;; Predicate definitions for S/390 and zSeries. ;; Copyright (C) 2005-2016 Free Software Foundation, Inc. ;; Contributed by Hartmut Penner (hpenner@de.ibm.com) and ;; Ulrich Weigand (uweigand@de.ibm.com). ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . ;; OP is the current operation. ;; MODE is the current operation mode. ;; operands -------------------------------------------------------------- ;; Return true if OP a const 0 operand (int/float/vector). (define_predicate "const0_operand" (and (match_code "const_int,const_wide_int,const_double,const_vector") (match_test "op == CONST0_RTX (mode)"))) ;; Return true if OP an all ones operand (int/vector). (define_predicate "all_ones_operand" (and (match_code "const_int, const_wide_int, const_vector") (match_test "INTEGRAL_MODE_P (GET_MODE (op))") (match_test "op == CONSTM1_RTX (mode)"))) ;; Return true if OP is a 4 bit mask operand (define_predicate "const_mask_operand" (and (match_code "const_int") (match_test "UINTVAL (op) < 16"))) ;; Return true if OP is constant. (define_special_predicate "consttable_operand" (and (match_code "symbol_ref, label_ref, const, const_int, const_wide_int, const_double, const_vector") (match_test "CONSTANT_P (op)"))) ;; Return true if OP is a valid S-type operand. (define_predicate "s_operand" (and (match_code "subreg, mem") (match_operand 0 "general_operand")) { /* Just like memory_operand, allow (subreg (mem ...)) after reload. */ if (reload_completed && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return false; if (!s390_legitimate_address_without_index_p (op)) return false; return true; }) ;; Return true if OP is a valid operand for the BRAS instruction. ;; Allow SYMBOL_REFs and @PLT stubs. (define_special_predicate "bras_sym_operand" (ior (and (match_code "symbol_ref") (match_test "!flag_pic || SYMBOL_REF_LOCAL_P (op)")) (and (match_code "const") (and (match_test "GET_CODE (XEXP (op, 0)) == UNSPEC") (match_test "XINT (XEXP (op, 0), 1) == UNSPEC_PLT"))))) ;; Return true if OP is a PLUS that is not a legitimate ;; operand for the LA instruction. (define_predicate "s390_plus_operand" (and (match_code "plus") (and (match_test "mode == Pmode") (match_test "!legitimate_la_operand_p (op)")))) ;; Return true if OP is a valid operand as scalar shift count or setmem. (define_predicate "setmem_operand" (match_code "reg, subreg, plus, const_int") { HOST_WIDE_INT offset; rtx base; if (GET_MODE (op) != VOIDmode && GET_MODE_CLASS (GET_MODE (op)) != MODE_INT) return false; /* Extract base register and offset. */ if (!s390_decompose_addrstyle_without_index (op, &base, &offset)) return false; /* Don't allow any non-base hard registers. Doing so without confusing reload and/or regrename would be tricky, and doesn't buy us much anyway. */ if (base && REGNO (base) < FIRST_PSEUDO_REGISTER && !ADDR_REG_P (base)) return false; /* Unfortunately we have to reject constants that are invalid for an address, or else reload will get confused. */ if (!DISP_IN_RANGE (offset)) return false; return true; }) ; An integer operand with the lowest order 6 bits all ones. (define_predicate "const_int_6bitset_operand" (and (match_code "const_int") (match_test "(INTVAL (op) & 63) == 63"))) (define_predicate "nonzero_shift_count_operand" (and (match_code "const_int") (match_test "IN_RANGE (INTVAL (op), 1, GET_MODE_BITSIZE (mode) - 1)"))) ;; Return true if OP a valid operand for the LARL instruction. (define_predicate "larl_operand" (match_code "label_ref, symbol_ref, const") { /* Allow labels and local symbols. */ if (GET_CODE (op) == LABEL_REF) return true; if (GET_CODE (op) == SYMBOL_REF) return (!SYMBOL_FLAG_NOTALIGN2_P (op) && SYMBOL_REF_TLS_MODEL (op) == 0 && (!flag_pic || SYMBOL_REF_LOCAL_P (op))); /* Everything else must have a CONST, so strip it. */ if (GET_CODE (op) != CONST) return false; op = XEXP (op, 0); /* Allow adding *even* in-range constants. */ if (GET_CODE (op) == PLUS) { if (GET_CODE (XEXP (op, 1)) != CONST_INT || (INTVAL (XEXP (op, 1)) & 1) != 0) return false; if (INTVAL (XEXP (op, 1)) >= (HOST_WIDE_INT)1 << 31 || INTVAL (XEXP (op, 1)) < -((HOST_WIDE_INT)1 << 31)) return false; op = XEXP (op, 0); } /* Labels and local symbols allowed here as well. */ if (GET_CODE (op) == LABEL_REF) return true; if (GET_CODE (op) == SYMBOL_REF) return (!SYMBOL_FLAG_NOTALIGN2_P (op) && SYMBOL_REF_TLS_MODEL (op) == 0 && (!flag_pic || SYMBOL_REF_LOCAL_P (op))); /* Now we must have a @GOTENT offset or @PLT stub or an @INDNTPOFF TLS offset. */ if (GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_GOTENT) return true; if (GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_PLT) return true; if (GET_CODE (op) == UNSPEC && XINT (op, 1) == UNSPEC_INDNTPOFF) return true; return false; }) ; Predicate that always allows wraparound of the one-bit range. (define_predicate "contiguous_bitmask_operand" (match_code "const_int") { return s390_contiguous_bitmask_p (INTVAL (op), true, GET_MODE_BITSIZE (mode), NULL, NULL); }) ; Same without wraparound. (define_predicate "contiguous_bitmask_nowrap_operand" (match_code "const_int") { return s390_contiguous_bitmask_p (INTVAL (op), false, GET_MODE_BITSIZE (mode), NULL, NULL); }) ;; Return true if OP is ligitimate for any LOC instruction. (define_predicate "loc_operand" (ior (match_operand 0 "nonimmediate_operand") (and (match_code "const_int") (match_test "INTVAL (op) <= 32767 && INTVAL (op) >= -32768")))) ;; operators -------------------------------------------------------------- ;; Return nonzero if OP is a valid comparison operator ;; for a branch condition. (define_predicate "s390_comparison" (match_code "eq, ne, lt, gt, le, ge, ltu, gtu, leu, geu, uneq, unlt, ungt, unle, unge, ltgt, unordered, ordered") { if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM || (XEXP (op, 1) != const0_rtx && !(CONST_INT_P (XEXP (op, 1)) && GET_MODE (XEXP (op, 0)) == CCRAWmode && INTVAL (XEXP (op, 1)) >= 0 && INTVAL (XEXP (op, 1)) <= 15))) return false; return (s390_branch_condition_mask (op) >= 0); }) ;; Return true if op is the cc register. (define_predicate "cc_reg_operand" (and (match_code "reg") (match_test "REGNO (op) == CC_REGNUM"))) (define_predicate "s390_signed_integer_comparison" (match_code "eq, ne, lt, gt, le, ge") { return (s390_compare_and_branch_condition_mask (op) >= 0); }) (define_predicate "s390_unsigned_integer_comparison" (match_code "eq, ne, ltu, gtu, leu, geu") { return (s390_compare_and_branch_condition_mask (op) >= 0); }) ;; Return nonzero if OP is a valid comparison operator for the ;; cstore expanders -- respectively cstorecc4 and integer cstore. (define_predicate "s390_eqne_operator" (match_code "eq, ne")) (define_predicate "s390_scond_operator" (match_code "ltu, gtu, leu, geu")) (define_predicate "s390_brx_operator" (match_code "le, gt")) ;; Return nonzero if OP is a valid comparison operator ;; for an ALC condition. (define_predicate "s390_alc_comparison" (match_code "zero_extend, sign_extend, ltu, gtu, leu, geu") { while (GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == SIGN_EXTEND) op = XEXP (op, 0); if (!COMPARISON_P (op)) return false; if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM || (XEXP (op, 1) != const0_rtx && !(CONST_INT_P (XEXP (op, 1)) && GET_MODE (XEXP (op, 0)) == CCRAWmode && INTVAL (XEXP (op, 1)) >= 0 && INTVAL (XEXP (op, 1)) <= 15))) return false; switch (GET_MODE (XEXP (op, 0))) { case CCL1mode: return GET_CODE (op) == LTU; case CCL2mode: return GET_CODE (op) == LEU; case CCL3mode: return GET_CODE (op) == GEU; case CCUmode: return GET_CODE (op) == GTU; case CCURmode: return GET_CODE (op) == LTU; case CCSmode: return GET_CODE (op) == UNGT; case CCSRmode: return GET_CODE (op) == UNLT; default: return false; } }) ;; Return nonzero if OP is a valid comparison operator ;; for an SLB condition. (define_predicate "s390_slb_comparison" (match_code "zero_extend, sign_extend, ltu, gtu, leu, geu") { while (GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == SIGN_EXTEND) op = XEXP (op, 0); if (!COMPARISON_P (op)) return false; if (GET_CODE (XEXP (op, 0)) != REG || REGNO (XEXP (op, 0)) != CC_REGNUM || XEXP (op, 1) != const0_rtx) return false; switch (GET_MODE (XEXP (op, 0))) { case CCL1mode: return GET_CODE (op) == GEU; case CCL2mode: return GET_CODE (op) == GTU; case CCL3mode: return GET_CODE (op) == LTU; case CCUmode: return GET_CODE (op) == LEU; case CCURmode: return GET_CODE (op) == GEU; case CCSmode: return GET_CODE (op) == LE; case CCSRmode: return GET_CODE (op) == GE; default: return false; } }) ;; Return true if OP is a load multiple operation. It is known to be a ;; PARALLEL and the first section will be tested. (define_special_predicate "load_multiple_operation" (match_code "parallel") { machine_mode elt_mode; int count = XVECLEN (op, 0); unsigned int dest_regno; rtx src_addr; int i, off; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM) return false; dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0))); src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0); elt_mode = GET_MODE (SET_DEST (XVECEXP (op, 0, 0))); /* Check, is base, or base + displacement. */ if (GET_CODE (src_addr) == REG) off = 0; else if (GET_CODE (src_addr) == PLUS && GET_CODE (XEXP (src_addr, 0)) == REG && GET_CODE (XEXP (src_addr, 1)) == CONST_INT) { off = INTVAL (XEXP (src_addr, 1)); src_addr = XEXP (src_addr, 0); } else return false; for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != SET || GET_CODE (SET_DEST (elt)) != REG || GET_MODE (SET_DEST (elt)) != elt_mode || REGNO (SET_DEST (elt)) != dest_regno + i || GET_CODE (SET_SRC (elt)) != MEM || GET_MODE (SET_SRC (elt)) != elt_mode || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr) || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != off + i * GET_MODE_SIZE (elt_mode)) return false; } return true; }) ;; For an execute pattern the target instruction is embedded into the ;; RTX but will not get checked for validity by recog automatically. ;; The execute_operation predicate extracts the target RTX and invokes ;; recog. (define_special_predicate "execute_operation" (match_code "parallel") { rtx pattern = op; rtx_insn *insn; int icode; /* This is redundant but since this predicate is evaluated first when recognizing the insn we can prevent the more expensive code below from being executed for many cases. */ if (GET_CODE (XVECEXP (pattern, 0, 0)) != UNSPEC || XINT (XVECEXP (pattern, 0, 0), 1) != UNSPEC_EXECUTE) return false; /* Keep in sync with s390_execute_target. */ if (XVECLEN (pattern, 0) == 2) { pattern = copy_rtx (XVECEXP (pattern, 0, 1)); } else { rtvec vec = rtvec_alloc (XVECLEN (pattern, 0) - 1); int i; for (i = 0; i < XVECLEN (pattern, 0) - 1; i++) RTVEC_ELT (vec, i) = copy_rtx (XVECEXP (pattern, 0, i + 1)); pattern = gen_rtx_PARALLEL (VOIDmode, vec); } /* Since we do not have the wrapping insn here we have to build one. */ insn = make_insn_raw (pattern); icode = recog_memoized (insn); if (icode < 0) return false; extract_constrain_insn (insn); return which_alternative >= 0; }) ;; Return true if OP is a store multiple operation. It is known to be a ;; PARALLEL and the first section will be tested. (define_special_predicate "store_multiple_operation" (match_code "parallel") { machine_mode elt_mode; int count = XVECLEN (op, 0); unsigned int src_regno; rtx dest_addr; int i, off; /* Perform a quick check so we don't blow up below. */ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG) return false; src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0))); dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0); elt_mode = GET_MODE (SET_SRC (XVECEXP (op, 0, 0))); /* Check, is base, or base + displacement. */ if (GET_CODE (dest_addr) == REG) off = 0; else if (GET_CODE (dest_addr) == PLUS && GET_CODE (XEXP (dest_addr, 0)) == REG && GET_CODE (XEXP (dest_addr, 1)) == CONST_INT) { off = INTVAL (XEXP (dest_addr, 1)); dest_addr = XEXP (dest_addr, 0); } else return false; for (i = 1; i < count; i++) { rtx elt = XVECEXP (op, 0, i); if (GET_CODE (elt) != SET || GET_CODE (SET_SRC (elt)) != REG || GET_MODE (SET_SRC (elt)) != elt_mode || REGNO (SET_SRC (elt)) != src_regno + i || GET_CODE (SET_DEST (elt)) != MEM || GET_MODE (SET_DEST (elt)) != elt_mode || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr) || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != off + i * GET_MODE_SIZE (elt_mode)) return false; } return true; })