/* Subroutines for insn-output.c for Vax. Copyright (C) 1987 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include "config.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" /* This is like nonimmediate_operand with a restriction on the type of MEM. */ void split_quadword_operands (operands, low, n) rtx *operands, *low; int n; { int i; /* Split operands. */ low[0] = low[1] = low[2] = 0; for (i = 0; i < 3; i++) { if (low[i]) /* it's already been figured out */; else if (GET_CODE (operands[i]) == MEM && (GET_CODE (XEXP (operands[i], 0)) == POST_INC)) { rtx addr = XEXP (operands[i], 0); operands[i] = low[i] = gen_rtx (MEM, SImode, addr); if (which_alternative == 0 && i == 0) { addr = XEXP (operands[i], 0); operands[i+1] = low[i+1] = gen_rtx (MEM, SImode, addr); } } else { low[i] = operand_subword (operands[i], 0, 0, DImode); operands[i] = operand_subword (operands[i], 1, 0, DImode); } } } print_operand_address (file, addr) FILE *file; register rtx addr; { register rtx reg1, reg2, breg, ireg; rtx offset; retry: switch (GET_CODE (addr)) { case MEM: fprintf (file, "*"); addr = XEXP (addr, 0); goto retry; case REG: fprintf (file, "(%s)", reg_names[REGNO (addr)]); break; case PRE_DEC: fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]); break; case POST_INC: fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]); break; case PLUS: /* There can be either two or three things added here. One must be a REG. One can be either a REG or a MULT of a REG and an appropriate constant, and the third can only be a constant or a MEM. We get these two or three things and put the constant or MEM in OFFSET, the MULT or REG in IREG, and the REG in BREG. If we have a register and can't tell yet if it is a base or index register, put it into REG1. */ reg1 = 0; ireg = 0; breg = 0; offset = 0; if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) || GET_CODE (XEXP (addr, 0)) == MEM) { offset = XEXP (addr, 0); addr = XEXP (addr, 1); } else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) || GET_CODE (XEXP (addr, 1)) == MEM) { offset = XEXP (addr, 1); addr = XEXP (addr, 0); } else if (GET_CODE (XEXP (addr, 1)) == MULT) { ireg = XEXP (addr, 1); addr = XEXP (addr, 0); } else if (GET_CODE (XEXP (addr, 0)) == MULT) { ireg = XEXP (addr, 0); addr = XEXP (addr, 1); } else if (GET_CODE (XEXP (addr, 1)) == REG) { reg1 = XEXP (addr, 1); addr = XEXP (addr, 0); } else if (GET_CODE (XEXP (addr, 0)) == REG) { reg1 = XEXP (addr, 0); addr = XEXP (addr, 1); } else abort (); if (GET_CODE (addr) == REG) { if (reg1) ireg = addr; else reg1 = addr; } else if (GET_CODE (addr) == MULT) ireg = addr; else if (GET_CODE (addr) == PLUS) { if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) || GET_CODE (XEXP (addr, 0)) == MEM) { if (offset) { if (GET_CODE (offset) == CONST_INT) offset = plus_constant (XEXP (addr, 0), INTVAL (offset)); else if (GET_CODE (XEXP (addr, 0)) == CONST_INT) offset = plus_constant (offset, INTVAL (XEXP (addr, 0))); else abort (); } offset = XEXP (addr, 0); } else if (GET_CODE (XEXP (addr, 0)) == REG) { if (reg1) ireg = reg1, breg = XEXP (addr, 0), reg1 = 0; else reg1 = XEXP (addr, 0); } else if (GET_CODE (XEXP (addr, 0)) == MULT) { if (ireg) abort (); ireg = XEXP (addr, 0); } else abort (); if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) || GET_CODE (XEXP (addr, 1)) == MEM) { if (offset) { if (GET_CODE (offset) == CONST_INT) offset = plus_constant (XEXP (addr, 1), INTVAL (offset)); else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) offset = plus_constant (offset, INTVAL (XEXP (addr, 1))); else abort (); } offset = XEXP (addr, 1); } else if (GET_CODE (XEXP (addr, 1)) == REG) { if (reg1) ireg = reg1, breg = XEXP (addr, 1), reg1 = 0; else reg1 = XEXP (addr, 1); } else if (GET_CODE (XEXP (addr, 1)) == MULT) { if (ireg) abort (); ireg = XEXP (addr, 1); } else abort (); } else abort (); /* If REG1 is non-zero, figure out if it is a base or index register. */ if (reg1) { if (breg != 0 || (offset && GET_CODE (offset) == MEM)) { if (ireg) abort (); ireg = reg1; } else breg = reg1; } if (offset != 0) output_address (offset); if (breg != 0) fprintf (file, "(%s)", reg_names[REGNO (breg)]); if (ireg != 0) { if (GET_CODE (ireg) == MULT) ireg = XEXP (ireg, 0); if (GET_CODE (ireg) != REG) abort (); fprintf (file, "[%s]", reg_names[REGNO (ireg)]); } break; default: output_addr_const (file, addr); } } char * rev_cond_name (op) rtx op; { switch (GET_CODE (op)) { case EQ: return "neq"; case NE: return "eql"; case LT: return "geq"; case LE: return "gtr"; case GT: return "leq"; case GE: return "lss"; case LTU: return "gequ"; case LEU: return "gtru"; case GTU: return "lequ"; case GEU: return "lssu"; default: abort (); } } int vax_float_literal(c) register rtx c; { register enum machine_mode mode; int i; union {double d; int i[2];} val; if (GET_CODE (c) != CONST_DOUBLE) return 0; mode = GET_MODE (c); if (c == const_tiny_rtx[(int) mode][0] || c == const_tiny_rtx[(int) mode][1] || c == const_tiny_rtx[(int) mode][2]) return 1; #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT val.i[0] = CONST_DOUBLE_LOW (c); val.i[1] = CONST_DOUBLE_HIGH (c); for (i = 0; i < 7; i ++) if (val.d == 1 << i || val.d == 1 / (1 << i)) return 1; #endif return 0; } /* Return the cost in cycles of a memory address, relative to register indirect. Each of the following adds the indicated number of cycles: 1 - symbolic address 1 - pre-decrement 1 - indexing and/or offset(register) 2 - indirect */ int vax_address_cost(addr) register rtx addr; { int reg = 0, indexed = 0, indir = 0, offset = 0, predec = 0; rtx plus_op0 = 0, plus_op1 = 0; restart: switch (GET_CODE (addr)) { case PRE_DEC: predec = 1; case REG: case SUBREG: case POST_INC: reg = 1; break; case MULT: indexed = 1; /* 2 on VAX 2 */ break; case CONST_INT: /* byte offsets cost nothing (on a VAX 2, they cost 1 cycle) */ if (offset == 0) offset = (unsigned)(INTVAL(addr)+128) > 256; break; case CONST: case SYMBOL_REF: offset = 1; /* 2 on VAX 2 */ break; case LABEL_REF: /* this is probably a byte offset from the pc */ if (offset == 0) offset = 1; break; case PLUS: if (plus_op0) plus_op1 = XEXP (addr, 0); else plus_op0 = XEXP (addr, 0); addr = XEXP (addr, 1); goto restart; case MEM: indir = 2; /* 3 on VAX 2 */ addr = XEXP (addr, 0); goto restart; } /* Up to 3 things can be added in an address. They are stored in plus_op0, plus_op1, and addr. */ if (plus_op0) { addr = plus_op0; plus_op0 = 0; goto restart; } if (plus_op1) { addr = plus_op1; plus_op1 = 0; goto restart; } /* Indexing and register+offset can both be used (except on a VAX 2) without increasing execution time over either one alone. */ if (reg && indexed && offset) return reg + indir + offset + predec; return reg + indexed + indir + offset + predec; } /* Cost of an expression on a VAX. This version has costs tuned for the CVAX chip (found in the VAX 3 series) with comments for variations on other models. */ int vax_rtx_cost (x) register rtx x; { register enum rtx_code code = GET_CODE (x); enum machine_mode mode = GET_MODE (x); register int c; int i = 0; /* may be modified in switch */ char *fmt = GET_RTX_FORMAT (code); /* may be modified in switch */ switch (code) { case POST_INC: return 2; case PRE_DEC: return 3; case MULT: switch (mode) { case DFmode: c = 16; /* 4 on VAX 9000 */ break; case SFmode: c = 9; /* 4 on VAX 9000, 12 on VAX 2 */ break; case DImode: c = 16; /* 6 on VAX 9000, 28 on VAX 2 */ break; case SImode: case HImode: case QImode: c = 10; /* 3-4 on VAX 9000, 20-28 on VAX 2 */ break; } break; case UDIV: c = 17; break; case DIV: if (mode == DImode) c = 30; /* highly variable */ else if (mode == DFmode) /* divide takes 28 cycles if the result is not zero, 13 otherwise */ c = 24; else c = 11; /* 25 on VAX 2 */ break; case MOD: c = 23; break; case UMOD: c = 29; break; case FLOAT: c = 6 + (mode == DFmode) + (GET_MODE (XEXP (x, 0)) != SImode); /* 4 on VAX 9000 */ break; case FIX: c = 7; /* 17 on VAX 2 */ break; case LSHIFT: case ASHIFT: case LSHIFTRT: case ASHIFTRT: if (mode == DImode) c = 12; else c = 10; /* 6 on VAX 9000 */ break; case ROTATE: case ROTATERT: c = 6; /* 5 on VAX 2, 4 on VAX 9000 */ if (GET_CODE (XEXP (x, 1)) == CONST_INT) fmt = "e"; /* all constant rotate counts are short */ break; case PLUS: /* Check for small negative integer operand: subl2 can be used with a short positive constant instead. */ if (GET_CODE (XEXP (x, 1)) == CONST_INT) if ((unsigned)(INTVAL (XEXP (x, 1)) + 63) < 127) fmt = "e"; case MINUS: c = (mode == DFmode) ? 13 : 8; /* 6/8 on VAX 9000, 16/15 on VAX 2 */ case IOR: case XOR: c = 3; break; case AND: /* AND is special because the first operand is complemented. */ c = 3; if (GET_CODE (XEXP (x, 0)) == CONST_INT) { if ((unsigned)~INTVAL (XEXP (x, 0)) > 63) c = 4; fmt = "e"; i = 1; } break; case NEG: if (mode == DFmode) return 9; else if (mode == SFmode) return 6; else if (mode == DImode) return 4; case NOT: return 2; case ZERO_EXTRACT: case SIGN_EXTRACT: c = 15; break; case MEM: if (mode == DImode || mode == DFmode) c = 5; /* 7 on VAX 2 */ else c = 3; /* 4 on VAX 2 */ x = XEXP (x, 0); if (GET_CODE (x) == REG || GET_CODE (x) == POST_INC) return c; return c + vax_address_cost (x); default: c = 3; break; } /* Now look inside the expression. Operands which are not registers or short constants add to the cost. FMT and I may have been adjusted in the switch above for instructions which require special handling */ while (*fmt++ == 'e') { register rtx op = XEXP (x, i++); code = GET_CODE (op); /* A NOT is likely to be found as the first operand of an AND (in which case the relevant cost is of the operand inside the not) and not likely to be found anywhere else. */ if (code == NOT) op = XEXP (op, 0), code = GET_CODE (op); switch (code) { case CONST_INT: if ((unsigned)INTVAL (op) > 63 && GET_MODE (x) != QImode) c += 1; /* 2 on VAX 2 */ break; case CONST: case LABEL_REF: case SYMBOL_REF: c += 1; /* 2 on VAX 2 */ break; case CONST_DOUBLE: if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT) { /* Registers are faster than floating point constants -- even those constants which can be encoded in a single byte. */ if (vax_float_literal (op)) c++; else c += (GET_MODE (x) == DFmode) ? 3 : 2; } else { if (CONST_DOUBLE_HIGH (op) != 0 || (unsigned)CONST_DOUBLE_LOW (op) > 63) c += 2; } break; case MEM: c += 1; /* 2 on VAX 2 */ if (GET_CODE (XEXP (op, 0)) != REG) c += vax_address_cost (XEXP (op, 0)); break; case REG: case SUBREG: break; default: c += 1; break; } } return c; }