@c Copyright (C) 2003 Free Software Foundation, Inc. @c This is part of the GCC manual. @c For copying conditions, see the file gcc.texi. @c Contributed by Aldy Hernandez @node Libgcc @chapter The GCC low-level runtime library GCC provides a low-level runtime library, @file{libgcc.a} or @file{libgcc_s.so.1} on some platforms. GCC generates calls to routines in this library automatically, whenever it needs to perform some operation that is too complicated to emit inline code for. Most of the routines in @code{libgcc} handle arithmetic operations that the target processor cannot perform directly. This includes integer multiply and divide on some machines, and all floating-point operations on other machines. @code{libgcc} also includes routines for exception handling, and a handful of miscellaneous operations. Some of these routines can be defined in mostly machine-independent C. Others must be hand-written in assembly language for each processor that needs them. GCC will also generate calls to C library routines, such as @code{memcpy} and @code{memset}, in some cases. The set of routines that GCC may possibly use is documented in @ref{Other Builtins,,,gcc, Using the GNU Compiler Collection (GCC)}. @menu * Integer library routines:: * Soft float library routines:: * Exception handling routines:: * Miscellaneous routines:: @end menu @node Integer library routines @section Routines for integer arithmetic document me! @example __absvsi2 __addvsi3 __ashlsi3 __ashrsi3 __divsi3 __lshrsi3 __modsi3 __mulsi3 __mulvsi3 __negvsi2 __subvsi3 __udivsi3 __umodsi3 __absvdi2 __addvdi3 __ashldi3 __ashrdi3 __cmpdi2 __divdi3 __ffsdi2 __fixdfdi __fixsfdi __fixtfdi __fixxfdi __fixunsdfdi __fixunsdfsi __fixunssfsi __fixunssfdi __fixunstfdi __fixunstfsi __fixunsxfdi __fixunsxfsi __floatdidf __floatdisf __floatdixf __floatditf __lshrdi3 __moddi3 __muldi3 __mulvdi3 __negdi2 __negvdi2 __subvdi3 __ucmpdi2 __udivdi3 __udivmoddi4 __umoddi3 __ashlti3 __ashrti3 __cmpti2 __divti3 __ffsti2 __fixdfti __fixsfti __fixtfti __fixxfti __lshrti3 __modti3 __multi3 __negti2 __ucmpti2 __udivmodti4 __udivti3 __umodti3 __fixunsdfti __fixunssfti __fixunstfti __fixunsxfti __floattidf __floattisf __floattixf __floattitf __clzsi2 __clzdi2 __clzti2 __ctzsi2 __ctzdi2 __ctzti2 __popcountsi2 __popcountdi2 __popcountti2 __paritysi2 __paritydi2 __parityti2 @end example @node Soft float library routines @section Routines for floating point emulation @cindex soft float library @cindex arithmetic library @cindex math library @opindex msoft-float The software floating point library is used on machines which do not have hardware support for floating point. It is also used whenever @option{-msoft-float} is used to disable generation of floating point instructions. (Not all targets support this switch.) For compatibility with other compilers, the floating point emulation routines can be renamed with the @code{DECLARE_LIBRARY_RENAMES} macro (@pxref{Library Calls}). In this section, the default names are used. These routines take arguments and return values of a specific machine mode, not a specific C type. @xref{Machine Modes}, for an explanation of this concept. For illustrative purposes, in this section @code{float} is assumed to correspond to @code{SFmode}; @code{double} to @code{DFmode}; @code{@w{long double}} to @code{TFmode}; and @code{int} to @code{SImode}. This is a common mapping, but not the only possibility. Presently the library does not support @code{XFmode}, which is used for @code{long double} on some architectures. @subsection Arithmetic functions @deftypefn {Runtime Function} float __addsf3 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} double __adddf3 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} long double __addtf3 (long double @var{a}, long double @var{b}) These functions return the sum of @var{a} and @var{b}. @end deftypefn @deftypefn {Runtime Function} float __subsf3 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} double __subdf3 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} long double __subtf3 (long double @var{a}, long double @var{b}) These functions return the difference between @var{b} and @var{a}; that is, @w{@math{@var{a} - @var{b}}}. @end deftypefn @deftypefn {Runtime Function} float __mulsf3 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} double __muldf3 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} long double __multf3 (long double @var{a}, long double @var{b}) These functions return the product of @var{a} and @var{b}. @end deftypefn @deftypefn {Runtime Function} float __divsf3 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} double __divdf3 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} long double __divtf3 (long double @var{a}, long double @var{b}) These functions return the quotient of @var{a} and @var{b}; that is, @w{@math{@var{a} / @var{b}}}. @end deftypefn @deftypefn {Runtime Function} double __negdf2 (double @var{a}) @deftypefnx {Runtime Function} long double __negtf2 (long double @var{a}) @deftypefnx {Runtime Function} float __negsf2 (float @var{a}) These functions return the negation of @var{a}. They simply flip the sign bit, so they can produce negative zero and negative NaN. @end deftypefn @subsection Conversion functions @deftypefn {Runtime Function} double __extendsfdf2 (float @var{a}) @deftypefnx {Runtime Function} long double __extendsftf2 (float @var{a}) @deftypefnx {Runtime Function} long double __extenddftf2 (double @var{a}) These functions extend @var{a} to the wider mode of their return type. @end deftypefn @deftypefn {Runtime Function} double __trunctfdf2 (long double @var{a}) @deftypefnx {Runtime Function} float __trunctfsf2 (long double @var{a}) @deftypefnx {Runtime Function} float __truncdfsf2 (double @var{a}) These functions truncate @var{a} to the narrower mode of their return type, rounding toward zero. @end deftypefn @deftypefn {Runtime Function} int __fixsfsi (float @var{a}) @deftypefnx {Runtime Function} int __fixdfsi (double @var{a}) @deftypefnx {Runtime Function} int __fixtfsi (long double @var{a}) These functions convert @var{a} to a signed integer, rounding toward zero. @end deftypefn @deftypefn {Runtime Function} unsigned int __fixunssfsi (float @var{a}) @deftypefnx {Runtime Function} unsigned int __fixunsdfsi (double @var{a}) @deftypefnx {Runtime Function} unsigned int __fixunstfsi (long double @var{a}) These functions convert @var{a} to an unsigned integer, rounding toward zero. Negative values all become zero. @end deftypefn @deftypefn {Runtime Function} float __floatsisf (int @var{i}) @deftypefnx {Runtime Function} double __floatsidf (int @var{i}) @deftypefnx {Runtime Function} long double __floatsitf (int @var{i}) These functions convert @var{i}, a signed integer, to floating point. @end deftypefn @deftypefn {Runtime Function} float __floatunsisf (unsigned int @var{n}) @deftypefnx {Runtime Function} double __floatunsidf (unsigned int @var{n}) @deftypefnx {Runtime Function} long double __floatunsitf (unsigned int @var{n}) These functions convert @var{n}, an unsigned integer, to floating point. @end deftypefn There are no functions to convert @code{DImode} integers to or from floating point; this reflects the fact that such conversions are rare, and processors with native 64-bit arithmetic tend to have hardware floating point support. If such routines ever get added, they will be named @code{__fixsfdi}, @code{__floatdisf}, and so on. @subsection Comparison functions There are two sets of basic comparison functions. @deftypefn {Runtime Function} int __cmpsf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __cmpdf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __cmptf2 (long double @var{a}, long double @var{b}) These functions calculate @math{a <=> b}. That is, if @var{a} is less than @var{b}, they return -1; if @var{a} is greater than @var{b}, they return 1; and if @var{a} and @var{b} are equal they return 0. If either argument is NaN they return 1, but you should not rely on this; if NaN is a possibility, use one of the higher-level comparison functions. @end deftypefn @deftypefn {Runtime Function} int __unordsf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __unorddf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __unordtf2 (long double @var{a}, long double @var{b}) These functions return 1 if either argument is NaN, otherwise 0. @end deftypefn There is also a complete group of higher level functions which correspond directly to comparison operators. They implement the ISO C semantics for floating-point comparisons, taking NaN into account. Pay careful attention to the return values defined for each set. Under the hood, all of these routines are implemented as @smallexample if (__unord@var{X}f2 (a, b)) return @var{E}; return __cmp@var{X}f2 (a, b); @end smallexample @noindent where @var{E} is a constant chosen to give the proper behavior for NaN. Thus, the meaning of the return value is different for each set. Do not rely on this implementation; only the semantics documented below are guaranteed. @deftypefn {Runtime Function} int __eqsf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __eqdf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __eqtf2 (long double @var{a}, long double @var{b}) These functions return zero if neither argument is NaN, and @var{a} and @var{b} are equal. @end deftypefn @deftypefn {Runtime Function} int __nesf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __nedf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __netf2 (long double @var{a}, long double @var{b}) These functions return a nonzero value if either argument is NaN, or if @var{a} and @var{b} are unequal. @end deftypefn @deftypefn {Runtime Function} int __gesf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __gedf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __getf2 (long double @var{a}, long double @var{b}) These functions return a value greater than or equal to zero if neither argument is NaN, and @var{a} is greater than or equal to @var{b}. @end deftypefn @deftypefn {Runtime Function} int __ltsf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __ltdf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __lttf2 (long double @var{a}, long double @var{b}) These functions return a value less than zero if neither argument is NaN, and @var{a} is strictly less than @var{b}. @end deftypefn @deftypefn {Runtime Function} int __lesf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __ledf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __letf2 (long double @var{a}, long double @var{b}) These functions return a value less than or equal to zero if neither argument is NaN, and @var{a} is less than or equal to @var{b}. @end deftypefn @deftypefn {Runtime Function} int __gtsf2 (float @var{a}, float @var{b}) @deftypefnx {Runtime Function} int __gtdf2 (double @var{a}, double @var{b}) @deftypefnx {Runtime Function} int __gttf2 (long double @var{a}, long double @var{b}) These functions return a value greater than zero if neither argument is NaN, and @var{a} is strictly greater than @var{b}. @end deftypefn @node Exception handling routines @section Language-independent routines for exception handling document me! @example _Unwind_DeleteException _Unwind_Find_FDE _Unwind_ForcedUnwind _Unwind_GetGR _Unwind_GetIP _Unwind_GetLanguageSpecificData _Unwind_GetRegionStart _Unwind_GetTextRelBase _Unwind_GetDataRelBase _Unwind_RaiseException _Unwind_Resume _Unwind_SetGR _Unwind_SetIP _Unwind_FindEnclosingFunction _Unwind_SjLj_Register _Unwind_SjLj_Unregister _Unwind_SjLj_RaiseException _Unwind_SjLj_ForcedUnwind _Unwind_SjLj_Resume __deregister_frame __deregister_frame_info __deregister_frame_info_bases __register_frame __register_frame_info __register_frame_info_bases __register_frame_info_table __register_frame_info_table_bases __register_frame_table @end example @node Miscellaneous routines @section Miscellaneous runtime library routines document me! @example __clear_cache @end example any others?