movel a6@(8),d0 | get first operand movel a6@(12),d1 | movel a6@(16),d2 | get second operand movel a6@(20),d3 | | First check if a and/or b are (+/-) zero and in that case clear | the sign bit. movel d0,d6 | copy signs into d6 (a) and d7(b) bclr IMM (31),d0 | and clear signs in d0 and d2 movel d2,d7 | bclr IMM (31),d2 | cmpl IMM (0x7ff00000),d0 | check for a == NaN bhi Lcmpd$inop | if d0 > 0x7ff00000, a is NaN beq Lcmpdf$a$nf | if equal can be INFINITY, so check d1 movel d0,d4 | copy into d4 to test for zero orl d1,d4 | beq Lcmpdf$a$0 | Lcmpdf$0: cmpl IMM (0x7ff00000),d2 | check for b == NaN bhi Lcmpd$inop | if d2 > 0x7ff00000, b is NaN beq Lcmpdf$b$nf | if equal can be INFINITY, so check d3 movel d2,d4 | orl d3,d4 | beq Lcmpdf$b$0 | Lcmpdf$1: | Check the signs eorl d6,d7 bpl 1f | If the signs are not equal check if a >= 0 tstl d6 bpl Lcmpdf$a$gt$b | if (a >= 0 && b < 0) => a > b bmi Lcmpdf$b$gt$a | if (a < 0 && b >= 0) => a < b 1: | If the signs are equal check for < 0 tstl d6 bpl 1f | If both are negative exchange them #ifndef __mcoldfire__ exg d0,d2 exg d1,d3 #else movel d0,d7 movel d2,d0 movel d7,d2 movel d1,d7 movel d3,d1 movel d7,d3 #endif 1: | Now that they are positive we just compare them as longs (does this also | work for denormalized numbers?). cmpl d0,d2 bhi Lcmpdf$b$gt$a | |b| > |a| bne Lcmpdf$a$gt$b | |b| < |a| | If we got here d0 == d2, so we compare d1 and d3. cmpl d1,d3 bhi Lcmpdf$b$gt$a | |b| > |a| bne Lcmpdf$a$gt$b | |b| < |a| | If we got here a == b. movel IMM (EQUAL),d0 #ifndef __mcoldfire__ moveml sp@+,d2-d7 | put back the registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts Lcmpdf$a$gt$b: movel IMM (GREATER),d0 #ifndef __mcoldfire__ moveml sp@+,d2-d7 | put back the registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts Lcmpdf$b$gt$a: movel IMM (LESS),d0 #ifndef __mcoldfire__ moveml sp@+,d2-d7 | put back the registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts Lcmpdf$a$0: bclr IMM (31),d6 bra Lcmpdf$0 Lcmpdf$b$0: bclr IMM (31),d7 bra Lcmpdf$1 Lcmpdf$a$nf: tstl d1 bne Ld$inop bra Lcmpdf$0 Lcmpdf$b$nf: tstl d3 bne Ld$inop bra Lcmpdf$1 Lcmpd$inop: movl a6@(24),d0 moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7 moveq IMM (DOUBLE_FLOAT),d6 PICJUMP $_exception_handler | int __cmpdf2(double, double); FUNC(__cmpdf2) SYM (__cmpdf2): link a6,IMM (0) pea 1 movl a6@(20),sp@- movl a6@(16),sp@- movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpdf2_internal) unlk a6 rts |============================================================================= | rounding routines |============================================================================= | The rounding routines expect the number to be normalized in registers | d0-d1-d2-d3, with the exponent in register d4. They assume that the | exponent is larger or equal to 1. They return a properly normalized number | if possible, and a denormalized number otherwise. The exponent is returned | in d4. Lround$to$nearest: | We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"): | Here we assume that the exponent is not too small (this should be checked | before entering the rounding routine), but the number could be denormalized. | Check for denormalized numbers: 1: btst IMM (DBL_MANT_DIG-32),d0 bne 2f | if set the number is normalized | Normalize shifting left until bit #DBL_MANT_DIG-32 is set or the exponent | is one (remember that a denormalized number corresponds to an | exponent of -D_BIAS+1). #ifndef __mcoldfire__ cmpw IMM (1),d4 | remember that the exponent is at least one #else cmpl IMM (1),d4 | remember that the exponent is at least one #endif beq 2f | an exponent of one means denormalized addl d3,d3 | else shift and adjust the exponent addxl d2,d2 | addxl d1,d1 | addxl d0,d0 | #ifndef __mcoldfire__ dbra d4,1b | #else subql IMM (1), d4 bpl 1b #endif 2: | Now round: we do it as follows: after the shifting we can write the | fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2. | If delta < 1, do nothing. If delta > 1, add 1 to f. | If delta == 1, we make sure the rounded number will be even (odd?) | (after shifting). btst IMM (0),d1 | is delta < 1? beq 2f | if so, do not do anything orl d2,d3 | is delta == 1? bne 1f | if so round to even movel d1,d3 | andl IMM (2),d3 | bit 1 is the last significant bit movel IMM (0),d2 | addl d3,d1 | addxl d2,d0 | bra 2f | 1: movel IMM (1),d3 | else add 1 movel IMM (0),d2 | addl d3,d1 | addxl d2,d0 | Shift right once (because we used bit #DBL_MANT_DIG-32!). 2: #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 #else lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 #endif | Now check again bit #DBL_MANT_DIG-32 (rounding could have produced a | 'fraction overflow' ...). btst IMM (DBL_MANT_DIG-32),d0 beq 1f #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 addw IMM (1),d4 #else lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 addl IMM (1),d4 #endif 1: | If bit #DBL_MANT_DIG-32-1 is clear we have a denormalized number, so we | have to put the exponent to zero and return a denormalized number. btst IMM (DBL_MANT_DIG-32-1),d0 beq 1f jmp a0@ 1: movel IMM (0),d4 jmp a0@ Lround$to$zero: Lround$to$plus: Lround$to$minus: jmp a0@ #endif /* L_double */ #ifdef L_float .globl SYM (_fpCCR) .globl $_exception_handler QUIET_NaN = 0xffffffff SIGNL_NaN = 0x7f800001 INFINITY = 0x7f800000 F_MAX_EXP = 0xff F_BIAS = 126 FLT_MAX_EXP = F_MAX_EXP - F_BIAS FLT_MIN_EXP = 1 - F_BIAS FLT_MANT_DIG = 24 INEXACT_RESULT = 0x0001 UNDERFLOW = 0x0002 OVERFLOW = 0x0004 DIVIDE_BY_ZERO = 0x0008 INVALID_OPERATION = 0x0010 SINGLE_FLOAT = 1 NOOP = 0 ADD = 1 MULTIPLY = 2 DIVIDE = 3 NEGATE = 4 COMPARE = 5 EXTENDSFDF = 6 TRUNCDFSF = 7 UNKNOWN = -1 ROUND_TO_NEAREST = 0 | round result to nearest representable value ROUND_TO_ZERO = 1 | round result towards zero ROUND_TO_PLUS = 2 | round result towards plus infinity ROUND_TO_MINUS = 3 | round result towards minus infinity | Entry points: .globl SYM (__addsf3) .globl SYM (__subsf3) .globl SYM (__mulsf3) .globl SYM (__divsf3) .globl SYM (__negsf2) .globl SYM (__cmpsf2) .globl SYM (__cmpsf2_internal) .hidden SYM (__cmpsf2_internal) | These are common routines to return and signal exceptions. .text .even Lf$den: | Return and signal a denormalized number orl d7,d0 moveq IMM (INEXACT_RESULT+UNDERFLOW),d7 moveq IMM (SINGLE_FLOAT),d6 PICJUMP $_exception_handler Lf$infty: Lf$overflow: | Return a properly signed INFINITY and set the exception flags movel IMM (INFINITY),d0 orl d7,d0 moveq IMM (INEXACT_RESULT+OVERFLOW),d7 moveq IMM (SINGLE_FLOAT),d6 PICJUMP $_exception_handler Lf$underflow: | Return 0 and set the exception flags moveq IMM (0),d0 moveq IMM (INEXACT_RESULT+UNDERFLOW),d7 moveq IMM (SINGLE_FLOAT),d6 PICJUMP $_exception_handler Lf$inop: | Return a quiet NaN and set the exception flags movel IMM (QUIET_NaN),d0 moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7 moveq IMM (SINGLE_FLOAT),d6 PICJUMP $_exception_handler Lf$div$0: | Return a properly signed INFINITY and set the exception flags movel IMM (INFINITY),d0 orl d7,d0 moveq IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7 moveq IMM (SINGLE_FLOAT),d6 PICJUMP $_exception_handler |============================================================================= |============================================================================= | single precision routines |============================================================================= |============================================================================= | A single precision floating point number (float) has the format: | | struct _float { | unsigned int sign : 1; /* sign bit */ | unsigned int exponent : 8; /* exponent, shifted by 126 */ | unsigned int fraction : 23; /* fraction */ | } float; | | Thus sizeof(float) = 4 (32 bits). | | All the routines are callable from C programs, and return the result | in the single register d0. They also preserve all registers except | d0-d1 and a0-a1. |============================================================================= | __subsf3 |============================================================================= | float __subsf3(float, float); FUNC(__subsf3) SYM (__subsf3): bchg IMM (31),sp@(8) | change sign of second operand | and fall through |============================================================================= | __addsf3 |============================================================================= | float __addsf3(float, float); FUNC(__addsf3) SYM (__addsf3): #ifndef __mcoldfire__ link a6,IMM (0) | everything will be done in registers moveml d2-d7,sp@- | save all data registers but d0-d1 #else link a6,IMM (-24) moveml d2-d7,sp@ #endif movel a6@(8),d0 | get first operand movel a6@(12),d1 | get second operand movel d0,a0 | get d0's sign bit ' addl d0,d0 | check and clear sign bit of a beq Laddsf$b | if zero return second operand movel d1,a1 | save b's sign bit ' addl d1,d1 | get rid of sign bit beq Laddsf$a | if zero return first operand | Get the exponents and check for denormalized and/or infinity. movel IMM (0x00ffffff),d4 | mask to get fraction movel IMM (0x01000000),d5 | mask to put hidden bit back movel d0,d6 | save a to get exponent andl d4,d0 | get fraction in d0 notl d4 | make d4 into a mask for the exponent andl d4,d6 | get exponent in d6 beq Laddsf$a$den | branch if a is denormalized cmpl d4,d6 | check for INFINITY or NaN beq Laddsf$nf swap d6 | put exponent into first word orl d5,d0 | and put hidden bit back Laddsf$1: | Now we have a's exponent in d6 (second byte) and the mantissa in d0. ' movel d1,d7 | get exponent in d7 andl d4,d7 | beq Laddsf$b$den | branch if b is denormalized cmpl d4,d7 | check for INFINITY or NaN beq Laddsf$nf swap d7 | put exponent into first word notl d4 | make d4 into a mask for the fraction andl d4,d1 | get fraction in d1 orl d5,d1 | and put hidden bit back Laddsf$2: | Now we have b's exponent in d7 (second byte) and the mantissa in d1. ' | Note that the hidden bit corresponds to bit #FLT_MANT_DIG-1, and we | shifted right once, so bit #FLT_MANT_DIG is set (so we have one extra | bit). movel d1,d2 | move b to d2, since we want to use | two registers to do the sum movel IMM (0),d1 | and clear the new ones movel d1,d3 | | Here we shift the numbers in registers d0 and d1 so the exponents are the | same, and put the largest exponent in d6. Note that we are using two | registers for each number (see the discussion by D. Knuth in "Seminumerical | Algorithms"). #ifndef __mcoldfire__ cmpw d6,d7 | compare exponents #else cmpl d6,d7 | compare exponents #endif beq Laddsf$3 | if equal don't shift ' bhi 5f | branch if second exponent largest 1: subl d6,d7 | keep the largest exponent negl d7 #ifndef __mcoldfire__ lsrw IMM (8),d7 | put difference in lower byte #else lsrl IMM (8),d7 | put difference in lower byte #endif | if difference is too large we don't shift (actually, we can just exit) ' #ifndef __mcoldfire__ cmpw IMM (FLT_MANT_DIG+2),d7 #else cmpl IMM (FLT_MANT_DIG+2),d7 #endif bge Laddsf$b$small #ifndef __mcoldfire__ cmpw IMM (16),d7 | if difference >= 16 swap #else cmpl IMM (16),d7 | if difference >= 16 swap #endif bge 4f 2: #ifndef __mcoldfire__ subw IMM (1),d7 #else subql IMM (1), d7 #endif 3: #ifndef __mcoldfire__ lsrl IMM (1),d2 | shift right second operand roxrl IMM (1),d3 dbra d7,3b #else lsrl IMM (1),d3 btst IMM (0),d2 beq 10f bset IMM (31),d3 10: lsrl IMM (1),d2 subql IMM (1), d7 bpl 3b #endif bra Laddsf$3 4: movew d2,d3 swap d3 movew d3,d2 swap d2 #ifndef __mcoldfire__ subw IMM (16),d7 #else subl IMM (16),d7 #endif bne 2b | if still more bits, go back to normal case bra Laddsf$3 5: #ifndef __mcoldfire__ exg d6,d7 | exchange the exponents #else eorl d6,d7 eorl d7,d6 eorl d6,d7 #endif subl d6,d7 | keep the largest exponent negl d7 | #ifndef __mcoldfire__ lsrw IMM (8),d7 | put difference in lower byte #else lsrl IMM (8),d7 | put difference in lower byte #endif | if difference is too large we don't shift (and exit!) ' #ifndef __mcoldfire__ cmpw IMM (FLT_MANT_DIG+2),d7 #else cmpl IMM (FLT_MANT_DIG+2),d7 #endif bge Laddsf$a$small #ifndef __mcoldfire__ cmpw IMM (16),d7 | if difference >= 16 swap #else cmpl IMM (16),d7 | if difference >= 16 swap #endif bge 8f 6: #ifndef __mcoldfire__ subw IMM (1),d7 #else subl IMM (1),d7 #endif 7: #ifndef __mcoldfire__ lsrl IMM (1),d0 | shift right first operand roxrl IMM (1),d1 dbra d7,7b #else lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 subql IMM (1),d7 bpl 7b #endif bra Laddsf$3 8: movew d0,d1 swap d1 movew d1,d0 swap d0 #ifndef __mcoldfire__ subw IMM (16),d7 #else subl IMM (16),d7 #endif bne 6b | if still more bits, go back to normal case | otherwise we fall through | Now we have a in d0-d1, b in d2-d3, and the largest exponent in d6 (the | signs are stored in a0 and a1). Laddsf$3: | Here we have to decide whether to add or subtract the numbers #ifndef __mcoldfire__ exg d6,a0 | get signs back exg d7,a1 | and save the exponents #else movel d6,d4 movel a0,d6 movel d4,a0 movel d7,d4 movel a1,d7 movel d4,a1 #endif eorl d6,d7 | combine sign bits bmi Lsubsf$0 | if negative a and b have opposite | sign so we actually subtract the | numbers | Here we have both positive or both negative #ifndef __mcoldfire__ exg d6,a0 | now we have the exponent in d6 #else movel d6,d4 movel a0,d6 movel d4,a0 #endif movel a0,d7 | and sign in d7 andl IMM (0x80000000),d7 | Here we do the addition. addl d3,d1 addxl d2,d0 | Note: now we have d2, d3, d4 and d5 to play with! | Put the exponent, in the first byte, in d2, to use the "standard" rounding | routines: movel d6,d2 #ifndef __mcoldfire__ lsrw IMM (8),d2 #else lsrl IMM (8),d2 #endif | Before rounding normalize so bit #FLT_MANT_DIG is set (we will consider | the case of denormalized numbers in the rounding routine itself). | As in the addition (not in the subtraction!) we could have set | one more bit we check this: btst IMM (FLT_MANT_DIG+1),d0 beq 1f #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 #else lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 #endif addl IMM (1),d2 1: lea pc@(Laddsf$4),a0 | to return from rounding routine PICLEA SYM (_fpCCR),a1 | check the rounding mode #ifdef __mcoldfire__ clrl d6 #endif movew a1@(6),d6 | rounding mode in d6 beq Lround$to$nearest #ifndef __mcoldfire__ cmpw IMM (ROUND_TO_PLUS),d6 #else cmpl IMM (ROUND_TO_PLUS),d6 #endif bhi Lround$to$minus blt Lround$to$zero bra Lround$to$plus Laddsf$4: | Put back the exponent, but check for overflow. #ifndef __mcoldfire__ cmpw IMM (0xff),d2 #else cmpl IMM (0xff),d2 #endif bhi 1f bclr IMM (FLT_MANT_DIG-1),d0 #ifndef __mcoldfire__ lslw IMM (7),d2 #else lsll IMM (7),d2 #endif swap d2 orl d2,d0 bra Laddsf$ret 1: moveq IMM (ADD),d5 bra Lf$overflow Lsubsf$0: | We are here if a > 0 and b < 0 (sign bits cleared). | Here we do the subtraction. movel d6,d7 | put sign in d7 andl IMM (0x80000000),d7 subl d3,d1 | result in d0-d1 subxl d2,d0 | beq Laddsf$ret | if zero just exit bpl 1f | if positive skip the following bchg IMM (31),d7 | change sign bit in d7 negl d1 negxl d0 1: #ifndef __mcoldfire__ exg d2,a0 | now we have the exponent in d2 lsrw IMM (8),d2 | put it in the first byte #else movel d2,d4 movel a0,d2 movel d4,a0 lsrl IMM (8),d2 | put it in the first byte #endif | Now d0-d1 is positive and the sign bit is in d7. | Note that we do not have to normalize, since in the subtraction bit | #FLT_MANT_DIG+1 is never set, and denormalized numbers are handled by | the rounding routines themselves. lea pc@(Lsubsf$1),a0 | to return from rounding routine PICLEA SYM (_fpCCR),a1 | check the rounding mode #ifdef __mcoldfire__ clrl d6 #endif movew a1@(6),d6 | rounding mode in d6 beq Lround$to$nearest #ifndef __mcoldfire__ cmpw IMM (ROUND_TO_PLUS),d6 #else cmpl IMM (ROUND_TO_PLUS),d6 #endif bhi Lround$to$minus blt Lround$to$zero bra Lround$to$plus Lsubsf$1: | Put back the exponent (we can't have overflow!). ' bclr IMM (FLT_MANT_DIG-1),d0 #ifndef __mcoldfire__ lslw IMM (7),d2 #else lsll IMM (7),d2 #endif swap d2 orl d2,d0 bra Laddsf$ret | If one of the numbers was too small (difference of exponents >= | FLT_MANT_DIG+2) we return the other (and now we don't have to ' | check for finiteness or zero). Laddsf$a$small: movel a6@(12),d0 PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 | restore data registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | and return rts Laddsf$b$small: movel a6@(8),d0 PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 | restore data registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | and return rts | If the numbers are denormalized remember to put exponent equal to 1. Laddsf$a$den: movel d5,d6 | d5 contains 0x01000000 swap d6 bra Laddsf$1 Laddsf$b$den: movel d5,d7 swap d7 notl d4 | make d4 into a mask for the fraction | (this was not executed after the jump) bra Laddsf$2 | The rest is mainly code for the different results which can be | returned (checking always for +/-INFINITY and NaN). Laddsf$b: | Return b (if a is zero). movel a6@(12),d0 cmpl IMM (0x80000000),d0 | Check if b is -0 bne 1f movel a0,d7 andl IMM (0x80000000),d7 | Use the sign of a clrl d0 bra Laddsf$ret Laddsf$a: | Return a (if b is zero). movel a6@(8),d0 1: moveq IMM (ADD),d5 | We have to check for NaN and +/-infty. movel d0,d7 andl IMM (0x80000000),d7 | put sign in d7 bclr IMM (31),d0 | clear sign cmpl IMM (INFINITY),d0 | check for infty or NaN bge 2f movel d0,d0 | check for zero (we do this because we don't ' bne Laddsf$ret | want to return -0 by mistake bclr IMM (31),d7 | if zero be sure to clear sign bra Laddsf$ret | if everything OK just return 2: | The value to be returned is either +/-infty or NaN andl IMM (0x007fffff),d0 | check for NaN bne Lf$inop | if mantissa not zero is NaN bra Lf$infty Laddsf$ret: | Normal exit (a and b nonzero, result is not NaN nor +/-infty). | We have to clear the exception flags (just the exception type). PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ orl d7,d0 | put sign bit #ifndef __mcoldfire__ moveml sp@+,d2-d7 | restore data registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | and return rts Laddsf$ret$den: | Return a denormalized number (for addition we don't signal underflow) ' lsrl IMM (1),d0 | remember to shift right back once bra Laddsf$ret | and return | Note: when adding two floats of the same sign if either one is | NaN we return NaN without regard to whether the other is finite or | not. When subtracting them (i.e., when adding two numbers of | opposite signs) things are more complicated: if both are INFINITY | we return NaN, if only one is INFINITY and the other is NaN we return | NaN, but if it is finite we return INFINITY with the corresponding sign. Laddsf$nf: moveq IMM (ADD),d5 | This could be faster but it is not worth the effort, since it is not | executed very often. We sacrifice speed for clarity here. movel a6@(8),d0 | get the numbers back (remember that we movel a6@(12),d1 | did some processing already) movel IMM (INFINITY),d4 | useful constant (INFINITY) movel d0,d2 | save sign bits movel d1,d3 bclr IMM (31),d0 | clear sign bits bclr IMM (31),d1 | We know that one of them is either NaN of +/-INFINITY | Check for NaN (if either one is NaN return NaN) cmpl d4,d0 | check first a (d0) bhi Lf$inop cmpl d4,d1 | check now b (d1) bhi Lf$inop | Now comes the check for +/-INFINITY. We know that both are (maybe not | finite) numbers, but we have to check if both are infinite whether we | are adding or subtracting them. eorl d3,d2 | to check sign bits bmi 1f movel d0,d7 andl IMM (0x80000000),d7 | get (common) sign bit bra Lf$infty 1: | We know one (or both) are infinite, so we test for equality between the | two numbers (if they are equal they have to be infinite both, so we | return NaN). cmpl d1,d0 | are both infinite? beq Lf$inop | if so return NaN movel d0,d7 andl IMM (0x80000000),d7 | get a's sign bit ' cmpl d4,d0 | test now for infinity beq Lf$infty | if a is INFINITY return with this sign bchg IMM (31),d7 | else we know b is INFINITY and has bra Lf$infty | the opposite sign |============================================================================= | __mulsf3 |============================================================================= | float __mulsf3(float, float); FUNC(__mulsf3) SYM (__mulsf3): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- #else link a6,IMM (-24) moveml d2-d7,sp@ #endif movel a6@(8),d0 | get a into d0 movel a6@(12),d1 | and b into d1 movel d0,d7 | d7 will hold the sign of the product eorl d1,d7 | andl IMM (0x80000000),d7 movel IMM (INFINITY),d6 | useful constant (+INFINITY) movel d6,d5 | another (mask for fraction) notl d5 | movel IMM (0x00800000),d4 | this is to put hidden bit back bclr IMM (31),d0 | get rid of a's sign bit ' movel d0,d2 | beq Lmulsf$a$0 | branch if a is zero bclr IMM (31),d1 | get rid of b's sign bit ' movel d1,d3 | beq Lmulsf$b$0 | branch if b is zero cmpl d6,d0 | is a big? bhi Lmulsf$inop | if a is NaN return NaN beq Lmulsf$inf | if a is INFINITY we have to check b cmpl d6,d1 | now compare b with INFINITY bhi Lmulsf$inop | is b NaN? beq Lmulsf$overflow | is b INFINITY? | Here we have both numbers finite and nonzero (and with no sign bit). | Now we get the exponents into d2 and d3. andl d6,d2 | and isolate exponent in d2 beq Lmulsf$a$den | if exponent is zero we have a denormalized andl d5,d0 | and isolate fraction orl d4,d0 | and put hidden bit back swap d2 | I like exponents in the first byte #ifndef __mcoldfire__ lsrw IMM (7),d2 | #else lsrl IMM (7),d2 | #endif Lmulsf$1: | number andl d6,d3 | beq Lmulsf$b$den | andl d5,d1 | orl d4,d1 | swap d3 | #ifndef __mcoldfire__ lsrw IMM (7),d3 | #else lsrl IMM (7),d3 | #endif Lmulsf$2: | #ifndef __mcoldfire__ addw d3,d2 | add exponents subw IMM (F_BIAS+1),d2 | and subtract bias (plus one) #else addl d3,d2 | add exponents subl IMM (F_BIAS+1),d2 | and subtract bias (plus one) #endif | We are now ready to do the multiplication. The situation is as follows: | both a and b have bit FLT_MANT_DIG-1 set (even if they were | denormalized to start with!), which means that in the product | bit 2*(FLT_MANT_DIG-1) (that is, bit 2*FLT_MANT_DIG-2-32 of the | high long) is set. | To do the multiplication let us move the number a little bit around ... movel d1,d6 | second operand in d6 movel d0,d5 | first operand in d4-d5 movel IMM (0),d4 movel d4,d1 | the sums will go in d0-d1 movel d4,d0 | now bit FLT_MANT_DIG-1 becomes bit 31: lsll IMM (31-FLT_MANT_DIG+1),d6 | Start the loop (we loop #FLT_MANT_DIG times): moveq IMM (FLT_MANT_DIG-1),d3 1: addl d1,d1 | shift sum addxl d0,d0 lsll IMM (1),d6 | get bit bn bcc 2f | if not set skip sum addl d5,d1 | add a addxl d4,d0 2: #ifndef __mcoldfire__ dbf d3,1b | loop back #else subql IMM (1),d3 bpl 1b #endif | Now we have the product in d0-d1, with bit (FLT_MANT_DIG - 1) + FLT_MANT_DIG | (mod 32) of d0 set. The first thing to do now is to normalize it so bit | FLT_MANT_DIG is set (to do the rounding). #ifndef __mcoldfire__ rorl IMM (6),d1 swap d1 movew d1,d3 andw IMM (0x03ff),d3 andw IMM (0xfd00),d1 #else movel d1,d3 lsll IMM (8),d1 addl d1,d1 addl d1,d1 moveq IMM (22),d5 lsrl d5,d3 orl d3,d1 andl IMM (0xfffffd00),d1 #endif lsll IMM (8),d0 addl d0,d0 addl d0,d0 #ifndef __mcoldfire__ orw d3,d0 #else orl d3,d0 #endif moveq IMM (MULTIPLY),d5 btst IMM (FLT_MANT_DIG+1),d0 beq Lround$exit #ifndef __mcoldfire__ lsrl IMM (1),d0 roxrl IMM (1),d1 addw IMM (1),d2 #else lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 addql IMM (1),d2 #endif bra Lround$exit Lmulsf$inop: moveq IMM (MULTIPLY),d5 bra Lf$inop Lmulsf$overflow: moveq IMM (MULTIPLY),d5 bra Lf$overflow Lmulsf$inf: moveq IMM (MULTIPLY),d5 | If either is NaN return NaN; else both are (maybe infinite) numbers, so | return INFINITY with the correct sign (which is in d7). cmpl d6,d1 | is b NaN? bhi Lf$inop | if so return NaN bra Lf$overflow | else return +/-INFINITY | If either number is zero return zero, unless the other is +/-INFINITY, | or NaN, in which case we return NaN. Lmulsf$b$0: | Here d1 (==b) is zero. movel a6@(8),d1 | get a again to check for non-finiteness bra 1f Lmulsf$a$0: movel a6@(12),d1 | get b again to check for non-finiteness 1: bclr IMM (31),d1 | clear sign bit cmpl IMM (INFINITY),d1 | and check for a large exponent bge Lf$inop | if b is +/-INFINITY or NaN return NaN movel d7,d0 | else return signed zero PICLEA SYM (_fpCCR),a0 | movew IMM (0),a0@ | #ifndef __mcoldfire__ moveml sp@+,d2-d7 | #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | rts | | If a number is denormalized we put an exponent of 1 but do not put the | hidden bit back into the fraction; instead we shift left until bit 23 | (the hidden bit) is set, adjusting the exponent accordingly. We do this | to ensure that the product of the fractions is close to 1. Lmulsf$a$den: movel IMM (1),d2 andl d5,d0 1: addl d0,d0 | shift a left (until bit 23 is set) #ifndef __mcoldfire__ subw IMM (1),d2 | and adjust exponent #else subql IMM (1),d2 | and adjust exponent #endif btst IMM (FLT_MANT_DIG-1),d0 bne Lmulsf$1 | bra 1b | else loop back Lmulsf$b$den: movel IMM (1),d3 andl d5,d1 1: addl d1,d1 | shift b left until bit 23 is set #ifndef __mcoldfire__ subw IMM (1),d3 | and adjust exponent #else subql IMM (1),d3 | and adjust exponent #endif btst IMM (FLT_MANT_DIG-1),d1 bne Lmulsf$2 | bra 1b | else loop back |============================================================================= | __divsf3 |============================================================================= | float __divsf3(float, float); FUNC(__divsf3) SYM (__divsf3): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- #else link a6,IMM (-24) moveml d2-d7,sp@ #endif movel a6@(8),d0 | get a into d0 movel a6@(12),d1 | and b into d1 movel d0,d7 | d7 will hold the sign of the result eorl d1,d7 | andl IMM (0x80000000),d7 | movel IMM (INFINITY),d6 | useful constant (+INFINITY) movel d6,d5 | another (mask for fraction) notl d5 | movel IMM (0x00800000),d4 | this is to put hidden bit back bclr IMM (31),d0 | get rid of a's sign bit ' movel d0,d2 | beq Ldivsf$a$0 | branch if a is zero bclr IMM (31),d1 | get rid of b's sign bit ' movel d1,d3 | beq Ldivsf$b$0 | branch if b is zero cmpl d6,d0 | is a big? bhi Ldivsf$inop | if a is NaN return NaN beq Ldivsf$inf | if a is INFINITY we have to check b cmpl d6,d1 | now compare b with INFINITY bhi Ldivsf$inop | if b is NaN return NaN beq Ldivsf$underflow | Here we have both numbers finite and nonzero (and with no sign bit). | Now we get the exponents into d2 and d3 and normalize the numbers to | ensure that the ratio of the fractions is close to 1. We do this by | making sure that bit #FLT_MANT_DIG-1 (hidden bit) is set. andl d6,d2 | and isolate exponent in d2 beq Ldivsf$a$den | if exponent is zero we have a denormalized andl d5,d0 | and isolate fraction orl d4,d0 | and put hidden bit back swap d2 | I like exponents in the first byte #ifndef __mcoldfire__ lsrw IMM (7),d2 | #else lsrl IMM (7),d2 | #endif Ldivsf$1: | andl d6,d3 | beq Ldivsf$b$den | andl d5,d1 | orl d4,d1 | swap d3 | #ifndef __mcoldfire__ lsrw IMM (7),d3 | #else lsrl IMM (7),d3 | #endif Ldivsf$2: | #ifndef __mcoldfire__ subw d3,d2 | subtract exponents addw IMM (F_BIAS),d2 | and add bias #else subl d3,d2 | subtract exponents addl IMM (F_BIAS),d2 | and add bias #endif | We are now ready to do the division. We have prepared things in such a way | that the ratio of the fractions will be less than 2 but greater than 1/2. | At this point the registers in use are: | d0 holds a (first operand, bit FLT_MANT_DIG=0, bit FLT_MANT_DIG-1=1) | d1 holds b (second operand, bit FLT_MANT_DIG=1) | d2 holds the difference of the exponents, corrected by the bias | d7 holds the sign of the ratio | d4, d5, d6 hold some constants movel d7,a0 | d6-d7 will hold the ratio of the fractions movel IMM (0),d6 | movel d6,d7 moveq IMM (FLT_MANT_DIG+1),d3 1: cmpl d0,d1 | is a < b? bhi 2f | bset d3,d6 | set a bit in d6 subl d1,d0 | if a >= b a <-- a-b beq 3f | if a is zero, exit 2: addl d0,d0 | multiply a by 2 #ifndef __mcoldfire__ dbra d3,1b #else subql IMM (1),d3 bpl 1b #endif | Now we keep going to set the sticky bit ... moveq IMM (FLT_MANT_DIG),d3 1: cmpl d0,d1 ble 2f addl d0,d0 #ifndef __mcoldfire__ dbra d3,1b #else subql IMM(1),d3 bpl 1b #endif movel IMM (0),d1 bra 3f 2: movel IMM (0),d1 #ifndef __mcoldfire__ subw IMM (FLT_MANT_DIG),d3 addw IMM (31),d3 #else subl IMM (FLT_MANT_DIG),d3 addl IMM (31),d3 #endif bset d3,d1 3: movel d6,d0 | put the ratio in d0-d1 movel a0,d7 | get sign back | Because of the normalization we did before we are guaranteed that | d0 is smaller than 2^26 but larger than 2^24. Thus bit 26 is not set, | bit 25 could be set, and if it is not set then bit 24 is necessarily set. btst IMM (FLT_MANT_DIG+1),d0 beq 1f | if it is not set, then bit 24 is set lsrl IMM (1),d0 | #ifndef __mcoldfire__ addw IMM (1),d2 | #else addl IMM (1),d2 | #endif 1: | Now round, check for over- and underflow, and exit. moveq IMM (DIVIDE),d5 bra Lround$exit Ldivsf$inop: moveq IMM (DIVIDE),d5 bra Lf$inop Ldivsf$overflow: moveq IMM (DIVIDE),d5 bra Lf$overflow Ldivsf$underflow: moveq IMM (DIVIDE),d5 bra Lf$underflow Ldivsf$a$0: moveq IMM (DIVIDE),d5 | If a is zero check to see whether b is zero also. In that case return | NaN; then check if b is NaN, and return NaN also in that case. Else | return a properly signed zero. andl IMM (0x7fffffff),d1 | clear sign bit and test b beq Lf$inop | if b is also zero return NaN cmpl IMM (INFINITY),d1 | check for NaN bhi Lf$inop | movel d7,d0 | else return signed zero PICLEA SYM (_fpCCR),a0 | movew IMM (0),a0@ | #ifndef __mcoldfire__ moveml sp@+,d2-d7 | #else moveml sp@,d2-d7 | | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 | rts | Ldivsf$b$0: moveq IMM (DIVIDE),d5 | If we got here a is not zero. Check if a is NaN; in that case return NaN, | else return +/-INFINITY. Remember that a is in d0 with the sign bit | cleared already. cmpl IMM (INFINITY),d0 | compare d0 with INFINITY bhi Lf$inop | if larger it is NaN bra Lf$div$0 | else signal DIVIDE_BY_ZERO Ldivsf$inf: moveq IMM (DIVIDE),d5 | If a is INFINITY we have to check b cmpl IMM (INFINITY),d1 | compare b with INFINITY bge Lf$inop | if b is NaN or INFINITY return NaN bra Lf$overflow | else return overflow | If a number is denormalized we put an exponent of 1 but do not put the | bit back into the fraction. Ldivsf$a$den: movel IMM (1),d2 andl d5,d0 1: addl d0,d0 | shift a left until bit FLT_MANT_DIG-1 is set #ifndef __mcoldfire__ subw IMM (1),d2 | and adjust exponent #else subl IMM (1),d2 | and adjust exponent #endif btst IMM (FLT_MANT_DIG-1),d0 bne Ldivsf$1 bra 1b Ldivsf$b$den: movel IMM (1),d3 andl d5,d1 1: addl d1,d1 | shift b left until bit FLT_MANT_DIG is set #ifndef __mcoldfire__ subw IMM (1),d3 | and adjust exponent #else subl IMM (1),d3 | and adjust exponent #endif btst IMM (FLT_MANT_DIG-1),d1 bne Ldivsf$2 bra 1b Lround$exit: | This is a common exit point for __mulsf3 and __divsf3. | First check for underlow in the exponent: #ifndef __mcoldfire__ cmpw IMM (-FLT_MANT_DIG-1),d2 #else cmpl IMM (-FLT_MANT_DIG-1),d2 #endif blt Lf$underflow | It could happen that the exponent is less than 1, in which case the | number is denormalized. In this case we shift right and adjust the | exponent until it becomes 1 or the fraction is zero (in the latter case | we signal underflow and return zero). movel IMM (0),d6 | d6 is used temporarily #ifndef __mcoldfire__ cmpw IMM (1),d2 | if the exponent is less than 1 we #else cmpl IMM (1),d2 | if the exponent is less than 1 we #endif bge 2f | have to shift right (denormalize) 1: #ifndef __mcoldfire__ addw IMM (1),d2 | adjust the exponent lsrl IMM (1),d0 | shift right once roxrl IMM (1),d1 | roxrl IMM (1),d6 | d6 collect bits we would lose otherwise cmpw IMM (1),d2 | is the exponent 1 already? #else addql IMM (1),d2 | adjust the exponent lsrl IMM (1),d6 btst IMM (0),d1 beq 11f bset IMM (31),d6 11: lsrl IMM (1),d1 btst IMM (0),d0 beq 10f bset IMM (31),d1 10: lsrl IMM (1),d0 cmpl IMM (1),d2 | is the exponent 1 already? #endif beq 2f | if not loop back bra 1b | bra Lf$underflow | safety check, shouldn't execute ' 2: orl d6,d1 | this is a trick so we don't lose ' | the extra bits which were flushed right | Now call the rounding routine (which takes care of denormalized numbers): lea pc@(Lround$0),a0 | to return from rounding routine PICLEA SYM (_fpCCR),a1 | check the rounding mode #ifdef __mcoldfire__ clrl d6 #endif movew a1@(6),d6 | rounding mode in d6 beq Lround$to$nearest #ifndef __mcoldfire__ cmpw IMM (ROUND_TO_PLUS),d6 #else cmpl IMM (ROUND_TO_PLUS),d6 #endif bhi Lround$to$minus blt Lround$to$zero bra Lround$to$plus Lround$0: | Here we have a correctly rounded result (either normalized or denormalized). | Here we should have either a normalized number or a denormalized one, and | the exponent is necessarily larger or equal to 1 (so we don't have to ' | check again for underflow!). We have to check for overflow or for a | denormalized number (which also signals underflow). | Check for overflow (i.e., exponent >= 255). #ifndef __mcoldfire__ cmpw IMM (0x00ff),d2 #else cmpl IMM (0x00ff),d2 #endif bge Lf$overflow | Now check for a denormalized number (exponent==0). movew d2,d2 beq Lf$den 1: | Put back the exponents and sign and return. #ifndef __mcoldfire__ lslw IMM (7),d2 | exponent back to fourth byte #else lsll IMM (7),d2 | exponent back to fourth byte #endif bclr IMM (FLT_MANT_DIG-1),d0 swap d0 | and put back exponent #ifndef __mcoldfire__ orw d2,d0 | #else orl d2,d0 #endif swap d0 | orl d7,d0 | and sign also PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts |============================================================================= | __negsf2 |============================================================================= | This is trivial and could be shorter if we didn't bother checking for NaN ' | and +/-INFINITY. | float __negsf2(float); FUNC(__negsf2) SYM (__negsf2): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- #else link a6,IMM (-24) moveml d2-d7,sp@ #endif moveq IMM (NEGATE),d5 movel a6@(8),d0 | get number to negate in d0 bchg IMM (31),d0 | negate movel d0,d1 | make a positive copy bclr IMM (31),d1 | tstl d1 | check for zero beq 2f | if zero (either sign) return +zero cmpl IMM (INFINITY),d1 | compare to +INFINITY blt 1f | bhi Lf$inop | if larger (fraction not zero) is NaN movel d0,d7 | else get sign and return INFINITY andl IMM (0x80000000),d7 bra Lf$infty 1: PICLEA SYM (_fpCCR),a0 movew IMM (0),a0@ #ifndef __mcoldfire__ moveml sp@+,d2-d7 #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts 2: bclr IMM (31),d0 bra 1b |============================================================================= | __cmpsf2 |============================================================================= GREATER = 1 LESS = -1 EQUAL = 0 | int __cmpsf2_internal(float, float, int); SYM (__cmpsf2_internal): #ifndef __mcoldfire__ link a6,IMM (0) moveml d2-d7,sp@- | save registers #else link a6,IMM (-24) moveml d2-d7,sp@ #endif moveq IMM (COMPARE),d5 movel a6@(8),d0 | get first operand movel a6@(12),d1 | get second operand | Check if either is NaN, and in that case return garbage and signal | INVALID_OPERATION. Check also if either is zero, and clear the signs | if necessary. movel d0,d6 andl IMM (0x7fffffff),d0 beq Lcmpsf$a$0 cmpl IMM (0x7f800000),d0 bhi Lcmpf$inop Lcmpsf$1: movel d1,d7 andl IMM (0x7fffffff),d1 beq Lcmpsf$b$0 cmpl IMM (0x7f800000),d1 bhi Lcmpf$inop Lcmpsf$2: | Check the signs eorl d6,d7 bpl 1f | If the signs are not equal check if a >= 0 tstl d6 bpl Lcmpsf$a$gt$b | if (a >= 0 && b < 0) => a > b bmi Lcmpsf$b$gt$a | if (a < 0 && b >= 0) => a < b 1: | If the signs are equal check for < 0 tstl d6 bpl 1f | If both are negative exchange them #ifndef __mcoldfire__ exg d0,d1 #else movel d0,d7 movel d1,d0 movel d7,d1 #endif 1: | Now that they are positive we just compare them as longs (does this also | work for denormalized numbers?). cmpl d0,d1 bhi Lcmpsf$b$gt$a | |b| > |a| bne Lcmpsf$a$gt$b | |b| < |a| | If we got here a == b. movel IMM (EQUAL),d0 #ifndef __mcoldfire__ moveml sp@+,d2-d7 | put back the registers #else moveml sp@,d2-d7 #endif unlk a6 rts Lcmpsf$a$gt$b: movel IMM (GREATER),d0 #ifndef __mcoldfire__ moveml sp@+,d2-d7 | put back the registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts Lcmpsf$b$gt$a: movel IMM (LESS),d0 #ifndef __mcoldfire__ moveml sp@+,d2-d7 | put back the registers #else moveml sp@,d2-d7 | XXX if frame pointer is ever removed, stack pointer must | be adjusted here. #endif unlk a6 rts Lcmpsf$a$0: bclr IMM (31),d6 bra Lcmpsf$1 Lcmpsf$b$0: bclr IMM (31),d7 bra Lcmpsf$2 Lcmpf$inop: movl a6@(16),d0 moveq IMM (INEXACT_RESULT+INVALID_OPERATION),d7 moveq IMM (SINGLE_FLOAT),d6 PICJUMP $_exception_handler | int __cmpsf2(float, float); FUNC(__cmpsf2) SYM (__cmpsf2): link a6,IMM (0) pea 1 movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpsf2_internal) unlk a6 rts |============================================================================= | rounding routines |============================================================================= | The rounding routines expect the number to be normalized in registers | d0-d1, with the exponent in register d2. They assume that the | exponent is larger or equal to 1. They return a properly normalized number | if possible, and a denormalized number otherwise. The exponent is returned | in d2. Lround$to$nearest: | We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"): | Here we assume that the exponent is not too small (this should be checked | before entering the rounding routine), but the number could be denormalized. | Check for denormalized numbers: 1: btst IMM (FLT_MANT_DIG),d0 bne 2f | if set the number is normalized | Normalize shifting left until bit #FLT_MANT_DIG is set or the exponent | is one (remember that a denormalized number corresponds to an | exponent of -F_BIAS+1). #ifndef __mcoldfire__ cmpw IMM (1),d2 | remember that the exponent is at least one #else cmpl IMM (1),d2 | remember that the exponent is at least one #endif beq 2f | an exponent of one means denormalized addl d1,d1 | else shift and adjust the exponent addxl d0,d0 | #ifndef __mcoldfire__ dbra d2,1b | #else subql IMM (1),d2 bpl 1b #endif 2: | Now round: we do it as follows: after the shifting we can write the | fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2. | If delta < 1, do nothing. If delta > 1, add 1 to f. | If delta == 1, we make sure the rounded number will be even (odd?) | (after shifting). btst IMM (0),d0 | is delta < 1? beq 2f | if so, do not do anything tstl d1 | is delta == 1? bne 1f | if so round to even movel d0,d1 | andl IMM (2),d1 | bit 1 is the last significant bit addl d1,d0 | bra 2f | 1: movel IMM (1),d1 | else add 1 addl d1,d0 | | Shift right once (because we used bit #FLT_MANT_DIG!). 2: lsrl IMM (1),d0 | Now check again bit #FLT_MANT_DIG (rounding could have produced a | 'fraction overflow' ...). btst IMM (FLT_MANT_DIG),d0 beq 1f lsrl IMM (1),d0 #ifndef __mcoldfire__ addw IMM (1),d2 #else addql IMM (1),d2 #endif 1: | If bit #FLT_MANT_DIG-1 is clear we have a denormalized number, so we | have to put the exponent to zero and return a denormalized number. btst IMM (FLT_MANT_DIG-1),d0 beq 1f jmp a0@ 1: movel IMM (0),d2 jmp a0@ Lround$to$zero: Lround$to$plus: Lround$to$minus: jmp a0@ #endif /* L_float */ | gcc expects the routines __eqdf2, __nedf2, __gtdf2, __gedf2, | __ledf2, __ltdf2 to all return the same value as a direct call to | __cmpdf2 would. In this implementation, each of these routines | simply calls __cmpdf2. It would be more efficient to give the | __cmpdf2 routine several names, but separating them out will make it | easier to write efficient versions of these routines someday. | If the operands recompare unordered unordered __gtdf2 and __gedf2 return -1. | The other routines return 1. #ifdef L_eqdf2 .text FUNC(__eqdf2) .globl SYM (__eqdf2) SYM (__eqdf2): link a6,IMM (0) pea 1 movl a6@(20),sp@- movl a6@(16),sp@- movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpdf2_internal) unlk a6 rts #endif /* L_eqdf2 */ #ifdef L_nedf2 .text FUNC(__nedf2) .globl SYM (__nedf2) SYM (__nedf2): link a6,IMM (0) pea 1 movl a6@(20),sp@- movl a6@(16),sp@- movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpdf2_internal) unlk a6 rts #endif /* L_nedf2 */ #ifdef L_gtdf2 .text FUNC(__gtdf2) .globl SYM (__gtdf2) SYM (__gtdf2): link a6,IMM (0) pea -1 movl a6@(20),sp@- movl a6@(16),sp@- movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpdf2_internal) unlk a6 rts #endif /* L_gtdf2 */ #ifdef L_gedf2 .text FUNC(__gedf2) .globl SYM (__gedf2) SYM (__gedf2): link a6,IMM (0) pea -1 movl a6@(20),sp@- movl a6@(16),sp@- movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpdf2_internal) unlk a6 rts #endif /* L_gedf2 */ #ifdef L_ltdf2 .text FUNC(__ltdf2) .globl SYM (__ltdf2) SYM (__ltdf2): link a6,IMM (0) pea 1 movl a6@(20),sp@- movl a6@(16),sp@- movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpdf2_internal) unlk a6 rts #endif /* L_ltdf2 */ #ifdef L_ledf2 .text FUNC(__ledf2) .globl SYM (__ledf2) SYM (__ledf2): link a6,IMM (0) pea 1 movl a6@(20),sp@- movl a6@(16),sp@- movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpdf2_internal) unlk a6 rts #endif /* L_ledf2 */ | The comments above about __eqdf2, et. al., also apply to __eqsf2, | et. al., except that the latter call __cmpsf2 rather than __cmpdf2. #ifdef L_eqsf2 .text FUNC(__eqsf2) .globl SYM (__eqsf2) SYM (__eqsf2): link a6,IMM (0) pea 1 movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpsf2_internal) unlk a6 rts #endif /* L_eqsf2 */ #ifdef L_nesf2 .text FUNC(__nesf2) .globl SYM (__nesf2) SYM (__nesf2): link a6,IMM (0) pea 1 movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpsf2_internal) unlk a6 rts #endif /* L_nesf2 */ #ifdef L_gtsf2 .text FUNC(__gtsf2) .globl SYM (__gtsf2) SYM (__gtsf2): link a6,IMM (0) pea -1 movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpsf2_internal) unlk a6 rts #endif /* L_gtsf2 */ #ifdef L_gesf2 .text FUNC(__gesf2) .globl SYM (__gesf2) SYM (__gesf2): link a6,IMM (0) pea -1 movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpsf2_internal) unlk a6 rts #endif /* L_gesf2 */ #ifdef L_ltsf2 .text FUNC(__ltsf2) .globl SYM (__ltsf2) SYM (__ltsf2): link a6,IMM (0) pea 1 movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpsf2_internal) unlk a6 rts #endif /* L_ltsf2 */ #ifdef L_lesf2 .text FUNC(__lesf2) .globl SYM (__lesf2) SYM (__lesf2): link a6,IMM (0) pea 1 movl a6@(12),sp@- movl a6@(8),sp@- PICCALL SYM (__cmpsf2_internal) unlk a6 rts #endif /* L_lesf2 */ #if defined (__ELF__) && defined (__linux__) /* Make stack non-executable for ELF linux targets. */ .section .note.GNU-stack,"",@progbits #endif