/* Language-level data type conversion for GNU C++. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file contains the functions for converting C expressions to different data types. The only entry point is `convert'. Every language front end must have a `convert' function but what kind of conversions it does will depend on the language. */ #include "config.h" #include "system.h" #include "tree.h" #include "flags.h" #include "cp-tree.h" #include "convert.h" #include "toplev.h" #include "decl.h" static tree cp_convert_to_pointer PARAMS ((tree, tree, int)); static tree convert_to_pointer_force PARAMS ((tree, tree)); static tree build_up_reference PARAMS ((tree, tree, int, tree)); static void warn_ref_binding PARAMS ((tree, tree, tree)); /* Change of width--truncation and extension of integers or reals-- is represented with NOP_EXPR. Proper functioning of many things assumes that no other conversions can be NOP_EXPRs. Conversion between integer and pointer is represented with CONVERT_EXPR. Converting integer to real uses FLOAT_EXPR and real to integer uses FIX_TRUNC_EXPR. Here is a list of all the functions that assume that widening and narrowing is always done with a NOP_EXPR: In convert.c, convert_to_integer. In c-typeck.c, build_binary_op_nodefault (boolean ops), and truthvalue_conversion. In expr.c: expand_expr, for operands of a MULT_EXPR. In fold-const.c: fold. In tree.c: get_narrower and get_unwidened. C++: in multiple-inheritance, converting between pointers may involve adjusting them by a delta stored within the class definition. */ /* Subroutines of `convert'. */ /* if converting pointer to pointer if dealing with classes, check for derived->base or vice versa else if dealing with method pointers, delegate else convert blindly else if converting class, pass off to build_type_conversion else try C-style pointer conversion. If FORCE is true then allow conversions via virtual bases (these are permitted by reinterpret_cast, but not static_cast). */ static tree cp_convert_to_pointer (type, expr, force) tree type, expr; int force; { register tree intype = TREE_TYPE (expr); register enum tree_code form; tree rval; if (IS_AGGR_TYPE (intype)) { intype = complete_type (intype); if (!COMPLETE_TYPE_P (intype)) { cp_error ("can't convert from incomplete type `%T' to `%T'", intype, type); return error_mark_node; } rval = build_type_conversion (type, expr, 1); if (rval) { if (rval == error_mark_node) cp_error ("conversion of `%E' from `%T' to `%T' is ambiguous", expr, intype, type); return rval; } } /* Handle anachronistic conversions from (::*)() to cv void* or (*)(). */ if (TREE_CODE (type) == POINTER_TYPE && (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE || VOID_TYPE_P (TREE_TYPE (type)))) { /* Allow an implicit this pointer for pointer to member functions. */ if (TYPE_PTRMEMFUNC_P (intype)) { tree fntype = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (intype)); tree decl = maybe_dummy_object (TYPE_METHOD_BASETYPE (fntype), 0); expr = build (OFFSET_REF, fntype, decl, expr); } if (TREE_CODE (expr) == OFFSET_REF && TREE_CODE (TREE_TYPE (expr)) == METHOD_TYPE) expr = resolve_offset_ref (expr); if (TREE_CODE (TREE_TYPE (expr)) == METHOD_TYPE) expr = build_addr_func (expr); if (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE) { if (TREE_CODE (TREE_TYPE (TREE_TYPE (expr))) == METHOD_TYPE) if (pedantic || warn_pmf2ptr) cp_pedwarn ("converting from `%T' to `%T'", TREE_TYPE (expr), type); return build1 (NOP_EXPR, type, expr); } intype = TREE_TYPE (expr); } form = TREE_CODE (intype); if (POINTER_TYPE_P (intype)) { intype = TYPE_MAIN_VARIANT (intype); if (TYPE_MAIN_VARIANT (type) != intype && TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE && IS_AGGR_TYPE (TREE_TYPE (type)) && IS_AGGR_TYPE (TREE_TYPE (intype)) && TREE_CODE (TREE_TYPE (intype)) == RECORD_TYPE /* If EXPR is NULL, then we don't need to do any arithmetic to convert it: [conv.ptr] The null pointer value is converted to the null pointer value of the destination type. */ && !integer_zerop (expr)) { enum tree_code code = PLUS_EXPR; tree binfo = get_binfo (TREE_TYPE (type), TREE_TYPE (intype), 1); if (binfo == error_mark_node) return error_mark_node; if (binfo == NULL_TREE) { binfo = get_binfo (TREE_TYPE (intype), TREE_TYPE (type), 1); if (binfo == error_mark_node) return error_mark_node; code = MINUS_EXPR; } if (binfo) { if (TYPE_USES_VIRTUAL_BASECLASSES (TREE_TYPE (type)) || TYPE_USES_VIRTUAL_BASECLASSES (TREE_TYPE (intype)) || ! BINFO_OFFSET_ZEROP (binfo)) { /* Need to get the path we took. */ tree path; if (code == PLUS_EXPR) get_base_distance (TREE_TYPE (type), TREE_TYPE (intype), 0, &path); else get_base_distance (TREE_TYPE (intype), TREE_TYPE (type), 0, &path); return build_vbase_path (code, type, expr, path, 0); } } } if (TYPE_PTRMEM_P (type) && TYPE_PTRMEM_P (intype)) { tree b1; tree b2; tree binfo; tree virt_binfo; enum tree_code code; b1 = TYPE_OFFSET_BASETYPE (TREE_TYPE (type)); b2 = TYPE_OFFSET_BASETYPE (TREE_TYPE (intype)); binfo = get_binfo (b2, b1, 1); if (binfo == NULL_TREE) { binfo = get_binfo (b1, b2, 1); code = MINUS_EXPR; } else code = PLUS_EXPR; if (binfo == error_mark_node) return error_mark_node; virt_binfo = binfo_from_vbase (binfo); if (virt_binfo) { if (force) cp_warning ("pointer to member cast via virtual base `%T' of `%T'", BINFO_TYPE (virt_binfo), BINFO_TYPE (BINFO_INHERITANCE_CHAIN (virt_binfo))); else { cp_error ("pointer to member cast via virtual base `%T' of `%T'", BINFO_TYPE (virt_binfo), BINFO_TYPE (BINFO_INHERITANCE_CHAIN (virt_binfo))); return error_mark_node; } /* This is a reinterpret cast, whose result is unspecified. We choose to do nothing. */ return build1 (NOP_EXPR, type, expr); } if (TREE_CODE (expr) == PTRMEM_CST) expr = cplus_expand_constant (expr); if (binfo) expr = size_binop (code, convert (sizetype, expr), BINFO_OFFSET (binfo)); } else if (TYPE_PTRMEMFUNC_P (type)) { cp_error ("cannot convert `%E' from type `%T' to type `%T'", expr, intype, type); return error_mark_node; } rval = build1 (NOP_EXPR, type, expr); TREE_CONSTANT (rval) = TREE_CONSTANT (expr); return rval; } else if (TYPE_PTRMEMFUNC_P (type) && TYPE_PTRMEMFUNC_P (intype)) return build_ptrmemfunc (TYPE_PTRMEMFUNC_FN_TYPE (type), expr, 0); else if (TYPE_PTRMEMFUNC_P (intype)) { cp_error ("cannot convert `%E' from type `%T' to type `%T'", expr, intype, type); return error_mark_node; } my_friendly_assert (form != OFFSET_TYPE, 186); if (integer_zerop (expr)) { if (TYPE_PTRMEMFUNC_P (type)) return build_ptrmemfunc (TYPE_PTRMEMFUNC_FN_TYPE (type), expr, 0); if (TYPE_PTRMEM_P (type)) /* A NULL pointer-to-member is represented by -1, not by zero. */ expr = build_int_2 (-1, -1); else expr = build_int_2 (0, 0); TREE_TYPE (expr) = type; return expr; } if (INTEGRAL_CODE_P (form)) { if (TYPE_PRECISION (intype) == POINTER_SIZE) return build1 (CONVERT_EXPR, type, expr); expr = cp_convert (type_for_size (POINTER_SIZE, 0), expr); /* Modes may be different but sizes should be the same. */ if (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))) != GET_MODE_SIZE (TYPE_MODE (type))) /* There is supposed to be some integral type that is the same width as a pointer. */ abort (); return convert_to_pointer (type, expr); } if (type_unknown_p (expr)) return instantiate_type (type, expr, itf_complain); cp_error ("cannot convert `%E' from type `%T' to type `%T'", expr, intype, type); return error_mark_node; } /* Like convert, except permit conversions to take place which are not normally allowed due to access restrictions (such as conversion from sub-type to private super-type). */ static tree convert_to_pointer_force (type, expr) tree type, expr; { register tree intype = TREE_TYPE (expr); register enum tree_code form = TREE_CODE (intype); if (integer_zerop (expr)) { expr = build_int_2 (0, 0); TREE_TYPE (expr) = type; return expr; } if (form == POINTER_TYPE) { intype = TYPE_MAIN_VARIANT (intype); if (TYPE_MAIN_VARIANT (type) != intype && TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE && IS_AGGR_TYPE (TREE_TYPE (type)) && IS_AGGR_TYPE (TREE_TYPE (intype)) && TREE_CODE (TREE_TYPE (intype)) == RECORD_TYPE) { enum tree_code code = PLUS_EXPR; tree path; int distance = get_base_distance (TREE_TYPE (type), TREE_TYPE (intype), 0, &path); if (distance == -2) { cp_error ("type `%T' is ambiguous base of `%T'", TREE_TYPE (type), TREE_TYPE (intype)); return error_mark_node; } if (distance == -1) { distance = get_base_distance (TREE_TYPE (intype), TREE_TYPE (type), 0, &path); if (distance == -2) { cp_error ("type `%T' is ambiguous base of `%T'", TREE_TYPE (intype), TREE_TYPE (type)); return error_mark_node; } if (distance < 0) /* Doesn't need any special help from us. */ return build1 (NOP_EXPR, type, expr); code = MINUS_EXPR; } return build_vbase_path (code, type, expr, path, 0); } } return cp_convert_to_pointer (type, expr, 1); } /* We are passing something to a function which requires a reference. The type we are interested in is in TYPE. The initial value we have to begin with is in ARG. FLAGS controls how we manage access checking. DIRECT_BIND in FLAGS controls how any temporaries are generated. If DIRECT_BIND is set, DECL is the reference we're binding to. */ static tree build_up_reference (type, arg, flags, decl) tree type, arg, decl; int flags; { tree rval; tree argtype = TREE_TYPE (arg); tree target_type = TREE_TYPE (type); tree stmt_expr = NULL_TREE; my_friendly_assert (TREE_CODE (type) == REFERENCE_TYPE, 187); if ((flags & DIRECT_BIND) && ! real_lvalue_p (arg)) { /* Create a new temporary variable. We can't just use a TARGET_EXPR here because it needs to live as long as DECL. */ tree targ = arg; arg = build_decl (VAR_DECL, NULL_TREE, argtype); DECL_ARTIFICIAL (arg) = 1; TREE_USED (arg) = 1; TREE_STATIC (arg) = TREE_STATIC (decl); if (TREE_STATIC (decl)) { /* Namespace-scope or local static; give it a mangled name. */ tree name = mangle_ref_init_variable (decl); DECL_NAME (arg) = name; SET_DECL_ASSEMBLER_NAME (arg, name); arg = pushdecl_top_level (arg); } else { /* Automatic; make sure we handle the cleanup properly. */ maybe_push_cleanup_level (argtype); arg = pushdecl (arg); } /* Process the initializer for the declaration. */ DECL_INITIAL (arg) = targ; cp_finish_decl (arg, targ, NULL_TREE, LOOKUP_ONLYCONVERTING|DIRECT_BIND); } else if (!(flags & DIRECT_BIND) && ! lvalue_p (arg)) return get_target_expr (arg); /* If we had a way to wrap this up, and say, if we ever needed its address, transform all occurrences of the register, into a memory reference we could win better. */ rval = build_unary_op (ADDR_EXPR, arg, 1); if (rval == error_mark_node) return error_mark_node; if ((flags & LOOKUP_PROTECT) && TYPE_MAIN_VARIANT (argtype) != TYPE_MAIN_VARIANT (target_type) && IS_AGGR_TYPE (argtype) && IS_AGGR_TYPE (target_type)) { /* We go through get_binfo for the access control. */ tree binfo = get_binfo (target_type, argtype, 1); if (binfo == error_mark_node) return error_mark_node; if (binfo == NULL_TREE) return error_not_base_type (target_type, argtype); rval = convert_pointer_to_real (binfo, rval); } else rval = convert_to_pointer_force (build_pointer_type (target_type), rval); rval = build1 (NOP_EXPR, type, rval); TREE_CONSTANT (rval) = TREE_CONSTANT (TREE_OPERAND (rval, 0)); /* If we created and initialized a new temporary variable, add the representation of that initialization to the RVAL. */ if (stmt_expr) rval = build (COMPOUND_EXPR, TREE_TYPE (rval), stmt_expr, rval); /* And return the result. */ return rval; } /* Subroutine of convert_to_reference. REFTYPE is the target reference type. INTYPE is the original rvalue type and DECL is an optional _DECL node for diagnostics. [dcl.init.ref] says that if an rvalue is used to initialize a reference, then the reference must be to a non-volatile const type. */ static void warn_ref_binding (reftype, intype, decl) tree reftype, intype, decl; { tree ttl = TREE_TYPE (reftype); if (!CP_TYPE_CONST_NON_VOLATILE_P (ttl)) { const char *msg; if (CP_TYPE_VOLATILE_P (ttl) && decl) msg = "initialization of volatile reference type `%#T' from rvalue of type `%T'"; else if (CP_TYPE_VOLATILE_P (ttl)) msg = "conversion to volatile reference type `%#T' from rvalue of type `%T'"; else if (decl) msg = "initialization of non-const reference type `%#T' from rvalue of type `%T'"; else msg = "conversion to non-const reference type `%#T' from rvalue of type `%T'"; cp_pedwarn (msg, reftype, intype); } } /* For C++: Only need to do one-level references, but cannot get tripped up on signed/unsigned differences. DECL is either NULL_TREE or the _DECL node for a reference that is being initialized. It can be error_mark_node if we don't know the _DECL but we know it's an initialization. */ tree convert_to_reference (reftype, expr, convtype, flags, decl) tree reftype, expr; int convtype, flags; tree decl; { register tree type = TYPE_MAIN_VARIANT (TREE_TYPE (reftype)); register tree intype = TREE_TYPE (expr); tree rval = NULL_TREE; tree rval_as_conversion = NULL_TREE; int i; if (TREE_CODE (type) == FUNCTION_TYPE && intype == unknown_type_node) { expr = instantiate_type (type, expr, (flags & LOOKUP_COMPLAIN) ? itf_complain : itf_none); if (expr == error_mark_node) return error_mark_node; intype = TREE_TYPE (expr); } if (TREE_CODE (intype) == REFERENCE_TYPE) my_friendly_abort (364); intype = TYPE_MAIN_VARIANT (intype); i = comp_target_types (type, intype, 0); if (i <= 0 && (convtype & CONV_IMPLICIT) && IS_AGGR_TYPE (intype) && ! (flags & LOOKUP_NO_CONVERSION)) { /* Look for a user-defined conversion to lvalue that we can use. */ rval_as_conversion = build_type_conversion (reftype, expr, 1); if (rval_as_conversion && rval_as_conversion != error_mark_node && real_lvalue_p (rval_as_conversion)) { expr = rval_as_conversion; rval_as_conversion = NULL_TREE; intype = type; i = 1; } } if (((convtype & CONV_STATIC) && i == -1) || ((convtype & CONV_IMPLICIT) && i == 1)) { if (flags & LOOKUP_COMPLAIN) { tree ttl = TREE_TYPE (reftype); tree ttr = lvalue_type (expr); if (! real_lvalue_p (expr)) warn_ref_binding (reftype, intype, decl); if (! (convtype & CONV_CONST) && !at_least_as_qualified_p (ttl, ttr)) cp_pedwarn ("conversion from `%T' to `%T' discards qualifiers", ttr, reftype); } return build_up_reference (reftype, expr, flags, decl); } else if ((convtype & CONV_REINTERPRET) && lvalue_p (expr)) { /* When casting an lvalue to a reference type, just convert into a pointer to the new type and deference it. This is allowed by San Diego WP section 5.2.9 paragraph 12, though perhaps it should be done directly (jason). (int &)ri ---> *(int*)&ri */ /* B* bp; A& ar = (A&)bp; is valid, but it's probably not what they meant. */ if (TREE_CODE (intype) == POINTER_TYPE && (comptypes (TREE_TYPE (intype), type, COMPARE_BASE | COMPARE_RELAXED ))) cp_warning ("casting `%T' to `%T' does not dereference pointer", intype, reftype); rval = build_unary_op (ADDR_EXPR, expr, 0); if (rval != error_mark_node) rval = convert_force (build_pointer_type (TREE_TYPE (reftype)), rval, 0); if (rval != error_mark_node) rval = build1 (NOP_EXPR, reftype, rval); } else { rval = convert_for_initialization (NULL_TREE, type, expr, flags, "converting", 0, 0); if (rval == NULL_TREE || rval == error_mark_node) return rval; warn_ref_binding (reftype, intype, decl); rval = build_up_reference (reftype, rval, flags, decl); } if (rval) { /* If we found a way to convert earlier, then use it. */ return rval; } my_friendly_assert (TREE_CODE (intype) != OFFSET_TYPE, 189); if (flags & LOOKUP_COMPLAIN) cp_error ("cannot convert type `%T' to type `%T'", intype, reftype); if (flags & LOOKUP_SPECULATIVELY) return NULL_TREE; return error_mark_node; } /* We are using a reference VAL for its value. Bash that reference all the way down to its lowest form. */ tree convert_from_reference (val) tree val; { tree type = TREE_TYPE (val); if (TREE_CODE (type) == OFFSET_TYPE) type = TREE_TYPE (type); if (TREE_CODE (type) == REFERENCE_TYPE) return build_indirect_ref (val, NULL); return val; } /* Implicitly convert the lvalue EXPR to another lvalue of type TOTYPE, preserving cv-qualification. */ tree convert_lvalue (totype, expr) tree totype, expr; { totype = cp_build_qualified_type (totype, TYPE_QUALS (TREE_TYPE (expr))); totype = build_reference_type (totype); expr = convert_to_reference (totype, expr, CONV_IMPLICIT, LOOKUP_NORMAL, NULL_TREE); return convert_from_reference (expr); } /* Call this when we know (for any reason) that expr is not, in fact, zero. This routine is like convert_pointer_to, but it pays attention to which specific instance of what type we want to convert to. This routine should eventually become convert_to_pointer after all references to convert_to_pointer are removed. */ tree convert_pointer_to_real (binfo, expr) tree binfo, expr; { register tree intype = TREE_TYPE (expr); tree ptr_type; tree type, rval; if (intype == error_mark_node) return error_mark_node; if (TREE_CODE (binfo) == TREE_VEC) type = BINFO_TYPE (binfo); else if (IS_AGGR_TYPE (binfo)) { type = binfo; } else { type = binfo; binfo = NULL_TREE; } ptr_type = cp_build_qualified_type (type, CP_TYPE_QUALS (TREE_TYPE (intype))); ptr_type = build_pointer_type (ptr_type); if (same_type_p (ptr_type, TYPE_MAIN_VARIANT (intype))) return expr; my_friendly_assert (!integer_zerop (expr), 191); intype = TYPE_MAIN_VARIANT (TREE_TYPE (intype)); if (TREE_CODE (type) == RECORD_TYPE && TREE_CODE (intype) == RECORD_TYPE && type != intype) { tree path; int distance = get_base_distance (binfo, intype, 0, &path); /* This function shouldn't be called with unqualified arguments but if it is, give them an error message that they can read. */ if (distance < 0) { cp_error ("cannot convert a pointer of type `%T' to a pointer of type `%T'", intype, type); if (distance == -2) cp_error ("because `%T' is an ambiguous base class", type); return error_mark_node; } return build_vbase_path (PLUS_EXPR, ptr_type, expr, path, 1); } rval = build1 (NOP_EXPR, ptr_type, TREE_CODE (expr) == NOP_EXPR ? TREE_OPERAND (expr, 0) : expr); TREE_CONSTANT (rval) = TREE_CONSTANT (expr); return rval; } /* Call this when we know (for any reason) that expr is not, in fact, zero. This routine gets a type out of the first argument and uses it to search for the type to convert to. If there is more than one instance of that type in the expr, the conversion is ambiguous. This routine should eventually go away, and all callers should use convert_to_pointer_real. */ tree convert_pointer_to (binfo, expr) tree binfo, expr; { return convert_pointer_to_real (binfo, expr); } /* C++ conversions, preference to static cast conversions. */ tree cp_convert (type, expr) tree type, expr; { return ocp_convert (type, expr, CONV_OLD_CONVERT, LOOKUP_NORMAL); } /* Conversion... FLAGS indicates how we should behave. */ tree ocp_convert (type, expr, convtype, flags) tree type, expr; int convtype, flags; { register tree e = expr; register enum tree_code code = TREE_CODE (type); if (e == error_mark_node || TREE_TYPE (e) == error_mark_node) return error_mark_node; complete_type (type); complete_type (TREE_TYPE (expr)); e = decl_constant_value (e); if (IS_AGGR_TYPE (type) && (convtype & CONV_FORCE_TEMP) /* Some internal structures (vtable_entry_type, sigtbl_ptr_type) don't go through finish_struct, so they don't have the synthesized constructors. So don't force a temporary. */ && TYPE_HAS_CONSTRUCTOR (type)) /* We need a new temporary; don't take this shortcut. */; else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (TREE_TYPE (e))) { if (same_type_p (type, TREE_TYPE (e))) /* The call to fold will not always remove the NOP_EXPR as might be expected, since if one of the types is a typedef; the comparsion in fold is just equality of pointers, not a call to comptypes. We don't call fold in this case because that can result in infinite recursion; fold will call convert, which will call ocp_convert, etc. */ return e; /* For complex data types, we need to perform componentwise conversion. */ else if (TREE_CODE (type) == COMPLEX_TYPE) return fold (convert_to_complex (type, e)); else return fold (build1 (NOP_EXPR, type, e)); } if (code == VOID_TYPE && (convtype & CONV_STATIC)) { e = convert_to_void (e, /*implicit=*/NULL); return e; } /* Just convert to the type of the member. */ if (code == OFFSET_TYPE) { type = TREE_TYPE (type); code = TREE_CODE (type); } if (TREE_CODE (e) == OFFSET_REF) e = resolve_offset_ref (e); if (INTEGRAL_CODE_P (code)) { tree intype = TREE_TYPE (e); /* enum = enum, enum = int, enum = float, (enum)pointer are all errors. */ if (TREE_CODE (type) == ENUMERAL_TYPE && ((ARITHMETIC_TYPE_P (intype) && ! (convtype & CONV_STATIC)) || (TREE_CODE (intype) == POINTER_TYPE))) { cp_pedwarn ("conversion from `%#T' to `%#T'", intype, type); if (flag_pedantic_errors) return error_mark_node; } if (IS_AGGR_TYPE (intype)) { tree rval; rval = build_type_conversion (type, e, 1); if (rval) return rval; if (flags & LOOKUP_COMPLAIN) cp_error ("`%#T' used where a `%T' was expected", intype, type); if (flags & LOOKUP_SPECULATIVELY) return NULL_TREE; return error_mark_node; } if (code == BOOLEAN_TYPE) { tree fn = NULL_TREE; /* Common Ada/Pascal programmer's mistake. We always warn about this since it is so bad. */ if (TREE_CODE (expr) == FUNCTION_DECL) fn = expr; else if (TREE_CODE (expr) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (expr, 0)) == FUNCTION_DECL) fn = TREE_OPERAND (expr, 0); if (fn && !DECL_WEAK (fn)) cp_warning ("the address of `%D', will always be `true'", fn); return cp_truthvalue_conversion (e); } return fold (convert_to_integer (type, e)); } if (code == POINTER_TYPE || code == REFERENCE_TYPE || TYPE_PTRMEMFUNC_P (type)) return fold (cp_convert_to_pointer (type, e, 0)); if (code == VECTOR_TYPE) return fold (convert_to_vector (type, e)); if (code == REAL_TYPE || code == COMPLEX_TYPE) { if (IS_AGGR_TYPE (TREE_TYPE (e))) { tree rval; rval = build_type_conversion (type, e, 1); if (rval) return rval; else if (flags & LOOKUP_COMPLAIN) cp_error ("`%#T' used where a floating point value was expected", TREE_TYPE (e)); } if (code == REAL_TYPE) return fold (convert_to_real (type, e)); else if (code == COMPLEX_TYPE) return fold (convert_to_complex (type, e)); } /* New C++ semantics: since assignment is now based on memberwise copying, if the rhs type is derived from the lhs type, then we may still do a conversion. */ if (IS_AGGR_TYPE_CODE (code)) { tree dtype = TREE_TYPE (e); tree ctor = NULL_TREE; dtype = TYPE_MAIN_VARIANT (dtype); /* Conversion between aggregate types. New C++ semantics allow objects of derived type to be cast to objects of base type. Old semantics only allowed this between pointers. There may be some ambiguity between using a constructor vs. using a type conversion operator when both apply. */ ctor = e; if (abstract_virtuals_error (NULL_TREE, type)) return error_mark_node; if ((flags & LOOKUP_ONLYCONVERTING) && ! (IS_AGGR_TYPE (dtype) && DERIVED_FROM_P (type, dtype))) /* For copy-initialization, first we create a temp of the proper type with a user-defined conversion sequence, then we direct-initialize the target with the temp (see [dcl.init]). */ ctor = build_user_type_conversion (type, ctor, flags); else ctor = build_method_call (NULL_TREE, complete_ctor_identifier, build_tree_list (NULL_TREE, ctor), TYPE_BINFO (type), flags); if (ctor) return build_cplus_new (type, ctor); } /* If TYPE or TREE_TYPE (E) is not on the permanent_obstack, then it won't be hashed and hence compare as not equal, even when it is. */ if (code == ARRAY_TYPE && TREE_TYPE (TREE_TYPE (e)) == TREE_TYPE (type) && index_type_equal (TYPE_DOMAIN (TREE_TYPE (e)), TYPE_DOMAIN (type))) return e; if (flags & LOOKUP_COMPLAIN) cp_error ("conversion from `%T' to non-scalar type `%T' requested", TREE_TYPE (expr), type); if (flags & LOOKUP_SPECULATIVELY) return NULL_TREE; return error_mark_node; } /* When an expression is used in a void context, its value is discarded and no lvalue-rvalue and similar conversions happen [expr.static.cast/4, stmt.expr/1, expr.comma/1]. This permits dereferencing an incomplete type in a void context. The C++ standard does not define what an `access' to an object is, but there is reason to beleive that it is the lvalue to rvalue conversion -- if it were not, `*&*p = 1' would violate [expr]/4 in that it accesses `*p' not to calculate the value to be stored. But, dcl.type.cv/8 indicates that volatile semantics should be the same between C and C++ where ever possible. C leaves it implementation defined as to what constitutes an access to a volatile. So, we interpret `*vp' as a read of the volatile object `vp' points to, unless that is an incomplete type. For volatile references we do not do this interpretation, because that would make it impossible to ignore the reference return value from functions. We issue warnings in the confusing cases. IMPLICIT is tells us the context of an implicit void conversion. */ tree convert_to_void (expr, implicit) tree expr; const char *implicit; { if (expr == error_mark_node || TREE_TYPE (expr) == error_mark_node) return error_mark_node; if (!TREE_TYPE (expr)) return expr; if (VOID_TYPE_P (TREE_TYPE (expr))) return expr; switch (TREE_CODE (expr)) { case COND_EXPR: { /* The two parts of a cond expr might be separate lvalues. */ tree op1 = TREE_OPERAND (expr,1); tree op2 = TREE_OPERAND (expr,2); tree new_op1 = convert_to_void (op1, implicit); tree new_op2 = convert_to_void (op2, implicit); if (new_op1 != op1 || new_op2 != op2) expr = build (COND_EXPR, implicit ? TREE_TYPE (expr) : void_type_node, TREE_OPERAND (expr, 0), new_op1, new_op2); break; } case COMPOUND_EXPR: { /* The second part of a compound expr contains the value. */ tree op1 = TREE_OPERAND (expr,1); tree new_op1 = convert_to_void (op1, implicit); if (new_op1 != op1) { tree t = build (COMPOUND_EXPR, TREE_TYPE (new_op1), TREE_OPERAND (expr, 0), new_op1); TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr); expr = t; } break; } case NON_LVALUE_EXPR: case NOP_EXPR: /* These have already decayed to rvalue. */ break; case CALL_EXPR: /* we have a special meaning for volatile void fn() */ break; case INDIRECT_REF: { tree type = TREE_TYPE (expr); int is_reference = TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE; int is_volatile = TYPE_VOLATILE (type); int is_complete = COMPLETE_TYPE_P (complete_type (type)); if (is_volatile && !is_complete) cp_warning ("object of incomplete type `%T' will not be accessed in %s", type, implicit ? implicit : "void context"); else if (is_reference && is_volatile) cp_warning ("object of type `%T' will not be accessed in %s", TREE_TYPE (TREE_OPERAND (expr, 0)), implicit ? implicit : "void context"); if (is_reference || !is_volatile || !is_complete) expr = TREE_OPERAND (expr, 0); break; } case VAR_DECL: { /* External variables might be incomplete. */ tree type = TREE_TYPE (expr); int is_complete = COMPLETE_TYPE_P (complete_type (type)); if (TYPE_VOLATILE (type) && !is_complete) cp_warning ("object `%E' of incomplete type `%T' will not be accessed in %s", expr, type, implicit ? implicit : "void context"); break; } case OFFSET_REF: expr = resolve_offset_ref (expr); break; default:; } { tree probe = expr; if (TREE_CODE (probe) == ADDR_EXPR) probe = TREE_OPERAND (expr, 0); if (type_unknown_p (probe)) { /* [over.over] enumerates the places where we can take the address of an overloaded function, and this is not one of them. */ cp_pedwarn ("%s cannot resolve address of overloaded function", implicit ? implicit : "void cast"); } else if (implicit && probe == expr && is_overloaded_fn (probe)) /* Only warn when there is no &. */ cp_warning ("%s is a reference, not call, to function `%E'", implicit, expr); } if (expr != error_mark_node && !VOID_TYPE_P (TREE_TYPE (expr))) { /* FIXME: This is where we should check for expressions with no effects. At the moment we do that in both build_x_component_expr and expand_expr_stmt -- inconsistently too. For the moment leave implicit void conversions unadorned so that expand_expr_stmt has a chance of detecting some of the cases. */ if (!implicit) expr = build1 (CONVERT_EXPR, void_type_node, expr); } return expr; } /* Create an expression whose value is that of EXPR, converted to type TYPE. The TREE_TYPE of the value is always TYPE. This function implements all reasonable conversions; callers should filter out those that are not permitted by the language being compiled. Most of this routine is from build_reinterpret_cast. The backend cannot call cp_convert (what was convert) because conversions to/from basetypes may involve memory references (vbases) and adding or subtracting small values (multiple inheritance), but it calls convert from the constant folding code on subtrees of already built trees after it has ripped them apart. Also, if we ever support range variables, we'll probably also have to do a little bit more work. */ tree convert (type, expr) tree type, expr; { tree intype; if (type == error_mark_node || expr == error_mark_node) return error_mark_node; intype = TREE_TYPE (expr); if (POINTER_TYPE_P (type) && POINTER_TYPE_P (intype)) { expr = decl_constant_value (expr); return fold (build1 (NOP_EXPR, type, expr)); } return ocp_convert (type, expr, CONV_OLD_CONVERT, LOOKUP_NORMAL|LOOKUP_NO_CONVERSION); } /* Like cp_convert, except permit conversions to take place which are not normally allowed due to access restrictions (such as conversion from sub-type to private super-type). */ tree convert_force (type, expr, convtype) tree type; tree expr; int convtype; { register tree e = expr; register enum tree_code code = TREE_CODE (type); if (code == REFERENCE_TYPE) return fold (convert_to_reference (type, e, CONV_C_CAST, LOOKUP_COMPLAIN, NULL_TREE)); else if (TREE_CODE (TREE_TYPE (e)) == REFERENCE_TYPE) e = convert_from_reference (e); if (code == POINTER_TYPE) return fold (convert_to_pointer_force (type, e)); /* From typeck.c convert_for_assignment */ if (((TREE_CODE (TREE_TYPE (e)) == POINTER_TYPE && TREE_CODE (e) == ADDR_EXPR && TREE_CODE (TREE_TYPE (e)) == POINTER_TYPE && TREE_CODE (TREE_TYPE (TREE_TYPE (e))) == METHOD_TYPE) || integer_zerop (e) || TYPE_PTRMEMFUNC_P (TREE_TYPE (e))) && TYPE_PTRMEMFUNC_P (type)) { /* compatible pointer to member functions. */ return build_ptrmemfunc (TYPE_PTRMEMFUNC_FN_TYPE (type), e, 1); } return ocp_convert (type, e, CONV_C_CAST|convtype, LOOKUP_NORMAL); } /* Convert an aggregate EXPR to type XTYPE. If a conversion exists, return the attempted conversion. This may return ERROR_MARK_NODE if the conversion is not allowed (references private members, etc). If no conversion exists, NULL_TREE is returned. If (FOR_SURE & 1) is non-zero, then we allow this type conversion to take place immediately. Otherwise, we build a SAVE_EXPR which can be evaluated if the results are ever needed. Changes to this functions should be mirrored in user_harshness. FIXME: Ambiguity checking is wrong. Should choose one by the implicit object parameter, or by the second standard conversion sequence if that doesn't do it. This will probably wait for an overloading rewrite. (jason 8/9/95) */ tree build_type_conversion (xtype, expr, for_sure) tree xtype, expr; int for_sure; { /* C++: check to see if we can convert this aggregate type into the required type. */ return build_user_type_conversion (xtype, expr, for_sure ? LOOKUP_NORMAL : 0); } /* Convert the given EXPR to one of a group of types suitable for use in an expression. DESIRES is a combination of various WANT_* flags (q.v.) which indicates which types are suitable. If COMPLAIN is 1, complain about ambiguity; otherwise, the caller will deal with it. */ tree build_expr_type_conversion (desires, expr, complain) int desires; tree expr; int complain; { tree basetype = TREE_TYPE (expr); tree conv = NULL_TREE; tree winner = NULL_TREE; if (expr == null_node && (desires & WANT_INT) && !(desires & WANT_NULL)) cp_warning ("converting NULL to non-pointer type"); if (TREE_CODE (expr) == OFFSET_REF) expr = resolve_offset_ref (expr); expr = convert_from_reference (expr); basetype = TREE_TYPE (expr); if (basetype == error_mark_node) return error_mark_node; if (! IS_AGGR_TYPE (basetype)) switch (TREE_CODE (basetype)) { case INTEGER_TYPE: if ((desires & WANT_NULL) && null_ptr_cst_p (expr)) return expr; /* else fall through... */ case BOOLEAN_TYPE: return (desires & WANT_INT) ? expr : NULL_TREE; case ENUMERAL_TYPE: return (desires & WANT_ENUM) ? expr : NULL_TREE; case REAL_TYPE: return (desires & WANT_FLOAT) ? expr : NULL_TREE; case POINTER_TYPE: return (desires & WANT_POINTER) ? expr : NULL_TREE; case FUNCTION_TYPE: case ARRAY_TYPE: return (desires & WANT_POINTER) ? default_conversion (expr) : NULL_TREE; default: return NULL_TREE; } /* The code for conversions from class type is currently only used for delete expressions. Other expressions are handled by build_new_op. */ if (! TYPE_HAS_CONVERSION (basetype)) return NULL_TREE; for (conv = lookup_conversions (basetype); conv; conv = TREE_CHAIN (conv)) { int win = 0; tree candidate; tree cand = TREE_VALUE (conv); if (winner && winner == cand) continue; candidate = TREE_TYPE (TREE_TYPE (cand)); if (TREE_CODE (candidate) == REFERENCE_TYPE) candidate = TREE_TYPE (candidate); switch (TREE_CODE (candidate)) { case BOOLEAN_TYPE: case INTEGER_TYPE: win = (desires & WANT_INT); break; case ENUMERAL_TYPE: win = (desires & WANT_ENUM); break; case REAL_TYPE: win = (desires & WANT_FLOAT); break; case POINTER_TYPE: win = (desires & WANT_POINTER); break; default: break; } if (win) { if (winner) { if (complain) { cp_error ("ambiguous default type conversion from `%T'", basetype); cp_error (" candidate conversions include `%D' and `%D'", winner, cand); } return error_mark_node; } else winner = cand; } } if (winner) { tree type = TREE_TYPE (TREE_TYPE (winner)); if (TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); return build_user_type_conversion (type, expr, LOOKUP_NORMAL); } return NULL_TREE; } /* Implements integral promotion (4.1) and float->double promotion. */ tree type_promotes_to (type) tree type; { int type_quals; if (type == error_mark_node) return error_mark_node; type_quals = CP_TYPE_QUALS (type); type = TYPE_MAIN_VARIANT (type); /* bool always promotes to int (not unsigned), even if it's the same size. */ if (type == boolean_type_node) type = integer_type_node; /* Normally convert enums to int, but convert wide enums to something wider. */ else if (TREE_CODE (type) == ENUMERAL_TYPE || type == wchar_type_node) { int precision = MAX (TYPE_PRECISION (type), TYPE_PRECISION (integer_type_node)); tree totype = type_for_size (precision, 0); if (TREE_UNSIGNED (type) && ! int_fits_type_p (TYPE_MAX_VALUE (type), totype)) type = type_for_size (precision, 1); else type = totype; } else if (c_promoting_integer_type_p (type)) { /* Retain unsignedness if really not getting bigger. */ if (TREE_UNSIGNED (type) && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)) type = unsigned_type_node; else type = integer_type_node; } else if (type == float_type_node) type = double_type_node; return cp_build_qualified_type (type, type_quals); } /* The routines below this point are carefully written to conform to the standard. They use the same terminology, and follow the rules closely. Although they are used only in pt.c at the moment, they should presumably be used everywhere in the future. */ /* Attempt to perform qualification conversions on EXPR to convert it to TYPE. Return the resulting expression, or error_mark_node if the conversion was impossible. */ tree perform_qualification_conversions (type, expr) tree type; tree expr; { if (TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE && comp_ptr_ttypes (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (expr)))) return build1 (NOP_EXPR, type, expr); else return error_mark_node; }