/* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. HP-PA 1.0 has 32 fullword registers and 16 floating point registers. The floating point registers hold either word or double word values. 16 additional registers are reserved. HP-PA 1.1 has 32 fullword registers and 32 floating point registers. However, the floating point registers behave differently: the left and right halves of registers are addressable as 32 bit registers. So, we will set things up like the 68k which has different fp units: define separate register sets for the 1.0 and 1.1 fp units. */ #define FIRST_PSEUDO_REGISTER 89 /* 32 general regs + 56 fp regs + + 1 shift reg */ /* 1 for registers that have pervasive standard uses and are not available for the register allocator. On the HP-PA, these are: Reg 0 = 0 (hardware). However, 0 is used for condition code, so is not fixed. Reg 1 = ADDIL target/Temporary (hardware). Reg 2 = Return Pointer Reg 3 = Frame Pointer Reg 4 = Frame Pointer (>8k varying frame with HP compilers only) Reg 4-18 = Preserved Registers Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme. Reg 20-22 = Temporary Registers Reg 23-26 = Temporary/Parameter Registers Reg 27 = Global Data Pointer (hp) Reg 28 = Temporary/Return Value register Reg 29 = Temporary/Static Chain/Return Value register #2 Reg 30 = stack pointer Reg 31 = Temporary/Millicode Return Pointer (hp) Freg 0-3 = Status Registers -- Not known to the compiler. Freg 4-7 = Arguments/Return Value Freg 8-11 = Temporary Registers Freg 12-15 = Preserved Registers Freg 16-31 = Reserved On the Snake, fp regs are Freg 0-3 = Status Registers -- Not known to the compiler. Freg 4L-7R = Arguments/Return Value Freg 8L-11R = Temporary Registers Freg 12L-21R = Preserved Registers Freg 22L-31R = Temporary Registers */ #define FIXED_REGISTERS \ {0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 1, 0, 0, 1, 0, \ /* fp registers */ \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0} /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. */ #define CALL_USED_REGISTERS \ {1, 1, 1, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ /* fp registers */ \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, \ 1} #define CONDITIONAL_REGISTER_USAGE \ { \ if (!TARGET_PA_11) \ { \ for (i = 56; i < 88; i++) \ fixed_regs[i] = call_used_regs[i] = 1; \ for (i = 33; i < 88; i += 2) \ fixed_regs[i] = call_used_regs[i] = 1; \ } \ if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\ { \ for (i = 32; i < 88; i++) \ fixed_regs[i] = call_used_regs[i] = 1; \ } \ if (flag_pic) \ { \ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ fixed_regs[PIC_OFFSET_TABLE_REGNUM_SAVED] = 1;\ } \ } /* Allocate the call used registers first. This should minimize the number of registers that need to be saved (as call used registers will generally not be allocated across a call). Experimentation has shown slightly better results by allocating FP registers first. FP registers are ordered so that all L registers are selected before R registers. This works around a false dependency interlock on the PA8000 when accessing the high and low parts of an FP register independently. */ #define REG_ALLOC_ORDER \ { \ /* caller-saved fp regs. */ \ 68, 70, 72, 74, 76, 78, 80, 82, \ 84, 86, 40, 42, 44, 46, 32, 34, \ 36, 38, \ 69, 71, 73, 75, 77, 79, 81, 83, \ 85, 87, 41, 43, 45, 47, 33, 35, \ 37, 39, \ /* caller-saved general regs. */ \ 19, 20, 21, 22, 23, 24, 25, 26, \ 27, 28, 29, 31, 2, \ /* callee-saved fp regs. */ \ 48, 50, 52, 54, 56, 58, 60, 62, \ 64, 66, \ 49, 51, 53, 55, 57, 59, 61, 63, \ 65, 67, \ /* callee-saved general regs. */ \ 3, 4, 5, 6, 7, 8, 9, 10, \ 11, 12, 13, 14, 15, 16, 17, 18, \ /* special registers. */ \ 1, 30, 0, 88} /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. On the HP-PA, ordinary registers hold 32 bits worth; The floating point registers are 64 bits wide. Snake fp regs are 32 bits wide */ #define HARD_REGNO_NREGS(REGNO, MODE) \ (FP_REGNO_P (REGNO) \ ? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. On the HP-PA, the cpu registers can hold any mode. We force this to be an even register is it cannot hold the full mode. */ #define HARD_REGNO_MODE_OK(REGNO, MODE) \ ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \ /* On 1.0 machines, don't allow wide non-fp modes in fp regs. */ \ : !TARGET_PA_11 && FP_REGNO_P (REGNO) \ ? GET_MODE_SIZE (MODE) <= 4 || GET_MODE_CLASS (MODE) == MODE_FLOAT \ : FP_REGNO_P (REGNO) \ ? GET_MODE_SIZE (MODE) <= 4 || ((REGNO) & 1) == 0 \ /* Make wide modes be in aligned registers. */ \ : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \ || (GET_MODE_SIZE (MODE) <= 2 * UNITS_PER_WORD && ((REGNO) & 1) == 0))) /* How to renumber registers for dbx and gdb. Registers 0 - 31 remain unchanged. Registers 32 - 87 are mapped to 72 - 127 Register 88 is mapped to 32. */ #define DBX_REGISTER_NUMBER(REGNO) \ ((REGNO) <= 31 ? (REGNO) : \ ((REGNO) > 31 && (REGNO) <= 87 ? (REGNO) + 40 : 32)) /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs, 1.1 fp regs, and the high 1.1 fp regs, to which the operands of fmpyadd and fmpysub are restricted. */ enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS, GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES}; #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \ "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"} /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. Register 0, the "condition code" register, is in no class. */ #define REG_CLASS_CONTENTS \ {{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \ {0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \ {0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */ \ {0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */ \ {0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \ {0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */ \ {0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \ {0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */ /* This may not actually be necessary anymore. But until I can prove otherwise it will stay. */ #define CLASS_CANNOT_CHANGE_MODE NO_REGS /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */ #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)) /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ #define REGNO_REG_CLASS(REGNO) \ ((REGNO) == 0 ? NO_REGS \ : (REGNO) == 1 ? R1_REGS \ : (REGNO) < 32 ? GENERAL_REGS \ : (REGNO) < 56 ? FP_REGS \ : (REGNO) < 88 ? FPUPPER_REGS \ : (REGNO) < 88 ? FPUPPER_REGS \ : SHIFT_REGS) /* Get reg_class from a letter such as appears in the machine description. */ /* Keep 'x' for backward compatibility with user asm. */ #define REG_CLASS_FROM_LETTER(C) \ ((C) == 'f' ? FP_REGS : \ (C) == 'y' ? FPUPPER_REGS : \ (C) == 'y' ? FPUPPER_REGS : \ (C) == 'x' ? FP_REGS : \ (C) == 'q' ? SHIFT_REGS : \ (C) == 'a' ? R1_REGS : \ (C) == 'Z' ? ALL_REGS : NO_REGS) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS \ ? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) /* 1 if N is a possible register number for function argument passing. */ #define FUNCTION_ARG_REGNO_P(N) \ (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39)) /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ {"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \ "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \ "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \ "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \ "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \ "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \ "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \ "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \ "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \ "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \ "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \ "SAR"} #define ADDITIONAL_REGISTER_NAMES \ {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \ {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \ {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \ {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \ {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \ {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \ {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \ {"%cr11",88}} #define FP_SAVED_REG_LAST 66 #define FP_SAVED_REG_FIRST 48 #define FP_REG_STEP 2 #define FP_REG_FIRST 32 #define FP_REG_LAST 87