/* VSETVL pass header for RISC-V 'V' Extension for GNU compiler. Copyright (C) 2022-2023 Free Software Foundation, Inc. Contributed by Juzhe Zhong (juzhe.zhong@rivai.ai), RiVAI Technologies Ltd. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or(at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_RISCV_VSETVL_H #define GCC_RISCV_VSETVL_H #define IS_AGNOSTIC(VALUE) (bool) (VALUE & 0x1 || (VALUE >> 1 & 0x1)) namespace riscv_vector { /* Classification of vsetvl instruction. */ enum vsetvl_type { VSETVL_NORMAL, VSETVL_VTYPE_CHANGE_ONLY, VSETVL_DISCARD_RESULT, NUM_VSETVL_TYPE }; enum emit_type { /* emit_insn directly. */ EMIT_DIRECT, EMIT_BEFORE, EMIT_AFTER, }; enum demand_type { DEMAND_AVL, DEMAND_SEW, DEMAND_LMUL, DEMAND_RATIO, DEMAND_NONZERO_AVL, DEMAND_GE_SEW, DEMAND_TAIL_POLICY, DEMAND_MASK_POLICY, NUM_DEMAND }; enum demand_status { DEMAND_FALSE, DEMAND_TRUE, DEMAND_ANY, }; enum fusion_type { INVALID_FUSION, VALID_AVL_FUSION, KILLED_AVL_FUSION }; enum merge_type { LOCAL_MERGE, GLOBAL_MERGE }; enum def_type { REAL_SET = 1 << 0, PHI_SET = 1 << 1, BB_HEAD_SET = 1 << 2, BB_END_SET = 1 << 3, /* ??? TODO: In RTL_SSA framework, we have REAL_SET, PHI_SET, BB_HEAD_SET, BB_END_SET and CLOBBER_DEF def_info types. Currently, we conservatively do not optimize clobber def since we don't see the case that we need to optimize it. */ CLOBBER_DEF = 1 << 4 }; /* AVL info for RVV instruction. Most RVV instructions have AVL operand in implicit dependency. The AVL comparison between 2 RVV instructions is very important since it affects our decision whether we should insert a vsetvl instruction in this situation. AVL operand of all RVV instructions can only be either a const_int value with < 32 or a reg value which can be define by either a real RTL instruction or a PHI instruction. So we need a standalone method to define AVL comparison and we can not simpily use operator "==" to compare 2 RTX value since it's to strict which will make use miss a lot of optimization opportunities. This method handle these following cases: - Background: Insert-vsetvl PASS is working after RA. - Terminology: - pr: Pseudo-register. - hr: Hardware-register. - Case 1: Before RA: li pr138,13 insn1 (implicit depend on pr138). li pr138,14 insn2 (implicit depend on pr139). After RA: li hr5,13 insn1 (implicit depend on hr5). li hr5,14 insn2 (implicit depend on hr5). Correct IR after vsetvl PASS: li hr5,13 vsetvl1 zero,hr5.... insn1 (implicit depend on hr5). li hr5,14 vsetvl2 zero,hr5.... insn2 (implicit depend on hr5). In this case, both insn1 and insn2 are using hr5 as the same AVL. If we use "rtx_equal_p" or "REGNO (AVL1) == REGNO (AVL)", we will end up with missing the vsetvl2 instruction which creates wrong result. Note: Using "==" operator to compare 2 AVL RTX strictly can fix this issue. However, it is a too strict comparison method since not all member variables in RTX data structure are not neccessary to be the same. It will make us miss a lot of optimization opportunities. - Case 2: After RA: bb 0: li hr5,13 bb 1: li hr5,14 bb2: insn1 (implicit depend on hr5). insn2 (implicit depend on hr5). In this case, we may end up with different AVL RTX and produce redundant vsetvl instruction. VALUE is the implicit dependency in each RVV instruction. SOURCE is the source definition information of AVL operand. */ class avl_info { private: rtx m_value; rtl_ssa::set_info *m_source; public: avl_info () : m_value (NULL_RTX), m_source (nullptr) {} avl_info (const avl_info &); avl_info (rtx, rtl_ssa::set_info *); rtx get_value () const { return m_value; } rtl_ssa::set_info *get_source () const { return m_source; } bool single_source_equal_p (const avl_info &) const; bool multiple_source_equal_p (const avl_info &) const; avl_info &operator= (const avl_info &); bool operator== (const avl_info &) const; bool operator!= (const avl_info &) const; bool has_avl_imm () const { return get_value () && CONST_INT_P (get_value ()); } bool has_avl_reg () const { return get_value () && REG_P (get_value ()); } bool has_avl_no_reg () const { return !get_value (); } bool has_non_zero_avl () const; }; /* Basic structure to save VL/VTYPE information. */ struct vl_vtype_info { protected: /* AVL can be either register or const_int. */ avl_info m_avl; /* Fields from VTYPE. The VTYPE checking depend on the flag dem_* before. */ uint8_t m_sew; riscv_vector::vlmul_type m_vlmul; uint8_t m_ratio; bool m_ta; bool m_ma; public: void set_sew (uint8_t sew) { m_sew = sew; } void set_vlmul (riscv_vector::vlmul_type vlmul) { m_vlmul = vlmul; } void set_ratio (uint8_t ratio) { m_ratio = ratio; } void set_ta (bool ta) { m_ta = ta; } void set_ma (bool ma) { m_ma = ma; } vl_vtype_info () : m_avl (avl_info ()), m_sew (0), m_vlmul (riscv_vector::LMUL_RESERVED), m_ratio (0), m_ta (0), m_ma (0) {} vl_vtype_info (const vl_vtype_info &) = default; vl_vtype_info &operator= (const vl_vtype_info &) = default; vl_vtype_info (avl_info, uint8_t, riscv_vector::vlmul_type, uint8_t, bool, bool); bool operator== (const vl_vtype_info &) const; bool operator!= (const vl_vtype_info &) const; bool has_avl_imm () const { return m_avl.has_avl_imm (); } bool has_avl_reg () const { return m_avl.has_avl_reg (); } bool has_avl_no_reg () const { return m_avl.has_avl_no_reg (); } bool has_non_zero_avl () const { return m_avl.has_non_zero_avl (); }; rtx get_avl () const { return m_avl.get_value (); } const avl_info &get_avl_info () const { return m_avl; } rtl_ssa::set_info *get_avl_source () const { return m_avl.get_source (); } void set_avl_info (const avl_info &avl) { m_avl = avl; } uint8_t get_sew () const { return m_sew; } riscv_vector::vlmul_type get_vlmul () const { return m_vlmul; } uint8_t get_ratio () const { return m_ratio; } bool get_ta () const { return m_ta; } bool get_ma () const { return m_ma; } bool same_avl_p (const vl_vtype_info &) const; bool same_vtype_p (const vl_vtype_info &) const; bool same_vlmax_p (const vl_vtype_info &) const; }; class vector_insn_info : public vl_vtype_info { private: enum state_type { UNINITIALIZED, VALID, UNKNOWN, EMPTY, /* The empty block can not be polluted as dirty. */ HARD_EMPTY, /* The block is polluted as containing VSETVL instruction during dem backward propagation to gain better LCM optimization even though such VSETVL instruction is not really emit yet during this time. */ DIRTY, /* The block is polluted with killed AVL. We will backward propagate such case: bb 0: def a5, 55 (empty). ... bb 1: vsetvli zero, a5. ... bb 2: empty. ... bb 3: def a3, 55 (empty). ... bb 4: vsetvli zero, a3. To elide vsetvli in bb 4, we need to backward pollute bb 3 and bb 2 as DIRTY block as long as there is a block def AVL which has the same source with AVL in bb 4. Such polluted block, we call it as DIRTY_WITH_KILLED_AVL */ DIRTY_WITH_KILLED_AVL }; enum state_type m_state; bool m_demands[NUM_DEMAND]; /* TODO: Assume INSN1 = INSN holding of definition of AVL. INSN2 = INSN that is inserted a vsetvl insn before. We may need to add a new member to save INSN of holding AVL. m_insn is holding the INSN that is inserted a vsetvl insn before in Phase 2. Ideally, most of the time INSN1 == INSN2. However, considering such case: vmv.x.s (INSN2) vle8.v (INSN1) If these 2 instructions are compatible, we should only issue a vsetvl INSN (with AVL included) before vmv.x.s, but vmv.x.s is not the INSN holding the definition of AVL. */ rtl_ssa::insn_info *m_insn; /* Parse the instruction to get VL/VTYPE information and demanding * information. */ /* This is only called by simple_vsetvl subroutine when optimize == 0. Since RTL_SSA can not be enabled when optimize == 0, we don't initialize the m_insn. */ void parse_insn (rtx_insn *); friend class vector_infos_manager; public: vector_insn_info () : vl_vtype_info (), m_state (UNINITIALIZED), m_demands{false}, m_insn (nullptr) {} /* This is only called by lazy_vsetvl subroutine when optimize > 0. We use RTL_SSA framework to initialize the insn_info. */ void parse_insn (rtl_ssa::insn_info *); bool operator>= (const vector_insn_info &) const; bool operator== (const vector_insn_info &) const; bool uninit_p () const { return m_state == UNINITIALIZED; } bool valid_p () const { return m_state == VALID; } bool unknown_p () const { return m_state == UNKNOWN; } bool empty_p () const { return m_state == EMPTY || m_state == HARD_EMPTY; } bool hard_empty_p () const { return m_state == HARD_EMPTY; } bool dirty_p () const { return m_state == DIRTY || m_state == DIRTY_WITH_KILLED_AVL; } bool dirty_with_killed_avl_p () const { return m_state == DIRTY_WITH_KILLED_AVL; } bool real_dirty_p () const { return m_state == DIRTY; } bool valid_or_dirty_p () const { return m_state == VALID || m_state == DIRTY || m_state == DIRTY_WITH_KILLED_AVL; } bool available_p (const vector_insn_info &) const; static vector_insn_info get_unknown () { vector_insn_info info; info.set_unknown (); return info; } static vector_insn_info get_hard_empty () { vector_insn_info info; info.set_hard_empty (); return info; } void set_valid () { m_state = VALID; } void set_unknown () { m_state = UNKNOWN; } void set_empty () { m_state = EMPTY; } void set_hard_empty () { m_state = HARD_EMPTY; } void set_dirty (enum fusion_type type) { gcc_assert (type == VALID_AVL_FUSION || type == KILLED_AVL_FUSION); if (type == VALID_AVL_FUSION) m_state = DIRTY; else m_state = DIRTY_WITH_KILLED_AVL; } void set_dirty (bool dirty_with_killed_avl_p) { if (dirty_with_killed_avl_p) m_state = DIRTY_WITH_KILLED_AVL; else m_state = DIRTY; } void set_insn (rtl_ssa::insn_info *insn) { m_insn = insn; } bool demand_p (enum demand_type type) const { return m_demands[type]; } void demand (enum demand_type type) { m_demands[type] = true; } void set_demand (enum demand_type type, bool value) { m_demands[type] = value; } void fuse_avl (const vector_insn_info &, const vector_insn_info &); void fuse_sew_lmul (const vector_insn_info &, const vector_insn_info &); void fuse_tail_policy (const vector_insn_info &, const vector_insn_info &); void fuse_mask_policy (const vector_insn_info &, const vector_insn_info &); bool compatible_p (const vector_insn_info &) const; bool skip_avl_compatible_p (const vector_insn_info &) const; bool compatible_avl_p (const vl_vtype_info &) const; bool compatible_avl_p (const avl_info &) const; bool compatible_vtype_p (const vl_vtype_info &) const; bool compatible_p (const vl_vtype_info &) const; vector_insn_info merge (const vector_insn_info &, enum merge_type) const; rtl_ssa::insn_info *get_insn () const { return m_insn; } const bool *get_demands (void) const { return m_demands; } rtx get_avl_reg_rtx (void) const { return gen_rtx_REG (Pmode, get_avl_source ()->regno ()); } bool update_fault_first_load_avl (rtl_ssa::insn_info *); void dump (FILE *) const; }; struct vector_block_info { /* The local_dem vector insn_info of the block. */ vector_insn_info local_dem; /* The reaching_out vector insn_info of the block. */ vector_insn_info reaching_out; /* The static execute probability of the demand info. */ profile_probability probability; vector_block_info () = default; }; class vector_infos_manager { public: auto_vec vector_insn_infos; auto_vec vector_block_infos; auto_vec vector_exprs; hash_set to_refine_vsetvls; hash_set to_delete_vsetvls; struct edge_list *vector_edge_list; sbitmap *vector_kill; sbitmap *vector_del; sbitmap *vector_insert; sbitmap *vector_antic; sbitmap *vector_transp; sbitmap *vector_comp; sbitmap *vector_avin; sbitmap *vector_avout; vector_infos_manager (); /* Create a new expr in expr list if it is not exist. */ void create_expr (vector_insn_info &); /* Get the expr id of the pair of expr. */ size_t get_expr_id (const vector_insn_info &) const; /* Return the number of expr that is set in the bitmap. */ size_t expr_set_num (sbitmap) const; /* Get all relaxer expression id for corresponding vector info. */ auto_vec get_all_available_exprs (const vector_insn_info &) const; /* Return true if all expression set in bitmap are same AVL. */ bool all_same_avl_p (const basic_block, sbitmap) const; /* Return true if all expression set in bitmap are same ratio. */ bool all_same_ratio_p (sbitmap) const; bool all_empty_predecessor_p (const basic_block) const; bool all_avail_in_compatible_p (const basic_block) const; void release (void); void create_bitmap_vectors (void); void free_bitmap_vectors (void); void dump (FILE *) const; }; struct demands_pair { demand_status first[NUM_DEMAND]; demand_status second[NUM_DEMAND]; bool match_cond_p (const bool *dems1, const bool *dems2) const { for (unsigned i = 0; i < NUM_DEMAND; i++) { if (first[i] != DEMAND_ANY && first[i] != dems1[i]) return false; if (second[i] != DEMAND_ANY && second[i] != dems2[i]) return false; } return true; } }; struct demands_cond { demands_pair pair; using CONDITION_TYPE = bool (*) (const vector_insn_info &, const vector_insn_info &); CONDITION_TYPE incompatible_p; bool dual_incompatible_p (const vector_insn_info &info1, const vector_insn_info &info2) const { return ((pair.match_cond_p (info1.get_demands (), info2.get_demands ()) && incompatible_p (info1, info2)) || (pair.match_cond_p (info2.get_demands (), info1.get_demands ()) && incompatible_p (info2, info1))); } }; struct demands_fuse_rule { demands_pair pair; bool demand_sew_p; bool demand_lmul_p; bool demand_ratio_p; bool demand_ge_sew_p; using NEW_SEW = unsigned (*) (const vector_insn_info &, const vector_insn_info &); using NEW_VLMUL = vlmul_type (*) (const vector_insn_info &, const vector_insn_info &); using NEW_RATIO = unsigned (*) (const vector_insn_info &, const vector_insn_info &); NEW_SEW new_sew; NEW_VLMUL new_vlmul; NEW_RATIO new_ratio; }; } // namespace riscv_vector #endif