/* Subroutines used for code generation on Xilinx MicroBlaze. Copyright 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Michael Eager . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "insn-attr.h" #include "recog.h" #include "tree.h" #include "function.h" #include "expr.h" #include "flags.h" #include "reload.h" #include "output.h" #include "ggc.h" #include "hashtab.h" #include "target.h" #include "target-def.h" #include "tm_p.h" #include "gstab.h" #include "df.h" #include "optabs.h" #include "diagnostic-core.h" #include "cgraph.h" #define MICROBLAZE_VERSION_COMPARE(VA,VB) strcasecmp (VA, VB) /* Classifies an address. ADDRESS_INVALID An invalid address. ADDRESS_REG A natural register or a register + const_int offset address. The register satisfies microblaze_valid_base_register_p and the offset is a const_arith_operand. ADDRESS_REG_INDEX A natural register offset by the index contained in an index register. The base register satisfies microblaze_valid_base_register_p and the index register satisfies microblaze_valid_index_register_p ADDRESS_CONST_INT A signed 16/32-bit constant address. ADDRESS_SYMBOLIC: A constant symbolic address or a (register + symbol). */ enum microblaze_address_type { ADDRESS_INVALID, ADDRESS_REG, ADDRESS_REG_INDEX, ADDRESS_CONST_INT, ADDRESS_SYMBOLIC, ADDRESS_GOTOFF, ADDRESS_PLT }; /* Classifies symbols SYMBOL_TYPE_GENERAL A general symbol. */ enum microblaze_symbol_type { SYMBOL_TYPE_INVALID, SYMBOL_TYPE_GENERAL }; /* Classification of a MicroBlaze address. */ struct microblaze_address_info { enum microblaze_address_type type; rtx regA; /* Contains valid values on ADDRESS_REG, ADDRESS_REG_INDEX, ADDRESS_SYMBOLIC. */ rtx regB; /* Contains valid values on ADDRESS_REG_INDEX. */ rtx offset; /* Contains valid values on ADDRESS_CONST_INT and ADDRESS_REG. */ rtx symbol; /* Contains valid values on ADDRESS_SYMBOLIC. */ enum microblaze_symbol_type symbol_type; }; /* Structure to be filled in by compute_frame_size with register save masks, and offsets for the current function. */ struct GTY(()) microblaze_frame_info { long total_size; /* # bytes that the entire frame takes up. */ long var_size; /* # bytes that variables take up. */ long args_size; /* # bytes that outgoing arguments take up. */ int link_debug_size; /* # bytes for the link reg and back pointer. */ int gp_reg_size; /* # bytes needed to store gp regs. */ long gp_offset; /* offset from new sp to store gp registers. */ long mask; /* mask of saved gp registers. */ int initialized; /* != 0 if frame size already calculated. */ int num_gp; /* number of gp registers saved. */ long insns_len; /* length of insns. */ int alloc_stack; /* Flag to indicate if the current function must not create stack space. (As an optimization). */ }; /* Global variables for machine-dependent things. */ /* Toggle which pipleline interface to use. */ static GTY(()) int microblaze_sched_use_dfa = 0; /* Threshold for data being put into the small data/bss area, instead of the normal data area (references to the small data/bss area take 1 instruction, and use the global pointer, references to the normal data area takes 2 instructions). */ int microblaze_section_threshold = -1; /* Prevent scheduling potentially exception causing instructions in delay slots. -mcpu=v3.00.a or v4.00.a turns this on. */ int microblaze_no_unsafe_delay; /* Which CPU pipeline do we use. We haven't really standardized on a CPU version having only a particular type of pipeline. There can still be options on the CPU to scale pipeline features up or down. :( Bad Presentation (??), so we let the MD file rely on the value of this variable instead Making PIPE_5 the default. It should be backward optimal with PIPE_3 MicroBlazes. */ enum pipeline_type microblaze_pipe = MICROBLAZE_PIPE_5; /* High and low marks for floating point values which we will accept as legitimate constants for TARGET_LEGITIMATE_CONSTANT_P. These are initialized in override_options. */ REAL_VALUE_TYPE dfhigh, dflow, sfhigh, sflow; /* Array giving truth value on whether or not a given hard register can support a given mode. */ char microblaze_hard_regno_mode_ok[(int)MAX_MACHINE_MODE] [FIRST_PSEUDO_REGISTER]; /* Current frame information calculated by compute_frame_size. */ struct microblaze_frame_info current_frame_info; /* Zero structure to initialize current_frame_info. */ struct microblaze_frame_info zero_frame_info; /* List of all MICROBLAZE punctuation characters used by print_operand. */ char microblaze_print_operand_punct[256]; /* Map GCC register number to debugger register number. */ int microblaze_dbx_regno[FIRST_PSEUDO_REGISTER]; /* Map hard register number to register class. */ enum reg_class microblaze_regno_to_class[] = { GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, GR_REGS, ST_REGS, GR_REGS, GR_REGS, GR_REGS }; /* MicroBlaze specific machine attributes. interrupt_handler - Interrupt handler attribute to add interrupt prologue and epilogue and use appropriate interrupt return. save_volatiles - Similar to interrupt handler, but use normal return. */ int interrupt_handler; int save_volatiles; const struct attribute_spec microblaze_attribute_table[] = { /* name min_len, max_len, decl_req, type_req, fn_type, req_handler, affects_type_identity */ {"interrupt_handler", 0, 0, true, false, false, NULL, false }, {"save_volatiles" , 0, 0, true, false, false, NULL, false }, { NULL, 0, 0, false, false, false, NULL, false } }; static int microblaze_interrupt_function_p (tree); section *sdata2_section; /* Return truth value if a CONST_DOUBLE is ok to be a legitimate constant. */ static bool microblaze_const_double_ok (rtx op, enum machine_mode mode) { REAL_VALUE_TYPE d; if (GET_CODE (op) != CONST_DOUBLE) return 0; if (GET_MODE (op) == VOIDmode) return 1; if (mode != SFmode && mode != DFmode) return 0; if (op == CONST0_RTX (mode)) return 1; REAL_VALUE_FROM_CONST_DOUBLE (d, op); if (REAL_VALUE_ISNAN (d)) return FALSE; if (REAL_VALUE_NEGATIVE (d)) d = real_value_negate (&d); if (mode == DFmode) { if (REAL_VALUES_LESS (d, dfhigh) && REAL_VALUES_LESS (dflow, d)) return 1; } else { if (REAL_VALUES_LESS (d, sfhigh) && REAL_VALUES_LESS (sflow, d)) return 1; } return 0; } /* Return truth value if a memory operand fits in a single instruction (ie, register + small offset) or (register + register). */ int simple_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { rtx addr, plus0, plus1; /* Eliminate non-memory operations. */ if (GET_CODE (op) != MEM) return 0; /* dword operations really put out 2 instructions, so eliminate them. */ /* ??? This isn't strictly correct. It is OK to accept multiword modes here, since the length attributes are being set correctly, but only if the address is offsettable. */ if (GET_MODE_SIZE (GET_MODE (op)) > UNITS_PER_WORD) return 0; /* Decode the address now. */ addr = XEXP (op, 0); switch (GET_CODE (addr)) { case REG: return 1; case PLUS: plus0 = XEXP (addr, 0); plus1 = XEXP (addr, 1); if (GET_CODE (plus0) == REG && GET_CODE (plus1) == CONST_INT && SMALL_INT (plus1)) { return 1; } else if (GET_CODE (plus1) == REG && GET_CODE (plus0) == CONST_INT) { return 1; } else if (GET_CODE (plus0) == REG && GET_CODE (plus1) == REG) { return 1; } else return 0; case SYMBOL_REF: return 0; default: break; } return 0; } /* Return nonzero for a memory address that can be used to load or store a doubleword. */ int double_memory_operand (rtx op, enum machine_mode mode) { rtx addr; if (GET_CODE (op) != MEM || !memory_operand (op, mode)) { /* During reload, we accept a pseudo register if it has an appropriate memory address. If we don't do this, we will wind up reloading into a register, and then reloading that register from memory, when we could just reload directly from memory. */ if (reload_in_progress && GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (op)] < 0 && reg_equiv_mem (REGNO (op)) != 0 && double_memory_operand (reg_equiv_mem (REGNO (op)), mode)) return 1; return 0; } /* Make sure that 4 added to the address is a valid memory address. This essentially just checks for overflow in an added constant. */ addr = XEXP (op, 0); if (CONSTANT_ADDRESS_P (addr)) return 1; return memory_address_p ((GET_MODE_CLASS (mode) == MODE_INT ? SImode : SFmode), plus_constant (Pmode, addr, 4)); } /* Implement REG_OK_FOR_BASE_P -and- REG_OK_FOR_INDEX_P. */ int microblaze_regno_ok_for_base_p (int regno, int strict) { if (regno >= FIRST_PSEUDO_REGISTER) { if (!strict) return true; regno = reg_renumber[regno]; } /* These fake registers will be eliminated to either the stack or hard frame pointer, both of which are usually valid base registers. Reload deals with the cases where the eliminated form isn't valid. */ if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM) return true; return GP_REG_P (regno); } /* Return true if X is a valid base register for the given mode. Allow only hard registers if STRICT. */ static bool microblaze_valid_base_register_p (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED, int strict) { if (!strict && GET_CODE (x) == SUBREG) x = SUBREG_REG (x); return (GET_CODE (x) == REG && microblaze_regno_ok_for_base_p (REGNO (x), strict)); } static bool microblaze_classify_unspec (struct microblaze_address_info *info, rtx x) { info->symbol_type = SYMBOL_TYPE_GENERAL; info->symbol = XVECEXP (x, 0, 0); if (XINT (x, 1) == UNSPEC_GOTOFF) { info->regA = gen_rtx_REG (SImode, PIC_OFFSET_TABLE_REGNUM); info->type = ADDRESS_GOTOFF; } else if (XINT (x, 1) == UNSPEC_PLT) { info->type = ADDRESS_PLT; } else { return false; } return true; } /* Return true if X is a valid index register for the given mode. Allow only hard registers if STRICT. */ static bool microblaze_valid_index_register_p (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED, int strict) { if (!strict && GET_CODE (x) == SUBREG) x = SUBREG_REG (x); return (GET_CODE (x) == REG /* A base register is good enough to be an index register on MicroBlaze. */ && microblaze_regno_ok_for_base_p (REGNO (x), strict)); } /* Get the base register for accessing a value from the memory or Symbol ref. Used for MicroBlaze Small Data Area Pointer Optimization. */ static int get_base_reg (rtx x) { tree decl; int base_reg = (flag_pic ? MB_ABI_PIC_ADDR_REGNUM : MB_ABI_BASE_REGNUM); if (TARGET_XLGPOPT && GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_SMALL_P (x) && (decl = SYMBOL_REF_DECL (x)) != NULL) { if (TREE_READONLY (decl)) base_reg = MB_ABI_GPRO_REGNUM; else base_reg = MB_ABI_GPRW_REGNUM; } return base_reg; } /* Return true if X is a valid address for machine mode MODE. If it is, fill in INFO appropriately. STRICT is true if we should only accept hard base registers. type regA regB offset symbol ADDRESS_INVALID NULL NULL NULL NULL ADDRESS_REG %0 NULL const_0 / NULL const_int ADDRESS_REG_INDEX %0 %1 NULL NULL ADDRESS_SYMBOLIC r0 / NULL NULL symbol sda_base_reg ADDRESS_CONST_INT r0 NULL const NULL For modes spanning multiple registers (DFmode in 32-bit GPRs, DImode, TImode), indexed addressing cannot be used because adjacent memory cells are accessed by adding word-sized offsets during assembly output. */ static bool microblaze_classify_address (struct microblaze_address_info *info, rtx x, enum machine_mode mode, int strict) { rtx xplus0; rtx xplus1; info->type = ADDRESS_INVALID; info->regA = NULL; info->regB = NULL; info->offset = NULL; info->symbol = NULL; info->symbol_type = SYMBOL_TYPE_INVALID; switch (GET_CODE (x)) { case REG: case SUBREG: { info->type = ADDRESS_REG; info->regA = x; info->offset = const0_rtx; return microblaze_valid_base_register_p (info->regA, mode, strict); } case PLUS: { xplus0 = XEXP (x, 0); xplus1 = XEXP (x, 1); if (microblaze_valid_base_register_p (xplus0, mode, strict)) { info->type = ADDRESS_REG; info->regA = xplus0; if (GET_CODE (xplus1) == CONST_INT) { info->offset = xplus1; return true; } else if (GET_CODE (xplus1) == UNSPEC) { return microblaze_classify_unspec (info, xplus1); } else if ((GET_CODE (xplus1) == SYMBOL_REF || GET_CODE (xplus1) == LABEL_REF) && flag_pic == 2) { return false; } else if (GET_CODE (xplus1) == SYMBOL_REF || GET_CODE (xplus1) == LABEL_REF || GET_CODE (xplus1) == CONST) { if (GET_CODE (XEXP (xplus1, 0)) == UNSPEC) return microblaze_classify_unspec (info, XEXP (xplus1, 0)); else if (flag_pic == 2) { return false; } info->type = ADDRESS_SYMBOLIC; info->symbol = xplus1; info->symbol_type = SYMBOL_TYPE_GENERAL; return true; } else if (GET_CODE (xplus1) == REG && microblaze_valid_index_register_p (xplus1, mode, strict) && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)) { /* Restrict larger than word-width modes from using an index register. */ info->type = ADDRESS_REG_INDEX; info->regB = xplus1; return true; } } break; } case CONST_INT: { info->regA = gen_rtx_raw_REG (mode, 0); info->type = ADDRESS_CONST_INT; info->offset = x; return true; } case CONST: case LABEL_REF: case SYMBOL_REF: { info->type = ADDRESS_SYMBOLIC; info->symbol_type = SYMBOL_TYPE_GENERAL; info->symbol = x; info->regA = gen_rtx_raw_REG (mode, get_base_reg (x)); if (GET_CODE (x) == CONST) { return !(flag_pic && pic_address_needs_scratch (x)); } else if (flag_pic == 2) { return false; } return true; } case UNSPEC: { if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); return microblaze_classify_unspec (info, x); } default: return false; } return false; } /* This function is used to implement GO_IF_LEGITIMATE_ADDRESS. It returns a nonzero value if X is a legitimate address for a memory operand of the indicated MODE. STRICT is nonzero if this function is called during reload. */ bool microblaze_legitimate_address_p (enum machine_mode mode, rtx x, bool strict) { struct microblaze_address_info addr; return microblaze_classify_address (&addr, x, mode, strict); } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This is used from only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. It is always safe for this function to do nothing. It exists to recognize opportunities to optimize the output. For the MicroBlaze, transform: memory(X + ) into: Y = & ~0x7fff; Z = X + Y memory (Z + ( & 0x7fff)); This is for CSE to find several similar references, and only use one Z. When PIC, convert addresses of the form memory (symbol+large int) to memory (reg+large int). */ static rtx microblaze_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED) { register rtx xinsn = x, result; if (GET_CODE (xinsn) == CONST && flag_pic && pic_address_needs_scratch (xinsn)) { rtx ptr_reg = gen_reg_rtx (Pmode); rtx constant = XEXP (XEXP (xinsn, 0), 1); emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); result = gen_rtx_PLUS (Pmode, ptr_reg, constant); if (SMALL_INT (constant)) return result; /* Otherwise we fall through so the code below will fix the constant. */ xinsn = result; } if (GET_CODE (xinsn) == PLUS) { register rtx xplus0 = XEXP (xinsn, 0); register rtx xplus1 = XEXP (xinsn, 1); register enum rtx_code code0 = GET_CODE (xplus0); register enum rtx_code code1 = GET_CODE (xplus1); if (code0 != REG && code1 == REG) { xplus0 = XEXP (xinsn, 1); xplus1 = XEXP (xinsn, 0); code0 = GET_CODE (xplus0); code1 = GET_CODE (xplus1); } if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) && code1 == CONST_INT && !SMALL_INT (xplus1)) { rtx int_reg = gen_reg_rtx (Pmode); rtx ptr_reg = gen_reg_rtx (Pmode); emit_move_insn (int_reg, GEN_INT (INTVAL (xplus1) & ~0x7fff)); emit_insn (gen_rtx_SET (VOIDmode, ptr_reg, gen_rtx_PLUS (Pmode, xplus0, int_reg))); result = gen_rtx_PLUS (Pmode, ptr_reg, GEN_INT (INTVAL (xplus1) & 0x7fff)); return result; } if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) && flag_pic == 2) { if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); if (code1 == CONST) { xplus1 = XEXP (xplus1, 0); code1 = GET_CODE (xplus1); } if (code1 == SYMBOL_REF) { result = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xplus1), UNSPEC_GOTOFF); result = gen_rtx_CONST (Pmode, result); result = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, result); result = gen_const_mem (Pmode, result); result = gen_rtx_PLUS (Pmode, xplus0, result); return result; } } } if (GET_CODE (xinsn) == SYMBOL_REF) { if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); result = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xinsn), UNSPEC_GOTOFF); result = gen_rtx_CONST (Pmode, result); result = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, result); result = gen_const_mem (Pmode, result); return result; } return x; } /* Block Moves. */ #define MAX_MOVE_REGS 8 #define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD) /* Emit straight-line code to move LENGTH bytes from SRC to DEST. Assume that the areas do not overlap. */ static void microblaze_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length) { HOST_WIDE_INT offset, delta; unsigned HOST_WIDE_INT bits; int i; enum machine_mode mode; rtx *regs; bits = BITS_PER_WORD; mode = mode_for_size (bits, MODE_INT, 0); delta = bits / BITS_PER_UNIT; /* Allocate a buffer for the temporary registers. */ regs = XALLOCAVEC (rtx, length / delta); /* Load as many BITS-sized chunks as possible. Use a normal load if the source has enough alignment, otherwise use left/right pairs. */ for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++) { regs[i] = gen_reg_rtx (mode); emit_move_insn (regs[i], adjust_address (src, mode, offset)); } /* Copy the chunks to the destination. */ for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++) emit_move_insn (adjust_address (dest, mode, offset), regs[i]); /* Mop up any left-over bytes. */ if (offset < length) { src = adjust_address (src, BLKmode, offset); dest = adjust_address (dest, BLKmode, offset); move_by_pieces (dest, src, length - offset, MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0); } } /* Helper function for doing a loop-based block operation on memory reference MEM. Each iteration of the loop will operate on LENGTH bytes of MEM. Create a new base register for use within the loop and point it to the start of MEM. Create a new memory reference that uses this register. Store them in *LOOP_REG and *LOOP_MEM respectively. */ static void microblaze_adjust_block_mem (rtx mem, HOST_WIDE_INT length, rtx * loop_reg, rtx * loop_mem) { *loop_reg = copy_addr_to_reg (XEXP (mem, 0)); /* Although the new mem does not refer to a known location, it does keep up to LENGTH bytes of alignment. */ *loop_mem = change_address (mem, BLKmode, *loop_reg); set_mem_align (*loop_mem, MIN ((HOST_WIDE_INT) MEM_ALIGN (mem), length * BITS_PER_UNIT)); } /* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES per iteration. LENGTH must be at least MAX_MOVE_BYTES. Assume that the memory regions do not overlap. */ static void microblaze_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length) { rtx label, src_reg, dest_reg, final_src; HOST_WIDE_INT leftover; leftover = length % MAX_MOVE_BYTES; length -= leftover; /* Create registers and memory references for use within the loop. */ microblaze_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src); microblaze_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest); /* Calculate the value that SRC_REG should have after the last iteration of the loop. */ final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length), 0, 0, OPTAB_WIDEN); /* Emit the start of the loop. */ label = gen_label_rtx (); emit_label (label); /* Emit the loop body. */ microblaze_block_move_straight (dest, src, MAX_MOVE_BYTES); /* Move on to the next block. */ emit_move_insn (src_reg, plus_constant (Pmode, src_reg, MAX_MOVE_BYTES)); emit_move_insn (dest_reg, plus_constant (Pmode, dest_reg, MAX_MOVE_BYTES)); /* Emit the test & branch. */ emit_insn (gen_cbranchsi4 (gen_rtx_NE (SImode, src_reg, final_src), src_reg, final_src, label)); /* Mop up any left-over bytes. */ if (leftover) microblaze_block_move_straight (dest, src, leftover); } /* Expand a movmemsi instruction. */ bool microblaze_expand_block_move (rtx dest, rtx src, rtx length, rtx align_rtx) { if (GET_CODE (length) == CONST_INT) { HOST_WIDE_INT bytes = INTVAL (length); int align = INTVAL (align_rtx); if (align > UNITS_PER_WORD) { align = UNITS_PER_WORD; /* We can't do any better. */ } else if (align < UNITS_PER_WORD) { if (INTVAL (length) <= MAX_MOVE_BYTES) { move_by_pieces (dest, src, bytes, align, 0); return true; } else return false; } if (INTVAL (length) <= 2 * MAX_MOVE_BYTES) { microblaze_block_move_straight (dest, src, INTVAL (length)); return true; } else if (optimize) { microblaze_block_move_loop (dest, src, INTVAL (length)); return true; } } return false; } static bool microblaze_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED, int opno ATTRIBUTE_UNUSED, int *total, bool speed ATTRIBUTE_UNUSED) { enum machine_mode mode = GET_MODE (x); switch (code) { case MEM: { int num_words = (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ? 2 : 1; if (simple_memory_operand (x, mode)) *total = COSTS_N_INSNS (2 * num_words); else *total = COSTS_N_INSNS (2 * (2 * num_words)); return true; } case NOT: { if (mode == DImode) { *total = COSTS_N_INSNS (2); } else *total = COSTS_N_INSNS (1); return false; } case AND: case IOR: case XOR: { if (mode == DImode) { *total = COSTS_N_INSNS (2); } else *total = COSTS_N_INSNS (1); return false; } case ASHIFT: case ASHIFTRT: case LSHIFTRT: { if (TARGET_BARREL_SHIFT) { if (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.a") >= 0) *total = COSTS_N_INSNS (1); else *total = COSTS_N_INSNS (2); } else if (!TARGET_SOFT_MUL) *total = COSTS_N_INSNS (1); else if (GET_CODE (XEXP (x, 1)) == CONST_INT) { /* Add 1 to make shift slightly more expensive than add. */ *total = COSTS_N_INSNS (INTVAL (XEXP (x, 1))) + 1; /* Reduce shift costs for special circumstances. */ if (optimize_size && INTVAL (XEXP (x, 1)) > 5) *total -= 2; if (!optimize_size && INTVAL (XEXP (x, 1)) > 17) *total -= 2; } else /* Double the worst cost of shifts when there is no barrel shifter and the shift amount is in a reg. */ *total = COSTS_N_INSNS (32 * 4); return true; } case PLUS: case MINUS: { if (mode == SFmode || mode == DFmode) { if (TARGET_HARD_FLOAT) *total = COSTS_N_INSNS (6); return true; } else if (mode == DImode) { *total = COSTS_N_INSNS (4); return true; } else { *total = COSTS_N_INSNS (1); return true; } return false; } case NEG: { if (mode == DImode) *total = COSTS_N_INSNS (4); return false; } case MULT: { if (mode == SFmode) { if (TARGET_HARD_FLOAT) *total = COSTS_N_INSNS (6); } else if (!TARGET_SOFT_MUL) { if (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.a") >= 0) *total = COSTS_N_INSNS (1); else *total = COSTS_N_INSNS (3); } else *total = COSTS_N_INSNS (10); return true; } case DIV: case UDIV: { if (mode == SFmode) { if (TARGET_HARD_FLOAT) *total = COSTS_N_INSNS (23); } return false; } case SIGN_EXTEND: { *total = COSTS_N_INSNS (1); return false; } case ZERO_EXTEND: { *total = COSTS_N_INSNS (1); return false; } } return false; } /* Return the number of instructions needed to load or store a value of mode MODE at X. Return 0 if X isn't valid for MODE. */ static int microblaze_address_insns (rtx x, enum machine_mode mode) { struct microblaze_address_info addr; if (microblaze_classify_address (&addr, x, mode, false)) { switch (addr.type) { case ADDRESS_REG: if (SMALL_INT (addr.offset)) return 1; else return 2; case ADDRESS_CONST_INT: if (SMALL_INT (x)) return 1; else return 2; case ADDRESS_REG_INDEX: case ADDRESS_SYMBOLIC: return 1; case ADDRESS_GOTOFF: return 2; default: break; } } return 0; } /* Provide the costs of an addressing mode that contains ADDR. If ADDR is not a valid address, its cost is irrelevant. */ static int microblaze_address_cost (rtx addr, bool speed ATTRIBUTE_UNUSED) { return COSTS_N_INSNS (microblaze_address_insns (addr, GET_MODE (addr))); } /* Return nonzero if X is an address which needs a temporary register when reloaded while generating PIC code. */ int pic_address_needs_scratch (rtx x) { /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && (flag_pic == 2 || !SMALL_INT (XEXP (XEXP (x, 0), 1)))) return 1; return 0; } /* Argument support functions. */ /* Initialize CUMULATIVE_ARGS for a function. */ void init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype, rtx libname ATTRIBUTE_UNUSED) { static CUMULATIVE_ARGS zero_cum; tree param, next_param; *cum = zero_cum; /* Determine if this function has variable arguments. This is indicated by the last argument being 'void_type_mode' if there are no variable arguments. The standard MicroBlaze calling sequence passes all arguments in the general purpose registers in this case. */ for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0; param != 0; param = next_param) { next_param = TREE_CHAIN (param); if (next_param == 0 && TREE_VALUE (param) != void_type_node) cum->gp_reg_found = 1; } } /* Advance the argument to the next argument position. */ static void microblaze_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); cum->arg_number++; switch (mode) { case VOIDmode: break; default: gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); cum->gp_reg_found = 1; cum->arg_words += ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD); break; case BLKmode: cum->gp_reg_found = 1; cum->arg_words += ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD); break; case SFmode: cum->arg_words++; if (!cum->gp_reg_found && cum->arg_number <= 2) cum->fp_code += 1 << ((cum->arg_number - 1) * 2); break; case DFmode: cum->arg_words += 2; if (!cum->gp_reg_found && cum->arg_number <= 2) cum->fp_code += 2 << ((cum->arg_number - 1) * 2); break; case DImode: cum->gp_reg_found = 1; cum->arg_words += 2; break; case QImode: case HImode: case SImode: case TImode: cum->gp_reg_found = 1; cum->arg_words++; break; } } /* Return an RTL expression containing the register for the given mode, or 0 if the argument is to be passed on the stack. */ static rtx microblaze_function_arg (cumulative_args_t cum_v, enum machine_mode mode, const_tree type ATTRIBUTE_UNUSED, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); rtx ret; int regbase = -1; int *arg_words = &cum->arg_words; cum->last_arg_fp = 0; switch (mode) { case SFmode: case DFmode: case VOIDmode: case QImode: case HImode: case SImode: case DImode: case TImode: regbase = GP_ARG_FIRST; break; default: gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); /* Drops through. */ case BLKmode: regbase = GP_ARG_FIRST; break; } if (*arg_words >= MAX_ARGS_IN_REGISTERS) ret = 0; else { gcc_assert (regbase != -1); ret = gen_rtx_REG (mode, regbase + *arg_words); } if (mode == VOIDmode) { if (cum->num_adjusts > 0) ret = gen_rtx_PARALLEL ((enum machine_mode) cum->fp_code, gen_rtvec_v (cum->num_adjusts, cum->adjust)); } return ret; } /* Return number of bytes of argument to put in registers. */ static int function_arg_partial_bytes (cumulative_args_t cum_v, enum machine_mode mode, tree type, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); if ((mode == BLKmode || GET_MODE_CLASS (mode) != MODE_COMPLEX_INT || GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) && cum->arg_words < MAX_ARGS_IN_REGISTERS) { int words; if (mode == BLKmode) words = ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD); else words = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (words + cum->arg_words <= MAX_ARGS_IN_REGISTERS) return 0; /* structure fits in registers */ return (MAX_ARGS_IN_REGISTERS - cum->arg_words) * UNITS_PER_WORD; } else if (mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS - 1) return UNITS_PER_WORD; return 0; } /* Convert a version number of the form "vX.YY.Z" to an integer encoding for easier range comparison. */ static int microblaze_version_to_int (const char *version) { const char *p, *v; const char *tmpl = "vX.YY.Z"; int iver = 0; p = version; v = tmpl; while (*v) { if (*v == 'X') { /* Looking for major */ if (!(*p >= '0' && *p <= '9')) return -1; iver += (int) (*p - '0'); iver *= 10; } else if (*v == 'Y') { /* Looking for minor */ if (!(*p >= '0' && *p <= '9')) return -1; iver += (int) (*p - '0'); iver *= 10; } else if (*v == 'Z') { /* Looking for compat */ if (!(*p >= 'a' && *p <= 'z')) return -1; iver *= 10; iver += (int) (*p - 'a'); } else { if (*p != *v) return -1; } v++; p++; } if (*p) return -1; return iver; } static void microblaze_option_override (void) { register int i, start; register int regno; register enum machine_mode mode; int ver; microblaze_section_threshold = (global_options_set.x_g_switch_value ? g_switch_value : MICROBLAZE_DEFAULT_GVALUE); /* Check the MicroBlaze CPU version for any special action to be done. */ if (microblaze_select_cpu == NULL) microblaze_select_cpu = MICROBLAZE_DEFAULT_CPU; ver = microblaze_version_to_int (microblaze_select_cpu); if (ver == -1) { error ("%qs is an invalid argument to -mcpu=", microblaze_select_cpu); } ver = MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v3.00.a"); if (ver < 0) { /* No hardware exceptions in earlier versions. So no worries. */ #if 0 microblaze_select_flags &= ~(MICROBLAZE_MASK_NO_UNSAFE_DELAY); #endif microblaze_no_unsafe_delay = 0; microblaze_pipe = MICROBLAZE_PIPE_3; } else if (ver == 0 || (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v4.00.b") == 0)) { #if 0 microblaze_select_flags |= (MICROBLAZE_MASK_NO_UNSAFE_DELAY); #endif microblaze_no_unsafe_delay = 1; microblaze_pipe = MICROBLAZE_PIPE_3; } else { /* We agree to use 5 pipe-stage model even on area optimized 3 pipe-stage variants. */ #if 0 microblaze_select_flags &= ~(MICROBLAZE_MASK_NO_UNSAFE_DELAY); #endif microblaze_no_unsafe_delay = 0; microblaze_pipe = MICROBLAZE_PIPE_5; if (MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.a") == 0 || MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.b") == 0 || MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v5.00.c") == 0) { /* Pattern compares are to be turned on by default only when compiling for MB v5.00.'z'. */ target_flags |= MASK_PATTERN_COMPARE; } } ver = MICROBLAZE_VERSION_COMPARE (microblaze_select_cpu, "v6.00.a"); if (ver < 0) { if (TARGET_MULTIPLY_HIGH) warning (0, "-mxl-multiply-high can be used only with -mcpu=v6.00.a or greater"); } if (TARGET_MULTIPLY_HIGH && TARGET_SOFT_MUL) error ("-mxl-multiply-high requires -mno-xl-soft-mul"); /* Always use DFA scheduler. */ microblaze_sched_use_dfa = 1; #if 0 microblaze_abicalls = MICROBLAZE_ABICALLS_NO; #endif /* Initialize the high, low values for legit floating point constants. */ real_maxval (&dfhigh, 0, DFmode); real_maxval (&dflow, 1, DFmode); real_maxval (&sfhigh, 0, SFmode); real_maxval (&sflow, 1, SFmode); microblaze_print_operand_punct['?'] = 1; microblaze_print_operand_punct['#'] = 1; microblaze_print_operand_punct['&'] = 1; microblaze_print_operand_punct['!'] = 1; microblaze_print_operand_punct['*'] = 1; microblaze_print_operand_punct['@'] = 1; microblaze_print_operand_punct['.'] = 1; microblaze_print_operand_punct['('] = 1; microblaze_print_operand_punct[')'] = 1; microblaze_print_operand_punct['['] = 1; microblaze_print_operand_punct[']'] = 1; microblaze_print_operand_punct['<'] = 1; microblaze_print_operand_punct['>'] = 1; microblaze_print_operand_punct['{'] = 1; microblaze_print_operand_punct['}'] = 1; microblaze_print_operand_punct['^'] = 1; microblaze_print_operand_punct['$'] = 1; microblaze_print_operand_punct['+'] = 1; /* Set up array to map GCC register number to debug register number. Ignore the special purpose register numbers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) microblaze_dbx_regno[i] = -1; start = GP_DBX_FIRST - GP_REG_FIRST; for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++) microblaze_dbx_regno[i] = i + start; /* Set up array giving whether a given register can hold a given mode. */ for (mode = VOIDmode; mode != MAX_MACHINE_MODE; mode = (enum machine_mode) ((int) mode + 1)) { register int size = GET_MODE_SIZE (mode); for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) { register int ok; if (mode == CCmode) { ok = (ST_REG_P (regno) || GP_REG_P (regno)); } else if (GP_REG_P (regno)) ok = ((regno & 1) == 0 || size <= UNITS_PER_WORD); else ok = 0; microblaze_hard_regno_mode_ok[(int) mode][regno] = ok; } } } /* Return true if FUNC is an interrupt function as specified by the "interrupt_handler" attribute. */ static int microblaze_interrupt_function_p (tree func) { tree a; if (TREE_CODE (func) != FUNCTION_DECL) return 0; a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func)); return a != NULL_TREE; } /* Return true if FUNC is an interrupt function which uses normal return, indicated by the "save_volatiles" attribute. */ static int microblaze_save_volatiles (tree func) { tree a; if (TREE_CODE (func) != FUNCTION_DECL) return 0; a = lookup_attribute ("save_volatiles", DECL_ATTRIBUTES (func)); return a != NULL_TREE; } /* Return whether function is tagged with 'interrupt_handler' attribute. Return true if function should use return from interrupt rather than normal function return. */ int microblaze_is_interrupt_handler (void) { return interrupt_handler; } /* Determine of register must be saved/restored in call. */ static int microblaze_must_save_register (int regno) { if (pic_offset_table_rtx && (regno == MB_ABI_PIC_ADDR_REGNUM) && df_regs_ever_live_p (regno)) return 1; if (df_regs_ever_live_p (regno) && !call_used_regs[regno]) return 1; if (frame_pointer_needed && (regno == HARD_FRAME_POINTER_REGNUM)) return 1; if (!crtl->is_leaf) { if (regno == MB_ABI_SUB_RETURN_ADDR_REGNUM) return 1; if ((interrupt_handler || save_volatiles) && (regno >= 3 && regno <= 12)) return 1; } if (interrupt_handler) { if (df_regs_ever_live_p (regno) || regno == MB_ABI_MSR_SAVE_REG || regno == MB_ABI_ASM_TEMP_REGNUM || regno == MB_ABI_EXCEPTION_RETURN_ADDR_REGNUM) return 1; } if (save_volatiles) { if (df_regs_ever_live_p (regno) || regno == MB_ABI_ASM_TEMP_REGNUM || regno == MB_ABI_EXCEPTION_RETURN_ADDR_REGNUM) return 1; } return 0; } /* Return the bytes needed to compute the frame pointer from the current stack pointer. MicroBlaze stack frames look like: Before call After call +-----------------------+ +-----------------------+ high | | | | mem. | local variables, | | local variables, | | callee saved and | | callee saved and | | temps | | temps | +-----------------------+ +-----------------------+ | arguments for called | | arguments for called | | subroutines | | subroutines | | (optional) | | (optional) | +-----------------------+ +-----------------------+ | Link register | | Link register | SP->| | | | +-----------------------+ +-----------------------+ | | | local variables, | | callee saved and | | temps | +-----------------------+ | MSR (optional if, | | interrupt handler) | +-----------------------+ | | | alloca allocations | | | +-----------------------+ | | | arguments for called | | subroutines | | (optional) | | | +-----------------------+ | Link register | low FP,SP->| | memory +-----------------------+ */ static HOST_WIDE_INT compute_frame_size (HOST_WIDE_INT size) { int regno; HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up. */ HOST_WIDE_INT var_size; /* # bytes that local variables take up. */ HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up. */ int link_debug_size; /* # bytes for link register. */ HOST_WIDE_INT gp_reg_size; /* # bytes needed to store calle-saved gp regs. */ long mask; /* mask of saved gp registers. */ interrupt_handler = microblaze_interrupt_function_p (current_function_decl); save_volatiles = microblaze_save_volatiles (current_function_decl); gp_reg_size = 0; mask = 0; var_size = size; args_size = crtl->outgoing_args_size; if ((args_size == 0) && cfun->calls_alloca) args_size = NUM_OF_ARGS * UNITS_PER_WORD; total_size = var_size + args_size; if (flag_pic == 2) /* force setting GOT. */ df_set_regs_ever_live (MB_ABI_PIC_ADDR_REGNUM, true); /* Calculate space needed for gp registers. */ for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) { if (microblaze_must_save_register (regno)) { if (regno != MB_ABI_SUB_RETURN_ADDR_REGNUM) /* Don't account for link register. It is accounted specially below. */ gp_reg_size += GET_MODE_SIZE (SImode); mask |= (1L << (regno - GP_REG_FIRST)); } } total_size += gp_reg_size; /* Add 4 bytes for MSR. */ if (interrupt_handler) total_size += 4; /* No space to be allocated for link register in leaf functions with no other stack requirements. */ if (total_size == 0 && crtl->is_leaf) link_debug_size = 0; else link_debug_size = UNITS_PER_WORD; total_size += link_debug_size; /* Save other computed information. */ current_frame_info.total_size = total_size; current_frame_info.var_size = var_size; current_frame_info.args_size = args_size; current_frame_info.gp_reg_size = gp_reg_size; current_frame_info.mask = mask; current_frame_info.initialized = reload_completed; current_frame_info.num_gp = gp_reg_size / UNITS_PER_WORD; current_frame_info.link_debug_size = link_debug_size; if (mask) /* Offset from which to callee-save GP regs. */ current_frame_info.gp_offset = (total_size - gp_reg_size); else current_frame_info.gp_offset = 0; /* Ok, we're done. */ return total_size; } /* Make sure that we're not trying to eliminate to the wrong hard frame pointer. */ static bool microblaze_can_eliminate (const int from, const int to) { return ((from == RETURN_ADDRESS_POINTER_REGNUM && !leaf_function_p()) || (to == MB_ABI_SUB_RETURN_ADDR_REGNUM && leaf_function_p()) || (from != RETURN_ADDRESS_POINTER_REGNUM && (to == HARD_FRAME_POINTER_REGNUM || (to == STACK_POINTER_REGNUM && !frame_pointer_needed)))); } /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer or argument pointer or the return address pointer. TO is either the stack pointer or hard frame pointer. */ HOST_WIDE_INT microblaze_initial_elimination_offset (int from, int to) { HOST_WIDE_INT offset; switch (from) { case FRAME_POINTER_REGNUM: offset = 0; break; case ARG_POINTER_REGNUM: if (to == STACK_POINTER_REGNUM || to == HARD_FRAME_POINTER_REGNUM) offset = compute_frame_size (get_frame_size ()); else gcc_unreachable (); break; case RETURN_ADDRESS_POINTER_REGNUM: if (crtl->is_leaf) offset = 0; else offset = current_frame_info.gp_offset + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT))); break; default: gcc_unreachable (); } return offset; } /* Print operands using format code. The MicroBlaze specific codes are: 'X' X is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x", 'x' X is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x", 'F' op is CONST_DOUBLE, print 32 bits in hex, 'd' output integer constant in decimal, 'z' if the operand is 0, use $0 instead of normal operand. 'D' print second register of double-word register operand. 'L' print low-order register of double-word register operand. 'M' print high-order register of double-word register operand. 'C' print part of opcode for a branch condition. 'N' print part of opcode for a branch condition, inverted. 'S' X is CODE_LABEL, print with prefix of "LS" (for embedded switch). 'B' print 'z' for EQ, 'n' for NE 'b' print 'n' for EQ, 'z' for NE 'T' print 'f' for EQ, 't' for NE 't' print 't' for EQ, 'f' for NE 'm' Print 1<> 32; val[1] = INTVAL (op) & 0x00000000ffffffffLL; if (val[0] == 0 && val[1] < 0) val[0] = -1; } fprintf (file, "0x%8.8lx", (letter == 'h') ? val[0] : val[1]); } else if (code == CONST_DOUBLE) { if (letter == 'F') { unsigned long value_long; REAL_VALUE_TYPE value; REAL_VALUE_FROM_CONST_DOUBLE (value, op); REAL_VALUE_TO_TARGET_SINGLE (value, value_long); fprintf (file, HOST_WIDE_INT_PRINT_HEX, value_long); } else { char s[60]; real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1); fputs (s, file); } } else if (code == UNSPEC) { print_operand_address (file, op); } else if (letter == 'x' && GET_CODE (op) == CONST_INT) fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL (op)); else if (letter == 'X' && GET_CODE (op) == CONST_INT) fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op)); else if (letter == 'd' && GET_CODE (op) == CONST_INT) fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL (op))); else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0) fputs (reg_names[GP_REG_FIRST], file); else if (letter == 's' && GET_CODE (op) == CONST_INT) if (INTVAL (op) < 0) fputs ("-1", file); else fputs ("0", file); else if (letter == 'd' || letter == 'x' || letter == 'X' || letter == 's') output_operand_lossage ("letter %c was found & insn was not CONST_INT", letter); else if (letter == 'B') fputs (code == EQ ? "z" : "n", file); else if (letter == 'b') fputs (code == EQ ? "n" : "z", file); else if (letter == 'T') fputs (code == EQ ? "f" : "t", file); else if (letter == 't') fputs (code == EQ ? "t" : "f", file); else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG) { print_operand (file, XEXP (op, 0), letter); } else if (letter == 'm') fprintf (file, HOST_WIDE_INT_PRINT_DEC, (1L << INTVAL (op))); else output_addr_const (file, op); } /* A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand that is a memory reference whose address is ADDR. ADDR is an RTL expression. Possible address classifications and output formats are, ADDRESS_REG "%0, r0" ADDRESS_REG with non-zero "%0, " offset ADDRESS_REG_INDEX "rA, RB" (if rA is r0, rA and rB are swapped) ADDRESS_CONST_INT "r0, " ADDRESS_SYMBOLIC "rBase, " (rBase is a base register suitable for the symbol's type) */ void print_operand_address (FILE * file, rtx addr) { struct microblaze_address_info info; enum microblaze_address_type type; if (!microblaze_classify_address (&info, addr, GET_MODE (addr), 1)) fatal_insn ("insn contains an invalid address !", addr); type = info.type; switch (info.type) { case ADDRESS_REG: fprintf (file, "%s,", reg_names[REGNO (info.regA)]); output_addr_const (file, info.offset); break; case ADDRESS_REG_INDEX: if (REGNO (info.regA) == 0) /* Make rB == r0 instead of rA == r0. This helps reduce read port congestion. */ fprintf (file, "%s,%s", reg_names[REGNO (info.regB)], reg_names[REGNO (info.regA)]); else if (REGNO (info.regB) != 0) /* This is a silly swap to help Dhrystone. */ fprintf (file, "%s,%s", reg_names[REGNO (info.regB)], reg_names[REGNO (info.regA)]); break; case ADDRESS_CONST_INT: fprintf (file, "%s,", reg_names[REGNO (info.regA)]); output_addr_const (file, info.offset); break; case ADDRESS_SYMBOLIC: case ADDRESS_GOTOFF: case ADDRESS_PLT: if (info.regA) fprintf (file, "%s,", reg_names[REGNO (info.regA)]); output_addr_const (file, info.symbol); if (type == ADDRESS_GOTOFF) { fputs ("@GOT", file); } else if (type == ADDRESS_PLT) { fputs ("@PLT", file); } break; case ADDRESS_INVALID: fatal_insn ("invalid address", addr); break; } } /* Emit either a label, .comm, or .lcomm directive, and mark that the symbol is used, so that we don't emit an .extern for it in microblaze_asm_file_end. */ void microblaze_declare_object (FILE * stream, const char *name, const char *section, const char *fmt, int size) { fputs (section, stream); assemble_name (stream, name); fprintf (stream, fmt, size); } /* Common code to emit the insns (or to write the instructions to a file) to save/restore registers. Other parts of the code assume that MICROBLAZE_TEMP1_REGNUM (aka large_reg) is not modified within save_restore_insns. */ #define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0) /* Save or restore instructions based on whether this is the prologue or epilogue. prologue is 1 for the prologue. */ static void save_restore_insns (int prologue) { rtx base_reg_rtx, reg_rtx, mem_rtx, /* msr_rtx, */ isr_reg_rtx = 0, isr_mem_rtx = 0; rtx isr_msr_rtx = 0, insn; long mask = current_frame_info.mask; HOST_WIDE_INT gp_offset; int regno; if (frame_pointer_needed && !BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST)) gcc_unreachable (); if (mask == 0) return; /* Save registers starting from high to low. The debuggers prefer at least the return register be stored at func+4, and also it allows us not to need a nop in the epilog if at least one register is reloaded in addition to return address. */ /* Pick which pointer to use as a base register. For small frames, just use the stack pointer. Otherwise, use a temporary register. Save 2 cycles if the save area is near the end of a large frame, by reusing the constant created in the prologue/epilogue to adjust the stack frame. */ gp_offset = current_frame_info.gp_offset; gcc_assert (gp_offset > 0); base_reg_rtx = stack_pointer_rtx; /* For interrupt_handlers, need to save/restore the MSR. */ if (interrupt_handler) { isr_mem_rtx = gen_rtx_MEM (SImode, gen_rtx_PLUS (Pmode, base_reg_rtx, GEN_INT (current_frame_info. gp_offset - UNITS_PER_WORD))); /* Do not optimize in flow analysis. */ MEM_VOLATILE_P (isr_mem_rtx) = 1; isr_reg_rtx = gen_rtx_REG (SImode, MB_ABI_MSR_SAVE_REG); isr_msr_rtx = gen_rtx_REG (SImode, ST_REG); } if (interrupt_handler && !prologue) { emit_move_insn (isr_reg_rtx, isr_mem_rtx); emit_move_insn (isr_msr_rtx, isr_reg_rtx); /* Do not optimize in flow analysis. */ emit_insn (gen_rtx_USE (SImode, isr_reg_rtx)); emit_insn (gen_rtx_USE (SImode, isr_msr_rtx)); } for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) { if (BITSET_P (mask, regno - GP_REG_FIRST)) { if (regno == MB_ABI_SUB_RETURN_ADDR_REGNUM) /* Don't handle here. Already handled as the first register. */ continue; reg_rtx = gen_rtx_REG (SImode, regno); insn = gen_rtx_PLUS (Pmode, base_reg_rtx, GEN_INT (gp_offset)); mem_rtx = gen_rtx_MEM (SImode, insn); if (interrupt_handler || save_volatiles) /* Do not optimize in flow analysis. */ MEM_VOLATILE_P (mem_rtx) = 1; if (prologue) { insn = emit_move_insn (mem_rtx, reg_rtx); RTX_FRAME_RELATED_P (insn) = 1; } else { insn = emit_move_insn (reg_rtx, mem_rtx); } gp_offset += GET_MODE_SIZE (SImode); } } if (interrupt_handler && prologue) { emit_move_insn (isr_reg_rtx, isr_msr_rtx); emit_move_insn (isr_mem_rtx, isr_reg_rtx); /* Do not optimize in flow analysis. */ emit_insn (gen_rtx_USE (SImode, isr_reg_rtx)); emit_insn (gen_rtx_USE (SImode, isr_msr_rtx)); } /* Done saving and restoring */ } /* Set up the stack and frame (if desired) for the function. */ static void microblaze_function_prologue (FILE * file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { const char *fnname; long fsiz = current_frame_info.total_size; /* Get the function name the same way that toplev.c does before calling assemble_start_function. This is needed so that the name used here exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */ fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); if (!flag_inhibit_size_directive) { fputs ("\t.ent\t", file); if (interrupt_handler && strcmp (INTERRUPT_HANDLER_NAME, fnname)) fputs ("_interrupt_handler", file); else assemble_name (file, fnname); fputs ("\n", file); if (!interrupt_handler) ASM_OUTPUT_TYPE_DIRECTIVE (file, fnname, "function"); } assemble_name (file, fnname); fputs (":\n", file); if (interrupt_handler && strcmp (INTERRUPT_HANDLER_NAME, fnname)) fputs ("_interrupt_handler:\n", file); if (!flag_inhibit_size_directive) { /* .frame FRAMEREG, FRAMESIZE, RETREG. */ fprintf (file, "\t.frame\t%s,%ld,%s\t\t# vars= %ld, regs= %d, args= %d\n", (reg_names[(frame_pointer_needed) ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]), fsiz, reg_names[MB_ABI_SUB_RETURN_ADDR_REGNUM + GP_REG_FIRST], current_frame_info.var_size, current_frame_info.num_gp, crtl->outgoing_args_size); fprintf (file, "\t.mask\t0x%08lx\n", current_frame_info.mask); } } /* Output extra assembler code at the end of a prologue. */ static void microblaze_function_end_prologue (FILE * file) { if (TARGET_STACK_CHECK) { fprintf (file, "\t# Stack Check Stub -- Start.\n\t"); fprintf (file, "ori\tr18,r0,_stack_end\n\t"); fprintf (file, "cmpu\tr18,r1,r18\n\t"); fprintf (file, "bgei\tr18,_stack_overflow_exit\n\t"); fprintf (file, "# Stack Check Stub -- End.\n"); } } /* Expand the prologue into a bunch of separate insns. */ void microblaze_expand_prologue (void) { int regno; HOST_WIDE_INT fsiz; const char *arg_name = 0; tree fndecl = current_function_decl; tree fntype = TREE_TYPE (fndecl); tree fnargs = DECL_ARGUMENTS (fndecl); rtx next_arg_reg; int i; tree next_arg; tree cur_arg; CUMULATIVE_ARGS args_so_far_v; cumulative_args_t args_so_far; rtx mem_rtx, reg_rtx; /* If struct value address is treated as the first argument, make it so. */ if (aggregate_value_p (DECL_RESULT (fndecl), fntype) && !cfun->returns_pcc_struct) { tree type = build_pointer_type (fntype); tree function_result_decl = build_decl (BUILTINS_LOCATION, PARM_DECL, NULL_TREE, type); DECL_ARG_TYPE (function_result_decl) = type; TREE_CHAIN (function_result_decl) = fnargs; fnargs = function_result_decl; } /* Determine the last argument, and get its name. */ INIT_CUMULATIVE_ARGS (args_so_far_v, fntype, NULL_RTX, 0, 0); args_so_far = pack_cumulative_args (&args_so_far_v); regno = GP_ARG_FIRST; for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg) { tree passed_type = DECL_ARG_TYPE (cur_arg); enum machine_mode passed_mode = TYPE_MODE (passed_type); rtx entry_parm; if (TREE_ADDRESSABLE (passed_type)) { passed_type = build_pointer_type (passed_type); passed_mode = Pmode; } entry_parm = targetm.calls.function_arg (args_so_far, passed_mode, passed_type, true); if (entry_parm) { int words; /* passed in a register, so will get homed automatically. */ if (GET_MODE (entry_parm) == BLKmode) words = (int_size_in_bytes (passed_type) + 3) / 4; else words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4; regno = REGNO (entry_parm) + words - 1; } else { regno = GP_ARG_LAST + 1; break; } targetm.calls.function_arg_advance (args_so_far, passed_mode, passed_type, true); next_arg = TREE_CHAIN (cur_arg); if (next_arg == 0) { if (DECL_NAME (cur_arg)) arg_name = IDENTIFIER_POINTER (DECL_NAME (cur_arg)); break; } } /* Split parallel insn into a sequence of insns. */ next_arg_reg = targetm.calls.function_arg (args_so_far, VOIDmode, void_type_node, true); if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL) { rtvec adjust = XVEC (next_arg_reg, 0); int num = GET_NUM_ELEM (adjust); for (i = 0; i < num; i++) { rtx pattern = RTVEC_ELT (adjust, i); emit_insn (pattern); } } fsiz = compute_frame_size (get_frame_size ()); /* If this function is a varargs function, store any registers that would normally hold arguments ($5 - $10) on the stack. */ if (((TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)) || (arg_name != 0 && ((arg_name[0] == '_' && strcmp (arg_name, "__builtin_va_alist") == 0) || (arg_name[0] == 'v' && strcmp (arg_name, "va_alist") == 0))))) { int offset = (regno - GP_ARG_FIRST + 1) * UNITS_PER_WORD; rtx ptr = stack_pointer_rtx; /* If we are doing svr4-abi, sp has already been decremented by fsiz. */ for (; regno <= GP_ARG_LAST; regno++) { if (offset != 0) ptr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset)); emit_move_insn (gen_rtx_MEM (SImode, ptr), gen_rtx_REG (SImode, regno)); offset += GET_MODE_SIZE (SImode); } } if (fsiz > 0) { rtx fsiz_rtx = GEN_INT (fsiz); rtx insn = NULL; insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, fsiz_rtx)); if (insn) RTX_FRAME_RELATED_P (insn) = 1; /* Handle SUB_RETURN_ADDR_REGNUM specially at first. */ if (!crtl->is_leaf || interrupt_handler) { mem_rtx = gen_rtx_MEM (SImode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, const0_rtx)); if (interrupt_handler) /* Do not optimize in flow analysis. */ MEM_VOLATILE_P (mem_rtx) = 1; reg_rtx = gen_rtx_REG (SImode, MB_ABI_SUB_RETURN_ADDR_REGNUM); insn = emit_move_insn (mem_rtx, reg_rtx); RTX_FRAME_RELATED_P (insn) = 1; } /* _save_ registers for prologue. */ save_restore_insns (1); if (frame_pointer_needed) { rtx insn = 0; insn = emit_insn (gen_movsi (hard_frame_pointer_rtx, stack_pointer_rtx)); if (insn) RTX_FRAME_RELATED_P (insn) = 1; } } if (flag_pic == 2 && df_regs_ever_live_p (MB_ABI_PIC_ADDR_REGNUM)) { SET_REGNO (pic_offset_table_rtx, MB_ABI_PIC_ADDR_REGNUM); emit_insn (gen_set_got (pic_offset_table_rtx)); /* setting GOT. */ } /* If we are profiling, make sure no instructions are scheduled before the call to mcount. */ if (profile_flag) emit_insn (gen_blockage ()); } /* Do necessary cleanup after a function to restore stack, frame, and regs. */ #define RA_MASK ((long) 0x80000000) /* 1 << 31 */ #define PIC_OFFSET_TABLE_MASK (1 << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST)) static void microblaze_function_epilogue (FILE * file ATTRIBUTE_UNUSED, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { const char *fnname; /* Get the function name the same way that toplev.c does before calling assemble_start_function. This is needed so that the name used here exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */ fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); if (!flag_inhibit_size_directive) { fputs ("\t.end\t", file); if (interrupt_handler) fputs ("_interrupt_handler", file); else assemble_name (file, fnname); fputs ("\n", file); } /* Reset state info for each function. */ current_frame_info = zero_frame_info; /* Restore the output file if optimizing the GP (optimizing the GP causes the text to be diverted to a tempfile, so that data decls come before references to the data). */ } /* Expand the epilogue into a bunch of separate insns. */ void microblaze_expand_epilogue (void) { HOST_WIDE_INT fsiz = current_frame_info.total_size; rtx fsiz_rtx = GEN_INT (fsiz); rtx reg_rtx; rtx mem_rtx; /* In case of interrupt handlers use addki instead of addi for changing the stack pointer value. */ if (microblaze_can_use_return_insn ()) { emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, GP_REG_FIRST + MB_ABI_SUB_RETURN_ADDR_REGNUM))); return; } if (fsiz > 0) { /* Restore SUB_RETURN_ADDR_REGNUM at first. This is to prevent the sequence of load-followed by a use (in rtsd) in every prologue. Saves a load-use stall cycle :) This is also important to handle alloca. (See comments for if (frame_pointer_needed) below. */ if (!crtl->is_leaf || interrupt_handler) { mem_rtx = gen_rtx_MEM (SImode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, const0_rtx)); if (interrupt_handler) /* Do not optimize in flow analysis. */ MEM_VOLATILE_P (mem_rtx) = 1; reg_rtx = gen_rtx_REG (SImode, MB_ABI_SUB_RETURN_ADDR_REGNUM); emit_move_insn (reg_rtx, mem_rtx); } /* It is important that this is done after we restore the return address register (above). When alloca is used, we want to restore the sub-routine return address only from the current stack top and not from the frame pointer (which we restore below). (frame_pointer + 0) might have been over-written since alloca allocates memory on the current stack. */ if (frame_pointer_needed) emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx)); /* _restore_ registers for epilogue. */ save_restore_insns (0); emit_insn (gen_blockage ()); emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, fsiz_rtx)); } emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, GP_REG_FIRST + MB_ABI_SUB_RETURN_ADDR_REGNUM))); } /* Return nonzero if this function is known to have a null epilogue. This allows the optimizer to omit jumps to jumps if no stack was created. */ int microblaze_can_use_return_insn (void) { if (!reload_completed) return 0; if (df_regs_ever_live_p (MB_ABI_SUB_RETURN_ADDR_REGNUM) || profile_flag) return 0; if (current_frame_info.initialized) return current_frame_info.total_size == 0; return compute_frame_size (get_frame_size ()) == 0; } /* Implement TARGET_SECONDARY_RELOAD. */ static reg_class_t microblaze_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x ATTRIBUTE_UNUSED, reg_class_t rclass, enum machine_mode mode ATTRIBUTE_UNUSED, secondary_reload_info *sri ATTRIBUTE_UNUSED) { if (rclass == ST_REGS) return GR_REGS; return NO_REGS; } static void microblaze_globalize_label (FILE * stream, const char *name) { fputs ("\t.globl\t", stream); if (interrupt_handler && strcmp (name, INTERRUPT_HANDLER_NAME)) { fputs (INTERRUPT_HANDLER_NAME, stream); fputs ("\n\t.globl\t", stream); } assemble_name (stream, name); fputs ("\n", stream); } /* Returns true if decl should be placed into a "small data" section. */ static bool microblaze_elf_in_small_data_p (const_tree decl) { HOST_WIDE_INT size; if (!TARGET_XLGPOPT) return false; /* We want to merge strings, so we never consider them small data. */ if (TREE_CODE (decl) == STRING_CST) return false; /* Functions are never in the small data area. */ if (TREE_CODE (decl) == FUNCTION_DECL) return false; if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl)) { const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (decl)); if (strcmp (section, ".sdata") == 0 || strcmp (section, ".sdata2") == 0 || strcmp (section, ".sbss") == 0 || strcmp (section, ".sbss2") == 0) return true; } size = int_size_in_bytes (TREE_TYPE (decl)); return (size > 0 && size <= microblaze_section_threshold); } static section * microblaze_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align) { switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: /* MB binutils have various issues with mergeable string sections and relaxation/relocation. Currently, turning mergeable sections into regular readonly sections. */ return readonly_data_section; default: return default_elf_select_section (decl, reloc, align); } } /* Encode info about sections into the RTL based on a symbol's declaration. The default definition of this hook, default_encode_section_info in `varasm.c', sets a number of commonly-useful bits in SYMBOL_REF_FLAGS. */ static void microblaze_encode_section_info (tree decl, rtx rtl, int first) { default_encode_section_info (decl, rtl, first); } static rtx expand_pic_symbol_ref (enum machine_mode mode ATTRIBUTE_UNUSED, rtx op) { rtx result; result = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op), UNSPEC_GOTOFF); result = gen_rtx_CONST (Pmode, result); result = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, result); result = gen_const_mem (Pmode, result); return result; } bool microblaze_expand_move (enum machine_mode mode, rtx operands[]) { /* If operands[1] is a constant address invalid for pic, then we need to handle it just like LEGITIMIZE_ADDRESS does. */ if (flag_pic) { if (GET_CODE (operands[0]) == MEM) { rtx addr = XEXP (operands[0], 0); if (GET_CODE (addr) == SYMBOL_REF) { rtx ptr_reg, result; if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); addr = expand_pic_symbol_ref (mode, addr); ptr_reg = gen_reg_rtx (Pmode); emit_move_insn (ptr_reg, addr); result = gen_rtx_MEM (mode, ptr_reg); operands[0] = result; } } if (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == LABEL_REF) { rtx result; if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); result = expand_pic_symbol_ref (mode, operands[1]); if (GET_CODE (operands[0]) != REG) { rtx ptr_reg = gen_reg_rtx (Pmode); emit_move_insn (ptr_reg, result); emit_move_insn (operands[0], ptr_reg); } else { emit_move_insn (operands[0], result); } return true; } else if (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF) { rtx result; rtx ptr_reg; if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); result = expand_pic_symbol_ref (mode, XEXP (operands[1], 0)); ptr_reg = gen_reg_rtx (Pmode); emit_move_insn (ptr_reg, result); result = gen_rtx_MEM (mode, ptr_reg); emit_move_insn (operands[0], result); return true; } else if (pic_address_needs_scratch (operands[1])) { rtx temp = force_reg (SImode, XEXP (XEXP (operands[1], 0), 0)); rtx temp2 = XEXP (XEXP (operands[1], 0), 1); if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); emit_move_insn (operands[0], gen_rtx_PLUS (SImode, temp, temp2)); return true; } } if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], SImode) && !register_operand (operands[1], SImode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0)) { rtx temp = force_reg (SImode, operands[1]); emit_move_insn (operands[0], temp); return true; } return false; } /* Expand shift operations. */ int microblaze_expand_shift (rtx operands[]) { gcc_assert ((GET_CODE (operands[2]) == CONST_INT) || (GET_CODE (operands[2]) == REG) || (GET_CODE (operands[2]) == SUBREG)); /* Shift by one -- generate pattern. */ if ((GET_CODE (operands[2]) == CONST_INT) && (INTVAL (operands[2]) == 1)) return 0; /* Have barrel shifter and shift > 1: use it. */ if (TARGET_BARREL_SHIFT) return 0; gcc_assert ((GET_CODE (operands[0]) == REG) || (GET_CODE (operands[0]) == SUBREG) || (GET_CODE (operands[1]) == REG) || (GET_CODE (operands[1]) == SUBREG)); /* Shift by zero -- copy regs if necessary. */ if ((GET_CODE (operands[2]) == CONST_INT) && (INTVAL (operands[2]) == 0)) { if (REGNO (operands[0]) != REGNO (operands[1])) emit_insn (gen_movsi (operands[0], operands[1])); return 1; } return 0; } /* Return an RTX indicating where the return address to the calling function can be found. */ rtx microblaze_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) { if (count != 0) return NULL_RTX; return gen_rtx_PLUS (Pmode, get_hard_reg_initial_val (Pmode, MB_ABI_SUB_RETURN_ADDR_REGNUM), GEN_INT (8)); } /* Queue an .ident string in the queue of top-level asm statements. If the string size is below the threshold, put it into .sdata2. If the front-end is done, we must be being called from toplev.c. In that case, do nothing. */ void microblaze_asm_output_ident (const char *string) { const char *section_asm_op; int size; char *buf; if (cgraph_state != CGRAPH_STATE_PARSING) return; size = strlen (string) + 1; if (size <= microblaze_section_threshold) section_asm_op = SDATA2_SECTION_ASM_OP; else section_asm_op = READONLY_DATA_SECTION_ASM_OP; buf = ACONCAT ((section_asm_op, "\n\t.ascii \"", string, "\\0\"\n", NULL)); add_asm_node (build_string (strlen (buf), buf)); } static void microblaze_elf_asm_init_sections (void) { sdata2_section = get_unnamed_section (SECTION_WRITE, output_section_asm_op, SDATA2_SECTION_ASM_OP); } /* Generate assembler code for constant parts of a trampoline. */ static void microblaze_asm_trampoline_template (FILE *f) { fprintf (f, "\t.word\t0x03e00821\t\t# move $1,$31\n"); fprintf (f, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); fprintf (f, "\t.word\t0x00000000\t\t# nop\n"); fprintf (f, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); fprintf (f, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); fprintf (f, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); fprintf (f, "\t.word\t0x00600008\t\t# jr $3\n"); fprintf (f, "\t.word\t0x0020f821\t\t# move $31,$1\n"); /* fprintf (f, "\t.word\t0x00000000\t\t# \n"); */ /* fprintf (f, "\t.word\t0x00000000\t\t# \n"); */ } /* Implement TARGET_TRAMPOLINE_INIT. */ static void microblaze_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx fnaddr = XEXP (DECL_RTL (fndecl), 0); rtx mem; emit_block_move (m_tramp, assemble_trampoline_template (), GEN_INT (8*UNITS_PER_WORD), BLOCK_OP_NORMAL); mem = adjust_address (m_tramp, SImode, 8); emit_move_insn (mem, chain_value); mem = adjust_address (m_tramp, SImode, 12); emit_move_insn (mem, fnaddr); } /* Emit instruction to perform compare. cmp is (compare_op op0 op1). */ static rtx microblaze_emit_compare (enum machine_mode mode, rtx cmp, enum rtx_code *cmp_code) { rtx cmp_op0 = XEXP (cmp, 0); rtx cmp_op1 = XEXP (cmp, 1); rtx comp_reg = gen_reg_rtx (SImode); enum rtx_code code = *cmp_code; gcc_assert ((GET_CODE (cmp_op0) == REG) || (GET_CODE (cmp_op0) == SUBREG)); /* If comparing against zero, just test source reg. */ if (cmp_op1 == const0_rtx) return cmp_op0; if (code == EQ || code == NE) { if (TARGET_PATTERN_COMPARE && GET_CODE(cmp_op1) == REG) { if (code == EQ) { emit_insn (gen_seq_internal_pat (comp_reg, cmp_op0, cmp_op1)); *cmp_code = NE; } else { emit_insn (gen_sne_internal_pat (comp_reg, cmp_op0, cmp_op1)); } } else /* Use xor for equal/not-equal comparison. */ emit_insn (gen_xorsi3 (comp_reg, cmp_op0, cmp_op1)); } else if (code == GT || code == GTU || code == LE || code == LEU) { /* MicroBlaze compare is not symmetrical. */ /* Swap argument order. */ cmp_op1 = force_reg (mode, cmp_op1); if (code == GT || code == LE) emit_insn (gen_signed_compare (comp_reg, cmp_op0, cmp_op1)); else emit_insn (gen_unsigned_compare (comp_reg, cmp_op0, cmp_op1)); /* Translate test condition. */ *cmp_code = swap_condition (code); } else /* if (code == GE || code == GEU || code == LT || code == LTU) */ { cmp_op1 = force_reg (mode, cmp_op1); if (code == GE || code == LT) emit_insn (gen_signed_compare (comp_reg, cmp_op1, cmp_op0)); else emit_insn (gen_unsigned_compare (comp_reg, cmp_op1, cmp_op0)); } return comp_reg; } /* Generate conditional branch -- first, generate test condition, second, generate correct branch instruction. */ void microblaze_expand_conditional_branch (enum machine_mode mode, rtx operands[]) { enum rtx_code code = GET_CODE (operands[0]); rtx comp; rtx condition; comp = microblaze_emit_compare (mode, operands[0], &code); condition = gen_rtx_fmt_ee (signed_condition (code), SImode, comp, const0_rtx); emit_jump_insn (gen_condjump (condition, operands[3])); } void microblaze_expand_conditional_branch_sf (rtx operands[]) { rtx condition; rtx cmp_op0 = XEXP (operands[0], 0); rtx cmp_op1 = XEXP (operands[0], 1); rtx comp_reg = gen_reg_rtx (SImode); emit_insn (gen_cstoresf4 (comp_reg, operands[0], cmp_op0, cmp_op1)); condition = gen_rtx_NE (SImode, comp_reg, const0_rtx); emit_jump_insn (gen_condjump (condition, operands[3])); } /* Implement TARGET_FRAME_POINTER_REQUIRED. */ static bool microblaze_frame_pointer_required (void) { /* If the function contains dynamic stack allocations, we need to use the frame pointer to access the static parts of the frame. */ if (cfun->calls_alloca) return true; return false; } void microblaze_expand_divide (rtx operands[]) { /* Table lookup software divides. Works for all (nr/dr) where (0 <= nr,dr <= 15). */ rtx regt1 = gen_reg_rtx (SImode); rtx reg18 = gen_rtx_REG (SImode, R_TMP); rtx regqi = gen_reg_rtx (QImode); rtx div_label = gen_label_rtx (); rtx div_end_label = gen_label_rtx (); rtx div_table_rtx = gen_rtx_SYMBOL_REF (QImode,"_divsi3_table"); rtx mem_rtx; rtx ret; rtx jump, cjump, insn; insn = emit_insn (gen_iorsi3 (regt1, operands[1], operands[2])); cjump = emit_jump_insn_after (gen_cbranchsi4 ( gen_rtx_GTU (SImode, regt1, GEN_INT (15)), regt1, GEN_INT (15), div_label), insn); LABEL_NUSES (div_label) = 1; JUMP_LABEL (cjump) = div_label; emit_insn (gen_rtx_CLOBBER (SImode, reg18)); emit_insn (gen_ashlsi3_bshift (regt1, operands[1], GEN_INT(4))); emit_insn (gen_addsi3 (regt1, regt1, operands[2])); mem_rtx = gen_rtx_MEM (QImode, gen_rtx_PLUS (Pmode, regt1, div_table_rtx)); insn = emit_insn (gen_movqi (regqi, mem_rtx)); insn = emit_insn (gen_movsi (operands[0], gen_rtx_SUBREG (SImode, regqi, 0))); jump = emit_jump_insn_after (gen_jump (div_end_label), insn); JUMP_LABEL (jump) = div_end_label; LABEL_NUSES (div_end_label) = 1; emit_barrier (); emit_label (div_label); ret = emit_library_call_value (gen_rtx_SYMBOL_REF (Pmode, "__divsi3"), operands[0], LCT_NORMAL, GET_MODE (operands[0]), 2, operands[1], GET_MODE (operands[1]), operands[2], GET_MODE (operands[2])); if (ret != operands[0]) emit_move_insn (operands[0], ret); emit_label (div_end_label); emit_insn (gen_blockage ()); } /* Implement TARGET_FUNCTION_VALUE. */ static rtx microblaze_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED, bool outgoing ATTRIBUTE_UNUSED) { return LIBCALL_VALUE (TYPE_MODE (valtype)); } /* Implement TARGET_SCHED_ADJUST_COST. */ static int microblaze_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link, rtx dep ATTRIBUTE_UNUSED, int cost) { if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT) return cost; if (REG_NOTE_KIND (link) != 0) return 0; return cost; } /* Implement TARGET_LEGITIMATE_CONSTANT_P. At present, GAS doesn't understand li.[sd], so don't allow it to be generated at present. */ static bool microblaze_legitimate_constant_p (enum machine_mode mode, rtx x) { return GET_CODE (x) != CONST_DOUBLE || microblaze_const_double_ok (x, mode); } #undef TARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO microblaze_encode_section_info #undef TARGET_ASM_GLOBALIZE_LABEL #define TARGET_ASM_GLOBALIZE_LABEL microblaze_globalize_label #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE microblaze_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE microblaze_function_epilogue #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS microblaze_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST microblaze_address_cost #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE microblaze_attribute_table #undef TARGET_IN_SMALL_DATA_P #define TARGET_IN_SMALL_DATA_P microblaze_elf_in_small_data_p #undef TARGET_ASM_SELECT_SECTION #define TARGET_ASM_SELECT_SECTION microblaze_select_section #undef TARGET_HAVE_SRODATA_SECTION #define TARGET_HAVE_SRODATA_SECTION true #undef TARGET_ASM_FUNCTION_END_PROLOGUE #define TARGET_ASM_FUNCTION_END_PROLOGUE \ microblaze_function_end_prologue #undef TARGET_ARG_PARTIAL_BYTES #define TARGET_ARG_PARTIAL_BYTES function_arg_partial_bytes #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG microblaze_function_arg #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE microblaze_function_arg_advance #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE microblaze_can_eliminate #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS microblaze_legitimize_address #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P microblaze_legitimate_address_p #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED microblaze_frame_pointer_required #undef TARGET_ASM_TRAMPOLINE_TEMPLATE #define TARGET_ASM_TRAMPOLINE_TEMPLATE microblaze_asm_trampoline_template #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT microblaze_trampoline_init #undef TARGET_PROMOTE_FUNCTION_MODE #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE microblaze_function_value #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD microblaze_secondary_reload #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST microblaze_adjust_cost #undef TARGET_ASM_INIT_SECTIONS #define TARGET_ASM_INIT_SECTIONS microblaze_elf_asm_init_sections #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE microblaze_option_override #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P microblaze_legitimate_constant_p struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-microblaze.h"