/* Operations with long integers. Copyright (C) 2006, 2007, 2009, 2010, 2012 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" /* For SHIFT_COUNT_TRUNCATED. */ #include "tree.h" /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring overflow. Suppose A, B and SUM have the same respective signs as A1, B1, and SUM1. Then this yields nonzero if overflow occurred during the addition. Overflow occurs if A and B have the same sign, but A and SUM differ in sign. Use `^' to test whether signs differ, and `< 0' to isolate the sign. */ #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0) /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic. We do that by representing the two-word integer in 4 words, with only HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive number. The value of the word is LOWPART + HIGHPART * BASE. */ #define LOWPART(x) \ ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1)) #define HIGHPART(x) \ ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2) #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2) /* Unpack a two-word integer into 4 words. LOW and HI are the integer, as two `HOST_WIDE_INT' pieces. WORDS points to the array of HOST_WIDE_INTs. */ static void encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi) { words[0] = LOWPART (low); words[1] = HIGHPART (low); words[2] = LOWPART (hi); words[3] = HIGHPART (hi); } /* Pack an array of 4 words into a two-word integer. WORDS points to the array of words. The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */ static void decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low, HOST_WIDE_INT *hi) { *low = words[0] + words[1] * BASE; *hi = words[2] + words[3] * BASE; } /* Add two doubleword integers with doubleword result. Return nonzero if the operation overflows according to UNSIGNED_P. Each argument is given as two `HOST_WIDE_INT' pieces. One argument is L1 and H1; the other, L2 and H2. The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ int add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool unsigned_p) { unsigned HOST_WIDE_INT l; HOST_WIDE_INT h; l = l1 + l2; h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1 + (unsigned HOST_WIDE_INT) h2 + (l < l1)); *lv = l; *hv = h; if (unsigned_p) return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1 || (h == h1 && l < l1)); else return OVERFLOW_SUM_SIGN (h1, h2, h); } /* Negate a doubleword integer with doubleword result. Return nonzero if the operation overflows, assuming it's signed. The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1. The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ int neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv) { if (l1 == 0) { *lv = 0; *hv = - h1; return (*hv & h1) < 0; } else { *lv = -l1; *hv = ~h1; return 0; } } /* Multiply two doubleword integers with doubleword result. Return nonzero if the operation overflows according to UNSIGNED_P. Each argument is given as two `HOST_WIDE_INT' pieces. One argument is L1 and H1; the other, L2 and H2. The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */ int mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool unsigned_p) { unsigned HOST_WIDE_INT toplow; HOST_WIDE_INT tophigh; return mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, &toplow, &tophigh, unsigned_p); } int mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2, unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw, bool unsigned_p) { HOST_WIDE_INT arg1[4]; HOST_WIDE_INT arg2[4]; HOST_WIDE_INT prod[4 * 2]; unsigned HOST_WIDE_INT carry; int i, j, k; unsigned HOST_WIDE_INT neglow; HOST_WIDE_INT neghigh; encode (arg1, l1, h1); encode (arg2, l2, h2); memset (prod, 0, sizeof prod); for (i = 0; i < 4; i++) { carry = 0; for (j = 0; j < 4; j++) { k = i + j; /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */ carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j]; /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */ carry += prod[k]; prod[k] = LOWPART (carry); carry = HIGHPART (carry); } prod[i + 4] = carry; } decode (prod, lv, hv); decode (prod + 4, lw, hw); /* Unsigned overflow is immediate. */ if (unsigned_p) return (*lw | *hw) != 0; /* Check for signed overflow by calculating the signed representation of the top half of the result; it should agree with the low half's sign bit. */ if (h1 < 0) { neg_double (l2, h2, &neglow, &neghigh); add_double (neglow, neghigh, *lw, *hw, lw, hw); } if (h2 < 0) { neg_double (l1, h1, &neglow, &neghigh); add_double (neglow, neghigh, *lw, *hw, lw, hw); } return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0; } /* Shift the doubleword integer in L1, H1 right by COUNT places keeping only PREC bits of result. ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ static void rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, unsigned HOST_WIDE_INT count, unsigned int prec, unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith) { unsigned HOST_WIDE_INT signmask; signmask = (arith ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1)) : 0); if (SHIFT_COUNT_TRUNCATED) count %= prec; if (count >= HOST_BITS_PER_DOUBLE_INT) { /* Shifting by the host word size is undefined according to the ANSI standard, so we must handle this as a special case. */ *hv = 0; *lv = 0; } else if (count >= HOST_BITS_PER_WIDE_INT) { *hv = 0; *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT); } else { *hv = (unsigned HOST_WIDE_INT) h1 >> count; *lv = ((l1 >> count) | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1)); } /* Zero / sign extend all bits that are beyond the precision. */ if (count >= prec) { *hv = signmask; *lv = signmask; } else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT) ; else if ((prec - count) >= HOST_BITS_PER_WIDE_INT) { *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT)); *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT); } else { *hv = signmask; *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count)); *lv |= signmask << (prec - count); } } /* Shift the doubleword integer in L1, H1 left by COUNT places keeping only PREC bits of result. Shift right if COUNT is negative. ARITH nonzero specifies arithmetic shifting; otherwise use logical shift. Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */ void lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1, HOST_WIDE_INT count, unsigned int prec, unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith) { unsigned HOST_WIDE_INT signmask; if (count < 0) { rshift_double (l1, h1, absu_hwi (count), prec, lv, hv, arith); return; } if (SHIFT_COUNT_TRUNCATED) count %= prec; if (count >= HOST_BITS_PER_DOUBLE_INT) { /* Shifting by the host word size is undefined according to the ANSI standard, so we must handle this as a special case. */ *hv = 0; *lv = 0; } else if (count >= HOST_BITS_PER_WIDE_INT) { *hv = l1 << (count - HOST_BITS_PER_WIDE_INT); *lv = 0; } else { *hv = (((unsigned HOST_WIDE_INT) h1 << count) | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1)); *lv = l1 << count; } /* Sign extend all bits that are beyond the precision. */ signmask = -((prec > HOST_BITS_PER_WIDE_INT ? ((unsigned HOST_WIDE_INT) *hv >> (prec - HOST_BITS_PER_WIDE_INT - 1)) : (*lv >> (prec - 1))) & 1); if (prec >= HOST_BITS_PER_DOUBLE_INT) ; else if (prec >= HOST_BITS_PER_WIDE_INT) { *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT)); *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT); } else { *hv = signmask; *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec); *lv |= signmask << prec; } } /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM). CODE is a tree code for a kind of division, one of TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR or EXACT_DIV_EXPR It controls how the quotient is rounded to an integer. Return nonzero if the operation overflows. UNS nonzero says do unsigned division. */ int div_and_round_double (unsigned code, int uns, /* num == numerator == dividend */ unsigned HOST_WIDE_INT lnum_orig, HOST_WIDE_INT hnum_orig, /* den == denominator == divisor */ unsigned HOST_WIDE_INT lden_orig, HOST_WIDE_INT hden_orig, unsigned HOST_WIDE_INT *lquo, HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem, HOST_WIDE_INT *hrem) { int quo_neg = 0; HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */ HOST_WIDE_INT den[4], quo[4]; int i, j; unsigned HOST_WIDE_INT work; unsigned HOST_WIDE_INT carry = 0; unsigned HOST_WIDE_INT lnum = lnum_orig; HOST_WIDE_INT hnum = hnum_orig; unsigned HOST_WIDE_INT lden = lden_orig; HOST_WIDE_INT hden = hden_orig; int overflow = 0; if (hden == 0 && lden == 0) overflow = 1, lden = 1; /* Calculate quotient sign and convert operands to unsigned. */ if (!uns) { if (hnum < 0) { quo_neg = ~ quo_neg; /* (minimum integer) / (-1) is the only overflow case. */ if (neg_double (lnum, hnum, &lnum, &hnum) && ((HOST_WIDE_INT) lden & hden) == -1) overflow = 1; } if (hden < 0) { quo_neg = ~ quo_neg; neg_double (lden, hden, &lden, &hden); } } if (hnum == 0 && hden == 0) { /* single precision */ *hquo = *hrem = 0; /* This unsigned division rounds toward zero. */ *lquo = lnum / lden; goto finish_up; } if (hnum == 0) { /* trivial case: dividend < divisor */ /* hden != 0 already checked. */ *hquo = *lquo = 0; *hrem = hnum; *lrem = lnum; goto finish_up; } memset (quo, 0, sizeof quo); memset (num, 0, sizeof num); /* to zero 9th element */ memset (den, 0, sizeof den); encode (num, lnum, hnum); encode (den, lden, hden); /* Special code for when the divisor < BASE. */ if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE) { /* hnum != 0 already checked. */ for (i = 4 - 1; i >= 0; i--) { work = num[i] + carry * BASE; quo[i] = work / lden; carry = work % lden; } } else { /* Full double precision division, with thanks to Don Knuth's "Seminumerical Algorithms". */ int num_hi_sig, den_hi_sig; unsigned HOST_WIDE_INT quo_est, scale; /* Find the highest nonzero divisor digit. */ for (i = 4 - 1;; i--) if (den[i] != 0) { den_hi_sig = i; break; } /* Insure that the first digit of the divisor is at least BASE/2. This is required by the quotient digit estimation algorithm. */ scale = BASE / (den[den_hi_sig] + 1); if (scale > 1) { /* scale divisor and dividend */ carry = 0; for (i = 0; i <= 4 - 1; i++) { work = (num[i] * scale) + carry; num[i] = LOWPART (work); carry = HIGHPART (work); } num[4] = carry; carry = 0; for (i = 0; i <= 4 - 1; i++) { work = (den[i] * scale) + carry; den[i] = LOWPART (work); carry = HIGHPART (work); if (den[i] != 0) den_hi_sig = i; } } num_hi_sig = 4; /* Main loop */ for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--) { /* Guess the next quotient digit, quo_est, by dividing the first two remaining dividend digits by the high order quotient digit. quo_est is never low and is at most 2 high. */ unsigned HOST_WIDE_INT tmp; num_hi_sig = i + den_hi_sig + 1; work = num[num_hi_sig] * BASE + num[num_hi_sig - 1]; if (num[num_hi_sig] != den[den_hi_sig]) quo_est = work / den[den_hi_sig]; else quo_est = BASE - 1; /* Refine quo_est so it's usually correct, and at most one high. */ tmp = work - quo_est * den[den_hi_sig]; if (tmp < BASE && (den[den_hi_sig - 1] * quo_est > (tmp * BASE + num[num_hi_sig - 2]))) quo_est--; /* Try QUO_EST as the quotient digit, by multiplying the divisor by QUO_EST and subtracting from the remaining dividend. Keep in mind that QUO_EST is the I - 1st digit. */ carry = 0; for (j = 0; j <= den_hi_sig; j++) { work = quo_est * den[j] + carry; carry = HIGHPART (work); work = num[i + j] - LOWPART (work); num[i + j] = LOWPART (work); carry += HIGHPART (work) != 0; } /* If quo_est was high by one, then num[i] went negative and we need to correct things. */ if (num[num_hi_sig] < (HOST_WIDE_INT) carry) { quo_est--; carry = 0; /* add divisor back in */ for (j = 0; j <= den_hi_sig; j++) { work = num[i + j] + den[j] + carry; carry = HIGHPART (work); num[i + j] = LOWPART (work); } num [num_hi_sig] += carry; } /* Store the quotient digit. */ quo[i] = quo_est; } } decode (quo, lquo, hquo); finish_up: /* If result is negative, make it so. */ if (quo_neg) neg_double (*lquo, *hquo, lquo, hquo); /* Compute trial remainder: rem = num - (quo * den) */ mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); neg_double (*lrem, *hrem, lrem, hrem); add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); switch (code) { case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR: /* round toward zero */ case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */ return overflow; case FLOOR_DIV_EXPR: case FLOOR_MOD_EXPR: /* round toward negative infinity */ if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */ { /* quo = quo - 1; */ add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo); } else return overflow; break; case CEIL_DIV_EXPR: case CEIL_MOD_EXPR: /* round toward positive infinity */ if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */ { add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, lquo, hquo); } else return overflow; break; case ROUND_DIV_EXPR: case ROUND_MOD_EXPR: /* round to closest integer */ { unsigned HOST_WIDE_INT labs_rem = *lrem; HOST_WIDE_INT habs_rem = *hrem; unsigned HOST_WIDE_INT labs_den = lden, ltwice; HOST_WIDE_INT habs_den = hden, htwice; /* Get absolute values. */ if (*hrem < 0) neg_double (*lrem, *hrem, &labs_rem, &habs_rem); if (hden < 0) neg_double (lden, hden, &labs_den, &habs_den); /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */ mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0, labs_rem, habs_rem, <wice, &htwice); if (((unsigned HOST_WIDE_INT) habs_den < (unsigned HOST_WIDE_INT) htwice) || (((unsigned HOST_WIDE_INT) habs_den == (unsigned HOST_WIDE_INT) htwice) && (labs_den <= ltwice))) { if (*hquo < 0) /* quo = quo - 1; */ add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo); else /* quo = quo + 1; */ add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0, lquo, hquo); } else return overflow; } break; default: gcc_unreachable (); } /* Compute true remainder: rem = num - (quo * den) */ mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem); neg_double (*lrem, *hrem, lrem, hrem); add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem); return overflow; } /* Returns mask for PREC bits. */ double_int double_int::mask (unsigned prec) { unsigned HOST_WIDE_INT m; double_int mask; if (prec > HOST_BITS_PER_WIDE_INT) { prec -= HOST_BITS_PER_WIDE_INT; m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1; mask.high = (HOST_WIDE_INT) m; mask.low = ALL_ONES; } else { mask.high = 0; mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0; } return mask; } /* Returns a maximum value for signed or unsigned integer of precision PREC. */ double_int double_int::max_value (unsigned int prec, bool uns) { return double_int::mask (prec - (uns ? 0 : 1)); } /* Returns a minimum value for signed or unsigned integer of precision PREC. */ double_int double_int::min_value (unsigned int prec, bool uns) { if (uns) return double_int_zero; return double_int_one.lshift (prec - 1, prec, false); } /* Clears the bits of CST over the precision PREC. If UNS is false, the bits outside of the precision are set to the sign bit (i.e., the PREC-th one), otherwise they are set to zero. This corresponds to returning the value represented by PREC lowermost bits of CST, with the given signedness. */ double_int double_int::ext (unsigned prec, bool uns) const { if (uns) return this->zext (prec); else return this->sext (prec); } /* The same as double_int::ext with UNS = true. */ double_int double_int::zext (unsigned prec) const { const double_int &cst = *this; double_int mask = double_int::mask (prec); double_int r; r.low = cst.low & mask.low; r.high = cst.high & mask.high; return r; } /* The same as double_int::ext with UNS = false. */ double_int double_int::sext (unsigned prec) const { const double_int &cst = *this; double_int mask = double_int::mask (prec); double_int r; unsigned HOST_WIDE_INT snum; if (prec <= HOST_BITS_PER_WIDE_INT) snum = cst.low; else { prec -= HOST_BITS_PER_WIDE_INT; snum = (unsigned HOST_WIDE_INT) cst.high; } if (((snum >> (prec - 1)) & 1) == 1) { r.low = cst.low | ~mask.low; r.high = cst.high | ~mask.high; } else { r.low = cst.low & mask.low; r.high = cst.high & mask.high; } return r; } /* Returns true if CST fits in signed HOST_WIDE_INT. */ bool double_int::fits_shwi () const { const double_int &cst = *this; if (cst.high == 0) return (HOST_WIDE_INT) cst.low >= 0; else if (cst.high == -1) return (HOST_WIDE_INT) cst.low < 0; else return false; } /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in unsigned HOST_WIDE_INT if UNS is true. */ bool double_int::fits_hwi (bool uns) const { if (uns) return this->fits_uhwi (); else return this->fits_shwi (); } /* Returns A * B. */ double_int double_int::operator * (double_int b) const { const double_int &a = *this; double_int ret; mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); return ret; } /* Returns A * B. If the operation overflows according to UNSIGNED_P, *OVERFLOW is set to nonzero. */ double_int double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const { const double_int &a = *this; double_int ret; *overflow = mul_double_with_sign (a.low, a.high, b.low, b.high, &ret.low, &ret.high, unsigned_p); return ret; } /* Returns A + B. */ double_int double_int::operator + (double_int b) const { const double_int &a = *this; double_int ret; add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); return ret; } /* Returns A + B. If the operation overflows according to UNSIGNED_P, *OVERFLOW is set to nonzero. */ double_int double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const { const double_int &a = *this; double_int ret; *overflow = add_double_with_sign (a.low, a.high, b.low, b.high, &ret.low, &ret.high, unsigned_p); return ret; } /* Returns A - B. */ double_int double_int::operator - (double_int b) const { const double_int &a = *this; double_int ret; neg_double (b.low, b.high, &b.low, &b.high); add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); return ret; } /* Returns -A. */ double_int double_int::operator - () const { const double_int &a = *this; double_int ret; neg_double (a.low, a.high, &ret.low, &ret.high); return ret; } /* Returns A / B (computed as unsigned depending on UNS, and rounded as specified by CODE). CODE is enum tree_code in fact, but double_int.h must be included before tree.h. The remainder after the division is stored to MOD. */ double_int double_int::divmod (double_int b, bool uns, unsigned code, double_int *mod) const { const double_int &a = *this; double_int ret; div_and_round_double (code, uns, a.low, a.high, b.low, b.high, &ret.low, &ret.high, &mod->low, &mod->high); return ret; } /* The same as double_int::divmod with UNS = false. */ double_int double_int::sdivmod (double_int b, unsigned code, double_int *mod) const { return this->divmod (b, false, code, mod); } /* The same as double_int::divmod with UNS = true. */ double_int double_int::udivmod (double_int b, unsigned code, double_int *mod) const { return this->divmod (b, true, code, mod); } /* Returns A / B (computed as unsigned depending on UNS, and rounded as specified by CODE). CODE is enum tree_code in fact, but double_int.h must be included before tree.h. */ double_int double_int::div (double_int b, bool uns, unsigned code) const { double_int mod; return this->divmod (b, uns, code, &mod); } /* The same as double_int::div with UNS = false. */ double_int double_int::sdiv (double_int b, unsigned code) const { return this->div (b, false, code); } /* The same as double_int::div with UNS = true. */ double_int double_int::udiv (double_int b, unsigned code) const { return this->div (b, true, code); } /* Returns A % B (computed as unsigned depending on UNS, and rounded as specified by CODE). CODE is enum tree_code in fact, but double_int.h must be included before tree.h. */ double_int double_int::mod (double_int b, bool uns, unsigned code) const { double_int mod; this->divmod (b, uns, code, &mod); return mod; } /* The same as double_int::mod with UNS = false. */ double_int double_int::smod (double_int b, unsigned code) const { return this->mod (b, false, code); } /* The same as double_int::mod with UNS = true. */ double_int double_int::umod (double_int b, unsigned code) const { return this->mod (b, true, code); } /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE unchanged. */ bool double_int::multiple_of (double_int factor, bool unsigned_p, double_int *multiple) const { double_int remainder; double_int quotient = this->divmod (factor, unsigned_p, TRUNC_DIV_EXPR, &remainder); if (remainder.is_zero ()) { *multiple = quotient; return true; } return false; } /* Set BITPOS bit in A. */ double_int double_int::set_bit (unsigned bitpos) const { double_int a = *this; if (bitpos < HOST_BITS_PER_WIDE_INT) a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos; else a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); return a; } /* Count trailing zeros in A. */ int double_int::trailing_zeros () const { const double_int &a = *this; unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high; unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT; if (!w) return HOST_BITS_PER_DOUBLE_INT; bits += ctz_hwi (w); return bits; } /* Shift A left by COUNT places keeping only PREC bits of result. Shift right if COUNT is negative. ARITH true specifies arithmetic shifting; otherwise use logical shift. */ double_int double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const { const double_int &a = *this; double_int ret; lshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith); return ret; } /* Shift A right by COUNT places keeping only PREC bits of result. Shift left if COUNT is negative. ARITH true specifies arithmetic shifting; otherwise use logical shift. */ double_int double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const { const double_int &a = *this; double_int ret; lshift_double (a.low, a.high, -count, prec, &ret.low, &ret.high, arith); return ret; } /* Arithmetic shift A left by COUNT places keeping only PREC bits of result. Shift right if COUNT is negative. */ double_int double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const { double_int r; lshift_double (low, high, count, prec, &r.low, &r.high, true); return r; } /* Arithmetic shift A right by COUNT places keeping only PREC bits of result. Shift left if COUNT is negative. */ double_int double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const { double_int r; lshift_double (low, high, -count, prec, &r.low, &r.high, true); return r; } /* Logical shift A left by COUNT places keeping only PREC bits of result. Shift right if COUNT is negative. */ double_int double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const { double_int r; lshift_double (low, high, count, prec, &r.low, &r.high, false); return r; } /* Logical shift A right by COUNT places keeping only PREC bits of result. Shift left if COUNT is negative. */ double_int double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const { double_int r; lshift_double (low, high, -count, prec, &r.low, &r.high, false); return r; } /* Rotate A left by COUNT places keeping only PREC bits of result. Rotate right if COUNT is negative. */ double_int double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const { double_int t1, t2; count %= prec; if (count < 0) count += prec; t1 = this->lshift (count, prec, false); t2 = this->rshift (prec - count, prec, false); return t1 | t2; } /* Rotate A rigth by COUNT places keeping only PREC bits of result. Rotate right if COUNT is negative. */ double_int double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const { double_int t1, t2; count %= prec; if (count < 0) count += prec; t1 = this->rshift (count, prec, false); t2 = this->lshift (prec - count, prec, false); return t1 | t2; } /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the comparison is given by UNS. */ int double_int::cmp (double_int b, bool uns) const { if (uns) return this->ucmp (b); else return this->scmp (b); } /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B, and 1 if A > B. */ int double_int::ucmp (double_int b) const { const double_int &a = *this; if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high) return -1; if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high) return 1; if (a.low < b.low) return -1; if (a.low > b.low) return 1; return 0; } /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B, and 1 if A > B. */ int double_int::scmp (double_int b) const { const double_int &a = *this; if (a.high < b.high) return -1; if (a.high > b.high) return 1; if (a.low < b.low) return -1; if (a.low > b.low) return 1; return 0; } /* Compares two unsigned values A and B for less-than. */ bool double_int::ult (double_int b) const { if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high) return true; if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high) return false; if (low < b.low) return true; return false; } /* Compares two unsigned values A and B for less-than or equal-to. */ bool double_int::ule (double_int b) const { if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high) return true; if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high) return false; if (low <= b.low) return true; return false; } /* Compares two unsigned values A and B for greater-than. */ bool double_int::ugt (double_int b) const { if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high) return true; if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high) return false; if (low > b.low) return true; return false; } /* Compares two signed values A and B for less-than. */ bool double_int::slt (double_int b) const { if (high < b.high) return true; if (high > b.high) return false; if (low < b.low) return true; return false; } /* Compares two signed values A and B for less-than or equal-to. */ bool double_int::sle (double_int b) const { if (high < b.high) return true; if (high > b.high) return false; if (low <= b.low) return true; return false; } /* Compares two signed values A and B for greater-than. */ bool double_int::sgt (double_int b) const { if (high > b.high) return true; if (high < b.high) return false; if (low > b.low) return true; return false; } /* Compares two values A and B. Returns max value. Signedness of the comparison is given by UNS. */ double_int double_int::max (double_int b, bool uns) { return (this->cmp (b, uns) == 1) ? *this : b; } /* Compares two signed values A and B. Returns max value. */ double_int double_int::smax (double_int b) { return (this->scmp (b) == 1) ? *this : b; } /* Compares two unsigned values A and B. Returns max value. */ double_int double_int::umax (double_int b) { return (this->ucmp (b) == 1) ? *this : b; } /* Compares two values A and B. Returns mix value. Signedness of the comparison is given by UNS. */ double_int double_int::min (double_int b, bool uns) { return (this->cmp (b, uns) == -1) ? *this : b; } /* Compares two signed values A and B. Returns min value. */ double_int double_int::smin (double_int b) { return (this->scmp (b) == -1) ? *this : b; } /* Compares two unsigned values A and B. Returns min value. */ double_int double_int::umin (double_int b) { return (this->ucmp (b) == -1) ? *this : b; } /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */ static unsigned double_int_split_digit (double_int *cst, unsigned base) { unsigned HOST_WIDE_INT resl, reml; HOST_WIDE_INT resh, remh; div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0, &resl, &resh, &reml, &remh); cst->high = resh; cst->low = resl; return reml; } /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned, otherwise it is signed. */ void dump_double_int (FILE *file, double_int cst, bool uns) { unsigned digits[100], n; int i; if (cst.is_zero ()) { fprintf (file, "0"); return; } if (!uns && cst.is_negative ()) { fprintf (file, "-"); cst = -cst; } for (n = 0; !cst.is_zero (); n++) digits[n] = double_int_split_digit (&cst, 10); for (i = n - 1; i >= 0; i--) fprintf (file, "%u", digits[i]); } /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed otherwise. */ void mpz_set_double_int (mpz_t result, double_int val, bool uns) { bool negate = false; unsigned HOST_WIDE_INT vp[2]; if (!uns && val.is_negative ()) { negate = true; val = -val; } vp[0] = val.low; vp[1] = (unsigned HOST_WIDE_INT) val.high; mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp); if (negate) mpz_neg (result, result); } /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range values of VAL will be wrapped; otherwise, they will be set to the appropriate minimum or maximum TYPE bound. */ double_int mpz_get_double_int (const_tree type, mpz_t val, bool wrap) { unsigned HOST_WIDE_INT *vp; size_t count, numb; double_int res; if (!wrap) { mpz_t min, max; mpz_init (min); mpz_init (max); get_type_static_bounds (type, min, max); if (mpz_cmp (val, min) < 0) mpz_set (val, min); else if (mpz_cmp (val, max) > 0) mpz_set (val, max); mpz_clear (min); mpz_clear (max); } /* Determine the number of unsigned HOST_WIDE_INT that are required for representing the value. The code to calculate count is extracted from the GMP manual, section "Integer Import and Export": http://gmplib.org/manual/Integer-Import-and-Export.html */ numb = 8*sizeof(HOST_WIDE_INT); count = (mpz_sizeinbase (val, 2) + numb-1) / numb; if (count < 2) count = 2; vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT)); vp[0] = 0; vp[1] = 0; mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val); gcc_assert (wrap || count <= 2); res.low = vp[0]; res.high = (HOST_WIDE_INT) vp[1]; res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type)); if (mpz_sgn (val) < 0) res = -res; return res; }