/* RTL dead store elimination. Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by Richard Sandiford and Kenneth Zadeck This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #undef BASELINE #include "config.h" #include "system.h" #include "coretypes.h" #include "hashtab.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "regs.h" #include "hard-reg-set.h" #include "regset.h" #include "flags.h" #include "df.h" #include "cselib.h" #include "timevar.h" #include "tree-pass.h" #include "alloc-pool.h" #include "alias.h" #include "insn-config.h" #include "expr.h" #include "recog.h" #include "optabs.h" #include "dbgcnt.h" #include "target.h" #include "params.h" #include "tree-flow.h" /* This file contains three techniques for performing Dead Store Elimination (dse). * The first technique performs dse locally on any base address. It is based on the cselib which is a local value numbering technique. This technique is local to a basic block but deals with a fairly general addresses. * The second technique performs dse globally but is restricted to base addresses that are either constant or are relative to the frame_pointer. * The third technique, (which is only done after register allocation) processes the spill spill slots. This differs from the second technique because it takes advantage of the fact that spilling is completely free from the effects of aliasing. Logically, dse is a backwards dataflow problem. A store can be deleted if it if cannot be reached in the backward direction by any use of the value being stored. However, the local technique uses a forwards scan of the basic block because cselib requires that the block be processed in that order. The pass is logically broken into 7 steps: 0) Initialization. 1) The local algorithm, as well as scanning the insns for the two global algorithms. 2) Analysis to see if the global algs are necessary. In the case of stores base on a constant address, there must be at least two stores to that address, to make it possible to delete some of the stores. In the case of stores off of the frame or spill related stores, only one store to an address is necessary because those stores die at the end of the function. 3) Set up the global dataflow equations based on processing the info parsed in the first step. 4) Solve the dataflow equations. 5) Delete the insns that the global analysis has indicated are unnecessary. 6) Delete insns that store the same value as preceeding store where the earlier store couldn't be eliminated. 7) Cleanup. This step uses cselib and canon_rtx to build the largest expression possible for each address. This pass is a forwards pass through each basic block. From the point of view of the global technique, the first pass could examine a block in either direction. The forwards ordering is to accommodate cselib. We a simplifying assumption: addresses fall into four broad categories: 1) base has rtx_varies_p == false, offset is constant. 2) base has rtx_varies_p == false, offset variable. 3) base has rtx_varies_p == true, offset constant. 4) base has rtx_varies_p == true, offset variable. The local passes are able to process all 4 kinds of addresses. The global pass only handles (1). The global problem is formulated as follows: A store, S1, to address A, where A is not relative to the stack frame, can be eliminated if all paths from S1 to the end of the of the function contain another store to A before a read to A. If the address A is relative to the stack frame, a store S2 to A can be eliminated if there are no paths from S1 that reach the end of the function that read A before another store to A. In this case S2 can be deleted if there are paths to from S2 to the end of the function that have no reads or writes to A. This second case allows stores to the stack frame to be deleted that would otherwise die when the function returns. This cannot be done if stores_off_frame_dead_at_return is not true. See the doc for that variable for when this variable is false. The global problem is formulated as a backwards set union dataflow problem where the stores are the gens and reads are the kills. Set union problems are rare and require some special handling given our representation of bitmaps. A straightforward implementation of requires a lot of bitmaps filled with 1s. These are expensive and cumbersome in our bitmap formulation so care has been taken to avoid large vectors filled with 1s. See the comments in bb_info and in the dataflow confluence functions for details. There are two places for further enhancements to this algorithm: 1) The original dse which was embedded in a pass called flow also did local address forwarding. For example in A <- r100 ... <- A flow would replace the right hand side of the second insn with a reference to r100. Most of the information is available to add this to this pass. It has not done it because it is a lot of work in the case that either r100 is assigned to between the first and second insn and/or the second insn is a load of part of the value stored by the first insn. insn 5 in gcc.c-torture/compile/990203-1.c simple case. insn 15 in gcc.c-torture/execute/20001017-2.c simple case. insn 25 in gcc.c-torture/execute/20001026-1.c simple case. insn 44 in gcc.c-torture/execute/20010910-1.c simple case. 2) The cleaning up of spill code is quite profitable. It currently depends on reading tea leaves and chicken entrails left by reload. This pass depends on reload creating a singleton alias set for each spill slot and telling the next dse pass which of these alias sets are the singletons. Rather than analyze the addresses of the spills, dse's spill processing just does analysis of the loads and stores that use those alias sets. There are three cases where this falls short: a) Reload sometimes creates the slot for one mode of access, and then inserts loads and/or stores for a smaller mode. In this case, the current code just punts on the slot. The proper thing to do is to back out and use one bit vector position for each byte of the entity associated with the slot. This depends on KNOWING that reload always generates the accesses for each of the bytes in some canonical (read that easy to understand several passes after reload happens) way. b) Reload sometimes decides that spill slot it allocated was not large enough for the mode and goes back and allocates more slots with the same mode and alias set. The backout in this case is a little more graceful than (a). In this case the slot is unmarked as being a spill slot and if final address comes out to be based off the frame pointer, the global algorithm handles this slot. c) For any pass that may prespill, there is currently no mechanism to tell the dse pass that the slot being used has the special properties that reload uses. It may be that all that is required is to have those passes make the same calls that reload does, assuming that the alias sets can be manipulated in the same way. */ /* There are limits to the size of constant offsets we model for the global problem. There are certainly test cases, that exceed this limit, however, it is unlikely that there are important programs that really have constant offsets this size. */ #define MAX_OFFSET (64 * 1024) static bitmap scratch = NULL; struct insn_info; /* This structure holds information about a candidate store. */ struct store_info { /* False means this is a clobber. */ bool is_set; /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */ bool is_large; /* The id of the mem group of the base address. If rtx_varies_p is true, this is -1. Otherwise, it is the index into the group table. */ int group_id; /* This is the cselib value. */ cselib_val *cse_base; /* This canonized mem. */ rtx mem; /* Canonized MEM address for use by canon_true_dependence. */ rtx mem_addr; /* If this is non-zero, it is the alias set of a spill location. */ alias_set_type alias_set; /* The offset of the first and byte before the last byte associated with the operation. */ HOST_WIDE_INT begin, end; union { /* A bitmask as wide as the number of bytes in the word that contains a 1 if the byte may be needed. The store is unused if all of the bits are 0. This is used if IS_LARGE is false. */ unsigned HOST_WIDE_INT small_bitmask; struct { /* A bitmap with one bit per byte. Cleared bit means the position is needed. Used if IS_LARGE is false. */ bitmap bmap; /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is equal to END - BEGIN, the whole store is unused. */ int count; } large; } positions_needed; /* The next store info for this insn. */ struct store_info *next; /* The right hand side of the store. This is used if there is a subsequent reload of the mems address somewhere later in the basic block. */ rtx rhs; /* If rhs is or holds a constant, this contains that constant, otherwise NULL. */ rtx const_rhs; /* Set if this store stores the same constant value as REDUNDANT_REASON insn stored. These aren't eliminated early, because doing that might prevent the earlier larger store to be eliminated. */ struct insn_info *redundant_reason; }; /* Return a bitmask with the first N low bits set. */ static unsigned HOST_WIDE_INT lowpart_bitmask (int n) { unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0; return mask >> (HOST_BITS_PER_WIDE_INT - n); } typedef struct store_info *store_info_t; static alloc_pool cse_store_info_pool; static alloc_pool rtx_store_info_pool; /* This structure holds information about a load. These are only built for rtx bases. */ struct read_info { /* The id of the mem group of the base address. */ int group_id; /* If this is non-zero, it is the alias set of a spill location. */ alias_set_type alias_set; /* The offset of the first and byte after the last byte associated with the operation. If begin == end == 0, the read did not have a constant offset. */ int begin, end; /* The mem being read. */ rtx mem; /* The next read_info for this insn. */ struct read_info *next; }; typedef struct read_info *read_info_t; static alloc_pool read_info_pool; /* One of these records is created for each insn. */ struct insn_info { /* Set true if the insn contains a store but the insn itself cannot be deleted. This is set if the insn is a parallel and there is more than one non dead output or if the insn is in some way volatile. */ bool cannot_delete; /* This field is only used by the global algorithm. It is set true if the insn contains any read of mem except for a (1). This is also set if the insn is a call or has a clobber mem. If the insn contains a wild read, the use_rec will be null. */ bool wild_read; /* This is true only for CALL instructions which could potentially read any non-frame memory location. This field is used by the global algorithm. */ bool non_frame_wild_read; /* This field is only used for the processing of const functions. These functions cannot read memory, but they can read the stack because that is where they may get their parms. We need to be this conservative because, like the store motion pass, we don't consider CALL_INSN_FUNCTION_USAGE when processing call insns. Moreover, we need to distinguish two cases: 1. Before reload (register elimination), the stores related to outgoing arguments are stack pointer based and thus deemed of non-constant base in this pass. This requires special handling but also means that the frame pointer based stores need not be killed upon encountering a const function call. 2. After reload, the stores related to outgoing arguments can be either stack pointer or hard frame pointer based. This means that we have no other choice than also killing all the frame pointer based stores upon encountering a const function call. This field is set after reload for const function calls. Having this set is less severe than a wild read, it just means that all the frame related stores are killed rather than all the stores. */ bool frame_read; /* This field is only used for the processing of const functions. It is set if the insn may contain a stack pointer based store. */ bool stack_pointer_based; /* This is true if any of the sets within the store contains a cselib base. Such stores can only be deleted by the local algorithm. */ bool contains_cselib_groups; /* The insn. */ rtx insn; /* The list of mem sets or mem clobbers that are contained in this insn. If the insn is deletable, it contains only one mem set. But it could also contain clobbers. Insns that contain more than one mem set are not deletable, but each of those mems are here in order to provide info to delete other insns. */ store_info_t store_rec; /* The linked list of mem uses in this insn. Only the reads from rtx bases are listed here. The reads to cselib bases are completely processed during the first scan and so are never created. */ read_info_t read_rec; /* The live fixed registers. We assume only fixed registers can cause trouble by being clobbered from an expanded pattern; storing only the live fixed registers (rather than all registers) means less memory needs to be allocated / copied for the individual stores. */ regset fixed_regs_live; /* The prev insn in the basic block. */ struct insn_info * prev_insn; /* The linked list of insns that are in consideration for removal in the forwards pass thru the basic block. This pointer may be trash as it is not cleared when a wild read occurs. The only time it is guaranteed to be correct is when the traversal starts at active_local_stores. */ struct insn_info * next_local_store; }; typedef struct insn_info *insn_info_t; static alloc_pool insn_info_pool; /* The linked list of stores that are under consideration in this basic block. */ static insn_info_t active_local_stores; static int active_local_stores_len; struct bb_info { /* Pointer to the insn info for the last insn in the block. These are linked so this is how all of the insns are reached. During scanning this is the current insn being scanned. */ insn_info_t last_insn; /* The info for the global dataflow problem. */ /* This is set if the transfer function should and in the wild_read bitmap before applying the kill and gen sets. That vector knocks out most of the bits in the bitmap and thus speeds up the operations. */ bool apply_wild_read; /* The following 4 bitvectors hold information about which positions of which stores are live or dead. They are indexed by get_bitmap_index. */ /* The set of store positions that exist in this block before a wild read. */ bitmap gen; /* The set of load positions that exist in this block above the same position of a store. */ bitmap kill; /* The set of stores that reach the top of the block without being killed by a read. Do not represent the in if it is all ones. Note that this is what the bitvector should logically be initialized to for a set intersection problem. However, like the kill set, this is too expensive. So initially, the in set will only be created for the exit block and any block that contains a wild read. */ bitmap in; /* The set of stores that reach the bottom of the block from it's successors. Do not represent the in if it is all ones. Note that this is what the bitvector should logically be initialized to for a set intersection problem. However, like the kill and in set, this is too expensive. So what is done is that the confluence operator just initializes the vector from one of the out sets of the successors of the block. */ bitmap out; /* The following bitvector is indexed by the reg number. It contains the set of regs that are live at the current instruction being processed. While it contains info for all of the registers, only the hard registers are actually examined. It is used to assure that shift and/or add sequences that are inserted do not accidently clobber live hard regs. */ bitmap regs_live; }; typedef struct bb_info *bb_info_t; static alloc_pool bb_info_pool; /* Table to hold all bb_infos. */ static bb_info_t *bb_table; /* There is a group_info for each rtx base that is used to reference memory. There are also not many of the rtx bases because they are very limited in scope. */ struct group_info { /* The actual base of the address. */ rtx rtx_base; /* The sequential id of the base. This allows us to have a canonical ordering of these that is not based on addresses. */ int id; /* True if there are any positions that are to be processed globally. */ bool process_globally; /* True if the base of this group is either the frame_pointer or hard_frame_pointer. */ bool frame_related; /* A mem wrapped around the base pointer for the group in order to do read dependency. It must be given BLKmode in order to encompass all the possible offsets from the base. */ rtx base_mem; /* Canonized version of base_mem's address. */ rtx canon_base_addr; /* These two sets of two bitmaps are used to keep track of how many stores are actually referencing that position from this base. We only do this for rtx bases as this will be used to assign positions in the bitmaps for the global problem. Bit N is set in store1 on the first store for offset N. Bit N is set in store2 for the second store to offset N. This is all we need since we only care about offsets that have two or more stores for them. The "_n" suffix is for offsets less than 0 and the "_p" suffix is for 0 and greater offsets. There is one special case here, for stores into the stack frame, we will or store1 into store2 before deciding which stores look at globally. This is because stores to the stack frame that have no other reads before the end of the function can also be deleted. */ bitmap store1_n, store1_p, store2_n, store2_p; /* These bitmaps keep track of offsets in this group escape this function. An offset escapes if it corresponds to a named variable whose addressable flag is set. */ bitmap escaped_n, escaped_p; /* The positions in this bitmap have the same assignments as the in, out, gen and kill bitmaps. This bitmap is all zeros except for the positions that are occupied by stores for this group. */ bitmap group_kill; /* The offset_map is used to map the offsets from this base into positions in the global bitmaps. It is only created after all of the all of stores have been scanned and we know which ones we care about. */ int *offset_map_n, *offset_map_p; int offset_map_size_n, offset_map_size_p; }; typedef struct group_info *group_info_t; typedef const struct group_info *const_group_info_t; static alloc_pool rtx_group_info_pool; /* Tables of group_info structures, hashed by base value. */ static htab_t rtx_group_table; /* Index into the rtx_group_vec. */ static int rtx_group_next_id; DEF_VEC_P(group_info_t); DEF_VEC_ALLOC_P(group_info_t,heap); static VEC(group_info_t,heap) *rtx_group_vec; /* This structure holds the set of changes that are being deferred when removing read operation. See replace_read. */ struct deferred_change { /* The mem that is being replaced. */ rtx *loc; /* The reg it is being replaced with. */ rtx reg; struct deferred_change *next; }; typedef struct deferred_change *deferred_change_t; static alloc_pool deferred_change_pool; static deferred_change_t deferred_change_list = NULL; /* This are used to hold the alias sets of spill variables. Since these are never aliased and there may be a lot of them, it makes sense to treat them specially. This bitvector is only allocated in calls from dse_record_singleton_alias_set which currently is only made during reload1. So when dse is called before reload this mechanism does nothing. */ static bitmap clear_alias_sets = NULL; /* The set of clear_alias_sets that have been disqualified because there are loads or stores using a different mode than the alias set was registered with. */ static bitmap disqualified_clear_alias_sets = NULL; /* The group that holds all of the clear_alias_sets. */ static group_info_t clear_alias_group; /* The modes of the clear_alias_sets. */ static htab_t clear_alias_mode_table; /* Hash table element to look up the mode for an alias set. */ struct clear_alias_mode_holder { alias_set_type alias_set; enum machine_mode mode; }; static alloc_pool clear_alias_mode_pool; /* This is true except if cfun->stdarg -- i.e. we cannot do this for vararg functions because they play games with the frame. */ static bool stores_off_frame_dead_at_return; /* Counter for stats. */ static int globally_deleted; static int locally_deleted; static int spill_deleted; static bitmap all_blocks; /* Locations that are killed by calls in the global phase. */ static bitmap kill_on_calls; /* The number of bits used in the global bitmaps. */ static unsigned int current_position; static bool gate_dse1 (void); static bool gate_dse2 (void); /*---------------------------------------------------------------------------- Zeroth step. Initialization. ----------------------------------------------------------------------------*/ /* Find the entry associated with ALIAS_SET. */ static struct clear_alias_mode_holder * clear_alias_set_lookup (alias_set_type alias_set) { struct clear_alias_mode_holder tmp_holder; void **slot; tmp_holder.alias_set = alias_set; slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT); gcc_assert (*slot); return (struct clear_alias_mode_holder *) *slot; } /* Hashtable callbacks for maintaining the "bases" field of store_group_info, given that the addresses are function invariants. */ static int invariant_group_base_eq (const void *p1, const void *p2) { const_group_info_t gi1 = (const_group_info_t) p1; const_group_info_t gi2 = (const_group_info_t) p2; return rtx_equal_p (gi1->rtx_base, gi2->rtx_base); } static hashval_t invariant_group_base_hash (const void *p) { const_group_info_t gi = (const_group_info_t) p; int do_not_record; return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false); } /* Get the GROUP for BASE. Add a new group if it is not there. */ static group_info_t get_group_info (rtx base) { struct group_info tmp_gi; group_info_t gi; void **slot; if (base) { /* Find the store_base_info structure for BASE, creating a new one if necessary. */ tmp_gi.rtx_base = base; slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT); gi = (group_info_t) *slot; } else { if (!clear_alias_group) { clear_alias_group = gi = (group_info_t) pool_alloc (rtx_group_info_pool); memset (gi, 0, sizeof (struct group_info)); gi->id = rtx_group_next_id++; gi->store1_n = BITMAP_ALLOC (NULL); gi->store1_p = BITMAP_ALLOC (NULL); gi->store2_n = BITMAP_ALLOC (NULL); gi->store2_p = BITMAP_ALLOC (NULL); gi->escaped_p = BITMAP_ALLOC (NULL); gi->escaped_n = BITMAP_ALLOC (NULL); gi->group_kill = BITMAP_ALLOC (NULL); gi->process_globally = false; gi->offset_map_size_n = 0; gi->offset_map_size_p = 0; gi->offset_map_n = NULL; gi->offset_map_p = NULL; VEC_safe_push (group_info_t, heap, rtx_group_vec, gi); } return clear_alias_group; } if (gi == NULL) { *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool); gi->rtx_base = base; gi->id = rtx_group_next_id++; gi->base_mem = gen_rtx_MEM (BLKmode, base); gi->canon_base_addr = canon_rtx (base); gi->store1_n = BITMAP_ALLOC (NULL); gi->store1_p = BITMAP_ALLOC (NULL); gi->store2_n = BITMAP_ALLOC (NULL); gi->store2_p = BITMAP_ALLOC (NULL); gi->escaped_p = BITMAP_ALLOC (NULL); gi->escaped_n = BITMAP_ALLOC (NULL); gi->group_kill = BITMAP_ALLOC (NULL); gi->process_globally = false; gi->frame_related = (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx); gi->offset_map_size_n = 0; gi->offset_map_size_p = 0; gi->offset_map_n = NULL; gi->offset_map_p = NULL; VEC_safe_push (group_info_t, heap, rtx_group_vec, gi); } return gi; } /* Initialization of data structures. */ static void dse_step0 (void) { locally_deleted = 0; globally_deleted = 0; spill_deleted = 0; scratch = BITMAP_ALLOC (NULL); kill_on_calls = BITMAP_ALLOC (NULL); rtx_store_info_pool = create_alloc_pool ("rtx_store_info_pool", sizeof (struct store_info), 100); read_info_pool = create_alloc_pool ("read_info_pool", sizeof (struct read_info), 100); insn_info_pool = create_alloc_pool ("insn_info_pool", sizeof (struct insn_info), 100); bb_info_pool = create_alloc_pool ("bb_info_pool", sizeof (struct bb_info), 100); rtx_group_info_pool = create_alloc_pool ("rtx_group_info_pool", sizeof (struct group_info), 100); deferred_change_pool = create_alloc_pool ("deferred_change_pool", sizeof (struct deferred_change), 10); rtx_group_table = htab_create (11, invariant_group_base_hash, invariant_group_base_eq, NULL); bb_table = XCNEWVEC (bb_info_t, last_basic_block); rtx_group_next_id = 0; stores_off_frame_dead_at_return = !cfun->stdarg; init_alias_analysis (); if (clear_alias_sets) clear_alias_group = get_group_info (NULL); else clear_alias_group = NULL; } /*---------------------------------------------------------------------------- First step. Scan all of the insns. Any random ordering of the blocks is fine. Each block is scanned in forward order to accommodate cselib which is used to remove stores with non-constant bases. ----------------------------------------------------------------------------*/ /* Delete all of the store_info recs from INSN_INFO. */ static void free_store_info (insn_info_t insn_info) { store_info_t store_info = insn_info->store_rec; while (store_info) { store_info_t next = store_info->next; if (store_info->is_large) BITMAP_FREE (store_info->positions_needed.large.bmap); if (store_info->cse_base) pool_free (cse_store_info_pool, store_info); else pool_free (rtx_store_info_pool, store_info); store_info = next; } insn_info->cannot_delete = true; insn_info->contains_cselib_groups = false; insn_info->store_rec = NULL; } typedef struct { rtx first, current; regset fixed_regs_live; bool failure; } note_add_store_info; /* Callback for emit_inc_dec_insn_before via note_stores. Check if a register is clobbered which is live afterwards. */ static void note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data) { rtx insn; note_add_store_info *info = (note_add_store_info *) data; int r, n; if (!REG_P (loc)) return; /* If this register is referenced by the current or an earlier insn, that's OK. E.g. this applies to the register that is being incremented with this addition. */ for (insn = info->first; insn != NEXT_INSN (info->current); insn = NEXT_INSN (insn)) if (reg_referenced_p (loc, PATTERN (insn))) return; /* If we come here, we have a clobber of a register that's only OK if that register is not live. If we don't have liveness information available, fail now. */ if (!info->fixed_regs_live) { info->failure = true; return; } /* Now check if this is a live fixed register. */ r = REGNO (loc); n = hard_regno_nregs[r][GET_MODE (loc)]; while (--n >= 0) if (REGNO_REG_SET_P (info->fixed_regs_live, r+n)) info->failure = true; } /* Callback for for_each_inc_dec that emits an INSN that sets DEST to SRC + SRCOFF before insn ARG. */ static int emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED, rtx dest, rtx src, rtx srcoff, void *arg) { insn_info_t insn_info = (insn_info_t) arg; rtx insn = insn_info->insn, new_insn, cur; note_add_store_info info; /* We can reuse all operands without copying, because we are about to delete the insn that contained it. */ if (srcoff) { start_sequence (); emit_insn (gen_add3_insn (dest, src, srcoff)); new_insn = get_insns (); end_sequence (); } else new_insn = gen_move_insn (dest, src); info.first = new_insn; info.fixed_regs_live = insn_info->fixed_regs_live; info.failure = false; for (cur = new_insn; cur; cur = NEXT_INSN (cur)) { info.current = cur; note_stores (PATTERN (cur), note_add_store, &info); } /* If a failure was flagged above, return 1 so that for_each_inc_dec will return it immediately, communicating the failure to its caller. */ if (info.failure) return 1; emit_insn_before (new_insn, insn); return -1; } /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it is there, is split into a separate insn. Return true on success (or if there was nothing to do), false on failure. */ static bool check_for_inc_dec_1 (insn_info_t insn_info) { rtx insn = insn_info->insn; rtx note = find_reg_note (insn, REG_INC, NULL_RTX); if (note) return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0; return true; } /* Entry point for postreload. If you work on reload_cse, or you need this anywhere else, consider if you can provide register liveness information and add a parameter to this function so that it can be passed down in insn_info.fixed_regs_live. */ bool check_for_inc_dec (rtx insn) { struct insn_info insn_info; rtx note; insn_info.insn = insn; insn_info.fixed_regs_live = NULL; note = find_reg_note (insn, REG_INC, NULL_RTX); if (note) return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0; return true; } /* Delete the insn and free all of the fields inside INSN_INFO. */ static void delete_dead_store_insn (insn_info_t insn_info) { read_info_t read_info; if (!dbg_cnt (dse)) return; if (!check_for_inc_dec_1 (insn_info)) return; if (dump_file) { fprintf (dump_file, "Locally deleting insn %d ", INSN_UID (insn_info->insn)); if (insn_info->store_rec->alias_set) fprintf (dump_file, "alias set %d\n", (int) insn_info->store_rec->alias_set); else fprintf (dump_file, "\n"); } free_store_info (insn_info); read_info = insn_info->read_rec; while (read_info) { read_info_t next = read_info->next; pool_free (read_info_pool, read_info); read_info = next; } insn_info->read_rec = NULL; delete_insn (insn_info->insn); locally_deleted++; insn_info->insn = NULL; insn_info->wild_read = false; } /* Check if EXPR can possibly escape the current function scope. */ static bool can_escape (tree expr) { tree base; if (!expr) return true; base = get_base_address (expr); if (DECL_P (base) && !may_be_aliased (base)) return false; return true; } /* Set the store* bitmaps offset_map_size* fields in GROUP based on OFFSET and WIDTH. */ static void set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width, tree expr) { HOST_WIDE_INT i; bool expr_escapes = can_escape (expr); if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET) for (i=offset; istore1_n; store2 = group->store2_n; escaped = group->escaped_n; ai = -i; } else { store1 = group->store1_p; store2 = group->store2_p; escaped = group->escaped_p; ai = i; } if (!bitmap_set_bit (store1, ai)) bitmap_set_bit (store2, ai); else { if (i < 0) { if (group->offset_map_size_n < ai) group->offset_map_size_n = ai; } else { if (group->offset_map_size_p < ai) group->offset_map_size_p = ai; } } if (expr_escapes) bitmap_set_bit (escaped, ai); } } static void reset_active_stores (void) { active_local_stores = NULL; active_local_stores_len = 0; } /* Free all READ_REC of the LAST_INSN of BB_INFO. */ static void free_read_records (bb_info_t bb_info) { insn_info_t insn_info = bb_info->last_insn; read_info_t *ptr = &insn_info->read_rec; while (*ptr) { read_info_t next = (*ptr)->next; if ((*ptr)->alias_set == 0) { pool_free (read_info_pool, *ptr); *ptr = next; } else ptr = &(*ptr)->next; } } /* Set the BB_INFO so that the last insn is marked as a wild read. */ static void add_wild_read (bb_info_t bb_info) { insn_info_t insn_info = bb_info->last_insn; insn_info->wild_read = true; free_read_records (bb_info); reset_active_stores (); } /* Set the BB_INFO so that the last insn is marked as a wild read of non-frame locations. */ static void add_non_frame_wild_read (bb_info_t bb_info) { insn_info_t insn_info = bb_info->last_insn; insn_info->non_frame_wild_read = true; free_read_records (bb_info); reset_active_stores (); } /* Return true if X is a constant or one of the registers that behave as a constant over the life of a function. This is equivalent to !rtx_varies_p for memory addresses. */ static bool const_or_frame_p (rtx x) { switch (GET_CODE (x)) { case CONST: case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR: case SYMBOL_REF: case LABEL_REF: return true; case REG: /* Note that we have to test for the actual rtx used for the frame and arg pointers and not just the register number in case we have eliminated the frame and/or arg pointer and are using it for pseudos. */ if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx /* The arg pointer varies if it is not a fixed register. */ || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]) || x == pic_offset_table_rtx) return true; return false; default: return false; } } /* Take all reasonable action to put the address of MEM into the form that we can do analysis on. The gold standard is to get the address into the form: address + OFFSET where address is something that rtx_varies_p considers a constant. When we can get the address in this form, we can do global analysis on it. Note that for constant bases, address is not actually returned, only the group_id. The address can be obtained from that. If that fails, we try cselib to get a value we can at least use locally. If that fails we return false. The GROUP_ID is set to -1 for cselib bases and the index of the group for non_varying bases. FOR_READ is true if this is a mem read and false if not. */ static bool canon_address (rtx mem, alias_set_type *alias_set_out, int *group_id, HOST_WIDE_INT *offset, cselib_val **base) { enum machine_mode address_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem)); rtx mem_address = XEXP (mem, 0); rtx expanded_address, address; int expanded; /* Make sure that cselib is has initialized all of the operands of the address before asking it to do the subst. */ if (clear_alias_sets) { /* If this is a spill, do not do any further processing. */ alias_set_type alias_set = MEM_ALIAS_SET (mem); if (dump_file) fprintf (dump_file, "found alias set %d\n", (int) alias_set); if (bitmap_bit_p (clear_alias_sets, alias_set)) { struct clear_alias_mode_holder *entry = clear_alias_set_lookup (alias_set); /* If the modes do not match, we cannot process this set. */ if (entry->mode != GET_MODE (mem)) { if (dump_file) fprintf (dump_file, "disqualifying alias set %d, (%s) != (%s)\n", (int) alias_set, GET_MODE_NAME (entry->mode), GET_MODE_NAME (GET_MODE (mem))); bitmap_set_bit (disqualified_clear_alias_sets, alias_set); return false; } *alias_set_out = alias_set; *group_id = clear_alias_group->id; return true; } } *alias_set_out = 0; cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem)); if (dump_file) { fprintf (dump_file, " mem: "); print_inline_rtx (dump_file, mem_address, 0); fprintf (dump_file, "\n"); } /* First see if just canon_rtx (mem_address) is const or frame, if not, try cselib_expand_value_rtx and call canon_rtx on that. */ address = NULL_RTX; for (expanded = 0; expanded < 2; expanded++) { if (expanded) { /* Use cselib to replace all of the reg references with the full expression. This will take care of the case where we have r_x = base + offset; val = *r_x; by making it into val = *(base + offset); */ expanded_address = cselib_expand_value_rtx (mem_address, scratch, 5); /* If this fails, just go with the address from first iteration. */ if (!expanded_address) break; } else expanded_address = mem_address; /* Split the address into canonical BASE + OFFSET terms. */ address = canon_rtx (expanded_address); *offset = 0; if (dump_file) { if (expanded) { fprintf (dump_file, "\n after cselib_expand address: "); print_inline_rtx (dump_file, expanded_address, 0); fprintf (dump_file, "\n"); } fprintf (dump_file, "\n after canon_rtx address: "); print_inline_rtx (dump_file, address, 0); fprintf (dump_file, "\n"); } if (GET_CODE (address) == CONST) address = XEXP (address, 0); if (GET_CODE (address) == PLUS && CONST_INT_P (XEXP (address, 1))) { *offset = INTVAL (XEXP (address, 1)); address = XEXP (address, 0); } if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem)) && const_or_frame_p (address)) { group_info_t group = get_group_info (address); if (dump_file) fprintf (dump_file, " gid=%d offset=%d \n", group->id, (int)*offset); *base = NULL; *group_id = group->id; return true; } } *base = cselib_lookup (address, address_mode, true, GET_MODE (mem)); *group_id = -1; if (*base == NULL) { if (dump_file) fprintf (dump_file, " no cselib val - should be a wild read.\n"); return false; } if (dump_file) fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n", (*base)->uid, (*base)->hash, (int)*offset); return true; } /* Clear the rhs field from the active_local_stores array. */ static void clear_rhs_from_active_local_stores (void) { insn_info_t ptr = active_local_stores; while (ptr) { store_info_t store_info = ptr->store_rec; /* Skip the clobbers. */ while (!store_info->is_set) store_info = store_info->next; store_info->rhs = NULL; store_info->const_rhs = NULL; ptr = ptr->next_local_store; } } /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */ static inline void set_position_unneeded (store_info_t s_info, int pos) { if (__builtin_expect (s_info->is_large, false)) { if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos)) s_info->positions_needed.large.count++; } else s_info->positions_needed.small_bitmask &= ~(((unsigned HOST_WIDE_INT) 1) << pos); } /* Mark the whole store S_INFO as unneeded. */ static inline void set_all_positions_unneeded (store_info_t s_info) { if (__builtin_expect (s_info->is_large, false)) { int pos, end = s_info->end - s_info->begin; for (pos = 0; pos < end; pos++) bitmap_set_bit (s_info->positions_needed.large.bmap, pos); s_info->positions_needed.large.count = end; } else s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0; } /* Return TRUE if any bytes from S_INFO store are needed. */ static inline bool any_positions_needed_p (store_info_t s_info) { if (__builtin_expect (s_info->is_large, false)) return (s_info->positions_needed.large.count < s_info->end - s_info->begin); else return (s_info->positions_needed.small_bitmask != (unsigned HOST_WIDE_INT) 0); } /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO store are needed. */ static inline bool all_positions_needed_p (store_info_t s_info, int start, int width) { if (__builtin_expect (s_info->is_large, false)) { int end = start + width; while (start < end) if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++)) return false; return true; } else { unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start; return (s_info->positions_needed.small_bitmask & mask) == mask; } } static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT, HOST_WIDE_INT, basic_block, bool); /* BODY is an instruction pattern that belongs to INSN. Return 1 if there is a candidate store, after adding it to the appropriate local store group if so. */ static int record_store (rtx body, bb_info_t bb_info) { rtx mem, rhs, const_rhs, mem_addr; HOST_WIDE_INT offset = 0; HOST_WIDE_INT width = 0; alias_set_type spill_alias_set; insn_info_t insn_info = bb_info->last_insn; store_info_t store_info = NULL; int group_id; cselib_val *base = NULL; insn_info_t ptr, last, redundant_reason; bool store_is_unused; enum machine_mode address_mode; if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER) return 0; mem = SET_DEST (body); /* If this is not used, then this cannot be used to keep the insn from being deleted. On the other hand, it does provide something that can be used to prove that another store is dead. */ store_is_unused = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL); /* Check whether that value is a suitable memory location. */ if (!MEM_P (mem)) { /* If the set or clobber is unused, then it does not effect our ability to get rid of the entire insn. */ if (!store_is_unused) insn_info->cannot_delete = true; return 0; } /* At this point we know mem is a mem. */ if (GET_MODE (mem) == BLKmode) { if (GET_CODE (XEXP (mem, 0)) == SCRATCH) { if (dump_file) fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n"); add_wild_read (bb_info); insn_info->cannot_delete = true; return 0; } /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0)) as memset (addr, 0, 36); */ else if (!MEM_SIZE_KNOWN_P (mem) || MEM_SIZE (mem) <= 0 || MEM_SIZE (mem) > MAX_OFFSET || GET_CODE (body) != SET || !CONST_INT_P (SET_SRC (body))) { if (!store_is_unused) { /* If the set or clobber is unused, then it does not effect our ability to get rid of the entire insn. */ insn_info->cannot_delete = true; clear_rhs_from_active_local_stores (); } return 0; } } /* We can still process a volatile mem, we just cannot delete it. */ if (MEM_VOLATILE_P (mem)) insn_info->cannot_delete = true; if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base)) { clear_rhs_from_active_local_stores (); return 0; } address_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem)); if (GET_MODE (mem) == BLKmode) width = MEM_SIZE (mem); else { width = GET_MODE_SIZE (GET_MODE (mem)); gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT); } if (spill_alias_set) { bitmap store1 = clear_alias_group->store1_p; bitmap store2 = clear_alias_group->store2_p; gcc_assert (GET_MODE (mem) != BLKmode); if (!bitmap_set_bit (store1, spill_alias_set)) bitmap_set_bit (store2, spill_alias_set); if (clear_alias_group->offset_map_size_p < spill_alias_set) clear_alias_group->offset_map_size_p = spill_alias_set; store_info = (store_info_t) pool_alloc (rtx_store_info_pool); if (dump_file) fprintf (dump_file, " processing spill store %d(%s)\n", (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem))); } else if (group_id >= 0) { /* In the restrictive case where the base is a constant or the frame pointer we can do global analysis. */ group_info_t group = VEC_index (group_info_t, rtx_group_vec, group_id); tree expr = MEM_EXPR (mem); store_info = (store_info_t) pool_alloc (rtx_store_info_pool); set_usage_bits (group, offset, width, expr); if (dump_file) fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n", group_id, (int)offset, (int)(offset+width)); } else { if (may_be_sp_based_p (XEXP (mem, 0))) insn_info->stack_pointer_based = true; insn_info->contains_cselib_groups = true; store_info = (store_info_t) pool_alloc (cse_store_info_pool); group_id = -1; if (dump_file) fprintf (dump_file, " processing cselib store [%d..%d)\n", (int)offset, (int)(offset+width)); } const_rhs = rhs = NULL_RTX; if (GET_CODE (body) == SET /* No place to keep the value after ra. */ && !reload_completed && (REG_P (SET_SRC (body)) || GET_CODE (SET_SRC (body)) == SUBREG || CONSTANT_P (SET_SRC (body))) && !MEM_VOLATILE_P (mem) /* Sometimes the store and reload is used for truncation and rounding. */ && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store))) { rhs = SET_SRC (body); if (CONSTANT_P (rhs)) const_rhs = rhs; else if (body == PATTERN (insn_info->insn)) { rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX); if (tem && CONSTANT_P (XEXP (tem, 0))) const_rhs = XEXP (tem, 0); } if (const_rhs == NULL_RTX && REG_P (rhs)) { rtx tem = cselib_expand_value_rtx (rhs, scratch, 5); if (tem && CONSTANT_P (tem)) const_rhs = tem; } } /* Check to see if this stores causes some other stores to be dead. */ ptr = active_local_stores; last = NULL; redundant_reason = NULL; mem = canon_rtx (mem); /* For alias_set != 0 canon_true_dependence should be never called. */ if (spill_alias_set) mem_addr = NULL_RTX; else { if (group_id < 0) mem_addr = base->val_rtx; else { group_info_t group = VEC_index (group_info_t, rtx_group_vec, group_id); mem_addr = group->canon_base_addr; } if (offset) mem_addr = plus_constant (address_mode, mem_addr, offset); } while (ptr) { insn_info_t next = ptr->next_local_store; store_info_t s_info = ptr->store_rec; bool del = true; /* Skip the clobbers. We delete the active insn if this insn shadows the set. To have been put on the active list, it has exactly on set. */ while (!s_info->is_set) s_info = s_info->next; if (s_info->alias_set != spill_alias_set) del = false; else if (s_info->alias_set) { struct clear_alias_mode_holder *entry = clear_alias_set_lookup (s_info->alias_set); /* Generally, spills cannot be processed if and of the references to the slot have a different mode. But if we are in the same block and mode is exactly the same between this store and one before in the same block, we can still delete it. */ if ((GET_MODE (mem) == GET_MODE (s_info->mem)) && (GET_MODE (mem) == entry->mode)) { del = true; set_all_positions_unneeded (s_info); } if (dump_file) fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n", INSN_UID (ptr->insn), (int) s_info->alias_set); } else if ((s_info->group_id == group_id) && (s_info->cse_base == base)) { HOST_WIDE_INT i; if (dump_file) fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n", INSN_UID (ptr->insn), s_info->group_id, (int)s_info->begin, (int)s_info->end); /* Even if PTR won't be eliminated as unneeded, if both PTR and this insn store the same constant value, we might eliminate this insn instead. */ if (s_info->const_rhs && const_rhs && offset >= s_info->begin && offset + width <= s_info->end && all_positions_needed_p (s_info, offset - s_info->begin, width)) { if (GET_MODE (mem) == BLKmode) { if (GET_MODE (s_info->mem) == BLKmode && s_info->const_rhs == const_rhs) redundant_reason = ptr; } else if (s_info->const_rhs == const0_rtx && const_rhs == const0_rtx) redundant_reason = ptr; else { rtx val; start_sequence (); val = get_stored_val (s_info, GET_MODE (mem), offset, offset + width, BLOCK_FOR_INSN (insn_info->insn), true); if (get_insns () != NULL) val = NULL_RTX; end_sequence (); if (val && rtx_equal_p (val, const_rhs)) redundant_reason = ptr; } } for (i = MAX (offset, s_info->begin); i < offset + width && i < s_info->end; i++) set_position_unneeded (s_info, i - s_info->begin); } else if (s_info->rhs) /* Need to see if it is possible for this store to overwrite the value of store_info. If it is, set the rhs to NULL to keep it from being used to remove a load. */ { if (canon_true_dependence (s_info->mem, GET_MODE (s_info->mem), s_info->mem_addr, mem, mem_addr)) { s_info->rhs = NULL; s_info->const_rhs = NULL; } } /* An insn can be deleted if every position of every one of its s_infos is zero. */ if (any_positions_needed_p (s_info)) del = false; if (del) { insn_info_t insn_to_delete = ptr; active_local_stores_len--; if (last) last->next_local_store = ptr->next_local_store; else active_local_stores = ptr->next_local_store; if (!insn_to_delete->cannot_delete) delete_dead_store_insn (insn_to_delete); } else last = ptr; ptr = next; } /* Finish filling in the store_info. */ store_info->next = insn_info->store_rec; insn_info->store_rec = store_info; store_info->mem = mem; store_info->alias_set = spill_alias_set; store_info->mem_addr = mem_addr; store_info->cse_base = base; if (width > HOST_BITS_PER_WIDE_INT) { store_info->is_large = true; store_info->positions_needed.large.count = 0; store_info->positions_needed.large.bmap = BITMAP_ALLOC (NULL); } else { store_info->is_large = false; store_info->positions_needed.small_bitmask = lowpart_bitmask (width); } store_info->group_id = group_id; store_info->begin = offset; store_info->end = offset + width; store_info->is_set = GET_CODE (body) == SET; store_info->rhs = rhs; store_info->const_rhs = const_rhs; store_info->redundant_reason = redundant_reason; /* If this is a clobber, we return 0. We will only be able to delete this insn if there is only one store USED store, but we can use the clobber to delete other stores earlier. */ return store_info->is_set ? 1 : 0; } static void dump_insn_info (const char * start, insn_info_t insn_info) { fprintf (dump_file, "%s insn=%d %s\n", start, INSN_UID (insn_info->insn), insn_info->store_rec ? "has store" : "naked"); } /* If the modes are different and the value's source and target do not line up, we need to extract the value from lower part of the rhs of the store, shift it, and then put it into a form that can be shoved into the read_insn. This function generates a right SHIFT of a value that is at least ACCESS_SIZE bytes wide of READ_MODE. The shift sequence is returned or NULL if we failed to find a shift. */ static rtx find_shift_sequence (int access_size, store_info_t store_info, enum machine_mode read_mode, int shift, bool speed, bool require_cst) { enum machine_mode store_mode = GET_MODE (store_info->mem); enum machine_mode new_mode; rtx read_reg = NULL; /* Some machines like the x86 have shift insns for each size of operand. Other machines like the ppc or the ia-64 may only have shift insns that shift values within 32 or 64 bit registers. This loop tries to find the smallest shift insn that will right justify the value we want to read but is available in one insn on the machine. */ for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT, MODE_INT); GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD; new_mode = GET_MODE_WIDER_MODE (new_mode)) { rtx target, new_reg, shift_seq, insn, new_lhs; int cost; /* If a constant was stored into memory, try to simplify it here, otherwise the cost of the shift might preclude this optimization e.g. at -Os, even when no actual shift will be needed. */ if (store_info->const_rhs) { unsigned int byte = subreg_lowpart_offset (new_mode, store_mode); rtx ret = simplify_subreg (new_mode, store_info->const_rhs, store_mode, byte); if (ret && CONSTANT_P (ret)) { ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret, GEN_INT (shift)); if (ret && CONSTANT_P (ret)) { byte = subreg_lowpart_offset (read_mode, new_mode); ret = simplify_subreg (read_mode, ret, new_mode, byte); if (ret && CONSTANT_P (ret) && set_src_cost (ret, speed) <= COSTS_N_INSNS (1)) return ret; } } } if (require_cst) return NULL_RTX; /* Try a wider mode if truncating the store mode to NEW_MODE requires a real instruction. */ if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode) && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode)) continue; /* Also try a wider mode if the necessary punning is either not desirable or not possible. */ if (!CONSTANT_P (store_info->rhs) && !MODES_TIEABLE_P (new_mode, store_mode)) continue; new_reg = gen_reg_rtx (new_mode); start_sequence (); /* In theory we could also check for an ashr. Ian Taylor knows of one dsp where the cost of these two was not the same. But this really is a rare case anyway. */ target = expand_binop (new_mode, lshr_optab, new_reg, GEN_INT (shift), new_reg, 1, OPTAB_DIRECT); shift_seq = get_insns (); end_sequence (); if (target != new_reg || shift_seq == NULL) continue; cost = 0; for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn)) if (INSN_P (insn)) cost += insn_rtx_cost (PATTERN (insn), speed); /* The computation up to here is essentially independent of the arguments and could be precomputed. It may not be worth doing so. We could precompute if worthwhile or at least cache the results. The result technically depends on both SHIFT and ACCESS_SIZE, but in practice the answer will depend only on ACCESS_SIZE. */ if (cost > COSTS_N_INSNS (1)) continue; new_lhs = extract_low_bits (new_mode, store_mode, copy_rtx (store_info->rhs)); if (new_lhs == NULL_RTX) continue; /* We found an acceptable shift. Generate a move to take the value from the store and put it into the shift pseudo, then shift it, then generate another move to put in into the target of the read. */ emit_move_insn (new_reg, new_lhs); emit_insn (shift_seq); read_reg = extract_low_bits (read_mode, new_mode, new_reg); break; } return read_reg; } /* Call back for note_stores to find the hard regs set or clobbered by insn. Data is a bitmap of the hardregs set so far. */ static void look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) { bitmap regs_set = (bitmap) data; if (REG_P (x) && HARD_REGISTER_P (x)) { unsigned int regno = REGNO (x); bitmap_set_range (regs_set, regno, hard_regno_nregs[regno][GET_MODE (x)]); } } /* Helper function for replace_read and record_store. Attempt to return a value stored in STORE_INFO, from READ_BEGIN to one before READ_END bytes read in READ_MODE. Return NULL if not successful. If REQUIRE_CST is true, return always constant. */ static rtx get_stored_val (store_info_t store_info, enum machine_mode read_mode, HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end, basic_block bb, bool require_cst) { enum machine_mode store_mode = GET_MODE (store_info->mem); int shift; int access_size; /* In bytes. */ rtx read_reg; /* To get here the read is within the boundaries of the write so shift will never be negative. Start out with the shift being in bytes. */ if (store_mode == BLKmode) shift = 0; else if (BYTES_BIG_ENDIAN) shift = store_info->end - read_end; else shift = read_begin - store_info->begin; access_size = shift + GET_MODE_SIZE (read_mode); /* From now on it is bits. */ shift *= BITS_PER_UNIT; if (shift) read_reg = find_shift_sequence (access_size, store_info, read_mode, shift, optimize_bb_for_speed_p (bb), require_cst); else if (store_mode == BLKmode) { /* The store is a memset (addr, const_val, const_size). */ gcc_assert (CONST_INT_P (store_info->rhs)); store_mode = int_mode_for_mode (read_mode); if (store_mode == BLKmode) read_reg = NULL_RTX; else if (store_info->rhs == const0_rtx) read_reg = extract_low_bits (read_mode, store_mode, const0_rtx); else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT) read_reg = NULL_RTX; else { unsigned HOST_WIDE_INT c = INTVAL (store_info->rhs) & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1); int shift = BITS_PER_UNIT; while (shift < HOST_BITS_PER_WIDE_INT) { c |= (c << shift); shift <<= 1; } read_reg = gen_int_mode (c, store_mode); read_reg = extract_low_bits (read_mode, store_mode, read_reg); } } else if (store_info->const_rhs && (require_cst || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode))) read_reg = extract_low_bits (read_mode, store_mode, copy_rtx (store_info->const_rhs)); else read_reg = extract_low_bits (read_mode, store_mode, copy_rtx (store_info->rhs)); if (require_cst && read_reg && !CONSTANT_P (read_reg)) read_reg = NULL_RTX; return read_reg; } /* Take a sequence of: A <- r1 ... ... <- A and change it into r2 <- r1 A <- r1 ... ... <- r2 or r3 <- extract (r1) r3 <- r3 >> shift r2 <- extract (r3) ... <- r2 or r2 <- extract (r1) ... <- r2 Depending on the alignment and the mode of the store and subsequent load. The STORE_INFO and STORE_INSN are for the store and READ_INFO and READ_INSN are for the read. Return true if the replacement went ok. */ static bool replace_read (store_info_t store_info, insn_info_t store_insn, read_info_t read_info, insn_info_t read_insn, rtx *loc, bitmap regs_live) { enum machine_mode store_mode = GET_MODE (store_info->mem); enum machine_mode read_mode = GET_MODE (read_info->mem); rtx insns, this_insn, read_reg; basic_block bb; if (!dbg_cnt (dse)) return false; /* Create a sequence of instructions to set up the read register. This sequence goes immediately before the store and its result is read by the load. We need to keep this in perspective. We are replacing a read with a sequence of insns, but the read will almost certainly be in cache, so it is not going to be an expensive one. Thus, we are not willing to do a multi insn shift or worse a subroutine call to get rid of the read. */ if (dump_file) fprintf (dump_file, "trying to replace %smode load in insn %d" " from %smode store in insn %d\n", GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn), GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn)); start_sequence (); bb = BLOCK_FOR_INSN (read_insn->insn); read_reg = get_stored_val (store_info, read_mode, read_info->begin, read_info->end, bb, false); if (read_reg == NULL_RTX) { end_sequence (); if (dump_file) fprintf (dump_file, " -- could not extract bits of stored value\n"); return false; } /* Force the value into a new register so that it won't be clobbered between the store and the load. */ read_reg = copy_to_mode_reg (read_mode, read_reg); insns = get_insns (); end_sequence (); if (insns != NULL_RTX) { /* Now we have to scan the set of new instructions to see if the sequence contains and sets of hardregs that happened to be live at this point. For instance, this can happen if one of the insns sets the CC and the CC happened to be live at that point. This does occasionally happen, see PR 37922. */ bitmap regs_set = BITMAP_ALLOC (NULL); for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn)) note_stores (PATTERN (this_insn), look_for_hardregs, regs_set); bitmap_and_into (regs_set, regs_live); if (!bitmap_empty_p (regs_set)) { if (dump_file) { fprintf (dump_file, "abandoning replacement because sequence clobbers live hardregs:"); df_print_regset (dump_file, regs_set); } BITMAP_FREE (regs_set); return false; } BITMAP_FREE (regs_set); } if (validate_change (read_insn->insn, loc, read_reg, 0)) { deferred_change_t deferred_change = (deferred_change_t) pool_alloc (deferred_change_pool); /* Insert this right before the store insn where it will be safe from later insns that might change it before the read. */ emit_insn_before (insns, store_insn->insn); /* And now for the kludge part: cselib croaks if you just return at this point. There are two reasons for this: 1) Cselib has an idea of how many pseudos there are and that does not include the new ones we just added. 2) Cselib does not know about the move insn we added above the store_info, and there is no way to tell it about it, because it has "moved on". Problem (1) is fixable with a certain amount of engineering. Problem (2) is requires starting the bb from scratch. This could be expensive. So we are just going to have to lie. The move/extraction insns are not really an issue, cselib did not see them. But the use of the new pseudo read_insn is a real problem because cselib has not scanned this insn. The way that we solve this problem is that we are just going to put the mem back for now and when we are finished with the block, we undo this. We keep a table of mems to get rid of. At the end of the basic block we can put them back. */ *loc = read_info->mem; deferred_change->next = deferred_change_list; deferred_change_list = deferred_change; deferred_change->loc = loc; deferred_change->reg = read_reg; /* Get rid of the read_info, from the point of view of the rest of dse, play like this read never happened. */ read_insn->read_rec = read_info->next; pool_free (read_info_pool, read_info); if (dump_file) { fprintf (dump_file, " -- replaced the loaded MEM with "); print_simple_rtl (dump_file, read_reg); fprintf (dump_file, "\n"); } return true; } else { if (dump_file) { fprintf (dump_file, " -- replacing the loaded MEM with "); print_simple_rtl (dump_file, read_reg); fprintf (dump_file, " led to an invalid instruction\n"); } return false; } } /* A for_each_rtx callback in which DATA is the bb_info. Check to see if LOC is a mem and if it is look at the address and kill any appropriate stores that may be active. */ static int check_mem_read_rtx (rtx *loc, void *data) { rtx mem = *loc, mem_addr; bb_info_t bb_info; insn_info_t insn_info; HOST_WIDE_INT offset = 0; HOST_WIDE_INT width = 0; alias_set_type spill_alias_set = 0; cselib_val *base = NULL; int group_id; read_info_t read_info; if (!mem || !MEM_P (mem)) return 0; bb_info = (bb_info_t) data; insn_info = bb_info->last_insn; if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) || (MEM_VOLATILE_P (mem))) { if (dump_file) fprintf (dump_file, " adding wild read, volatile or barrier.\n"); add_wild_read (bb_info); insn_info->cannot_delete = true; return 0; } /* If it is reading readonly mem, then there can be no conflict with another write. */ if (MEM_READONLY_P (mem)) return 0; if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base)) { if (dump_file) fprintf (dump_file, " adding wild read, canon_address failure.\n"); add_wild_read (bb_info); return 0; } if (GET_MODE (mem) == BLKmode) width = -1; else width = GET_MODE_SIZE (GET_MODE (mem)); read_info = (read_info_t) pool_alloc (read_info_pool); read_info->group_id = group_id; read_info->mem = mem; read_info->alias_set = spill_alias_set; read_info->begin = offset; read_info->end = offset + width; read_info->next = insn_info->read_rec; insn_info->read_rec = read_info; /* For alias_set != 0 canon_true_dependence should be never called. */ if (spill_alias_set) mem_addr = NULL_RTX; else { if (group_id < 0) mem_addr = base->val_rtx; else { group_info_t group = VEC_index (group_info_t, rtx_group_vec, group_id); mem_addr = group->canon_base_addr; } if (offset) { enum machine_mode address_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem)); mem_addr = plus_constant (address_mode, mem_addr, offset); } } /* We ignore the clobbers in store_info. The is mildly aggressive, but there really should not be a clobber followed by a read. */ if (spill_alias_set) { insn_info_t i_ptr = active_local_stores; insn_info_t last = NULL; if (dump_file) fprintf (dump_file, " processing spill load %d\n", (int) spill_alias_set); while (i_ptr) { store_info_t store_info = i_ptr->store_rec; /* Skip the clobbers. */ while (!store_info->is_set) store_info = store_info->next; if (store_info->alias_set == spill_alias_set) { if (dump_file) dump_insn_info ("removing from active", i_ptr); active_local_stores_len--; if (last) last->next_local_store = i_ptr->next_local_store; else active_local_stores = i_ptr->next_local_store; } else last = i_ptr; i_ptr = i_ptr->next_local_store; } } else if (group_id >= 0) { /* This is the restricted case where the base is a constant or the frame pointer and offset is a constant. */ insn_info_t i_ptr = active_local_stores; insn_info_t last = NULL; if (dump_file) { if (width == -1) fprintf (dump_file, " processing const load gid=%d[BLK]\n", group_id); else fprintf (dump_file, " processing const load gid=%d[%d..%d)\n", group_id, (int)offset, (int)(offset+width)); } while (i_ptr) { bool remove = false; store_info_t store_info = i_ptr->store_rec; /* Skip the clobbers. */ while (!store_info->is_set) store_info = store_info->next; /* There are three cases here. */ if (store_info->group_id < 0) /* We have a cselib store followed by a read from a const base. */ remove = canon_true_dependence (store_info->mem, GET_MODE (store_info->mem), store_info->mem_addr, mem, mem_addr); else if (group_id == store_info->group_id) { /* This is a block mode load. We may get lucky and canon_true_dependence may save the day. */ if (width == -1) remove = canon_true_dependence (store_info->mem, GET_MODE (store_info->mem), store_info->mem_addr, mem, mem_addr); /* If this read is just reading back something that we just stored, rewrite the read. */ else { if (store_info->rhs && offset >= store_info->begin && offset + width <= store_info->end && all_positions_needed_p (store_info, offset - store_info->begin, width) && replace_read (store_info, i_ptr, read_info, insn_info, loc, bb_info->regs_live)) return 0; /* The bases are the same, just see if the offsets overlap. */ if ((offset < store_info->end) && (offset + width > store_info->begin)) remove = true; } } /* else The else case that is missing here is that the bases are constant but different. There is nothing to do here because there is no overlap. */ if (remove) { if (dump_file) dump_insn_info ("removing from active", i_ptr); active_local_stores_len--; if (last) last->next_local_store = i_ptr->next_local_store; else active_local_stores = i_ptr->next_local_store; } else last = i_ptr; i_ptr = i_ptr->next_local_store; } } else { insn_info_t i_ptr = active_local_stores; insn_info_t last = NULL; if (dump_file) { fprintf (dump_file, " processing cselib load mem:"); print_inline_rtx (dump_file, mem, 0); fprintf (dump_file, "\n"); } while (i_ptr) { bool remove = false; store_info_t store_info = i_ptr->store_rec; if (dump_file) fprintf (dump_file, " processing cselib load against insn %d\n", INSN_UID (i_ptr->insn)); /* Skip the clobbers. */ while (!store_info->is_set) store_info = store_info->next; /* If this read is just reading back something that we just stored, rewrite the read. */ if (store_info->rhs && store_info->group_id == -1 && store_info->cse_base == base && width != -1 && offset >= store_info->begin && offset + width <= store_info->end && all_positions_needed_p (store_info, offset - store_info->begin, width) && replace_read (store_info, i_ptr, read_info, insn_info, loc, bb_info->regs_live)) return 0; if (!store_info->alias_set) remove = canon_true_dependence (store_info->mem, GET_MODE (store_info->mem), store_info->mem_addr, mem, mem_addr); if (remove) { if (dump_file) dump_insn_info ("removing from active", i_ptr); active_local_stores_len--; if (last) last->next_local_store = i_ptr->next_local_store; else active_local_stores = i_ptr->next_local_store; } else last = i_ptr; i_ptr = i_ptr->next_local_store; } } return 0; } /* A for_each_rtx callback in which DATA points the INSN_INFO for as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns true for any part of *LOC. */ static void check_mem_read_use (rtx *loc, void *data) { for_each_rtx (loc, check_mem_read_rtx, data); } /* Get arguments passed to CALL_INSN. Return TRUE if successful. So far it only handles arguments passed in registers. */ static bool get_call_args (rtx call_insn, tree fn, rtx *args, int nargs) { CUMULATIVE_ARGS args_so_far_v; cumulative_args_t args_so_far; tree arg; int idx; INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3); args_so_far = pack_cumulative_args (&args_so_far_v); arg = TYPE_ARG_TYPES (TREE_TYPE (fn)); for (idx = 0; arg != void_list_node && idx < nargs; arg = TREE_CHAIN (arg), idx++) { enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg)); rtx reg, link, tmp; reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true); if (!reg || !REG_P (reg) || GET_MODE (reg) != mode || GET_MODE_CLASS (mode) != MODE_INT) return false; for (link = CALL_INSN_FUNCTION_USAGE (call_insn); link; link = XEXP (link, 1)) if (GET_CODE (XEXP (link, 0)) == USE) { args[idx] = XEXP (XEXP (link, 0), 0); if (REG_P (args[idx]) && REGNO (args[idx]) == REGNO (reg) && (GET_MODE (args[idx]) == mode || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT && (GET_MODE_SIZE (GET_MODE (args[idx])) <= UNITS_PER_WORD) && (GET_MODE_SIZE (GET_MODE (args[idx])) > GET_MODE_SIZE (mode))))) break; } if (!link) return false; tmp = cselib_expand_value_rtx (args[idx], scratch, 5); if (GET_MODE (args[idx]) != mode) { if (!tmp || !CONST_INT_P (tmp)) return false; tmp = gen_int_mode (INTVAL (tmp), mode); } if (tmp) args[idx] = tmp; targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true); } if (arg != void_list_node || idx != nargs) return false; return true; } /* Return a bitmap of the fixed registers contained in IN. */ static bitmap copy_fixed_regs (const_bitmap in) { bitmap ret; ret = ALLOC_REG_SET (NULL); bitmap_and (ret, in, fixed_reg_set_regset); return ret; } /* Apply record_store to all candidate stores in INSN. Mark INSN if some part of it is not a candidate store and assigns to a non-register target. */ static void scan_insn (bb_info_t bb_info, rtx insn) { rtx body; insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool); int mems_found = 0; memset (insn_info, 0, sizeof (struct insn_info)); if (dump_file) fprintf (dump_file, "\n**scanning insn=%d\n", INSN_UID (insn)); insn_info->prev_insn = bb_info->last_insn; insn_info->insn = insn; bb_info->last_insn = insn_info; if (DEBUG_INSN_P (insn)) { insn_info->cannot_delete = true; return; } /* Cselib clears the table for this case, so we have to essentially do the same. */ if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == ASM_OPERANDS && MEM_VOLATILE_P (PATTERN (insn))) { add_wild_read (bb_info); insn_info->cannot_delete = true; return; } /* Look at all of the uses in the insn. */ note_uses (&PATTERN (insn), check_mem_read_use, bb_info); if (CALL_P (insn)) { bool const_call; tree memset_call = NULL_TREE; insn_info->cannot_delete = true; /* Const functions cannot do anything bad i.e. read memory, however, they can read their parameters which may have been pushed onto the stack. memset and bzero don't read memory either. */ const_call = RTL_CONST_CALL_P (insn); if (!const_call) { rtx call = PATTERN (insn); if (GET_CODE (call) == PARALLEL) call = XVECEXP (call, 0, 0); if (GET_CODE (call) == SET) call = SET_SRC (call); if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)) && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF) { rtx symbol = XEXP (XEXP (call, 0), 0); if (SYMBOL_REF_DECL (symbol) && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL) { if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol)) == BUILT_IN_NORMAL && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)) == BUILT_IN_MEMSET)) || SYMBOL_REF_DECL (symbol) == block_clear_fn) memset_call = SYMBOL_REF_DECL (symbol); } } } if (const_call || memset_call) { insn_info_t i_ptr = active_local_stores; insn_info_t last = NULL; if (dump_file) fprintf (dump_file, "%s call %d\n", const_call ? "const" : "memset", INSN_UID (insn)); /* See the head comment of the frame_read field. */ if (reload_completed) insn_info->frame_read = true; /* Loop over the active stores and remove those which are killed by the const function call. */ while (i_ptr) { bool remove_store = false; /* The stack pointer based stores are always killed. */ if (i_ptr->stack_pointer_based) remove_store = true; /* If the frame is read, the frame related stores are killed. */ else if (insn_info->frame_read) { store_info_t store_info = i_ptr->store_rec; /* Skip the clobbers. */ while (!store_info->is_set) store_info = store_info->next; if (store_info->group_id >= 0 && VEC_index (group_info_t, rtx_group_vec, store_info->group_id)->frame_related) remove_store = true; } if (remove_store) { if (dump_file) dump_insn_info ("removing from active", i_ptr); active_local_stores_len--; if (last) last->next_local_store = i_ptr->next_local_store; else active_local_stores = i_ptr->next_local_store; } else last = i_ptr; i_ptr = i_ptr->next_local_store; } if (memset_call) { rtx args[3]; if (get_call_args (insn, memset_call, args, 3) && CONST_INT_P (args[1]) && CONST_INT_P (args[2]) && INTVAL (args[2]) > 0) { rtx mem = gen_rtx_MEM (BLKmode, args[0]); set_mem_size (mem, INTVAL (args[2])); body = gen_rtx_SET (VOIDmode, mem, args[1]); mems_found += record_store (body, bb_info); if (dump_file) fprintf (dump_file, "handling memset as BLKmode store\n"); if (mems_found == 1) { if (active_local_stores_len++ >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES)) { active_local_stores_len = 1; active_local_stores = NULL; } insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live); insn_info->next_local_store = active_local_stores; active_local_stores = insn_info; } } } } else /* Every other call, including pure functions, may read any memory that is not relative to the frame. */ add_non_frame_wild_read (bb_info); return; } /* Assuming that there are sets in these insns, we cannot delete them. */ if ((GET_CODE (PATTERN (insn)) == CLOBBER) || volatile_refs_p (PATTERN (insn)) || insn_could_throw_p (insn) || (RTX_FRAME_RELATED_P (insn)) || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX)) insn_info->cannot_delete = true; body = PATTERN (insn); if (GET_CODE (body) == PARALLEL) { int i; for (i = 0; i < XVECLEN (body, 0); i++) mems_found += record_store (XVECEXP (body, 0, i), bb_info); } else mems_found += record_store (body, bb_info); if (dump_file) fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n", mems_found, insn_info->cannot_delete ? "true" : "false"); /* If we found some sets of mems, add it into the active_local_stores so that it can be locally deleted if found dead or used for replace_read and redundant constant store elimination. Otherwise mark it as cannot delete. This simplifies the processing later. */ if (mems_found == 1) { if (active_local_stores_len++ >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES)) { active_local_stores_len = 1; active_local_stores = NULL; } insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live); insn_info->next_local_store = active_local_stores; active_local_stores = insn_info; } else insn_info->cannot_delete = true; } /* Remove BASE from the set of active_local_stores. This is a callback from cselib that is used to get rid of the stores in active_local_stores. */ static void remove_useless_values (cselib_val *base) { insn_info_t insn_info = active_local_stores; insn_info_t last = NULL; while (insn_info) { store_info_t store_info = insn_info->store_rec; bool del = false; /* If ANY of the store_infos match the cselib group that is being deleted, then the insn can not be deleted. */ while (store_info) { if ((store_info->group_id == -1) && (store_info->cse_base == base)) { del = true; break; } store_info = store_info->next; } if (del) { active_local_stores_len--; if (last) last->next_local_store = insn_info->next_local_store; else active_local_stores = insn_info->next_local_store; free_store_info (insn_info); } else last = insn_info; insn_info = insn_info->next_local_store; } } /* Do all of step 1. */ static void dse_step1 (void) { basic_block bb; bitmap regs_live = BITMAP_ALLOC (NULL); cselib_init (0); all_blocks = BITMAP_ALLOC (NULL); bitmap_set_bit (all_blocks, ENTRY_BLOCK); bitmap_set_bit (all_blocks, EXIT_BLOCK); FOR_ALL_BB (bb) { insn_info_t ptr; bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool); memset (bb_info, 0, sizeof (struct bb_info)); bitmap_set_bit (all_blocks, bb->index); bb_info->regs_live = regs_live; bitmap_copy (regs_live, DF_LR_IN (bb)); df_simulate_initialize_forwards (bb, regs_live); bb_table[bb->index] = bb_info; cselib_discard_hook = remove_useless_values; if (bb->index >= NUM_FIXED_BLOCKS) { rtx insn; cse_store_info_pool = create_alloc_pool ("cse_store_info_pool", sizeof (struct store_info), 100); active_local_stores = NULL; active_local_stores_len = 0; cselib_clear_table (); /* Scan the insns. */ FOR_BB_INSNS (bb, insn) { if (INSN_P (insn)) scan_insn (bb_info, insn); cselib_process_insn (insn); if (INSN_P (insn)) df_simulate_one_insn_forwards (bb, insn, regs_live); } /* This is something of a hack, because the global algorithm is supposed to take care of the case where stores go dead at the end of the function. However, the global algorithm must take a more conservative view of block mode reads than the local alg does. So to get the case where you have a store to the frame followed by a non overlapping block more read, we look at the active local stores at the end of the function and delete all of the frame and spill based ones. */ if (stores_off_frame_dead_at_return && (EDGE_COUNT (bb->succs) == 0 || (single_succ_p (bb) && single_succ (bb) == EXIT_BLOCK_PTR && ! crtl->calls_eh_return))) { insn_info_t i_ptr = active_local_stores; while (i_ptr) { store_info_t store_info = i_ptr->store_rec; /* Skip the clobbers. */ while (!store_info->is_set) store_info = store_info->next; if (store_info->alias_set && !i_ptr->cannot_delete) delete_dead_store_insn (i_ptr); else if (store_info->group_id >= 0) { group_info_t group = VEC_index (group_info_t, rtx_group_vec, store_info->group_id); if (group->frame_related && !i_ptr->cannot_delete) delete_dead_store_insn (i_ptr); } i_ptr = i_ptr->next_local_store; } } /* Get rid of the loads that were discovered in replace_read. Cselib is finished with this block. */ while (deferred_change_list) { deferred_change_t next = deferred_change_list->next; /* There is no reason to validate this change. That was done earlier. */ *deferred_change_list->loc = deferred_change_list->reg; pool_free (deferred_change_pool, deferred_change_list); deferred_change_list = next; } /* Get rid of all of the cselib based store_infos in this block and mark the containing insns as not being deletable. */ ptr = bb_info->last_insn; while (ptr) { if (ptr->contains_cselib_groups) { store_info_t s_info = ptr->store_rec; while (s_info && !s_info->is_set) s_info = s_info->next; if (s_info && s_info->redundant_reason && s_info->redundant_reason->insn && !ptr->cannot_delete) { if (dump_file) fprintf (dump_file, "Locally deleting insn %d " "because insn %d stores the " "same value and couldn't be " "eliminated\n", INSN_UID (ptr->insn), INSN_UID (s_info->redundant_reason->insn)); delete_dead_store_insn (ptr); } if (s_info) s_info->redundant_reason = NULL; free_store_info (ptr); } else { store_info_t s_info; /* Free at least positions_needed bitmaps. */ for (s_info = ptr->store_rec; s_info; s_info = s_info->next) if (s_info->is_large) { BITMAP_FREE (s_info->positions_needed.large.bmap); s_info->is_large = false; } } ptr = ptr->prev_insn; } free_alloc_pool (cse_store_info_pool); } bb_info->regs_live = NULL; } BITMAP_FREE (regs_live); cselib_finish (); htab_empty (rtx_group_table); } /*---------------------------------------------------------------------------- Second step. Assign each byte position in the stores that we are going to analyze globally to a position in the bitmaps. Returns true if there are any bit positions assigned. ----------------------------------------------------------------------------*/ static void dse_step2_init (void) { unsigned int i; group_info_t group; FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group) { /* For all non stack related bases, we only consider a store to be deletable if there are two or more stores for that position. This is because it takes one store to make the other store redundant. However, for the stores that are stack related, we consider them if there is only one store for the position. We do this because the stack related stores can be deleted if their is no read between them and the end of the function. To make this work in the current framework, we take the stack related bases add all of the bits from store1 into store2. This has the effect of making the eligible even if there is only one store. */ if (stores_off_frame_dead_at_return && group->frame_related) { bitmap_ior_into (group->store2_n, group->store1_n); bitmap_ior_into (group->store2_p, group->store1_p); if (dump_file) fprintf (dump_file, "group %d is frame related ", i); } group->offset_map_size_n++; group->offset_map_n = XNEWVEC (int, group->offset_map_size_n); group->offset_map_size_p++; group->offset_map_p = XNEWVEC (int, group->offset_map_size_p); group->process_globally = false; if (dump_file) { fprintf (dump_file, "group %d(%d+%d): ", i, (int)bitmap_count_bits (group->store2_n), (int)bitmap_count_bits (group->store2_p)); bitmap_print (dump_file, group->store2_n, "n ", " "); bitmap_print (dump_file, group->store2_p, "p ", "\n"); } } } /* Init the offset tables for the normal case. */ static bool dse_step2_nospill (void) { unsigned int i; group_info_t group; /* Position 0 is unused because 0 is used in the maps to mean unused. */ current_position = 1; FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group) { bitmap_iterator bi; unsigned int j; if (group == clear_alias_group) continue; memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n); memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p); bitmap_clear (group->group_kill); EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi) { bitmap_set_bit (group->group_kill, current_position); if (bitmap_bit_p (group->escaped_n, j)) bitmap_set_bit (kill_on_calls, current_position); group->offset_map_n[j] = current_position++; group->process_globally = true; } EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi) { bitmap_set_bit (group->group_kill, current_position); if (bitmap_bit_p (group->escaped_p, j)) bitmap_set_bit (kill_on_calls, current_position); group->offset_map_p[j] = current_position++; group->process_globally = true; } } return current_position != 1; } /* Init the offset tables for the spill case. */ static bool dse_step2_spill (void) { unsigned int j; group_info_t group = clear_alias_group; bitmap_iterator bi; /* Position 0 is unused because 0 is used in the maps to mean unused. */ current_position = 1; if (dump_file) { bitmap_print (dump_file, clear_alias_sets, "clear alias sets ", "\n"); bitmap_print (dump_file, disqualified_clear_alias_sets, "disqualified clear alias sets ", "\n"); } memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n); memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p); bitmap_clear (group->group_kill); /* Remove the disqualified positions from the store2_p set. */ bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets); /* We do not need to process the store2_n set because alias_sets are always positive. */ EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi) { bitmap_set_bit (group->group_kill, current_position); group->offset_map_p[j] = current_position++; group->process_globally = true; } return current_position != 1; } /*---------------------------------------------------------------------------- Third step. Build the bit vectors for the transfer functions. ----------------------------------------------------------------------------*/ /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not there, return 0. */ static int get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset) { if (offset < 0) { HOST_WIDE_INT offset_p = -offset; if (offset_p >= group_info->offset_map_size_n) return 0; return group_info->offset_map_n[offset_p]; } else { if (offset >= group_info->offset_map_size_p) return 0; return group_info->offset_map_p[offset]; } } /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL may be NULL. */ static void scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill) { while (store_info) { HOST_WIDE_INT i; group_info_t group_info = VEC_index (group_info_t, rtx_group_vec, store_info->group_id); if (group_info->process_globally) for (i = store_info->begin; i < store_info->end; i++) { int index = get_bitmap_index (group_info, i); if (index != 0) { bitmap_set_bit (gen, index); if (kill) bitmap_clear_bit (kill, index); } } store_info = store_info->next; } } /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL may be NULL. */ static void scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill) { while (store_info) { if (store_info->alias_set) { int index = get_bitmap_index (clear_alias_group, store_info->alias_set); if (index != 0) { bitmap_set_bit (gen, index); if (kill) bitmap_clear_bit (kill, index); } } store_info = store_info->next; } } /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL may be NULL. */ static void scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill) { read_info_t read_info = insn_info->read_rec; int i; group_info_t group; /* If this insn reads the frame, kill all the frame related stores. */ if (insn_info->frame_read) { FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group) if (group->process_globally && group->frame_related) { if (kill) bitmap_ior_into (kill, group->group_kill); bitmap_and_compl_into (gen, group->group_kill); } } if (insn_info->non_frame_wild_read) { /* Kill all non-frame related stores. Kill all stores of variables that escape. */ if (kill) bitmap_ior_into (kill, kill_on_calls); bitmap_and_compl_into (gen, kill_on_calls); FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group) if (group->process_globally && !group->frame_related) { if (kill) bitmap_ior_into (kill, group->group_kill); bitmap_and_compl_into (gen, group->group_kill); } } while (read_info) { FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group) { if (group->process_globally) { if (i == read_info->group_id) { if (read_info->begin > read_info->end) { /* Begin > end for block mode reads. */ if (kill) bitmap_ior_into (kill, group->group_kill); bitmap_and_compl_into (gen, group->group_kill); } else { /* The groups are the same, just process the offsets. */ HOST_WIDE_INT j; for (j = read_info->begin; j < read_info->end; j++) { int index = get_bitmap_index (group, j); if (index != 0) { if (kill) bitmap_set_bit (kill, index); bitmap_clear_bit (gen, index); } } } } else { /* The groups are different, if the alias sets conflict, clear the entire group. We only need to apply this test if the read_info is a cselib read. Anything with a constant base cannot alias something else with a different constant base. */ if ((read_info->group_id < 0) && canon_true_dependence (group->base_mem, GET_MODE (group->base_mem), group->canon_base_addr, read_info->mem, NULL_RTX)) { if (kill) bitmap_ior_into (kill, group->group_kill); bitmap_and_compl_into (gen, group->group_kill); } } } } read_info = read_info->next; } } /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL may be NULL. */ static void scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill) { while (read_info) { if (read_info->alias_set) { int index = get_bitmap_index (clear_alias_group, read_info->alias_set); if (index != 0) { if (kill) bitmap_set_bit (kill, index); bitmap_clear_bit (gen, index); } } read_info = read_info->next; } } /* Return the insn in BB_INFO before the first wild read or if there are no wild reads in the block, return the last insn. */ static insn_info_t find_insn_before_first_wild_read (bb_info_t bb_info) { insn_info_t insn_info = bb_info->last_insn; insn_info_t last_wild_read = NULL; while (insn_info) { if (insn_info->wild_read) { last_wild_read = insn_info->prev_insn; /* Block starts with wild read. */ if (!last_wild_read) return NULL; } insn_info = insn_info->prev_insn; } if (last_wild_read) return last_wild_read; else return bb_info->last_insn; } /* Scan the insns in BB_INFO starting at PTR and going to the top of the block in order to build the gen and kill sets for the block. We start at ptr which may be the last insn in the block or may be the first insn with a wild read. In the latter case we are able to skip the rest of the block because it just does not matter: anything that happens is hidden by the wild read. */ static void dse_step3_scan (bool for_spills, basic_block bb) { bb_info_t bb_info = bb_table[bb->index]; insn_info_t insn_info; if (for_spills) /* There are no wild reads in the spill case. */ insn_info = bb_info->last_insn; else insn_info = find_insn_before_first_wild_read (bb_info); /* In the spill case or in the no_spill case if there is no wild read in the block, we will need a kill set. */ if (insn_info == bb_info->last_insn) { if (bb_info->kill) bitmap_clear (bb_info->kill); else bb_info->kill = BITMAP_ALLOC (NULL); } else if (bb_info->kill) BITMAP_FREE (bb_info->kill); while (insn_info) { /* There may have been code deleted by the dce pass run before this phase. */ if (insn_info->insn && INSN_P (insn_info->insn)) { /* Process the read(s) last. */ if (for_spills) { scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill); scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill); } else { scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill); scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill); } } insn_info = insn_info->prev_insn; } } /* Set the gen set of the exit block, and also any block with no successors that does not have a wild read. */ static void dse_step3_exit_block_scan (bb_info_t bb_info) { /* The gen set is all 0's for the exit block except for the frame_pointer_group. */ if (stores_off_frame_dead_at_return) { unsigned int i; group_info_t group; FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group) { if (group->process_globally && group->frame_related) bitmap_ior_into (bb_info->gen, group->group_kill); } } } /* Find all of the blocks that are not backwards reachable from the exit block or any block with no successors (BB). These are the infinite loops or infinite self loops. These blocks will still have their bits set in UNREACHABLE_BLOCKS. */ static void mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb) { edge e; edge_iterator ei; if (TEST_BIT (unreachable_blocks, bb->index)) { RESET_BIT (unreachable_blocks, bb->index); FOR_EACH_EDGE (e, ei, bb->preds) { mark_reachable_blocks (unreachable_blocks, e->src); } } } /* Build the transfer functions for the function. */ static void dse_step3 (bool for_spills) { basic_block bb; sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block); sbitmap_iterator sbi; bitmap all_ones = NULL; unsigned int i; sbitmap_ones (unreachable_blocks); FOR_ALL_BB (bb) { bb_info_t bb_info = bb_table[bb->index]; if (bb_info->gen) bitmap_clear (bb_info->gen); else bb_info->gen = BITMAP_ALLOC (NULL); if (bb->index == ENTRY_BLOCK) ; else if (bb->index == EXIT_BLOCK) dse_step3_exit_block_scan (bb_info); else dse_step3_scan (for_spills, bb); if (EDGE_COUNT (bb->succs) == 0) mark_reachable_blocks (unreachable_blocks, bb); /* If this is the second time dataflow is run, delete the old sets. */ if (bb_info->in) BITMAP_FREE (bb_info->in); if (bb_info->out) BITMAP_FREE (bb_info->out); } /* For any block in an infinite loop, we must initialize the out set to all ones. This could be expensive, but almost never occurs in practice. However, it is common in regression tests. */ EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi) { if (bitmap_bit_p (all_blocks, i)) { bb_info_t bb_info = bb_table[i]; if (!all_ones) { unsigned int j; group_info_t group; all_ones = BITMAP_ALLOC (NULL); FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, j, group) bitmap_ior_into (all_ones, group->group_kill); } if (!bb_info->out) { bb_info->out = BITMAP_ALLOC (NULL); bitmap_copy (bb_info->out, all_ones); } } } if (all_ones) BITMAP_FREE (all_ones); sbitmap_free (unreachable_blocks); } /*---------------------------------------------------------------------------- Fourth step. Solve the bitvector equations. ----------------------------------------------------------------------------*/ /* Confluence function for blocks with no successors. Create an out set from the gen set of the exit block. This block logically has the exit block as a successor. */ static void dse_confluence_0 (basic_block bb) { bb_info_t bb_info = bb_table[bb->index]; if (bb->index == EXIT_BLOCK) return; if (!bb_info->out) { bb_info->out = BITMAP_ALLOC (NULL); bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen); } } /* Propagate the information from the in set of the dest of E to the out set of the src of E. If the various in or out sets are not there, that means they are all ones. */ static bool dse_confluence_n (edge e) { bb_info_t src_info = bb_table[e->src->index]; bb_info_t dest_info = bb_table[e->dest->index]; if (dest_info->in) { if (src_info->out) bitmap_and_into (src_info->out, dest_info->in); else { src_info->out = BITMAP_ALLOC (NULL); bitmap_copy (src_info->out, dest_info->in); } } return true; } /* Propagate the info from the out to the in set of BB_INDEX's basic block. There are three cases: 1) The block has no kill set. In this case the kill set is all ones. It does not matter what the out set of the block is, none of the info can reach the top. The only thing that reaches the top is the gen set and we just copy the set. 2) There is a kill set but no out set and bb has successors. In this case we just return. Eventually an out set will be created and it is better to wait than to create a set of ones. 3) There is both a kill and out set. We apply the obvious transfer function. */ static bool dse_transfer_function (int bb_index) { bb_info_t bb_info = bb_table[bb_index]; if (bb_info->kill) { if (bb_info->out) { /* Case 3 above. */ if (bb_info->in) return bitmap_ior_and_compl (bb_info->in, bb_info->gen, bb_info->out, bb_info->kill); else { bb_info->in = BITMAP_ALLOC (NULL); bitmap_ior_and_compl (bb_info->in, bb_info->gen, bb_info->out, bb_info->kill); return true; } } else /* Case 2 above. */ return false; } else { /* Case 1 above. If there is already an in set, nothing happens. */ if (bb_info->in) return false; else { bb_info->in = BITMAP_ALLOC (NULL); bitmap_copy (bb_info->in, bb_info->gen); return true; } } } /* Solve the dataflow equations. */ static void dse_step4 (void) { df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0, dse_confluence_n, dse_transfer_function, all_blocks, df_get_postorder (DF_BACKWARD), df_get_n_blocks (DF_BACKWARD)); if (dump_file) { basic_block bb; fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n"); FOR_ALL_BB (bb) { bb_info_t bb_info = bb_table[bb->index]; df_print_bb_index (bb, dump_file); if (bb_info->in) bitmap_print (dump_file, bb_info->in, " in: ", "\n"); else fprintf (dump_file, " in: *MISSING*\n"); if (bb_info->gen) bitmap_print (dump_file, bb_info->gen, " gen: ", "\n"); else fprintf (dump_file, " gen: *MISSING*\n"); if (bb_info->kill) bitmap_print (dump_file, bb_info->kill, " kill: ", "\n"); else fprintf (dump_file, " kill: *MISSING*\n"); if (bb_info->out) bitmap_print (dump_file, bb_info->out, " out: ", "\n"); else fprintf (dump_file, " out: *MISSING*\n\n"); } } } /*---------------------------------------------------------------------------- Fifth step. Delete the stores that can only be deleted using the global information. ----------------------------------------------------------------------------*/ static void dse_step5_nospill (void) { basic_block bb; FOR_EACH_BB (bb) { bb_info_t bb_info = bb_table[bb->index]; insn_info_t insn_info = bb_info->last_insn; bitmap v = bb_info->out; while (insn_info) { bool deleted = false; if (dump_file && insn_info->insn) { fprintf (dump_file, "starting to process insn %d\n", INSN_UID (insn_info->insn)); bitmap_print (dump_file, v, " v: ", "\n"); } /* There may have been code deleted by the dce pass run before this phase. */ if (insn_info->insn && INSN_P (insn_info->insn) && (!insn_info->cannot_delete) && (!bitmap_empty_p (v))) { store_info_t store_info = insn_info->store_rec; /* Try to delete the current insn. */ deleted = true; /* Skip the clobbers. */ while (!store_info->is_set) store_info = store_info->next; if (store_info->alias_set) deleted = false; else { HOST_WIDE_INT i; group_info_t group_info = VEC_index (group_info_t, rtx_group_vec, store_info->group_id); for (i = store_info->begin; i < store_info->end; i++) { int index = get_bitmap_index (group_info, i); if (dump_file) fprintf (dump_file, "i = %d, index = %d\n", (int)i, index); if (index == 0 || !bitmap_bit_p (v, index)) { if (dump_file) fprintf (dump_file, "failing at i = %d\n", (int)i); deleted = false; break; } } } if (deleted) { if (dbg_cnt (dse) && check_for_inc_dec_1 (insn_info)) { delete_insn (insn_info->insn); insn_info->insn = NULL; globally_deleted++; } } } /* We do want to process the local info if the insn was deleted. For instance, if the insn did a wild read, we no longer need to trash the info. */ if (insn_info->insn && INSN_P (insn_info->insn) && (!deleted)) { scan_stores_nospill (insn_info->store_rec, v, NULL); if (insn_info->wild_read) { if (dump_file) fprintf (dump_file, "wild read\n"); bitmap_clear (v); } else if (insn_info->read_rec || insn_info->non_frame_wild_read) { if (dump_file && !insn_info->non_frame_wild_read) fprintf (dump_file, "regular read\n"); else if (dump_file) fprintf (dump_file, "non-frame wild read\n"); scan_reads_nospill (insn_info, v, NULL); } } insn_info = insn_info->prev_insn; } } } static void dse_step5_spill (void) { basic_block bb; FOR_EACH_BB (bb) { bb_info_t bb_info = bb_table[bb->index]; insn_info_t insn_info = bb_info->last_insn; bitmap v = bb_info->out; while (insn_info) { bool deleted = false; /* There may have been code deleted by the dce pass run before this phase. */ if (insn_info->insn && INSN_P (insn_info->insn) && (!insn_info->cannot_delete) && (!bitmap_empty_p (v))) { /* Try to delete the current insn. */ store_info_t store_info = insn_info->store_rec; deleted = true; while (store_info) { if (store_info->alias_set) { int index = get_bitmap_index (clear_alias_group, store_info->alias_set); if (index == 0 || !bitmap_bit_p (v, index)) { deleted = false; break; } } else deleted = false; store_info = store_info->next; } if (deleted && dbg_cnt (dse) && check_for_inc_dec_1 (insn_info)) { if (dump_file) fprintf (dump_file, "Spill deleting insn %d\n", INSN_UID (insn_info->insn)); delete_insn (insn_info->insn); spill_deleted++; insn_info->insn = NULL; } } if (insn_info->insn && INSN_P (insn_info->insn) && (!deleted)) { scan_stores_spill (insn_info->store_rec, v, NULL); scan_reads_spill (insn_info->read_rec, v, NULL); } insn_info = insn_info->prev_insn; } } } /*---------------------------------------------------------------------------- Sixth step. Delete stores made redundant by earlier stores (which store the same value) that couldn't be eliminated. ----------------------------------------------------------------------------*/ static void dse_step6 (void) { basic_block bb; FOR_ALL_BB (bb) { bb_info_t bb_info = bb_table[bb->index]; insn_info_t insn_info = bb_info->last_insn; while (insn_info) { /* There may have been code deleted by the dce pass run before this phase. */ if (insn_info->insn && INSN_P (insn_info->insn) && !insn_info->cannot_delete) { store_info_t s_info = insn_info->store_rec; while (s_info && !s_info->is_set) s_info = s_info->next; if (s_info && s_info->redundant_reason && s_info->redundant_reason->insn && INSN_P (s_info->redundant_reason->insn)) { rtx rinsn = s_info->redundant_reason->insn; if (dump_file) fprintf (dump_file, "Locally deleting insn %d " "because insn %d stores the " "same value and couldn't be " "eliminated\n", INSN_UID (insn_info->insn), INSN_UID (rinsn)); delete_dead_store_insn (insn_info); } } insn_info = insn_info->prev_insn; } } } /*---------------------------------------------------------------------------- Seventh step. Destroy everything left standing. ----------------------------------------------------------------------------*/ static void dse_step7 (bool global_done) { unsigned int i; group_info_t group; basic_block bb; FOR_EACH_VEC_ELT (group_info_t, rtx_group_vec, i, group) { free (group->offset_map_n); free (group->offset_map_p); BITMAP_FREE (group->store1_n); BITMAP_FREE (group->store1_p); BITMAP_FREE (group->store2_n); BITMAP_FREE (group->store2_p); BITMAP_FREE (group->escaped_n); BITMAP_FREE (group->escaped_p); BITMAP_FREE (group->group_kill); } if (global_done) FOR_ALL_BB (bb) { bb_info_t bb_info = bb_table[bb->index]; BITMAP_FREE (bb_info->gen); if (bb_info->kill) BITMAP_FREE (bb_info->kill); if (bb_info->in) BITMAP_FREE (bb_info->in); if (bb_info->out) BITMAP_FREE (bb_info->out); } if (clear_alias_sets) { BITMAP_FREE (clear_alias_sets); BITMAP_FREE (disqualified_clear_alias_sets); free_alloc_pool (clear_alias_mode_pool); htab_delete (clear_alias_mode_table); } end_alias_analysis (); free (bb_table); htab_delete (rtx_group_table); VEC_free (group_info_t, heap, rtx_group_vec); BITMAP_FREE (all_blocks); BITMAP_FREE (scratch); BITMAP_FREE (kill_on_calls); free_alloc_pool (rtx_store_info_pool); free_alloc_pool (read_info_pool); free_alloc_pool (insn_info_pool); free_alloc_pool (bb_info_pool); free_alloc_pool (rtx_group_info_pool); free_alloc_pool (deferred_change_pool); } /* ------------------------------------------------------------------------- DSE ------------------------------------------------------------------------- */ /* Callback for running pass_rtl_dse. */ static unsigned int rest_of_handle_dse (void) { bool did_global = false; df_set_flags (DF_DEFER_INSN_RESCAN); /* Need the notes since we must track live hardregs in the forwards direction. */ df_note_add_problem (); df_analyze (); dse_step0 (); dse_step1 (); dse_step2_init (); if (dse_step2_nospill ()) { df_set_flags (DF_LR_RUN_DCE); df_analyze (); did_global = true; if (dump_file) fprintf (dump_file, "doing global processing\n"); dse_step3 (false); dse_step4 (); dse_step5_nospill (); } /* For the instance of dse that runs after reload, we make a special pass to process the spills. These are special in that they are totally transparent, i.e, there is no aliasing issues that need to be considered. This means that the wild reads that kill everything else do not apply here. */ if (clear_alias_sets && dse_step2_spill ()) { if (!did_global) { df_set_flags (DF_LR_RUN_DCE); df_analyze (); } did_global = true; if (dump_file) fprintf (dump_file, "doing global spill processing\n"); dse_step3 (true); dse_step4 (); dse_step5_spill (); } dse_step6 (); dse_step7 (did_global); if (dump_file) fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n", locally_deleted, globally_deleted, spill_deleted); return 0; } static bool gate_dse1 (void) { return optimize > 0 && flag_dse && dbg_cnt (dse1); } static bool gate_dse2 (void) { return optimize > 0 && flag_dse && dbg_cnt (dse2); } struct rtl_opt_pass pass_rtl_dse1 = { { RTL_PASS, "dse1", /* name */ gate_dse1, /* gate */ rest_of_handle_dse, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_DSE1, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_df_finish | TODO_verify_rtl_sharing | TODO_ggc_collect /* todo_flags_finish */ } }; struct rtl_opt_pass pass_rtl_dse2 = { { RTL_PASS, "dse2", /* name */ gate_dse2, /* gate */ rest_of_handle_dse, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_DSE2, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_df_finish | TODO_verify_rtl_sharing | TODO_ggc_collect /* todo_flags_finish */ } };