/* Output dbx-format symbol table information from GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Output dbx-format symbol table data. This consists of many symbol table entries, each of them a .stabs assembler pseudo-op with four operands: a "name" which is really a description of one symbol and its type, a "code", which is a symbol defined in stab.h whose name starts with N_, an unused operand always 0, and a "value" which is an address or an offset. The name is enclosed in doublequote characters. Each function, variable, typedef, and structure tag has a symbol table entry to define it. The beginning and end of each level of name scoping within a function are also marked by special symbol table entries. The "name" consists of the symbol name, a colon, a kind-of-symbol letter, and a data type number. The data type number may be followed by "=" and a type definition; normally this will happen the first time the type number is mentioned. The type definition may refer to other types by number, and those type numbers may be followed by "=" and nested definitions. This can make the "name" quite long. When a name is more than 80 characters, we split the .stabs pseudo-op into two .stabs pseudo-ops, both sharing the same "code" and "value". The first one is marked as continued with a double-backslash at the end of its "name". The kind-of-symbol letter distinguished function names from global variables from file-scope variables from parameters from auto variables in memory from typedef names from register variables. See `dbxout_symbol'. The "code" is mostly redundant with the kind-of-symbol letter that goes in the "name", but not entirely: for symbols located in static storage, the "code" says which segment the address is in, which controls how it is relocated. The "value" for a symbol in static storage is the core address of the symbol (actually, the assembler label for the symbol). For a symbol located in a stack slot it is the stack offset; for one in a register, the register number. For a typedef symbol, it is zero. If DEBUG_SYMS_TEXT is defined, all debugging symbols must be output while in the text section. For more on data type definitions, see `dbxout_type'. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "flags.h" #include "regs.h" #include "insn-config.h" #include "reload.h" #include "output.h" #include "dbxout.h" #include "toplev.h" #include "tm_p.h" #include "ggc.h" #include "debug.h" #include "function.h" #include "target.h" #include "langhooks.h" #include "obstack.h" #include "expr.h" #ifdef XCOFF_DEBUGGING_INFO #include "xcoffout.h" #endif #define DBXOUT_DECR_NESTING \ if (--debug_nesting == 0 && symbol_queue_index > 0) \ { emit_pending_bincls_if_required (); debug_flush_symbol_queue (); } #define DBXOUT_DECR_NESTING_AND_RETURN(x) \ do {--debug_nesting; return (x);} while (0) #ifndef ASM_STABS_OP # ifdef XCOFF_DEBUGGING_INFO # define ASM_STABS_OP "\t.stabx\t" # else # define ASM_STABS_OP "\t.stabs\t" # endif #endif #ifndef ASM_STABN_OP #define ASM_STABN_OP "\t.stabn\t" #endif #ifndef ASM_STABD_OP #define ASM_STABD_OP "\t.stabd\t" #endif #ifndef DBX_TYPE_DECL_STABS_CODE #define DBX_TYPE_DECL_STABS_CODE N_LSYM #endif #ifndef DBX_STATIC_CONST_VAR_CODE #define DBX_STATIC_CONST_VAR_CODE N_FUN #endif #ifndef DBX_REGPARM_STABS_CODE #define DBX_REGPARM_STABS_CODE N_RSYM #endif #ifndef DBX_REGPARM_STABS_LETTER #define DBX_REGPARM_STABS_LETTER 'P' #endif #ifndef NO_DBX_FUNCTION_END #define NO_DBX_FUNCTION_END 0 #endif #ifndef NO_DBX_BNSYM_ENSYM #define NO_DBX_BNSYM_ENSYM 0 #endif #ifndef NO_DBX_MAIN_SOURCE_DIRECTORY #define NO_DBX_MAIN_SOURCE_DIRECTORY 0 #endif #ifndef DBX_BLOCKS_FUNCTION_RELATIVE #define DBX_BLOCKS_FUNCTION_RELATIVE 0 #endif #ifndef DBX_LINES_FUNCTION_RELATIVE #define DBX_LINES_FUNCTION_RELATIVE 0 #endif #ifndef DBX_CONTIN_LENGTH #define DBX_CONTIN_LENGTH 80 #endif #ifndef DBX_CONTIN_CHAR #define DBX_CONTIN_CHAR '\\' #endif enum typestatus {TYPE_UNSEEN, TYPE_XREF, TYPE_DEFINED}; /* Structure recording information about a C data type. The status element says whether we have yet output the definition of the type. TYPE_XREF says we have output it as a cross-reference only. The file_number and type_number elements are used if DBX_USE_BINCL is defined. */ struct typeinfo GTY(()) { enum typestatus status; int file_number; int type_number; }; /* Vector recording information about C data types. When we first notice a data type (a tree node), we assign it a number using next_type_number. That is its index in this vector. */ static GTY ((length ("typevec_len"))) struct typeinfo *typevec; /* Number of elements of space allocated in `typevec'. */ static GTY(()) int typevec_len; /* In dbx output, each type gets a unique number. This is the number for the next type output. The number, once assigned, is in the TYPE_SYMTAB_ADDRESS field. */ static GTY(()) int next_type_number; /* The C front end may call dbxout_symbol before dbxout_init runs. We save all such decls in this list and output them when we get to dbxout_init. */ static GTY(()) tree preinit_symbols; enum binclstatus {BINCL_NOT_REQUIRED, BINCL_PENDING, BINCL_PROCESSED}; /* When using N_BINCL in dbx output, each type number is actually a pair of the file number and the type number within the file. This is a stack of input files. */ struct dbx_file { struct dbx_file *next; int file_number; int next_type_number; enum binclstatus bincl_status; /* Keep track of lazy bincl. */ const char *pending_bincl_name; /* Name of bincl. */ struct dbx_file *prev; /* Chain to traverse all pending bincls. */ }; /* This is the top of the stack. This is not saved for PCH, because restoring a PCH should not change it. next_file_number does have to be saved, because the PCH may use some file numbers; however, just before restoring a PCH, next_file_number should always be 0 because we should not have needed any file numbers yet. */ #if (defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)) \ && defined (DBX_USE_BINCL) static struct dbx_file *current_file; #endif /* This is the next file number to use. */ static GTY(()) int next_file_number; /* A counter for dbxout_function_end. */ static GTY(()) int scope_labelno; /* A counter for dbxout_source_line. */ static GTY(()) int dbxout_source_line_counter; /* Number for the next N_SOL filename stabs label. The number 0 is reserved for the N_SO filename stabs label. */ static GTY(()) int source_label_number = 1; /* Last source file name mentioned in a NOTE insn. */ static GTY(()) const char *lastfile; /* Used by PCH machinery to detect if 'lastfile' should be reset to base_input_file. */ static GTY(()) int lastfile_is_base; /* Typical USG systems don't have stab.h, and they also have no use for DBX-format debugging info. */ #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) #ifdef DBX_USE_BINCL /* If zero then there is no pending BINCL. */ static int pending_bincls = 0; #endif /* The original input file name. */ static const char *base_input_file; #ifdef DEBUG_SYMS_TEXT #define FORCE_TEXT switch_to_section (current_function_section ()) #else #define FORCE_TEXT #endif #include "gstab.h" #define STAB_CODE_TYPE enum __stab_debug_code /* 1 if PARM is passed to this function in memory. */ #define PARM_PASSED_IN_MEMORY(PARM) \ (MEM_P (DECL_INCOMING_RTL (PARM))) /* A C expression for the integer offset value of an automatic variable (N_LSYM) having address X (an RTX). */ #ifndef DEBUGGER_AUTO_OFFSET #define DEBUGGER_AUTO_OFFSET(X) \ (GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) #endif /* A C expression for the integer offset value of an argument (N_PSYM) having address X (an RTX). The nominal offset is OFFSET. */ #ifndef DEBUGGER_ARG_OFFSET #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET) #endif /* This obstack holds the stab string currently being constructed. We build it up here, then write it out, so we can split long lines up properly (see dbxout_finish_complex_stabs). */ static struct obstack stabstr_ob; static size_t stabstr_last_contin_point; #ifdef DBX_USE_BINCL static void emit_bincl_stab (const char *c); static void emit_pending_bincls (void); #endif static inline void emit_pending_bincls_if_required (void); static void dbxout_init (const char *); static void dbxout_finish (const char *); static void dbxout_start_source_file (unsigned, const char *); static void dbxout_end_source_file (unsigned); static void dbxout_typedefs (tree); static void dbxout_type_index (tree); static void dbxout_args (tree); static void dbxout_type_fields (tree); static void dbxout_type_method_1 (tree); static void dbxout_type_methods (tree); static void dbxout_range_type (tree); static void dbxout_type (tree, int); static bool print_int_cst_bounds_in_octal_p (tree); static bool is_fortran (void); static void dbxout_type_name (tree); static void dbxout_class_name_qualifiers (tree); static int dbxout_symbol_location (tree, tree, const char *, rtx); static void dbxout_symbol_name (tree, const char *, int); static void dbxout_common_name (tree, const char *, STAB_CODE_TYPE); static const char *dbxout_common_check (tree, int *); static void dbxout_global_decl (tree); static void dbxout_type_decl (tree, int); static void dbxout_handle_pch (unsigned); /* The debug hooks structure. */ #if defined (DBX_DEBUGGING_INFO) static void dbxout_source_line (unsigned int, const char *); static void dbxout_begin_prologue (unsigned int, const char *); static void dbxout_source_file (const char *); static void dbxout_function_end (tree); static void dbxout_begin_function (tree); static void dbxout_begin_block (unsigned, unsigned); static void dbxout_end_block (unsigned, unsigned); static void dbxout_function_decl (tree); const struct gcc_debug_hooks dbx_debug_hooks = { dbxout_init, dbxout_finish, debug_nothing_int_charstar, debug_nothing_int_charstar, dbxout_start_source_file, dbxout_end_source_file, dbxout_begin_block, dbxout_end_block, debug_true_const_tree, /* ignore_block */ dbxout_source_line, /* source_line */ dbxout_begin_prologue, /* begin_prologue */ debug_nothing_int_charstar, /* end_prologue */ debug_nothing_int_charstar, /* end_epilogue */ #ifdef DBX_FUNCTION_FIRST dbxout_begin_function, #else debug_nothing_tree, /* begin_function */ #endif debug_nothing_int, /* end_function */ dbxout_function_decl, dbxout_global_decl, /* global_decl */ dbxout_type_decl, /* type_decl */ debug_nothing_tree_tree, /* imported_module_or_decl */ debug_nothing_tree, /* deferred_inline_function */ debug_nothing_tree, /* outlining_inline_function */ debug_nothing_rtx, /* label */ dbxout_handle_pch, /* handle_pch */ debug_nothing_rtx, /* var_location */ debug_nothing_void, /* switch_text_section */ 0 /* start_end_main_source_file */ }; #endif /* DBX_DEBUGGING_INFO */ #if defined (XCOFF_DEBUGGING_INFO) const struct gcc_debug_hooks xcoff_debug_hooks = { dbxout_init, dbxout_finish, debug_nothing_int_charstar, debug_nothing_int_charstar, dbxout_start_source_file, dbxout_end_source_file, xcoffout_begin_block, xcoffout_end_block, debug_true_const_tree, /* ignore_block */ xcoffout_source_line, xcoffout_begin_prologue, /* begin_prologue */ debug_nothing_int_charstar, /* end_prologue */ xcoffout_end_epilogue, debug_nothing_tree, /* begin_function */ xcoffout_end_function, debug_nothing_tree, /* function_decl */ dbxout_global_decl, /* global_decl */ dbxout_type_decl, /* type_decl */ debug_nothing_tree_tree, /* imported_module_or_decl */ debug_nothing_tree, /* deferred_inline_function */ debug_nothing_tree, /* outlining_inline_function */ debug_nothing_rtx, /* label */ dbxout_handle_pch, /* handle_pch */ debug_nothing_rtx, /* var_location */ debug_nothing_void, /* switch_text_section */ 0 /* start_end_main_source_file */ }; #endif /* XCOFF_DEBUGGING_INFO */ /* Numeric formatting helper macro. Note that this does not handle hexadecimal. */ #define NUMBER_FMT_LOOP(P, NUM, BASE) \ do \ { \ int digit = NUM % BASE; \ NUM /= BASE; \ *--P = digit + '0'; \ } \ while (NUM > 0) /* Utility: write a decimal integer NUM to asm_out_file. */ void dbxout_int (int num) { char buf[64]; char *p = buf + sizeof buf; unsigned int unum; if (num == 0) { putc ('0', asm_out_file); return; } if (num < 0) { putc ('-', asm_out_file); unum = -num; } else unum = num; NUMBER_FMT_LOOP (p, unum, 10); while (p < buf + sizeof buf) { putc (*p, asm_out_file); p++; } } /* Primitives for emitting simple stabs directives. All other stabs routines should use these functions instead of directly emitting stabs. They are exported because machine-dependent code may need to invoke them, e.g. in a DBX_OUTPUT_* macro whose definition forwards to code in CPU.c. */ /* The following functions should all be called immediately after one of the dbxout_begin_stab* functions (below). They write out various things as the value of a stab. */ /* Write out a literal zero as the value of a stab. */ void dbxout_stab_value_zero (void) { fputs ("0\n", asm_out_file); } /* Write out the label LABEL as the value of a stab. */ void dbxout_stab_value_label (const char *label) { assemble_name (asm_out_file, label); putc ('\n', asm_out_file); } /* Write out the difference of two labels, LABEL - BASE, as the value of a stab. */ void dbxout_stab_value_label_diff (const char *label, const char *base) { assemble_name (asm_out_file, label); putc ('-', asm_out_file); assemble_name (asm_out_file, base); putc ('\n', asm_out_file); } /* Write out an internal label as the value of a stab, and immediately emit that internal label. This should be used only when dbxout_stabd will not work. STEM is the name stem of the label, COUNTERP is a pointer to a counter variable which will be used to guarantee label uniqueness. */ void dbxout_stab_value_internal_label (const char *stem, int *counterp) { char label[100]; int counter = counterp ? (*counterp)++ : 0; ASM_GENERATE_INTERNAL_LABEL (label, stem, counter); dbxout_stab_value_label (label); targetm.asm_out.internal_label (asm_out_file, stem, counter); } /* Write out the difference between BASE and an internal label as the value of a stab, and immediately emit that internal label. STEM and COUNTERP are as for dbxout_stab_value_internal_label. */ void dbxout_stab_value_internal_label_diff (const char *stem, int *counterp, const char *base) { char label[100]; int counter = counterp ? (*counterp)++ : 0; ASM_GENERATE_INTERNAL_LABEL (label, stem, counter); dbxout_stab_value_label_diff (label, base); targetm.asm_out.internal_label (asm_out_file, stem, counter); } /* The following functions produce specific kinds of stab directives. */ /* Write a .stabd directive with type STYPE and desc SDESC to asm_out_file. */ void dbxout_stabd (int stype, int sdesc) { fputs (ASM_STABD_OP, asm_out_file); dbxout_int (stype); fputs (",0,", asm_out_file); dbxout_int (sdesc); putc ('\n', asm_out_file); } /* Write a .stabn directive with type STYPE. This function stops short of emitting the value field, which is the responsibility of the caller (normally it will be either a symbol or the difference of two symbols). */ void dbxout_begin_stabn (int stype) { fputs (ASM_STABN_OP, asm_out_file); dbxout_int (stype); fputs (",0,0,", asm_out_file); } /* Write a .stabn directive with type N_SLINE and desc LINE. As above, the value field is the responsibility of the caller. */ void dbxout_begin_stabn_sline (int lineno) { fputs (ASM_STABN_OP, asm_out_file); dbxout_int (N_SLINE); fputs (",0,", asm_out_file); dbxout_int (lineno); putc (',', asm_out_file); } /* Begin a .stabs directive with string "", type STYPE, and desc and other fields 0. The value field is the responsibility of the caller. This function cannot be used for .stabx directives. */ void dbxout_begin_empty_stabs (int stype) { fputs (ASM_STABS_OP, asm_out_file); fputs ("\"\",", asm_out_file); dbxout_int (stype); fputs (",0,0,", asm_out_file); } /* Begin a .stabs directive with string STR, type STYPE, and desc 0. The value field is the responsibility of the caller. */ void dbxout_begin_simple_stabs (const char *str, int stype) { fputs (ASM_STABS_OP, asm_out_file); output_quoted_string (asm_out_file, str); putc (',', asm_out_file); dbxout_int (stype); fputs (",0,0,", asm_out_file); } /* As above but use SDESC for the desc field. */ void dbxout_begin_simple_stabs_desc (const char *str, int stype, int sdesc) { fputs (ASM_STABS_OP, asm_out_file); output_quoted_string (asm_out_file, str); putc (',', asm_out_file); dbxout_int (stype); fputs (",0,", asm_out_file); dbxout_int (sdesc); putc (',', asm_out_file); } /* The next set of functions are entirely concerned with production of "complex" .stabs directives: that is, .stabs directives whose strings have to be constructed piecemeal. dbxout_type, dbxout_symbol, etc. use these routines heavily. The string is queued up in an obstack, then written out by dbxout_finish_complex_stabs, which is also responsible for splitting it up if it exceeds DBX_CONTIN_LENGTH. (You might think it would be more efficient to go straight to stdio when DBX_CONTIN_LENGTH is 0 (i.e. no length limit) but that turns out not to be the case, and anyway this needs fewer #ifdefs.) */ /* Begin a complex .stabs directive. If we can, write the initial ASM_STABS_OP to the asm_out_file. */ static void dbxout_begin_complex_stabs (void) { emit_pending_bincls_if_required (); FORCE_TEXT; fputs (ASM_STABS_OP, asm_out_file); putc ('"', asm_out_file); gcc_assert (stabstr_last_contin_point == 0); } /* As above, but do not force text or emit pending bincls. This is used by dbxout_symbol_location, which needs to do something else. */ static void dbxout_begin_complex_stabs_noforcetext (void) { fputs (ASM_STABS_OP, asm_out_file); putc ('"', asm_out_file); gcc_assert (stabstr_last_contin_point == 0); } /* Add CHR, a single character, to the string being built. */ #define stabstr_C(chr) obstack_1grow (&stabstr_ob, chr) /* Add STR, a normal C string, to the string being built. */ #define stabstr_S(str) obstack_grow (&stabstr_ob, str, strlen(str)) /* Add the text of ID, an IDENTIFIER_NODE, to the string being built. */ #define stabstr_I(id) obstack_grow (&stabstr_ob, \ IDENTIFIER_POINTER (id), \ IDENTIFIER_LENGTH (id)) /* Add NUM, a signed decimal number, to the string being built. */ static void stabstr_D (HOST_WIDE_INT num) { char buf[64]; char *p = buf + sizeof buf; unsigned int unum; if (num == 0) { stabstr_C ('0'); return; } if (num < 0) { stabstr_C ('-'); unum = -num; } else unum = num; NUMBER_FMT_LOOP (p, unum, 10); obstack_grow (&stabstr_ob, p, (buf + sizeof buf) - p); } /* Add NUM, an unsigned decimal number, to the string being built. */ static void stabstr_U (unsigned HOST_WIDE_INT num) { char buf[64]; char *p = buf + sizeof buf; if (num == 0) { stabstr_C ('0'); return; } NUMBER_FMT_LOOP (p, num, 10); obstack_grow (&stabstr_ob, p, (buf + sizeof buf) - p); } /* Add CST, an INTEGER_CST tree, to the string being built as an unsigned octal number. This routine handles values which are larger than a single HOST_WIDE_INT. */ static void stabstr_O (tree cst) { unsigned HOST_WIDE_INT high = TREE_INT_CST_HIGH (cst); unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (cst); char buf[128]; char *p = buf + sizeof buf; /* GDB wants constants with no extra leading "1" bits, so we need to remove any sign-extension that might be present. */ { const unsigned int width = TYPE_PRECISION (TREE_TYPE (cst)); if (width == HOST_BITS_PER_WIDE_INT * 2) ; else if (width > HOST_BITS_PER_WIDE_INT) high &= (((HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT)) - 1); else if (width == HOST_BITS_PER_WIDE_INT) high = 0; else high = 0, low &= (((HOST_WIDE_INT) 1 << width) - 1); } /* Leading zero for base indicator. */ stabstr_C ('0'); /* If the value is zero, the base indicator will serve as the value all by itself. */ if (high == 0 && low == 0) return; /* If the high half is zero, we need only print the low half normally. */ if (high == 0) NUMBER_FMT_LOOP (p, low, 8); else { /* When high != 0, we need to print enough zeroes from low to give the digits from high their proper place-values. Hence NUMBER_FMT_LOOP cannot be used. */ const int n_digits = HOST_BITS_PER_WIDE_INT / 3; int i; for (i = 1; i <= n_digits; i++) { unsigned int digit = low % 8; low /= 8; *--p = '0' + digit; } /* Octal digits carry exactly three bits of information. The width of a HOST_WIDE_INT is not normally a multiple of three. Therefore, the next digit printed probably needs to carry information from both low and high. */ if (HOST_BITS_PER_WIDE_INT % 3 != 0) { const int n_leftover_bits = HOST_BITS_PER_WIDE_INT % 3; const int n_bits_from_high = 3 - n_leftover_bits; const unsigned HOST_WIDE_INT low_mask = (((unsigned HOST_WIDE_INT)1) << n_leftover_bits) - 1; const unsigned HOST_WIDE_INT high_mask = (((unsigned HOST_WIDE_INT)1) << n_bits_from_high) - 1; unsigned int digit; /* At this point, only the bottom n_leftover_bits bits of low should be set. */ gcc_assert (!(low & ~low_mask)); digit = (low | ((high & high_mask) << n_leftover_bits)); high >>= n_bits_from_high; *--p = '0' + digit; } /* Now we can format high in the normal manner. However, if the only bits of high that were set were handled by the digit split between low and high, high will now be zero, and we don't want to print extra digits in that case. */ if (high) NUMBER_FMT_LOOP (p, high, 8); } obstack_grow (&stabstr_ob, p, (buf + sizeof buf) - p); } /* Called whenever it is safe to break a stabs string into multiple .stabs directives. If the current string has exceeded the limit set by DBX_CONTIN_LENGTH, mark the current position in the buffer as a continuation point by inserting DBX_CONTIN_CHAR (doubled if it is a backslash) and a null character. */ static inline void stabstr_continue (void) { if (DBX_CONTIN_LENGTH > 0 && obstack_object_size (&stabstr_ob) - stabstr_last_contin_point > DBX_CONTIN_LENGTH) { if (DBX_CONTIN_CHAR == '\\') obstack_1grow (&stabstr_ob, '\\'); obstack_1grow (&stabstr_ob, DBX_CONTIN_CHAR); obstack_1grow (&stabstr_ob, '\0'); stabstr_last_contin_point = obstack_object_size (&stabstr_ob); } } #define CONTIN stabstr_continue () /* Macro subroutine of dbxout_finish_complex_stabs, which emits all of the arguments to the .stabs directive after the string. Overridden by xcoffout.h. CODE is the stabs code for this symbol; LINE is the source line to write into the desc field (in extended mode); SYM is the symbol itself. ADDR, LABEL, and NUMBER are three different ways to represent the stabs value field. At most one of these should be nonzero. ADDR is used most of the time; it represents the value as an RTL address constant. LABEL is used (currently) only for N_CATCH stabs; it represents the value as a string suitable for assemble_name. NUMBER is used when the value is an offset from an implicit base pointer (e.g. for a stack variable), or an index (e.g. for a register variable). It represents the value as a decimal integer. */ #ifndef DBX_FINISH_STABS #define DBX_FINISH_STABS(SYM, CODE, LINE, ADDR, LABEL, NUMBER) \ do { \ int line_ = use_gnu_debug_info_extensions ? LINE : 0; \ \ dbxout_int (CODE); \ fputs (",0,", asm_out_file); \ dbxout_int (line_); \ putc (',', asm_out_file); \ if (ADDR) \ output_addr_const (asm_out_file, ADDR); \ else if (LABEL) \ assemble_name (asm_out_file, LABEL); \ else \ dbxout_int (NUMBER); \ putc ('\n', asm_out_file); \ } while (0) #endif /* Finish the emission of a complex .stabs directive. When DBX_CONTIN_LENGTH is zero, this has only to emit the close quote and the remainder of the arguments. When it is nonzero, the string has been marshalled in stabstr_ob, and this routine is responsible for breaking it up into DBX_CONTIN_LENGTH-sized chunks. SYM is the DECL of the symbol under consideration; it is used only for its DECL_SOURCE_LINE. The other arguments are all passed directly to DBX_FINISH_STABS; see above for details. */ static void dbxout_finish_complex_stabs (tree sym, STAB_CODE_TYPE code, rtx addr, const char *label, int number) { int line ATTRIBUTE_UNUSED; char *str; size_t len; line = sym ? DECL_SOURCE_LINE (sym) : 0; if (DBX_CONTIN_LENGTH > 0) { char *chunk; size_t chunklen; /* Nul-terminate the growing string, then get its size and address. */ obstack_1grow (&stabstr_ob, '\0'); len = obstack_object_size (&stabstr_ob); chunk = str = XOBFINISH (&stabstr_ob, char *); /* Within the buffer are a sequence of NUL-separated strings, each of which is to be written out as a separate stab directive. */ for (;;) { chunklen = strlen (chunk); fwrite (chunk, 1, chunklen, asm_out_file); fputs ("\",", asm_out_file); /* Must add an extra byte to account for the NUL separator. */ chunk += chunklen + 1; len -= chunklen + 1; /* Only put a line number on the last stab in the sequence. */ DBX_FINISH_STABS (sym, code, len == 0 ? line : 0, addr, label, number); if (len == 0) break; fputs (ASM_STABS_OP, asm_out_file); putc ('"', asm_out_file); } stabstr_last_contin_point = 0; } else { /* No continuations - we can put the whole string out at once. It is faster to augment the string with the close quote and comma than to do a two-character fputs. */ obstack_grow (&stabstr_ob, "\",", 2); len = obstack_object_size (&stabstr_ob); str = XOBFINISH (&stabstr_ob, char *); fwrite (str, 1, len, asm_out_file); DBX_FINISH_STABS (sym, code, line, addr, label, number); } obstack_free (&stabstr_ob, str); } #if defined (DBX_DEBUGGING_INFO) static void dbxout_function_end (tree decl) { char lscope_label_name[100]; /* The Lscope label must be emitted even if we aren't doing anything else; dbxout_block needs it. */ switch_to_section (function_section (current_function_decl)); /* Convert Lscope into the appropriate format for local labels in case the system doesn't insert underscores in front of user generated labels. */ ASM_GENERATE_INTERNAL_LABEL (lscope_label_name, "Lscope", scope_labelno); targetm.asm_out.internal_label (asm_out_file, "Lscope", scope_labelno); /* The N_FUN tag at the end of the function is a GNU extension, which may be undesirable, and is unnecessary if we do not have named sections. */ if (!use_gnu_debug_info_extensions || NO_DBX_FUNCTION_END || !targetm.have_named_sections || DECL_IGNORED_P (decl)) return; /* By convention, GCC will mark the end of a function with an N_FUN symbol and an empty string. */ if (flag_reorder_blocks_and_partition) { dbxout_begin_empty_stabs (N_FUN); dbxout_stab_value_label_diff (crtl->subsections.hot_section_end_label, crtl->subsections.hot_section_label); dbxout_begin_empty_stabs (N_FUN); dbxout_stab_value_label_diff (crtl->subsections.cold_section_end_label, crtl->subsections.cold_section_label); } else { char begin_label[20]; /* Reference current function start using LFBB. */ ASM_GENERATE_INTERNAL_LABEL (begin_label, "LFBB", scope_labelno); dbxout_begin_empty_stabs (N_FUN); dbxout_stab_value_label_diff (lscope_label_name, begin_label); } if (!NO_DBX_BNSYM_ENSYM && !flag_debug_only_used_symbols) dbxout_stabd (N_ENSYM, 0); } #endif /* DBX_DEBUGGING_INFO */ /* Get lang description for N_SO stab. */ static unsigned int ATTRIBUTE_UNUSED get_lang_number (void) { const char *language_string = lang_hooks.name; if (strcmp (language_string, "GNU C") == 0) return N_SO_C; else if (strcmp (language_string, "GNU C++") == 0) return N_SO_CC; else if (strcmp (language_string, "GNU F77") == 0) return N_SO_FORTRAN; else if (strcmp (language_string, "GNU Fortran") == 0) return N_SO_FORTRAN90; /* CHECKME */ else if (strcmp (language_string, "GNU Pascal") == 0) return N_SO_PASCAL; else if (strcmp (language_string, "GNU Objective-C") == 0) return N_SO_OBJC; else if (strcmp (language_string, "GNU Objective-C++") == 0) return N_SO_OBJCPLUS; else return 0; } static bool is_fortran (void) { unsigned int lang = get_lang_number (); return (lang == N_SO_FORTRAN) || (lang == N_SO_FORTRAN90); } /* At the beginning of compilation, start writing the symbol table. Initialize `typevec' and output the standard data types of C. */ static void dbxout_init (const char *input_file_name) { char ltext_label_name[100]; bool used_ltext_label_name = false; tree syms = lang_hooks.decls.getdecls (); const char *mapped_name; typevec_len = 100; typevec = ggc_calloc (typevec_len, sizeof typevec[0]); /* stabstr_ob contains one string, which will be just fine with 1-byte alignment. */ obstack_specify_allocation (&stabstr_ob, 0, 1, xmalloc, free); /* Convert Ltext into the appropriate format for local labels in case the system doesn't insert underscores in front of user generated labels. */ ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0); /* Put the current working directory in an N_SO symbol. */ if (use_gnu_debug_info_extensions && !NO_DBX_MAIN_SOURCE_DIRECTORY) { static const char *cwd; if (!cwd) { cwd = get_src_pwd (); if (cwd[0] == '\0') cwd = "/"; else if (!IS_DIR_SEPARATOR (cwd[strlen (cwd) - 1])) cwd = concat (cwd, "/", NULL); cwd = remap_debug_filename (cwd); } #ifdef DBX_OUTPUT_MAIN_SOURCE_DIRECTORY DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (asm_out_file, cwd); #else /* no DBX_OUTPUT_MAIN_SOURCE_DIRECTORY */ dbxout_begin_simple_stabs_desc (cwd, N_SO, get_lang_number ()); dbxout_stab_value_label (ltext_label_name); used_ltext_label_name = true; #endif /* no DBX_OUTPUT_MAIN_SOURCE_DIRECTORY */ } mapped_name = remap_debug_filename (input_file_name); #ifdef DBX_OUTPUT_MAIN_SOURCE_FILENAME DBX_OUTPUT_MAIN_SOURCE_FILENAME (asm_out_file, mapped_name); #else dbxout_begin_simple_stabs_desc (mapped_name, N_SO, get_lang_number ()); dbxout_stab_value_label (ltext_label_name); used_ltext_label_name = true; #endif if (used_ltext_label_name) { switch_to_section (text_section); targetm.asm_out.internal_label (asm_out_file, "Ltext", 0); } /* Emit an N_OPT stab to indicate that this file was compiled by GCC. The string used is historical. */ #ifndef NO_DBX_GCC_MARKER dbxout_begin_simple_stabs ("gcc2_compiled.", N_OPT); dbxout_stab_value_zero (); #endif base_input_file = lastfile = input_file_name; next_type_number = 1; #ifdef DBX_USE_BINCL current_file = XNEW (struct dbx_file); current_file->next = NULL; current_file->file_number = 0; current_file->next_type_number = 1; next_file_number = 1; current_file->prev = NULL; current_file->bincl_status = BINCL_NOT_REQUIRED; current_file->pending_bincl_name = NULL; #endif /* Get all permanent types that have typedef names, and output them all, except for those already output. Some language front ends put these declarations in the top-level scope; some do not; the latter are responsible for calling debug_hooks->type_decl from their record_builtin_type function. */ dbxout_typedefs (syms); if (preinit_symbols) { tree t; for (t = nreverse (preinit_symbols); t; t = TREE_CHAIN (t)) dbxout_symbol (TREE_VALUE (t), 0); preinit_symbols = 0; } } /* Output any typedef names for types described by TYPE_DECLs in SYMS. */ static void dbxout_typedefs (tree syms) { for (; syms != NULL_TREE; syms = TREE_CHAIN (syms)) { if (TREE_CODE (syms) == TYPE_DECL) { tree type = TREE_TYPE (syms); if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && COMPLETE_OR_VOID_TYPE_P (type) && ! TREE_ASM_WRITTEN (TYPE_NAME (type))) dbxout_symbol (TYPE_NAME (type), 0); } } } #ifdef DBX_USE_BINCL /* Emit BINCL stab using given name. */ static void emit_bincl_stab (const char *name) { dbxout_begin_simple_stabs (name, N_BINCL); dbxout_stab_value_zero (); } /* If there are pending bincls then it is time to emit all of them. */ static inline void emit_pending_bincls_if_required (void) { if (pending_bincls) emit_pending_bincls (); } /* Emit all pending bincls. */ static void emit_pending_bincls (void) { struct dbx_file *f = current_file; /* Find first pending bincl. */ while (f->bincl_status == BINCL_PENDING) f = f->next; /* Now emit all bincls. */ f = f->prev; while (f) { if (f->bincl_status == BINCL_PENDING) { emit_bincl_stab (f->pending_bincl_name); /* Update file number and status. */ f->file_number = next_file_number++; f->bincl_status = BINCL_PROCESSED; } if (f == current_file) break; f = f->prev; } /* All pending bincls have been emitted. */ pending_bincls = 0; } #else static inline void emit_pending_bincls_if_required (void) {} #endif /* Change to reading from a new source file. Generate a N_BINCL stab. */ static void dbxout_start_source_file (unsigned int line ATTRIBUTE_UNUSED, const char *filename ATTRIBUTE_UNUSED) { #ifdef DBX_USE_BINCL struct dbx_file *n = XNEW (struct dbx_file); n->next = current_file; n->next_type_number = 1; /* Do not assign file number now. Delay it until we actually emit BINCL. */ n->file_number = 0; n->prev = NULL; current_file->prev = n; n->bincl_status = BINCL_PENDING; n->pending_bincl_name = remap_debug_filename (filename); pending_bincls = 1; current_file = n; #endif } /* Revert to reading a previous source file. Generate a N_EINCL stab. */ static void dbxout_end_source_file (unsigned int line ATTRIBUTE_UNUSED) { #ifdef DBX_USE_BINCL /* Emit EINCL stab only if BINCL is not pending. */ if (current_file->bincl_status == BINCL_PROCESSED) { dbxout_begin_stabn (N_EINCL); dbxout_stab_value_zero (); } current_file->bincl_status = BINCL_NOT_REQUIRED; current_file = current_file->next; #endif } /* Handle a few odd cases that occur when trying to make PCH files work. */ static void dbxout_handle_pch (unsigned at_end) { if (! at_end) { /* When using the PCH, this file will be included, so we need to output a BINCL. */ dbxout_start_source_file (0, lastfile); /* The base file when using the PCH won't be the same as the base file when it's being generated. */ lastfile = NULL; } else { /* ... and an EINCL. */ dbxout_end_source_file (0); /* Deal with cases where 'lastfile' was never actually changed. */ lastfile_is_base = lastfile == NULL; } } #if defined (DBX_DEBUGGING_INFO) static void dbxout_block (tree, int, tree); /* Output debugging info to FILE to switch to sourcefile FILENAME. */ static void dbxout_source_file (const char *filename) { if (lastfile == 0 && lastfile_is_base) { lastfile = base_input_file; lastfile_is_base = 0; } if (filename && (lastfile == 0 || strcmp (filename, lastfile))) { /* Don't change section amid function. */ if (current_function_decl == NULL_TREE) switch_to_section (text_section); dbxout_begin_simple_stabs (remap_debug_filename (filename), N_SOL); dbxout_stab_value_internal_label ("Ltext", &source_label_number); lastfile = filename; } } /* Output N_BNSYM, line number symbol entry, and local symbol at function scope */ static void dbxout_begin_prologue (unsigned int lineno, const char *filename) { if (use_gnu_debug_info_extensions && !NO_DBX_FUNCTION_END && !NO_DBX_BNSYM_ENSYM && !flag_debug_only_used_symbols) dbxout_stabd (N_BNSYM, 0); /* pre-increment the scope counter */ scope_labelno++; dbxout_source_line (lineno, filename); /* Output function begin block at function scope, referenced by dbxout_block, dbxout_source_line and dbxout_function_end. */ emit_pending_bincls_if_required (); targetm.asm_out.internal_label (asm_out_file, "LFBB", scope_labelno); } /* Output a line number symbol entry for source file FILENAME and line number LINENO. */ static void dbxout_source_line (unsigned int lineno, const char *filename) { dbxout_source_file (filename); #ifdef DBX_OUTPUT_SOURCE_LINE DBX_OUTPUT_SOURCE_LINE (asm_out_file, lineno, dbxout_source_line_counter); #else if (DBX_LINES_FUNCTION_RELATIVE) { char begin_label[20]; dbxout_begin_stabn_sline (lineno); /* Reference current function start using LFBB. */ ASM_GENERATE_INTERNAL_LABEL (begin_label, "LFBB", scope_labelno); dbxout_stab_value_internal_label_diff ("LM", &dbxout_source_line_counter, begin_label); } else dbxout_stabd (N_SLINE, lineno); #endif } /* Describe the beginning of an internal block within a function. */ static void dbxout_begin_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int n) { emit_pending_bincls_if_required (); targetm.asm_out.internal_label (asm_out_file, "LBB", n); } /* Describe the end line-number of an internal block within a function. */ static void dbxout_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int n) { emit_pending_bincls_if_required (); targetm.asm_out.internal_label (asm_out_file, "LBE", n); } /* Output dbx data for a function definition. This includes a definition of the function name itself (a symbol), definitions of the parameters (locating them in the parameter list) and then output the block that makes up the function's body (including all the auto variables of the function). */ static void dbxout_function_decl (tree decl) { emit_pending_bincls_if_required (); #ifndef DBX_FUNCTION_FIRST dbxout_begin_function (decl); #endif dbxout_block (DECL_INITIAL (decl), 0, DECL_ARGUMENTS (decl)); dbxout_function_end (decl); } #endif /* DBX_DEBUGGING_INFO */ /* Debug information for a global DECL. Called from toplev.c after compilation proper has finished. */ static void dbxout_global_decl (tree decl) { if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl)) { int saved_tree_used = TREE_USED (decl); TREE_USED (decl) = 1; dbxout_symbol (decl, 0); TREE_USED (decl) = saved_tree_used; } } /* This is just a function-type adapter; dbxout_symbol does exactly what we want but returns an int. */ static void dbxout_type_decl (tree decl, int local) { dbxout_symbol (decl, local); } /* At the end of compilation, finish writing the symbol table. The default is to call debug_free_queue but do nothing else. */ static void dbxout_finish (const char *filename ATTRIBUTE_UNUSED) { #ifdef DBX_OUTPUT_MAIN_SOURCE_FILE_END DBX_OUTPUT_MAIN_SOURCE_FILE_END (asm_out_file, filename); #elif defined DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END { switch_to_section (text_section); dbxout_begin_empty_stabs (N_SO); dbxout_stab_value_internal_label ("Letext", 0); } #endif debug_free_queue (); } /* Output the index of a type. */ static void dbxout_type_index (tree type) { #ifndef DBX_USE_BINCL stabstr_D (TYPE_SYMTAB_ADDRESS (type)); #else struct typeinfo *t = &typevec[TYPE_SYMTAB_ADDRESS (type)]; stabstr_C ('('); stabstr_D (t->file_number); stabstr_C (','); stabstr_D (t->type_number); stabstr_C (')'); #endif } /* Used in several places: evaluates to '0' for a private decl, '1' for a protected decl, '2' for a public decl. */ #define DECL_ACCESSIBILITY_CHAR(DECL) \ (TREE_PRIVATE (DECL) ? '0' : TREE_PROTECTED (DECL) ? '1' : '2') /* Subroutine of `dbxout_type'. Output the type fields of TYPE. This must be a separate function because anonymous unions require recursive calls. */ static void dbxout_type_fields (tree type) { tree tem; /* Output the name, type, position (in bits), size (in bits) of each field that we can support. */ for (tem = TYPE_FIELDS (type); tem; tem = TREE_CHAIN (tem)) { /* If one of the nodes is an error_mark or its type is then return early. */ if (tem == error_mark_node || TREE_TYPE (tem) == error_mark_node) return; /* Omit here local type decls until we know how to support them. */ if (TREE_CODE (tem) == TYPE_DECL /* Omit here the nameless fields that are used to skip bits. */ || DECL_IGNORED_P (tem) /* Omit fields whose position or size are variable or too large to represent. */ || (TREE_CODE (tem) == FIELD_DECL && (! host_integerp (bit_position (tem), 0) || ! DECL_SIZE (tem) || ! host_integerp (DECL_SIZE (tem), 1)))) continue; else if (TREE_CODE (tem) != CONST_DECL) { /* Continue the line if necessary, but not before the first field. */ if (tem != TYPE_FIELDS (type)) CONTIN; if (DECL_NAME (tem)) stabstr_I (DECL_NAME (tem)); stabstr_C (':'); if (use_gnu_debug_info_extensions && (TREE_PRIVATE (tem) || TREE_PROTECTED (tem) || TREE_CODE (tem) != FIELD_DECL)) { stabstr_C ('/'); stabstr_C (DECL_ACCESSIBILITY_CHAR (tem)); } dbxout_type ((TREE_CODE (tem) == FIELD_DECL && DECL_BIT_FIELD_TYPE (tem)) ? DECL_BIT_FIELD_TYPE (tem) : TREE_TYPE (tem), 0); if (TREE_CODE (tem) == VAR_DECL) { if (TREE_STATIC (tem) && use_gnu_debug_info_extensions) { tree name = DECL_ASSEMBLER_NAME (tem); stabstr_C (':'); stabstr_I (name); stabstr_C (';'); } else /* If TEM is non-static, GDB won't understand it. */ stabstr_S (",0,0;"); } else { stabstr_C (','); stabstr_D (int_bit_position (tem)); stabstr_C (','); stabstr_D (tree_low_cst (DECL_SIZE (tem), 1)); stabstr_C (';'); } } } } /* Subroutine of `dbxout_type_methods'. Output debug info about the method described DECL. */ static void dbxout_type_method_1 (tree decl) { char c1 = 'A', c2; if (TREE_CODE (TREE_TYPE (decl)) == FUNCTION_TYPE) c2 = '?'; else /* it's a METHOD_TYPE. */ { tree firstarg = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))); /* A for normal functions. B for `const' member functions. C for `volatile' member functions. D for `const volatile' member functions. */ if (TYPE_READONLY (TREE_TYPE (firstarg))) c1 += 1; if (TYPE_VOLATILE (TREE_TYPE (firstarg))) c1 += 2; if (DECL_VINDEX (decl)) c2 = '*'; else c2 = '.'; } /* ??? Output the mangled name, which contains an encoding of the method's type signature. May not be necessary anymore. */ stabstr_C (':'); stabstr_I (DECL_ASSEMBLER_NAME (decl)); stabstr_C (';'); stabstr_C (DECL_ACCESSIBILITY_CHAR (decl)); stabstr_C (c1); stabstr_C (c2); if (DECL_VINDEX (decl) && host_integerp (DECL_VINDEX (decl), 0)) { stabstr_D (tree_low_cst (DECL_VINDEX (decl), 0)); stabstr_C (';'); dbxout_type (DECL_CONTEXT (decl), 0); stabstr_C (';'); } } /* Subroutine of `dbxout_type'. Output debug info about the methods defined in TYPE. */ static void dbxout_type_methods (tree type) { /* C++: put out the method names and their parameter lists */ tree methods = TYPE_METHODS (type); tree fndecl; tree last; if (methods == NULL_TREE) return; if (TREE_CODE (methods) != TREE_VEC) fndecl = methods; else if (TREE_VEC_ELT (methods, 0) != NULL_TREE) fndecl = TREE_VEC_ELT (methods, 0); else fndecl = TREE_VEC_ELT (methods, 1); while (fndecl) { int need_prefix = 1; /* Group together all the methods for the same operation. These differ in the types of the arguments. */ for (last = NULL_TREE; fndecl && (last == NULL_TREE || DECL_NAME (fndecl) == DECL_NAME (last)); fndecl = TREE_CHAIN (fndecl)) /* Output the name of the field (after overloading), as well as the name of the field before overloading, along with its parameter list */ { /* Skip methods that aren't FUNCTION_DECLs. (In C++, these include TEMPLATE_DECLs.) The debugger doesn't know what to do with such entities anyhow. */ if (TREE_CODE (fndecl) != FUNCTION_DECL) continue; CONTIN; last = fndecl; /* Also ignore abstract methods; those are only interesting to the DWARF backends. */ if (DECL_IGNORED_P (fndecl) || DECL_ABSTRACT (fndecl)) continue; /* Redundantly output the plain name, since that's what gdb expects. */ if (need_prefix) { stabstr_I (DECL_NAME (fndecl)); stabstr_S ("::"); need_prefix = 0; } dbxout_type (TREE_TYPE (fndecl), 0); dbxout_type_method_1 (fndecl); } if (!need_prefix) stabstr_C (';'); } } /* Emit a "range" type specification, which has the form: "r;;;". TYPE is an INTEGER_TYPE. */ static void dbxout_range_type (tree type) { stabstr_C ('r'); if (TREE_TYPE (type)) dbxout_type (TREE_TYPE (type), 0); else if (TREE_CODE (type) != INTEGER_TYPE) dbxout_type (type, 0); /* E.g. Pascal's ARRAY [BOOLEAN] of INTEGER */ else { /* Traditionally, we made sure 'int' was type 1, and builtin types were defined to be sub-ranges of int. Unfortunately, this does not allow us to distinguish true sub-ranges from integer types. So, instead we define integer (non-sub-range) types as sub-ranges of themselves. This matters for Chill. If this isn't a subrange type, then we want to define it in terms of itself. However, in C, this may be an anonymous integer type, and we don't want to emit debug info referring to it. Just calling dbxout_type_index won't work anyways, because the type hasn't been defined yet. We make this work for both cases by checked to see whether this is a defined type, referring to it if it is, and using 'int' otherwise. */ if (TYPE_SYMTAB_ADDRESS (type) != 0) dbxout_type_index (type); else dbxout_type_index (integer_type_node); } stabstr_C (';'); if (TYPE_MIN_VALUE (type) != 0 && host_integerp (TYPE_MIN_VALUE (type), 0)) { if (print_int_cst_bounds_in_octal_p (type)) stabstr_O (TYPE_MIN_VALUE (type)); else stabstr_D (tree_low_cst (TYPE_MIN_VALUE (type), 0)); } else stabstr_C ('0'); stabstr_C (';'); if (TYPE_MAX_VALUE (type) != 0 && host_integerp (TYPE_MAX_VALUE (type), 0)) { if (print_int_cst_bounds_in_octal_p (type)) stabstr_O (TYPE_MAX_VALUE (type)); else stabstr_D (tree_low_cst (TYPE_MAX_VALUE (type), 0)); stabstr_C (';'); } else stabstr_S ("-1;"); } /* Output a reference to a type. If the type has not yet been described in the dbx output, output its definition now. For a type already defined, just refer to its definition using the type number. If FULL is nonzero, and the type has been described only with a forward-reference, output the definition now. If FULL is zero in this case, just refer to the forward-reference using the number previously allocated. */ static void dbxout_type (tree type, int full) { tree tem; tree main_variant; static int anonymous_type_number = 0; bool vector_type = false; if (TREE_CODE (type) == VECTOR_TYPE) { /* The frontend feeds us a representation for the vector as a struct containing an array. Pull out the array type. */ type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type))); vector_type = true; } /* If there was an input error and we don't really have a type, avoid crashing and write something that is at least valid by assuming `int'. */ if (type == error_mark_node) type = integer_type_node; else { if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type))) full = 0; } /* Try to find the "main variant" with the same name. */ if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_ORIGINAL_TYPE (TYPE_NAME (type))) main_variant = TREE_TYPE (TYPE_NAME (type)); else main_variant = TYPE_MAIN_VARIANT (type); /* If we are not using extensions, stabs does not distinguish const and volatile, so there is no need to make them separate types. */ if (!use_gnu_debug_info_extensions) type = main_variant; if (TYPE_SYMTAB_ADDRESS (type) == 0) { /* Type has no dbx number assigned. Assign next available number. */ TYPE_SYMTAB_ADDRESS (type) = next_type_number++; /* Make sure type vector is long enough to record about this type. */ if (next_type_number == typevec_len) { typevec = ggc_realloc (typevec, (typevec_len * 2 * sizeof typevec[0])); memset (typevec + typevec_len, 0, typevec_len * sizeof typevec[0]); typevec_len *= 2; } #ifdef DBX_USE_BINCL emit_pending_bincls_if_required (); typevec[TYPE_SYMTAB_ADDRESS (type)].file_number = current_file->file_number; typevec[TYPE_SYMTAB_ADDRESS (type)].type_number = current_file->next_type_number++; #endif } if (flag_debug_only_used_symbols) { if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE || TREE_CODE (type) == ENUMERAL_TYPE) && TYPE_STUB_DECL (type) && DECL_P (TYPE_STUB_DECL (type)) && ! DECL_IGNORED_P (TYPE_STUB_DECL (type))) debug_queue_symbol (TYPE_STUB_DECL (type)); else if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL) debug_queue_symbol (TYPE_NAME (type)); } /* Output the number of this type, to refer to it. */ dbxout_type_index (type); #ifdef DBX_TYPE_DEFINED if (DBX_TYPE_DEFINED (type)) return; #endif /* If this type's definition has been output or is now being output, that is all. */ switch (typevec[TYPE_SYMTAB_ADDRESS (type)].status) { case TYPE_UNSEEN: break; case TYPE_XREF: /* If we have already had a cross reference, and either that's all we want or that's the best we could do, don't repeat the cross reference. Sun dbx crashes if we do. */ if (! full || !COMPLETE_TYPE_P (type) /* No way in DBX fmt to describe a variable size. */ || ! host_integerp (TYPE_SIZE (type), 1)) return; break; case TYPE_DEFINED: return; } #ifdef DBX_NO_XREFS /* For systems where dbx output does not allow the `=xsNAME:' syntax, leave the type-number completely undefined rather than output a cross-reference. If we have already used GNU debug info extensions, then it is OK to output a cross reference. This is necessary to get proper C++ debug output. */ if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE || TREE_CODE (type) == ENUMERAL_TYPE) && ! use_gnu_debug_info_extensions) /* We must use the same test here as we use twice below when deciding whether to emit a cross-reference. */ if ((TYPE_NAME (type) != 0 && ! (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_IGNORED_P (TYPE_NAME (type))) && !full) || !COMPLETE_TYPE_P (type) /* No way in DBX fmt to describe a variable size. */ || ! host_integerp (TYPE_SIZE (type), 1)) { typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_XREF; return; } #endif /* Output a definition now. */ stabstr_C ('='); /* Mark it as defined, so that if it is self-referent we will not get into an infinite recursion of definitions. */ typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_DEFINED; /* If this type is a variant of some other, hand off. Types with different names are usefully distinguished. We only distinguish cv-qualified types if we're using extensions. */ if (TYPE_READONLY (type) > TYPE_READONLY (main_variant)) { stabstr_C ('k'); dbxout_type (build_type_variant (type, 0, TYPE_VOLATILE (type)), 0); return; } else if (TYPE_VOLATILE (type) > TYPE_VOLATILE (main_variant)) { stabstr_C ('B'); dbxout_type (build_type_variant (type, TYPE_READONLY (type), 0), 0); return; } else if (main_variant != TYPE_MAIN_VARIANT (type)) { if (flag_debug_only_used_symbols) { tree orig_type = DECL_ORIGINAL_TYPE (TYPE_NAME (type)); if ((TREE_CODE (orig_type) == RECORD_TYPE || TREE_CODE (orig_type) == UNION_TYPE || TREE_CODE (orig_type) == QUAL_UNION_TYPE || TREE_CODE (orig_type) == ENUMERAL_TYPE) && TYPE_STUB_DECL (orig_type) && ! DECL_IGNORED_P (TYPE_STUB_DECL (orig_type))) debug_queue_symbol (TYPE_STUB_DECL (orig_type)); } /* 'type' is a typedef; output the type it refers to. */ dbxout_type (DECL_ORIGINAL_TYPE (TYPE_NAME (type)), 0); return; } /* else continue. */ switch (TREE_CODE (type)) { case VOID_TYPE: case LANG_TYPE: /* For a void type, just define it as itself; i.e., "5=5". This makes us consider it defined without saying what it is. The debugger will make it a void type when the reference is seen, and nothing will ever override that default. */ dbxout_type_index (type); break; case INTEGER_TYPE: if (type == char_type_node && ! TYPE_UNSIGNED (type)) { /* Output the type `char' as a subrange of itself! I don't understand this definition, just copied it from the output of pcc. This used to use `r2' explicitly and we used to take care to make sure that `char' was type number 2. */ stabstr_C ('r'); dbxout_type_index (type); stabstr_S (";0;127;"); } /* If this is a subtype of another integer type, always prefer to write it as a subtype. */ else if (TREE_TYPE (type) != 0 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE) { /* If the size is non-standard, say what it is if we can use GDB extensions. */ if (use_gnu_debug_info_extensions && TYPE_PRECISION (type) != TYPE_PRECISION (integer_type_node)) { stabstr_S ("@s"); stabstr_D (TYPE_PRECISION (type)); stabstr_C (';'); } dbxout_range_type (type); } else { /* If the size is non-standard, say what it is if we can use GDB extensions. */ if (use_gnu_debug_info_extensions && TYPE_PRECISION (type) != TYPE_PRECISION (integer_type_node)) { stabstr_S ("@s"); stabstr_D (TYPE_PRECISION (type)); stabstr_C (';'); } if (print_int_cst_bounds_in_octal_p (type)) { stabstr_C ('r'); /* If this type derives from another type, output type index of parent type. This is particularly important when parent type is an enumerated type, because not generating the parent type index would transform the definition of this enumerated type into a plain unsigned type. */ if (TREE_TYPE (type) != 0) dbxout_type_index (TREE_TYPE (type)); else dbxout_type_index (type); stabstr_C (';'); stabstr_O (TYPE_MIN_VALUE (type)); stabstr_C (';'); stabstr_O (TYPE_MAX_VALUE (type)); stabstr_C (';'); } else /* Output other integer types as subranges of `int'. */ dbxout_range_type (type); } break; case REAL_TYPE: case FIXED_POINT_TYPE: /* This used to say `r1' and we used to take care to make sure that `int' was type number 1. */ stabstr_C ('r'); dbxout_type_index (integer_type_node); stabstr_C (';'); stabstr_D (int_size_in_bytes (type)); stabstr_S (";0;"); break; case BOOLEAN_TYPE: if (use_gnu_debug_info_extensions) { stabstr_S ("@s"); stabstr_D (BITS_PER_UNIT * int_size_in_bytes (type)); stabstr_S (";-16;"); } else /* Define as enumeral type (False, True) */ stabstr_S ("eFalse:0,True:1,;"); break; case COMPLEX_TYPE: /* Differs from the REAL_TYPE by its new data type number. R3 is NF_COMPLEX. We don't try to use any of the other NF_* codes since gdb doesn't care anyway. */ if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) { stabstr_S ("R3;"); stabstr_D (2 * int_size_in_bytes (TREE_TYPE (type))); stabstr_S (";0;"); } else { /* Output a complex integer type as a structure, pending some other way to do it. */ stabstr_C ('s'); stabstr_D (int_size_in_bytes (type)); stabstr_S ("real:"); dbxout_type (TREE_TYPE (type), 0); stabstr_S (",0,"); stabstr_D (TYPE_PRECISION (TREE_TYPE (type))); stabstr_S (";imag:"); dbxout_type (TREE_TYPE (type), 0); stabstr_C (','); stabstr_D (TYPE_PRECISION (TREE_TYPE (type))); stabstr_C (','); stabstr_D (TYPE_PRECISION (TREE_TYPE (type))); stabstr_S (";;"); } break; case ARRAY_TYPE: /* Make arrays of packed bits look like bitstrings for chill. */ if (TYPE_PACKED (type) && use_gnu_debug_info_extensions) { stabstr_S ("@s"); stabstr_D (BITS_PER_UNIT * int_size_in_bytes (type)); stabstr_S (";@S;S"); dbxout_type (TYPE_DOMAIN (type), 0); break; } if (use_gnu_debug_info_extensions && vector_type) stabstr_S ("@V;"); /* Output "a" followed by a range type definition for the index type of the array followed by a reference to the target-type. ar1;0;N;M for a C array of type M and size N+1. */ /* Check if a character string type, which in Chill is different from an array of characters. */ if (TYPE_STRING_FLAG (type) && use_gnu_debug_info_extensions) { stabstr_S ("@S;"); } tem = TYPE_DOMAIN (type); if (tem == NULL) { stabstr_S ("ar"); dbxout_type_index (integer_type_node); stabstr_S (";0;-1;"); } else { stabstr_C ('a'); dbxout_range_type (tem); } dbxout_type (TREE_TYPE (type), 0); break; case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree binfo = TYPE_BINFO (type); /* Output a structure type. We must use the same test here as we use in the DBX_NO_XREFS case above. */ if ((TYPE_NAME (type) != 0 && ! (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_IGNORED_P (TYPE_NAME (type))) && !full) || !COMPLETE_TYPE_P (type) /* No way in DBX fmt to describe a variable size. */ || ! host_integerp (TYPE_SIZE (type), 1)) { /* If the type is just a cross reference, output one and mark the type as partially described. If it later becomes defined, we will output its real definition. If the type has a name, don't nest its definition within another type's definition; instead, output an xref and let the definition come when the name is defined. */ stabstr_S ((TREE_CODE (type) == RECORD_TYPE) ? "xs" : "xu"); if (TYPE_NAME (type) != 0 /* The C frontend creates for anonymous variable length records/unions TYPE_NAME with DECL_NAME NULL. */ && (TREE_CODE (TYPE_NAME (type)) != TYPE_DECL || DECL_NAME (TYPE_NAME (type)))) dbxout_type_name (type); else { stabstr_S ("$$"); stabstr_D (anonymous_type_number++); } stabstr_C (':'); typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_XREF; break; } /* Identify record or union, and print its size. */ stabstr_C ((TREE_CODE (type) == RECORD_TYPE) ? 's' : 'u'); stabstr_D (int_size_in_bytes (type)); if (binfo) { int i; tree child; VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo); if (use_gnu_debug_info_extensions) { if (BINFO_N_BASE_BINFOS (binfo)) { stabstr_C ('!'); stabstr_U (BINFO_N_BASE_BINFOS (binfo)); stabstr_C (','); } } for (i = 0; BINFO_BASE_ITERATE (binfo, i, child); i++) { tree access = (accesses ? VEC_index (tree, accesses, i) : access_public_node); if (use_gnu_debug_info_extensions) { stabstr_C (BINFO_VIRTUAL_P (child) ? '1' : '0'); stabstr_C (access == access_public_node ? '2' : access == access_protected_node ? '1' :'0'); if (BINFO_VIRTUAL_P (child) && (strcmp (lang_hooks.name, "GNU C++") == 0 || strcmp (lang_hooks.name, "GNU Objective-C++") == 0)) /* For a virtual base, print the (negative) offset within the vtable where we must look to find the necessary adjustment. */ stabstr_D (tree_low_cst (BINFO_VPTR_FIELD (child), 0) * BITS_PER_UNIT); else stabstr_D (tree_low_cst (BINFO_OFFSET (child), 0) * BITS_PER_UNIT); stabstr_C (','); dbxout_type (BINFO_TYPE (child), 0); stabstr_C (';'); } else { /* Print out the base class information with fields which have the same names at the types they hold. */ dbxout_type_name (BINFO_TYPE (child)); stabstr_C (':'); dbxout_type (BINFO_TYPE (child), full); stabstr_C (','); stabstr_D (tree_low_cst (BINFO_OFFSET (child), 0) * BITS_PER_UNIT); stabstr_C (','); stabstr_D (tree_low_cst (TYPE_SIZE (BINFO_TYPE (child)), 0) * BITS_PER_UNIT); stabstr_C (';'); } } } } /* Write out the field declarations. */ dbxout_type_fields (type); if (use_gnu_debug_info_extensions && TYPE_METHODS (type) != NULL_TREE) { dbxout_type_methods (type); } stabstr_C (';'); if (use_gnu_debug_info_extensions && TREE_CODE (type) == RECORD_TYPE /* Avoid the ~ if we don't really need it--it confuses dbx. */ && TYPE_VFIELD (type)) { /* We need to write out info about what field this class uses as its "main" vtable pointer field, because if this field is inherited from a base class, GDB cannot necessarily figure out which field it's using in time. */ stabstr_S ("~%"); dbxout_type (DECL_FCONTEXT (TYPE_VFIELD (type)), 0); stabstr_C (';'); } break; case ENUMERAL_TYPE: /* We must use the same test here as we use in the DBX_NO_XREFS case above. We simplify it a bit since an enum will never have a variable size. */ if ((TYPE_NAME (type) != 0 && ! (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_IGNORED_P (TYPE_NAME (type))) && !full) || !COMPLETE_TYPE_P (type)) { stabstr_S ("xe"); dbxout_type_name (type); typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_XREF; stabstr_C (':'); return; } if (use_gnu_debug_info_extensions && TYPE_PRECISION (type) != TYPE_PRECISION (integer_type_node)) { stabstr_S ("@s"); stabstr_D (TYPE_PRECISION (type)); stabstr_C (';'); } stabstr_C ('e'); for (tem = TYPE_VALUES (type); tem; tem = TREE_CHAIN (tem)) { stabstr_I (TREE_PURPOSE (tem)); stabstr_C (':'); if (TREE_INT_CST_HIGH (TREE_VALUE (tem)) == 0) stabstr_D (TREE_INT_CST_LOW (TREE_VALUE (tem))); else if (TREE_INT_CST_HIGH (TREE_VALUE (tem)) == -1 && (HOST_WIDE_INT) TREE_INT_CST_LOW (TREE_VALUE (tem)) < 0) stabstr_D (TREE_INT_CST_LOW (TREE_VALUE (tem))); else stabstr_O (TREE_VALUE (tem)); stabstr_C (','); if (TREE_CHAIN (tem) != 0) CONTIN; } stabstr_C (';'); break; case POINTER_TYPE: stabstr_C ('*'); dbxout_type (TREE_TYPE (type), 0); break; case METHOD_TYPE: if (use_gnu_debug_info_extensions) { stabstr_C ('#'); /* Write the argument types out longhand. */ dbxout_type (TYPE_METHOD_BASETYPE (type), 0); stabstr_C (','); dbxout_type (TREE_TYPE (type), 0); dbxout_args (TYPE_ARG_TYPES (type)); stabstr_C (';'); } else /* Treat it as a function type. */ dbxout_type (TREE_TYPE (type), 0); break; case OFFSET_TYPE: if (use_gnu_debug_info_extensions) { stabstr_C ('@'); dbxout_type (TYPE_OFFSET_BASETYPE (type), 0); stabstr_C (','); dbxout_type (TREE_TYPE (type), 0); } else /* Should print as an int, because it is really just an offset. */ dbxout_type (integer_type_node, 0); break; case REFERENCE_TYPE: if (use_gnu_debug_info_extensions) { stabstr_C ('&'); } else stabstr_C ('*'); dbxout_type (TREE_TYPE (type), 0); break; case FUNCTION_TYPE: stabstr_C ('f'); dbxout_type (TREE_TYPE (type), 0); break; default: gcc_unreachable (); } } /* Return nonzero if the given type represents an integer whose bounds should be printed in octal format. */ static bool print_int_cst_bounds_in_octal_p (tree type) { /* If we can use GDB extensions and the size is wider than a long (the size used by GDB to read them) or we may have trouble writing the bounds the usual way, write them in octal. Note the test is for the *target's* size of "long", not that of the host. The host test is just to make sure we can write it out in case the host wide int is narrower than the target "long". For unsigned types, we use octal if they are the same size or larger. This is because we print the bounds as signed decimal, and hence they can't span same size unsigned types. */ if (use_gnu_debug_info_extensions && TYPE_MIN_VALUE (type) != 0 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST && TYPE_MAX_VALUE (type) != 0 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST && (TYPE_PRECISION (type) > TYPE_PRECISION (integer_type_node) || ((TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)) && TYPE_UNSIGNED (type)) || TYPE_PRECISION (type) > HOST_BITS_PER_WIDE_INT || (TYPE_PRECISION (type) == HOST_BITS_PER_WIDE_INT && TYPE_UNSIGNED (type)))) return TRUE; else return FALSE; } /* Output the name of type TYPE, with no punctuation. Such names can be set up either by typedef declarations or by struct, enum and union tags. */ static void dbxout_type_name (tree type) { tree t = TYPE_NAME (type); gcc_assert (t); switch (TREE_CODE (t)) { case IDENTIFIER_NODE: break; case TYPE_DECL: t = DECL_NAME (t); break; default: gcc_unreachable (); } stabstr_I (t); } /* Output leading leading struct or class names needed for qualifying type whose scope is limited to a struct or class. */ static void dbxout_class_name_qualifiers (tree decl) { tree context = decl_type_context (decl); if (context != NULL_TREE && TREE_CODE(context) == RECORD_TYPE && TYPE_NAME (context) != 0 && (TREE_CODE (TYPE_NAME (context)) == IDENTIFIER_NODE || (DECL_NAME (TYPE_NAME (context)) != 0))) { tree name = TYPE_NAME (context); if (TREE_CODE (name) == TYPE_DECL) { dbxout_class_name_qualifiers (name); name = DECL_NAME (name); } stabstr_I (name); stabstr_S ("::"); } } /* This is a specialized subset of expand_expr for use by dbxout_symbol in evaluating DECL_VALUE_EXPR. In particular, we stop if we find decls that haven't been expanded, or if the expression is getting so complex we won't be able to represent it in stabs anyway. Returns NULL on failure. */ static rtx dbxout_expand_expr (tree expr) { switch (TREE_CODE (expr)) { case VAR_DECL: /* We can't handle emulated tls variables, because the address is an offset to the return value of __emutls_get_address, and there is no way to express that in stabs. Also, there are name mangling issues here. We end up with references to undefined symbols if we don't disable debug info for these variables. */ if (!targetm.have_tls && DECL_THREAD_LOCAL_P (expr)) return NULL; /* FALLTHRU */ case PARM_DECL: if (DECL_HAS_VALUE_EXPR_P (expr)) return dbxout_expand_expr (DECL_VALUE_EXPR (expr)); /* FALLTHRU */ case CONST_DECL: case RESULT_DECL: return DECL_RTL_IF_SET (expr); case INTEGER_CST: return expand_expr (expr, NULL_RTX, VOIDmode, EXPAND_INITIALIZER); case COMPONENT_REF: case ARRAY_REF: case ARRAY_RANGE_REF: case BIT_FIELD_REF: { enum machine_mode mode; HOST_WIDE_INT bitsize, bitpos; tree offset, tem; int volatilep = 0, unsignedp = 0; rtx x; tem = get_inner_reference (expr, &bitsize, &bitpos, &offset, &mode, &unsignedp, &volatilep, true); x = dbxout_expand_expr (tem); if (x == NULL || !MEM_P (x)) return NULL; if (offset != NULL) { if (!host_integerp (offset, 0)) return NULL; x = adjust_address_nv (x, mode, tree_low_cst (offset, 0)); } if (bitpos != 0) x = adjust_address_nv (x, mode, bitpos / BITS_PER_UNIT); return x; } default: return NULL; } } /* Helper function for output_used_types. Queue one entry from the used types hash to be output. */ static int output_used_types_helper (void **slot, void *data) { tree type = *slot; VEC(tree, heap) **types_p = data; if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE || TREE_CODE (type) == ENUMERAL_TYPE) && TYPE_STUB_DECL (type) && DECL_P (TYPE_STUB_DECL (type)) && ! DECL_IGNORED_P (TYPE_STUB_DECL (type))) VEC_quick_push (tree, *types_p, TYPE_STUB_DECL (type)); else if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL) VEC_quick_push (tree, *types_p, TYPE_NAME (type)); return 1; } /* This is a qsort callback which sorts types and declarations into a predictable order (types, then declarations, sorted by UID within). */ static int output_types_sort (const void *pa, const void *pb) { const tree lhs = *((const tree *)pa); const tree rhs = *((const tree *)pb); if (TYPE_P (lhs)) { if (TYPE_P (rhs)) return TYPE_UID (lhs) - TYPE_UID (rhs); else return 1; } else { if (TYPE_P (rhs)) return -1; else return DECL_UID (lhs) - DECL_UID (rhs); } } /* Force all types used by this function to be output in debug information. */ static void output_used_types (void) { if (cfun && cfun->used_types_hash) { VEC(tree, heap) *types; int i; tree type; types = VEC_alloc (tree, heap, htab_elements (cfun->used_types_hash)); htab_traverse (cfun->used_types_hash, output_used_types_helper, &types); /* Sort by UID to prevent dependence on hash table ordering. */ qsort (VEC_address (tree, types), VEC_length (tree, types), sizeof (tree), output_types_sort); for (i = 0; VEC_iterate (tree, types, i, type); i++) debug_queue_symbol (type); VEC_free (tree, heap, types); } } /* Output a .stabs for the symbol defined by DECL, which must be a ..._DECL node in the normal namespace. It may be a CONST_DECL, a FUNCTION_DECL, a PARM_DECL or a VAR_DECL. LOCAL is nonzero if the scope is less than the entire file. Return 1 if a stabs might have been emitted. */ int dbxout_symbol (tree decl, int local ATTRIBUTE_UNUSED) { tree type = TREE_TYPE (decl); tree context = NULL_TREE; int result = 0; rtx decl_rtl; /* "Intercept" dbxout_symbol() calls like we do all debug_hooks. */ ++debug_nesting; /* Ignore nameless syms, but don't ignore type tags. */ if ((DECL_NAME (decl) == 0 && TREE_CODE (decl) != TYPE_DECL) || DECL_IGNORED_P (decl)) DBXOUT_DECR_NESTING_AND_RETURN (0); /* If we are to generate only the symbols actually used then such symbol nodes are flagged with TREE_USED. Ignore any that aren't flagged as TREE_USED. */ if (flag_debug_only_used_symbols && (!TREE_USED (decl) && (TREE_CODE (decl) != VAR_DECL || !DECL_INITIAL (decl)))) DBXOUT_DECR_NESTING_AND_RETURN (0); /* If dbxout_init has not yet run, queue this symbol for later. */ if (!typevec) { preinit_symbols = tree_cons (0, decl, preinit_symbols); DBXOUT_DECR_NESTING_AND_RETURN (0); } if (flag_debug_only_used_symbols) { tree t; /* We now have a used symbol. We need to generate the info for the symbol's type in addition to the symbol itself. These type symbols are queued to be generated after were done with the symbol itself (otherwise they would fight over the stabstr obstack). Note, because the TREE_TYPE(type) might be something like a pointer to a named type we need to look for the first name we see following the TREE_TYPE chain. */ t = type; while (POINTER_TYPE_P (t)) t = TREE_TYPE (t); /* RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE, and ENUMERAL_TYPE need special treatment. The TYPE_STUB_DECL field in these types generally represents the tag name type we want to output. In addition there could be a typedef type with a different name. In that case we also want to output that. */ if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE || TREE_CODE (t) == QUAL_UNION_TYPE || TREE_CODE (t) == ENUMERAL_TYPE) { if (TYPE_STUB_DECL (t) && TYPE_STUB_DECL (t) != decl && DECL_P (TYPE_STUB_DECL (t)) && ! DECL_IGNORED_P (TYPE_STUB_DECL (t))) { debug_queue_symbol (TYPE_STUB_DECL (t)); if (TYPE_NAME (t) && TYPE_NAME (t) != TYPE_STUB_DECL (t) && TYPE_NAME (t) != decl && DECL_P (TYPE_NAME (t))) debug_queue_symbol (TYPE_NAME (t)); } } else if (TYPE_NAME (t) && TYPE_NAME (t) != decl && DECL_P (TYPE_NAME (t))) debug_queue_symbol (TYPE_NAME (t)); } emit_pending_bincls_if_required (); switch (TREE_CODE (decl)) { case CONST_DECL: /* Enum values are defined by defining the enum type. */ break; case FUNCTION_DECL: decl_rtl = DECL_RTL_IF_SET (decl); if (!decl_rtl) DBXOUT_DECR_NESTING_AND_RETURN (0); if (DECL_EXTERNAL (decl)) break; /* Don't mention a nested function under its parent. */ context = decl_function_context (decl); if (context == current_function_decl) break; /* Don't mention an inline instance of a nested function. */ if (context && DECL_FROM_INLINE (decl)) break; if (!MEM_P (decl_rtl) || GET_CODE (XEXP (decl_rtl, 0)) != SYMBOL_REF) break; if (flag_debug_only_used_symbols) output_used_types (); dbxout_begin_complex_stabs (); stabstr_I (DECL_ASSEMBLER_NAME (decl)); stabstr_S (TREE_PUBLIC (decl) ? ":F" : ":f"); result = 1; if (TREE_TYPE (type)) dbxout_type (TREE_TYPE (type), 0); else dbxout_type (void_type_node, 0); /* For a nested function, when that function is compiled, mention the containing function name as well as (since dbx wants it) our own assembler-name. */ if (context != 0) { stabstr_C (','); stabstr_I (DECL_ASSEMBLER_NAME (decl)); stabstr_C (','); stabstr_I (DECL_NAME (context)); } dbxout_finish_complex_stabs (decl, N_FUN, XEXP (decl_rtl, 0), 0, 0); break; case TYPE_DECL: /* Don't output the same typedef twice. And don't output what language-specific stuff doesn't want output. */ if (TREE_ASM_WRITTEN (decl) || TYPE_DECL_SUPPRESS_DEBUG (decl)) DBXOUT_DECR_NESTING_AND_RETURN (0); /* Don't output typedefs for types with magic type numbers (XCOFF). */ #ifdef DBX_ASSIGN_FUNDAMENTAL_TYPE_NUMBER { int fundamental_type_number = DBX_ASSIGN_FUNDAMENTAL_TYPE_NUMBER (decl); if (fundamental_type_number != 0) { TREE_ASM_WRITTEN (decl) = 1; TYPE_SYMTAB_ADDRESS (TREE_TYPE (decl)) = fundamental_type_number; DBXOUT_DECR_NESTING_AND_RETURN (0); } } #endif FORCE_TEXT; result = 1; { int tag_needed = 1; int did_output = 0; if (DECL_NAME (decl)) { /* Nonzero means we must output a tag as well as a typedef. */ tag_needed = 0; /* Handle the case of a C++ structure or union where the TYPE_NAME is a TYPE_DECL which gives both a typedef name and a tag. */ /* dbx requires the tag first and the typedef second. */ if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_NAME (type) == decl && !use_gnu_debug_info_extensions && !TREE_ASM_WRITTEN (TYPE_NAME (type)) /* Distinguish the implicit typedefs of C++ from explicit ones that might be found in C. */ && DECL_ARTIFICIAL (decl) /* Do not generate a tag for incomplete records. */ && COMPLETE_TYPE_P (type) /* Do not generate a tag for records of variable size, since this type can not be properly described in the DBX format, and it confuses some tools such as objdump. */ && host_integerp (TYPE_SIZE (type), 1)) { tree name = TYPE_NAME (type); if (TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); dbxout_begin_complex_stabs (); stabstr_I (name); stabstr_S (":T"); dbxout_type (type, 1); dbxout_finish_complex_stabs (0, DBX_TYPE_DECL_STABS_CODE, 0, 0, 0); } dbxout_begin_complex_stabs (); /* Output leading class/struct qualifiers. */ if (use_gnu_debug_info_extensions) dbxout_class_name_qualifiers (decl); /* Output typedef name. */ stabstr_I (DECL_NAME (decl)); stabstr_C (':'); /* Short cut way to output a tag also. */ if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_NAME (type) == decl /* Distinguish the implicit typedefs of C++ from explicit ones that might be found in C. */ && DECL_ARTIFICIAL (decl)) { if (use_gnu_debug_info_extensions) { stabstr_C ('T'); TREE_ASM_WRITTEN (TYPE_NAME (type)) = 1; } } stabstr_C ('t'); dbxout_type (type, 1); dbxout_finish_complex_stabs (decl, DBX_TYPE_DECL_STABS_CODE, 0, 0, 0); did_output = 1; } /* Don't output a tag if this is an incomplete type. This prevents the sun4 Sun OS 4.x dbx from crashing. */ if (tag_needed && TYPE_NAME (type) != 0 && (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE || (DECL_NAME (TYPE_NAME (type)) != 0)) && COMPLETE_TYPE_P (type) && !TREE_ASM_WRITTEN (TYPE_NAME (type))) { /* For a TYPE_DECL with no name, but the type has a name, output a tag. This is what represents `struct foo' with no typedef. */ /* In C++, the name of a type is the corresponding typedef. In C, it is an IDENTIFIER_NODE. */ tree name = TYPE_NAME (type); if (TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); dbxout_begin_complex_stabs (); stabstr_I (name); stabstr_S (":T"); dbxout_type (type, 1); dbxout_finish_complex_stabs (0, DBX_TYPE_DECL_STABS_CODE, 0, 0, 0); did_output = 1; } /* If an enum type has no name, it cannot be referred to, but we must output it anyway, to record the enumeration constants. */ if (!did_output && TREE_CODE (type) == ENUMERAL_TYPE) { dbxout_begin_complex_stabs (); /* Some debuggers fail when given NULL names, so give this a harmless name of " " (Why not "(anon)"?). */ stabstr_S (" :T"); dbxout_type (type, 1); dbxout_finish_complex_stabs (0, DBX_TYPE_DECL_STABS_CODE, 0, 0, 0); } /* Prevent duplicate output of a typedef. */ TREE_ASM_WRITTEN (decl) = 1; break; } case PARM_DECL: /* Parm decls go in their own separate chains and are output by dbxout_reg_parms and dbxout_parms. */ gcc_unreachable (); case RESULT_DECL: case VAR_DECL: /* Don't mention a variable that is external. Let the file that defines it describe it. */ if (DECL_EXTERNAL (decl)) break; /* If the variable is really a constant and not written in memory, inform the debugger. ??? Why do we skip emitting the type and location in this case? */ if (TREE_STATIC (decl) && TREE_READONLY (decl) && DECL_INITIAL (decl) != 0 && host_integerp (DECL_INITIAL (decl), 0) && ! TREE_ASM_WRITTEN (decl) && (DECL_CONTEXT (decl) == NULL_TREE || TREE_CODE (DECL_CONTEXT (decl)) == BLOCK || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL) && TREE_PUBLIC (decl) == 0) { /* The sun4 assembler does not grok this. */ if (TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE || TREE_CODE (TREE_TYPE (decl)) == ENUMERAL_TYPE) { HOST_WIDE_INT ival = TREE_INT_CST_LOW (DECL_INITIAL (decl)); dbxout_begin_complex_stabs (); dbxout_symbol_name (decl, NULL, 'c'); stabstr_S ("=i"); stabstr_D (ival); dbxout_finish_complex_stabs (0, N_LSYM, 0, 0, 0); DBXOUT_DECR_NESTING; return 1; } else break; } /* else it is something we handle like a normal variable. */ decl_rtl = dbxout_expand_expr (decl); if (!decl_rtl) DBXOUT_DECR_NESTING_AND_RETURN (0); decl_rtl = eliminate_regs (decl_rtl, 0, NULL_RTX); #ifdef LEAF_REG_REMAP if (current_function_uses_only_leaf_regs) leaf_renumber_regs_insn (decl_rtl); #endif result = dbxout_symbol_location (decl, type, 0, decl_rtl); break; default: break; } DBXOUT_DECR_NESTING; return result; } /* Output the stab for DECL, a VAR_DECL, RESULT_DECL or PARM_DECL. Add SUFFIX to its name, if SUFFIX is not 0. Describe the variable as residing in HOME (usually HOME is DECL_RTL (DECL), but not always). Returns 1 if the stab was really emitted. */ static int dbxout_symbol_location (tree decl, tree type, const char *suffix, rtx home) { int letter = 0; STAB_CODE_TYPE code; rtx addr = 0; int number = 0; int regno = -1; /* Don't mention a variable at all if it was completely optimized into nothingness. If the decl was from an inline function, then its rtl is not identically the rtl that was used in this particular compilation. */ if (GET_CODE (home) == SUBREG) { rtx value = home; while (GET_CODE (value) == SUBREG) value = SUBREG_REG (value); if (REG_P (value)) { if (REGNO (value) >= FIRST_PSEUDO_REGISTER) return 0; } home = alter_subreg (&home); } if (REG_P (home)) { regno = REGNO (home); if (regno >= FIRST_PSEUDO_REGISTER) return 0; } /* The kind-of-variable letter depends on where the variable is and on the scope of its name: G and N_GSYM for static storage and global scope, S for static storage and file scope, V for static storage and local scope, for those two, use N_LCSYM if data is in bss segment, N_STSYM if in data segment, N_FUN otherwise. (We used N_FUN originally, then changed to N_STSYM to please GDB. However, it seems that confused ld. Now GDB has been fixed to like N_FUN, says Kingdon.) no letter at all, and N_LSYM, for auto variable, r and N_RSYM for register variable. */ if (MEM_P (home) && GET_CODE (XEXP (home, 0)) == SYMBOL_REF) { if (TREE_PUBLIC (decl)) { int offs; letter = 'G'; code = N_GSYM; if (NULL != dbxout_common_check (decl, &offs)) { letter = 'V'; addr = 0; number = offs; } } else { addr = XEXP (home, 0); letter = decl_function_context (decl) ? 'V' : 'S'; /* Some ports can transform a symbol ref into a label ref, because the symbol ref is too far away and has to be dumped into a constant pool. Alternatively, the symbol in the constant pool might be referenced by a different symbol. */ if (GET_CODE (addr) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (addr)) { bool marked; rtx tmp = get_pool_constant_mark (addr, &marked); if (GET_CODE (tmp) == SYMBOL_REF) { addr = tmp; if (CONSTANT_POOL_ADDRESS_P (addr)) get_pool_constant_mark (addr, &marked); else marked = true; } else if (GET_CODE (tmp) == LABEL_REF) { addr = tmp; marked = true; } /* If all references to the constant pool were optimized out, we just ignore the symbol. */ if (!marked) return 0; } /* This should be the same condition as in assemble_variable, but we don't have access to dont_output_data here. So, instead, we rely on the fact that error_mark_node initializers always end up in bss for C++ and never end up in bss for C. */ if (DECL_INITIAL (decl) == 0 || (!strcmp (lang_hooks.name, "GNU C++") && DECL_INITIAL (decl) == error_mark_node)) { int offs; code = N_LCSYM; if (NULL != dbxout_common_check (decl, &offs)) { addr = 0; number = offs; letter = 'V'; code = N_GSYM; } } else if (DECL_IN_TEXT_SECTION (decl)) /* This is not quite right, but it's the closest of all the codes that Unix defines. */ code = DBX_STATIC_CONST_VAR_CODE; else { /* Ultrix `as' seems to need this. */ #ifdef DBX_STATIC_STAB_DATA_SECTION switch_to_section (data_section); #endif code = N_STSYM; } } } else if (regno >= 0) { letter = 'r'; code = N_RSYM; number = DBX_REGISTER_NUMBER (regno); } else if (MEM_P (home) && (MEM_P (XEXP (home, 0)) || (REG_P (XEXP (home, 0)) && REGNO (XEXP (home, 0)) != HARD_FRAME_POINTER_REGNUM && REGNO (XEXP (home, 0)) != STACK_POINTER_REGNUM #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM && REGNO (XEXP (home, 0)) != ARG_POINTER_REGNUM #endif ))) /* If the value is indirect by memory or by a register that isn't the frame pointer then it means the object is variable-sized and address through that register or stack slot. DBX has no way to represent this so all we can do is output the variable as a pointer. If it's not a parameter, ignore it. */ { if (REG_P (XEXP (home, 0))) { letter = 'r'; code = N_RSYM; if (REGNO (XEXP (home, 0)) >= FIRST_PSEUDO_REGISTER) return 0; number = DBX_REGISTER_NUMBER (REGNO (XEXP (home, 0))); } else { code = N_LSYM; /* RTL looks like (MEM (MEM (PLUS (REG...) (CONST_INT...)))). We want the value of that CONST_INT. */ number = DEBUGGER_AUTO_OFFSET (XEXP (XEXP (home, 0), 0)); } /* Effectively do build_pointer_type, but don't cache this type, since it might be temporary whereas the type it points to might have been saved for inlining. */ /* Don't use REFERENCE_TYPE because dbx can't handle that. */ type = make_node (POINTER_TYPE); TREE_TYPE (type) = TREE_TYPE (decl); } else if (MEM_P (home) && REG_P (XEXP (home, 0))) { code = N_LSYM; number = DEBUGGER_AUTO_OFFSET (XEXP (home, 0)); } else if (MEM_P (home) && GET_CODE (XEXP (home, 0)) == PLUS && GET_CODE (XEXP (XEXP (home, 0), 1)) == CONST_INT) { code = N_LSYM; /* RTL looks like (MEM (PLUS (REG...) (CONST_INT...))) We want the value of that CONST_INT. */ number = DEBUGGER_AUTO_OFFSET (XEXP (home, 0)); } else if (MEM_P (home) && GET_CODE (XEXP (home, 0)) == CONST) { /* Handle an obscure case which can arise when optimizing and when there are few available registers. (This is *always* the case for i386/i486 targets). The RTL looks like (MEM (CONST ...)) even though this variable is a local `auto' or a local `register' variable. In effect, what has happened is that the reload pass has seen that all assignments and references for one such a local variable can be replaced by equivalent assignments and references to some static storage variable, thereby avoiding the need for a register. In such cases we're forced to lie to debuggers and tell them that this variable was itself `static'. */ int offs; code = N_LCSYM; letter = 'V'; if (NULL == dbxout_common_check (decl, &offs)) addr = XEXP (XEXP (home, 0), 0); else { addr = 0; number = offs; code = N_GSYM; } } else if (GET_CODE (home) == CONCAT) { tree subtype; /* If TYPE is not a COMPLEX_TYPE (it might be a RECORD_TYPE, for example), then there is no easy way to figure out what SUBTYPE should be. So, we give up. */ if (TREE_CODE (type) != COMPLEX_TYPE) return 0; subtype = TREE_TYPE (type); /* If the variable's storage is in two parts, output each as a separate stab with a modified name. */ if (WORDS_BIG_ENDIAN) dbxout_symbol_location (decl, subtype, "$imag", XEXP (home, 0)); else dbxout_symbol_location (decl, subtype, "$real", XEXP (home, 0)); if (WORDS_BIG_ENDIAN) dbxout_symbol_location (decl, subtype, "$real", XEXP (home, 1)); else dbxout_symbol_location (decl, subtype, "$imag", XEXP (home, 1)); return 1; } else /* Address might be a MEM, when DECL is a variable-sized object. Or it might be const0_rtx, meaning previous passes want us to ignore this variable. */ return 0; /* Ok, start a symtab entry and output the variable name. */ emit_pending_bincls_if_required (); FORCE_TEXT; #ifdef DBX_STATIC_BLOCK_START DBX_STATIC_BLOCK_START (asm_out_file, code); #endif dbxout_begin_complex_stabs_noforcetext (); dbxout_symbol_name (decl, suffix, letter); dbxout_type (type, 0); dbxout_finish_complex_stabs (decl, code, addr, 0, number); #ifdef DBX_STATIC_BLOCK_END DBX_STATIC_BLOCK_END (asm_out_file, code); #endif return 1; } /* Output the symbol name of DECL for a stabs, with suffix SUFFIX. Then output LETTER to indicate the kind of location the symbol has. */ static void dbxout_symbol_name (tree decl, const char *suffix, int letter) { tree name; if (DECL_CONTEXT (decl) && (TYPE_P (DECL_CONTEXT (decl)) || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)) /* One slight hitch: if this is a VAR_DECL which is a class member or a namespace member, we must put out the mangled name instead of the DECL_NAME. Note also that static member (variable) names DO NOT begin with underscores in .stabs directives. */ name = DECL_ASSEMBLER_NAME (decl); else /* ...but if we're function-local, we don't want to include the junk added by ASM_FORMAT_PRIVATE_NAME. */ name = DECL_NAME (decl); if (name) stabstr_I (name); else stabstr_S ("(anon)"); if (suffix) stabstr_S (suffix); stabstr_C (':'); if (letter) stabstr_C (letter); } /* Output the common block name for DECL in a stabs. Symbols in global common (.comm) get wrapped with an N_BCOMM/N_ECOMM pair around each group of symbols in the same .comm area. The N_GSYM stabs that are emitted only contain the offset in the common area. This routine emits the N_BCOMM and N_ECOMM stabs. */ static void dbxout_common_name (tree decl, const char *name, STAB_CODE_TYPE op) { dbxout_begin_complex_stabs (); stabstr_S (name); dbxout_finish_complex_stabs (decl, op, NULL_RTX, NULL, 0); } /* Check decl to determine whether it is a VAR_DECL destined for storage in a common area. If it is, the return value will be a non-null string giving the name of the common storage block it will go into. If non-null, the value is the offset into the common block for that symbol's storage. */ static const char * dbxout_common_check (tree decl, int *value) { rtx home; rtx sym_addr; const char *name = NULL; /* If the decl isn't a VAR_DECL, or if it isn't public or static, or if it does not have a value (the offset into the common area), or if it is thread local (as opposed to global) then it isn't common, and shouldn't be handled as such. ??? DECL_THREAD_LOCAL_P check prevents problems with improper .stabs for thread-local symbols. Can be handled via same mechanism as used in dwarf2out.c. */ if (TREE_CODE (decl) != VAR_DECL || !TREE_PUBLIC(decl) || !TREE_STATIC(decl) || !DECL_HAS_VALUE_EXPR_P(decl) || DECL_THREAD_LOCAL_P (decl) || !is_fortran ()) return NULL; home = DECL_RTL (decl); if (home == NULL_RTX || GET_CODE (home) != MEM) return NULL; sym_addr = dbxout_expand_expr (DECL_VALUE_EXPR (decl)); if (sym_addr == NULL_RTX || GET_CODE (sym_addr) != MEM) return NULL; sym_addr = XEXP (sym_addr, 0); if (GET_CODE (sym_addr) == CONST) sym_addr = XEXP (sym_addr, 0); if ((GET_CODE (sym_addr) == SYMBOL_REF || GET_CODE (sym_addr) == PLUS) && DECL_INITIAL (decl) == 0) { /* We have a sym that will go into a common area, meaning that it will get storage reserved with a .comm/.lcomm assembler pseudo-op. Determine name of common area this symbol will be an offset into, and offset into that area. Also retrieve the decl for the area that the symbol is offset into. */ tree cdecl = NULL; switch (GET_CODE (sym_addr)) { case PLUS: if (GET_CODE (XEXP (sym_addr, 0)) == CONST_INT) { name = targetm.strip_name_encoding(XSTR (XEXP (sym_addr, 1), 0)); *value = INTVAL (XEXP (sym_addr, 0)); cdecl = SYMBOL_REF_DECL (XEXP (sym_addr, 1)); } else { name = targetm.strip_name_encoding(XSTR (XEXP (sym_addr, 0), 0)); *value = INTVAL (XEXP (sym_addr, 1)); cdecl = SYMBOL_REF_DECL (XEXP (sym_addr, 0)); } break; case SYMBOL_REF: name = targetm.strip_name_encoding(XSTR (sym_addr, 0)); *value = 0; cdecl = SYMBOL_REF_DECL (sym_addr); break; default: error ("common symbol debug info is not structured as " "symbol+offset"); } /* Check area common symbol is offset into. If this is not public, then it is not a symbol in a common block. It must be a .lcomm symbol, not a .comm symbol. */ if (cdecl == NULL || !TREE_PUBLIC(cdecl)) name = NULL; } else name = NULL; return name; } /* Output definitions of all the decls in a chain. Return nonzero if anything was output */ int dbxout_syms (tree syms) { int result = 0; const char *comm_prev = NULL; tree syms_prev = NULL; while (syms) { int temp, copen, cclos; const char *comm_new; /* Check for common symbol, and then progression into a new/different block of common symbols. Emit closing/opening common bracket if necessary. */ comm_new = dbxout_common_check (syms, &temp); copen = comm_new != NULL && (comm_prev == NULL || strcmp (comm_new, comm_prev)); cclos = comm_prev != NULL && (comm_new == NULL || strcmp (comm_new, comm_prev)); if (cclos) dbxout_common_name (syms_prev, comm_prev, N_ECOMM); if (copen) { dbxout_common_name (syms, comm_new, N_BCOMM); syms_prev = syms; } comm_prev = comm_new; result += dbxout_symbol (syms, 1); syms = TREE_CHAIN (syms); } if (comm_prev != NULL) dbxout_common_name (syms_prev, comm_prev, N_ECOMM); return result; } /* The following two functions output definitions of function parameters. Each parameter gets a definition locating it in the parameter list. Each parameter that is a register variable gets a second definition locating it in the register. Printing or argument lists in gdb uses the definitions that locate in the parameter list. But reference to the variable in expressions uses preferentially the definition as a register. */ /* Output definitions, referring to storage in the parmlist, of all the parms in PARMS, which is a chain of PARM_DECL nodes. */ void dbxout_parms (tree parms) { ++debug_nesting; emit_pending_bincls_if_required (); for (; parms; parms = TREE_CHAIN (parms)) if (DECL_NAME (parms) && TREE_TYPE (parms) != error_mark_node && DECL_RTL_SET_P (parms) && DECL_INCOMING_RTL (parms)) { tree eff_type; char letter; STAB_CODE_TYPE code; int number; /* Perform any necessary register eliminations on the parameter's rtl, so that the debugging output will be accurate. */ DECL_INCOMING_RTL (parms) = eliminate_regs (DECL_INCOMING_RTL (parms), 0, NULL_RTX); SET_DECL_RTL (parms, eliminate_regs (DECL_RTL (parms), 0, NULL_RTX)); #ifdef LEAF_REG_REMAP if (current_function_uses_only_leaf_regs) { leaf_renumber_regs_insn (DECL_INCOMING_RTL (parms)); leaf_renumber_regs_insn (DECL_RTL (parms)); } #endif if (PARM_PASSED_IN_MEMORY (parms)) { rtx inrtl = XEXP (DECL_INCOMING_RTL (parms), 0); /* ??? Here we assume that the parm address is indexed off the frame pointer or arg pointer. If that is not true, we produce meaningless results, but do not crash. */ if (GET_CODE (inrtl) == PLUS && GET_CODE (XEXP (inrtl, 1)) == CONST_INT) number = INTVAL (XEXP (inrtl, 1)); else number = 0; code = N_PSYM; number = DEBUGGER_ARG_OFFSET (number, inrtl); letter = 'p'; /* It is quite tempting to use TREE_TYPE (parms) instead of DECL_ARG_TYPE (parms) for the eff_type, so that gcc reports the actual type of the parameter, rather than the promoted type. This certainly makes GDB's life easier, at least for some ports. The change is a bad idea however, since GDB expects to be able access the type without performing any conversions. So for example, if we were passing a float to an unprototyped function, gcc will store a double on the stack, but if we emit a stab saying the type is a float, then gdb will only read in a single value, and this will produce an erroneous value. */ eff_type = DECL_ARG_TYPE (parms); } else if (REG_P (DECL_RTL (parms))) { rtx best_rtl; /* Parm passed in registers and lives in registers or nowhere. */ code = DBX_REGPARM_STABS_CODE; letter = DBX_REGPARM_STABS_LETTER; /* For parms passed in registers, it is better to use the declared type of the variable, not the type it arrived in. */ eff_type = TREE_TYPE (parms); /* If parm lives in a register, use that register; pretend the parm was passed there. It would be more consistent to describe the register where the parm was passed, but in practice that register usually holds something else. If the parm lives nowhere, use the register where it was passed. */ if (REGNO (DECL_RTL (parms)) < FIRST_PSEUDO_REGISTER) best_rtl = DECL_RTL (parms); else best_rtl = DECL_INCOMING_RTL (parms); number = DBX_REGISTER_NUMBER (REGNO (best_rtl)); } else if (MEM_P (DECL_RTL (parms)) && REG_P (XEXP (DECL_RTL (parms), 0)) && REGNO (XEXP (DECL_RTL (parms), 0)) != HARD_FRAME_POINTER_REGNUM && REGNO (XEXP (DECL_RTL (parms), 0)) != STACK_POINTER_REGNUM #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM && REGNO (XEXP (DECL_RTL (parms), 0)) != ARG_POINTER_REGNUM #endif ) { /* Parm was passed via invisible reference. That is, its address was passed in a register. Output it as if it lived in that register. The debugger will know from the type that it was actually passed by invisible reference. */ code = DBX_REGPARM_STABS_CODE; /* GDB likes this marked with a special letter. */ letter = (use_gnu_debug_info_extensions ? 'a' : DBX_REGPARM_STABS_LETTER); eff_type = TREE_TYPE (parms); /* DECL_RTL looks like (MEM (REG...). Get the register number. If it is an unallocated pseudo-reg, then use the register where it was passed instead. ??? Why is DBX_REGISTER_NUMBER not used here? */ if (REGNO (XEXP (DECL_RTL (parms), 0)) < FIRST_PSEUDO_REGISTER) number = REGNO (XEXP (DECL_RTL (parms), 0)); else number = REGNO (DECL_INCOMING_RTL (parms)); } else if (MEM_P (DECL_RTL (parms)) && MEM_P (XEXP (DECL_RTL (parms), 0))) { /* Parm was passed via invisible reference, with the reference living on the stack. DECL_RTL looks like (MEM (MEM (PLUS (REG ...) (CONST_INT ...)))) or it could look like (MEM (MEM (REG))). */ code = N_PSYM; letter = 'v'; eff_type = TREE_TYPE (parms); if (!REG_P (XEXP (XEXP (DECL_RTL (parms), 0), 0))) number = INTVAL (XEXP (XEXP (XEXP (DECL_RTL (parms), 0), 0), 1)); else number = 0; number = DEBUGGER_ARG_OFFSET (number, XEXP (XEXP (DECL_RTL (parms), 0), 0)); } else if (MEM_P (DECL_RTL (parms)) && XEXP (DECL_RTL (parms), 0) != const0_rtx /* ??? A constant address for a parm can happen when the reg it lives in is equiv to a constant in memory. Should make this not happen, after 2.4. */ && ! CONSTANT_P (XEXP (DECL_RTL (parms), 0))) { /* Parm was passed in registers but lives on the stack. */ code = N_PSYM; letter = 'p'; eff_type = TREE_TYPE (parms); /* DECL_RTL looks like (MEM (PLUS (REG...) (CONST_INT...))), in which case we want the value of that CONST_INT, or (MEM (REG ...)), in which case we use a value of zero. */ if (!REG_P (XEXP (DECL_RTL (parms), 0))) number = INTVAL (XEXP (XEXP (DECL_RTL (parms), 0), 1)); else number = 0; /* Make a big endian correction if the mode of the type of the parameter is not the same as the mode of the rtl. */ if (BYTES_BIG_ENDIAN && TYPE_MODE (TREE_TYPE (parms)) != GET_MODE (DECL_RTL (parms)) && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parms))) < UNITS_PER_WORD) number += (GET_MODE_SIZE (GET_MODE (DECL_RTL (parms))) - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parms)))); } else /* ??? We don't know how to represent this argument. */ continue; dbxout_begin_complex_stabs (); if (DECL_NAME (parms)) { stabstr_I (DECL_NAME (parms)); stabstr_C (':'); } else stabstr_S ("(anon):"); stabstr_C (letter); dbxout_type (eff_type, 0); dbxout_finish_complex_stabs (parms, code, 0, 0, number); } DBXOUT_DECR_NESTING; } /* Output definitions for the places where parms live during the function, when different from where they were passed, when the parms were passed in memory. It is not useful to do this for parms passed in registers that live during the function in different registers, because it is impossible to look in the passed register for the passed value, so we use the within-the-function register to begin with. PARMS is a chain of PARM_DECL nodes. */ void dbxout_reg_parms (tree parms) { ++debug_nesting; for (; parms; parms = TREE_CHAIN (parms)) if (DECL_NAME (parms) && PARM_PASSED_IN_MEMORY (parms)) { /* Report parms that live in registers during the function but were passed in memory. */ if (REG_P (DECL_RTL (parms)) && REGNO (DECL_RTL (parms)) < FIRST_PSEUDO_REGISTER) dbxout_symbol_location (parms, TREE_TYPE (parms), 0, DECL_RTL (parms)); else if (GET_CODE (DECL_RTL (parms)) == CONCAT) dbxout_symbol_location (parms, TREE_TYPE (parms), 0, DECL_RTL (parms)); /* Report parms that live in memory but not where they were passed. */ else if (MEM_P (DECL_RTL (parms)) && ! rtx_equal_p (DECL_RTL (parms), DECL_INCOMING_RTL (parms))) dbxout_symbol_location (parms, TREE_TYPE (parms), 0, DECL_RTL (parms)); } DBXOUT_DECR_NESTING; } /* Given a chain of ..._TYPE nodes (as come in a parameter list), output definitions of those names, in raw form */ static void dbxout_args (tree args) { while (args) { stabstr_C (','); dbxout_type (TREE_VALUE (args), 0); args = TREE_CHAIN (args); } } #if defined (DBX_DEBUGGING_INFO) /* Subroutine of dbxout_block. Emit an N_LBRAC stab referencing LABEL. BEGIN_LABEL is the name of the beginning of the function, which may be required. */ static void dbx_output_lbrac (const char *label, const char *begin_label ATTRIBUTE_UNUSED) { dbxout_begin_stabn (N_LBRAC); if (DBX_BLOCKS_FUNCTION_RELATIVE) dbxout_stab_value_label_diff (label, begin_label); else dbxout_stab_value_label (label); } /* Subroutine of dbxout_block. Emit an N_RBRAC stab referencing LABEL. BEGIN_LABEL is the name of the beginning of the function, which may be required. */ static void dbx_output_rbrac (const char *label, const char *begin_label ATTRIBUTE_UNUSED) { dbxout_begin_stabn (N_RBRAC); if (DBX_BLOCKS_FUNCTION_RELATIVE) dbxout_stab_value_label_diff (label, begin_label); else dbxout_stab_value_label (label); } /* Output everything about a symbol block (a BLOCK node that represents a scope level), including recursive output of contained blocks. BLOCK is the BLOCK node. DEPTH is its depth within containing symbol blocks. ARGS is usually zero; but for the outermost block of the body of a function, it is a chain of PARM_DECLs for the function parameters. We output definitions of all the register parms as if they were local variables of that block. If -g1 was used, we count blocks just the same, but output nothing except for the outermost block. Actually, BLOCK may be several blocks chained together. We handle them all in sequence. */ static void dbxout_block (tree block, int depth, tree args) { char begin_label[20]; /* Reference current function start using LFBB. */ ASM_GENERATE_INTERNAL_LABEL (begin_label, "LFBB", scope_labelno); while (block) { /* Ignore blocks never expanded or otherwise marked as real. */ if (TREE_USED (block) && TREE_ASM_WRITTEN (block)) { int did_output; int blocknum = BLOCK_NUMBER (block); /* In dbx format, the syms of a block come before the N_LBRAC. If nothing is output, we don't need the N_LBRAC, either. */ did_output = 0; if (debug_info_level != DINFO_LEVEL_TERSE || depth == 0) did_output = dbxout_syms (BLOCK_VARS (block)); if (args) dbxout_reg_parms (args); /* Now output an N_LBRAC symbol to represent the beginning of the block. Use the block's tree-walk order to generate the assembler symbols LBBn and LBEn that final will define around the code in this block. */ if (did_output) { char buf[20]; const char *scope_start; if (depth == 0) /* The outermost block doesn't get LBB labels; use the LFBB local symbol emitted by dbxout_begin_prologue. */ scope_start = begin_label; else { ASM_GENERATE_INTERNAL_LABEL (buf, "LBB", blocknum); scope_start = buf; } if (BLOCK_HANDLER_BLOCK (block)) { /* A catch block. Must precede N_LBRAC. */ tree decl = BLOCK_VARS (block); while (decl) { dbxout_begin_complex_stabs (); stabstr_I (DECL_NAME (decl)); stabstr_S (":C1"); dbxout_finish_complex_stabs (0, N_CATCH, 0, scope_start, 0); decl = TREE_CHAIN (decl); } } dbx_output_lbrac (scope_start, begin_label); } /* Output the subblocks. */ dbxout_block (BLOCK_SUBBLOCKS (block), depth + 1, NULL_TREE); /* Refer to the marker for the end of the block. */ if (did_output) { char buf[100]; if (depth == 0) /* The outermost block doesn't get LBE labels; use the "scope" label which will be emitted by dbxout_function_end. */ ASM_GENERATE_INTERNAL_LABEL (buf, "Lscope", scope_labelno); else ASM_GENERATE_INTERNAL_LABEL (buf, "LBE", blocknum); dbx_output_rbrac (buf, begin_label); } } block = BLOCK_CHAIN (block); } } /* Output the information about a function and its arguments and result. Usually this follows the function's code, but on some systems, it comes before. */ static void dbxout_begin_function (tree decl) { int saved_tree_used1; if (DECL_IGNORED_P (decl)) return; saved_tree_used1 = TREE_USED (decl); TREE_USED (decl) = 1; if (DECL_NAME (DECL_RESULT (decl)) != 0) { int saved_tree_used2 = TREE_USED (DECL_RESULT (decl)); TREE_USED (DECL_RESULT (decl)) = 1; dbxout_symbol (decl, 0); TREE_USED (DECL_RESULT (decl)) = saved_tree_used2; } else dbxout_symbol (decl, 0); TREE_USED (decl) = saved_tree_used1; dbxout_parms (DECL_ARGUMENTS (decl)); if (DECL_NAME (DECL_RESULT (decl)) != 0) dbxout_symbol (DECL_RESULT (decl), 1); } #endif /* DBX_DEBUGGING_INFO */ #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */ #include "gt-dbxout.h"