/* Convert RTL to assembler code and output it, for GNU compiler. Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This is the final pass of the compiler. It looks at the rtl code for a function and outputs assembler code. Call `final_start_function' to output the assembler code for function entry, `final' to output assembler code for some RTL code, `final_end_function' to output assembler code for function exit. If a function is compiled in several pieces, each piece is output separately with `final'. Some optimizations are also done at this level. Move instructions that were made unnecessary by good register allocation are detected and omitted from the output. (Though most of these are removed by the last jump pass.) Instructions to set the condition codes are omitted when it can be seen that the condition codes already had the desired values. In some cases it is sufficient if the inherited condition codes have related values, but this may require the following insn (the one that tests the condition codes) to be modified. The code for the function prologue and epilogue are generated directly as assembler code by the macros FUNCTION_PROLOGUE and FUNCTION_EPILOGUE. Those instructions never exist as rtl. */ #include "config.h" #include "gvarargs.h" #include "rtl.h" #include "regs.h" #include "insn-config.h" #include "insn-flags.h" #include "insn-attr.h" #include "insn-codes.h" #include "recog.h" #include "conditions.h" #include "flags.h" #include "real.h" #include "hard-reg-set.h" #include "defaults.h" #include #include "output.h" /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */ #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) #if defined (USG) || defined (NO_STAB_H) #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */ #else #include /* On BSD, use the system's stab.h. */ #endif /* not USG */ #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */ #ifdef XCOFF_DEBUGGING_INFO #include "xcoffout.h" #endif /* .stabd code for line number. */ #ifndef N_SLINE #define N_SLINE 0x44 #endif /* .stabs code for included file name. */ #ifndef N_SOL #define N_SOL 0x84 #endif #ifndef INT_TYPE_SIZE #define INT_TYPE_SIZE BITS_PER_WORD #endif /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a null default for it to save conditionalization later. */ #ifndef CC_STATUS_INIT #define CC_STATUS_INIT #endif /* How to start an assembler comment. */ #ifndef ASM_COMMENT_START #define ASM_COMMENT_START ";#" #endif rtx peephole (); void output_asm_insn (); rtx alter_subreg (); static int alter_cond (); void output_asm_label (); static void output_operand (); void output_address (); void output_addr_const (); static void output_source_line (); rtx final_scan_insn (); void profile_function (); static void profile_after_prologue (); #ifdef HAVE_ATTR_length static int asm_insn_count (); #endif /* Nonzero means this function is a leaf function, with no function calls. This variable exists to be examined in FUNCTION_PROLOGUE and FUNCTION_EPILOGUE. Always zero, unless set by some action. */ int leaf_function; int leaf_function_p (); #ifdef LEAF_REGISTERS int only_leaf_regs_used (); static void leaf_renumber_regs (); void leaf_renumber_regs_insn (); #endif /* Last insn processed by final_scan_insn. */ static rtx debug_insn = 0; /* Line number of last NOTE. */ static int last_linenum; /* Number of basic blocks seen so far; used if profile_block_flag is set. */ static int count_basic_blocks; /* Nonzero while outputting an `asm' with operands. This means that inconsistencies are the user's fault, so don't abort. The precise value is the insn being output, to pass to error_for_asm. */ static rtx this_is_asm_operands; /* Number of operands of this insn, for an `asm' with operands. */ static int insn_noperands; /* Compare optimization flag. */ static rtx last_ignored_compare = 0; /* Flag indicating this insn is the start of a new basic block. */ static int new_block = 1; /* All the symbol-blocks (levels of scoping) in the compilation are assigned sequence numbers in order of appearance of the beginnings of the symbol-blocks. Both final and dbxout do this, and assume that they will both give the same number to each block. Final uses these sequence numbers to generate assembler label names LBBnnn and LBEnnn for the beginning and end of the symbol-block. Dbxout uses the sequence numbers to generate references to the same labels from the dbx debugging information. Sdb records this level at the beginning of each function, in order to find the current level when recursing down declarations. It outputs the block beginning and endings at the point in the asm file where the blocks would begin and end. */ int next_block_index; /* Assign a unique number to each insn that is output. This can be used to generate unique local labels. */ static int insn_counter = 0; #ifdef HAVE_cc0 /* This variable contains machine-dependent flags (defined in tm.h) set and examined by output routines that describe how to interpret the condition codes properly. */ CC_STATUS cc_status; /* During output of an insn, this contains a copy of cc_status from before the insn. */ CC_STATUS cc_prev_status; #endif /* Indexed by hardware reg number, is 1 if that register is ever used in the current function. In life_analysis, or in stupid_life_analysis, this is set up to record the hard regs used explicitly. Reload adds in the hard regs used for holding pseudo regs. Final uses it to generate the code in the function prologue and epilogue to save and restore registers as needed. */ char regs_ever_live[FIRST_PSEUDO_REGISTER]; /* Nonzero means current function must be given a frame pointer. Set in stmt.c if anything is allocated on the stack there. Set in reload1.c if anything is allocated on the stack there. */ int frame_pointer_needed; /* Assign unique numbers to labels generated for profiling. */ int profile_label_no; /* Length so far allocated in PENDING_BLOCKS. */ static int max_block_depth; /* Stack of sequence numbers of symbol-blocks of which we have seen the beginning but not yet the end. Sequence numbers are assigned at the beginning; this stack allows us to find the sequence number of a block that is ending. */ static int *pending_blocks; /* Number of elements currently in use in PENDING_BLOCKS. */ static int block_depth; /* Nonzero if have enabled APP processing of our assembler output. */ static int app_on; /* If we are outputting an insn sequence, this contains the sequence rtx. Zero otherwise. */ rtx final_sequence; /* Indexed by line number, nonzero if there is a note for that line. */ static char *line_note_exists; /* Initialize data in final at the beginning of a compilation. */ void init_final (filename) char *filename; { next_block_index = 2; app_on = 0; max_block_depth = 20; pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks); final_sequence = 0; } /* Called at end of source file, to output the block-profiling table for this entire compilation. */ void end_final (filename) char *filename; { int i; if (profile_block_flag) { char name[12]; data_section (); /* Output the main header, of 6 words: 0: 1 if this file's initialized, else 0. 1: address of file name. 2: address of table of counts. 4: number of counts in the table. 5: always 0, for compatibility with Sun. 6: extra word added by GNU: address of address table which contains addresses of basic blocks, in parallel with the table of counts. */ ASM_OUTPUT_ALIGN (asm_out_file, exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0); assemble_integer (const0_rtx, UNITS_PER_WORD, 1); ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1); assemble_integer (gen_rtx (SYMBOL_REF, Pmode, name), UNITS_PER_WORD, 1); ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2); assemble_integer (gen_rtx (SYMBOL_REF, Pmode, name), UNITS_PER_WORD, 1); assemble_integer (GEN_INT (count_basic_blocks), UNITS_PER_WORD, 1); assemble_integer (const0_rtx, UNITS_PER_WORD, 1); ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3); assemble_integer (gen_rtx (SYMBOL_REF, Pmode, name), UNITS_PER_WORD, 1); /* Output the file name. */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1); { int len = strlen (filename); char *data_file = (char *) alloca (len + 3); strcpy (data_file, filename); strip_off_ending (data_file, len); strcat (data_file, ".d"); assemble_string (data_file, strlen (data_file) + 1); } /* Realign data section. */ ASM_OUTPUT_ALIGN (asm_out_file, exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); /* Make space for the table of counts. */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2); assemble_zeros (INT_TYPE_SIZE / BITS_PER_UNIT * count_basic_blocks); /* Output the table of addresses. */ readonly_data_section (); /* Realign in new section */ ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3); for (i = 0; i < count_basic_blocks; i++) { char name[12]; ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i); assemble_integer (gen_rtx (SYMBOL_REF, Pmode, name), UNITS_PER_WORD, 1); } /* End with the address of the table of addresses, so we can find it easily, as the last word in the file's text. */ ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3); assemble_integer (gen_rtx (SYMBOL_REF, Pmode, name), UNITS_PER_WORD, 1); } } /* Enable APP processing of subsequent output. Used before the output from an `asm' statement. */ void app_enable () { if (! app_on) { fprintf (asm_out_file, ASM_APP_ON); app_on = 1; } } /* Enable APP processing of subsequent output. Called from varasm.c before most kinds of output. */ void app_disable () { if (app_on) { fprintf (asm_out_file, ASM_APP_OFF); app_on = 0; } } /* Return the number of slots filled in the current delayed branch sequence (we don't count the insn needing the delay slot). Zero if not in a delayed branch sequence. */ #ifdef DELAY_SLOTS int dbr_sequence_length () { if (final_sequence != 0) return XVECLEN (final_sequence, 0) - 1; else return 0; } #endif /* The next two pages contain routines used to compute the length of an insn and to shorten branches. */ /* Arrays for insn lengths, and addresses. The latter is referenced by `insn_current_length'. */ static short *insn_lengths; int *insn_addresses; /* Address of insn being processed. Used by `insn_current_length'. */ int insn_current_address; /* Indicate the branch shortening hasn't yet been done. */ void init_insn_lengths () { insn_lengths = 0; } /* Obtain the current length of an insn. If branch shortening has been done, get its actual length. Otherwise, get its maximum length. */ int get_attr_length (insn) rtx insn; { #ifdef HAVE_ATTR_length rtx body; int i; int length = 0; if (insn_lengths) return insn_lengths[INSN_UID (insn)]; else switch (GET_CODE (insn)) { case NOTE: case BARRIER: case CODE_LABEL: return 0; case CALL_INSN: length = insn_default_length (insn); break; case JUMP_INSN: body = PATTERN (insn); if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) { /* This only takes room if jump tables go into the text section. */ #if !defined(READONLY_DATA_SECTION) || defined(JUMP_TABLES_IN_TEXT_SECTION) length = (XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC) * GET_MODE_SIZE (GET_MODE (body))); /* Be pessimistic and assume worst-case alignment. */ length += (GET_MODE_SIZE (GET_MODE (body)) - 1); #else return 0; #endif } else length = insn_default_length (insn); break; case INSN: body = PATTERN (insn); if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER) return 0; else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) length = asm_insn_count (insn) * insn_default_length (insn); else if (GET_CODE (body) == SEQUENCE) for (i = 0; i < XVECLEN (body, 0); i++) length += get_attr_length (XVECEXP (body, 0, i)); else length = insn_default_length (insn); } #ifdef ADJUST_INSN_LENGTH ADJUST_INSN_LENGTH (insn, length); #endif return length; #else /* not HAVE_ATTR_length */ return 0; #endif /* not HAVE_ATTR_length */ } /* Make a pass over all insns and compute their actual lengths by shortening any branches of variable length if possible. */ /* Give a default value for the lowest address in a function. */ #ifndef FIRST_INSN_ADDRESS #define FIRST_INSN_ADDRESS 0 #endif void shorten_branches (first) rtx first; { #ifdef HAVE_ATTR_length rtx insn; int something_changed = 1; int max_uid = 0; char *varying_length; rtx body; int uid; /* Compute maximum UID and allocate arrays. */ for (insn = first; insn; insn = NEXT_INSN (insn)) if (INSN_UID (insn) > max_uid) max_uid = INSN_UID (insn); max_uid++; insn_lengths = (short *) oballoc (max_uid * sizeof (short)); insn_addresses = (int *) oballoc (max_uid * sizeof (int)); varying_length = (char *) oballoc (max_uid * sizeof (char)); /* Compute initial lengths, addresses, and varying flags for each insn. */ for (insn_current_address = FIRST_INSN_ADDRESS, insn = first; insn != 0; insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn)) { uid = INSN_UID (insn); insn_addresses[uid] = insn_current_address; insn_lengths[uid] = 0; varying_length[uid] = 0; if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER || GET_CODE (insn) == CODE_LABEL) continue; body = PATTERN (insn); if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) { /* This only takes room if read-only data goes into the text section. */ #if !defined(READONLY_DATA_SECTION) || defined(JUMP_TABLES_IN_TEXT_SECTION) int unitsize = GET_MODE_SIZE (GET_MODE (body)); insn_lengths[uid] = (XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC) * GET_MODE_SIZE (GET_MODE (body))); /* Account for possible alignment. */ insn_lengths[uid] += unitsize - (insn_current_address & (unitsize - 1)); #else ; #endif } else if (asm_noperands (body) >= 0) insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn); else if (GET_CODE (body) == SEQUENCE) { int i; int const_delay_slots; #ifdef DELAY_SLOTS const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0)); #else const_delay_slots = 0; #endif /* Inside a delay slot sequence, we do not do any branch shortening if the shortening could change the number of delay slots of the branch. */ for (i = 0; i < XVECLEN (body, 0); i++) { rtx inner_insn = XVECEXP (body, 0, i); int inner_uid = INSN_UID (inner_insn); int inner_length; if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0) inner_length = (asm_insn_count (PATTERN (inner_insn)) * insn_default_length (inner_insn)); else inner_length = insn_default_length (inner_insn); insn_lengths[inner_uid] = inner_length; if (const_delay_slots) { if ((varying_length[inner_uid] = insn_variable_length_p (inner_insn)) != 0) varying_length[uid] = 1; insn_addresses[inner_uid] = (insn_current_address + insn_lengths[uid]); } else varying_length[inner_uid] = 0; insn_lengths[uid] += inner_length; } } else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER) { insn_lengths[uid] = insn_default_length (insn); varying_length[uid] = insn_variable_length_p (insn); } /* If needed, do any adjustment. */ #ifdef ADJUST_INSN_LENGTH ADJUST_INSN_LENGTH (insn, insn_lengths[uid]); #endif } /* Now loop over all the insns finding varying length insns. For each, get the current insn length. If it has changed, reflect the change. When nothing changes for a full pass, we are done. */ while (something_changed) { something_changed = 0; for (insn_current_address = FIRST_INSN_ADDRESS, insn = first; insn != 0; insn = NEXT_INSN (insn)) { int new_length; uid = INSN_UID (insn); insn_addresses[uid] = insn_current_address; if (! varying_length[uid]) { insn_current_address += insn_lengths[uid]; continue; } if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) { int i; body = PATTERN (insn); new_length = 0; for (i = 0; i < XVECLEN (body, 0); i++) { rtx inner_insn = XVECEXP (body, 0, i); int inner_uid = INSN_UID (inner_insn); int inner_length; insn_addresses[inner_uid] = insn_current_address; inner_length = insn_current_length (inner_insn); if (inner_length != insn_lengths[inner_uid]) { insn_lengths[inner_uid] = inner_length; something_changed = 1; } insn_current_address += insn_lengths[inner_uid]; new_length += inner_length; } } else { new_length = insn_current_length (insn); insn_current_address += new_length; } if (new_length != insn_lengths[uid]) { insn_lengths[uid] = new_length; something_changed = 1; } } } #endif /* HAVE_ATTR_length */ } #ifdef HAVE_ATTR_length /* Given the body of an INSN known to be generated by an ASM statement, return the number of machine instructions likely to be generated for this insn. This is used to compute its length. */ static int asm_insn_count (body) rtx body; { char *template; int count = 1; for (template = decode_asm_operands (body, NULL_PTR, NULL_PTR, NULL_PTR, NULL_PTR); *template; template++) if (*template == ';' || *template == '\n') count++; return count; } #endif /* Output assembler code for the start of a function, and initialize some of the variables in this file for the new function. The label for the function and associated assembler pseudo-ops have already been output in `assemble_start_function'. FIRST is the first insn of the rtl for the function being compiled. FILE is the file to write assembler code to. OPTIMIZE is nonzero if we should eliminate redundant test and compare insns. */ void final_start_function (first, file, optimize) rtx first; FILE *file; int optimize; { block_depth = 0; this_is_asm_operands = 0; #ifdef NON_SAVING_SETJMP /* A function that calls setjmp should save and restore all the call-saved registers on a system where longjmp clobbers them. */ if (NON_SAVING_SETJMP && current_function_calls_setjmp) { int i; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (!call_used_regs[i] && !call_fixed_regs[i]) regs_ever_live[i] = 1; } #endif /* Initial line number is supposed to be output before the function's prologue and label so that the function's address will not appear to be in the last statement of the preceding function. */ if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED) { if (write_symbols == SDB_DEBUG) /* For sdb, let's not, but say we did. We need to set last_linenum for sdbout_function_begin, but we can't have an actual line number before the .bf symbol. (sdb_begin_function_line is not set, and other compilers don't do it.) */ last_linenum = NOTE_LINE_NUMBER (first); #ifdef XCOFF_DEBUGGING_INFO else if (write_symbols == XCOFF_DEBUG) { last_linenum = NOTE_LINE_NUMBER (first); xcoffout_output_first_source_line (file, last_linenum); } #endif else output_source_line (file, first); } #ifdef LEAF_REG_REMAP if (leaf_function) leaf_renumber_regs (first); #endif /* The Sun386i and perhaps other machines don't work right if the profiling code comes after the prologue. */ #ifdef PROFILE_BEFORE_PROLOGUE if (profile_flag) profile_function (file); #endif /* PROFILE_BEFORE_PROLOGUE */ #ifdef FUNCTION_PROLOGUE /* First output the function prologue: code to set up the stack frame. */ FUNCTION_PROLOGUE (file, get_frame_size ()); #endif #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG) next_block_index = 1; #endif /* If the machine represents the prologue as RTL, the profiling code must be emitted when NOTE_INSN_PROLOGUE_END is scanned. */ #ifdef HAVE_prologue if (! HAVE_prologue) #endif profile_after_prologue (file); profile_label_no++; } static void profile_after_prologue (file) FILE *file; { #ifdef FUNCTION_BLOCK_PROFILER if (profile_block_flag) { FUNCTION_BLOCK_PROFILER (file, profile_label_no); } #endif /* FUNCTION_BLOCK_PROFILER */ #ifndef PROFILE_BEFORE_PROLOGUE if (profile_flag) profile_function (file); #endif /* not PROFILE_BEFORE_PROLOGUE */ } void profile_function (file) FILE *file; { int align = MIN (BIGGEST_ALIGNMENT, INT_TYPE_SIZE); int sval = current_function_returns_struct; int cxt = current_function_needs_context; data_section (); ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no); assemble_integer (const0_rtx, UNITS_PER_WORD, 1); text_section (); #ifdef STRUCT_VALUE_INCOMING_REGNUM if (sval) ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM); #else #ifdef STRUCT_VALUE_REGNUM if (sval) ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM); #endif #endif #if 0 #ifdef STATIC_CHAIN_INCOMING_REGNUM if (cxt) ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM); #else #ifdef STATIC_CHAIN_REGNUM if (cxt) ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM); #endif #endif #endif /* 0 */ FUNCTION_PROFILER (file, profile_label_no); #if 0 #ifdef STATIC_CHAIN_INCOMING_REGNUM if (cxt) ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM); #else #ifdef STATIC_CHAIN_REGNUM if (cxt) ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM); #endif #endif #endif /* 0 */ #ifdef STRUCT_VALUE_INCOMING_REGNUM if (sval) ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM); #else #ifdef STRUCT_VALUE_REGNUM if (sval) ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM); #endif #endif } /* Output assembler code for the end of a function. For clarity, args are same as those of `final_start_function' even though not all of them are needed. */ void final_end_function (first, file, optimize) rtx first; FILE *file; int optimize; { if (app_on) { fprintf (file, ASM_APP_OFF); app_on = 0; } #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG) sdbout_end_function (last_linenum); #endif #ifdef XCOFF_DEBUGGING_INFO if (write_symbols == XCOFF_DEBUG) xcoffout_end_function (file, last_linenum); #endif #ifdef FUNCTION_EPILOGUE /* Finally, output the function epilogue: code to restore the stack frame and return to the caller. */ FUNCTION_EPILOGUE (file, get_frame_size ()); #endif #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG) sdbout_end_epilogue (); #endif #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG) dwarfout_end_epilogue (); #endif #ifdef XCOFF_DEBUGGING_INFO if (write_symbols == XCOFF_DEBUG) xcoffout_end_epilogue (file); #endif /* If FUNCTION_EPILOGUE is not defined, then the function body itself contains return instructions wherever needed. */ } /* Output assembler code for some insns: all or part of a function. For description of args, see `final_start_function', above. PRESCAN is 1 if we are not really outputting, just scanning as if we were outputting. Prescanning deletes and rearranges insns just like ordinary output. PRESCAN is -2 if we are outputting after having prescanned. In this case, don't try to delete or rearrange insns because that has already been done. Prescanning is done only on certain machines. */ void final (first, file, optimize, prescan) rtx first; FILE *file; int optimize; int prescan; { register rtx insn; int max_line = 0; last_ignored_compare = 0; new_block = 1; /* Make a map indicating which line numbers appear in this function. */ for (insn = first; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line) max_line = NOTE_LINE_NUMBER (insn); line_note_exists = (char *) oballoc (max_line + 1); bzero (line_note_exists, max_line + 1); for (insn = first; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) line_note_exists[NOTE_LINE_NUMBER (insn)] = 1; init_recog (); CC_STATUS_INIT; /* Output the insns. */ for (insn = NEXT_INSN (first); insn;) insn = final_scan_insn (insn, file, optimize, prescan, 0); /* Do basic-block profiling here if the last insn was a conditional branch. */ if (profile_block_flag && new_block) { new_block = 0; /* Enable the table of basic-block use counts to point at the code it applies to. */ ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks); /* Before first insn of this basic block, increment the count of times it was entered. */ #ifdef BLOCK_PROFILER BLOCK_PROFILER (file, count_basic_blocks); CC_STATUS_INIT; #endif count_basic_blocks++; } } /* The final scan for one insn, INSN. Args are same as in `final', except that INSN is the insn being scanned. Value returned is the next insn to be scanned. NOPEEPHOLES is the flag to disallow peephole processing (currently used for within delayed branch sequence output). */ rtx final_scan_insn (insn, file, optimize, prescan, nopeepholes) rtx insn; FILE *file; int optimize; int prescan; int nopeepholes; { register int i; insn_counter++; /* Ignore deleted insns. These can occur when we split insns (due to a template of "#") while not optimizing. */ if (INSN_DELETED_P (insn)) return NEXT_INSN (insn); switch (GET_CODE (insn)) { case NOTE: if (prescan > 0) break; /* Align the beginning of a loop, for higher speed on certain machines. */ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG && optimize > 0) { #ifdef ASM_OUTPUT_LOOP_ALIGN rtx next = next_nonnote_insn (insn); if (next && GET_CODE (next) == CODE_LABEL) { ASM_OUTPUT_LOOP_ALIGN (asm_out_file); } #endif break; } if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) break; if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END) { #ifdef FUNCTION_END_PROLOGUE FUNCTION_END_PROLOGUE (file); #endif profile_after_prologue (file); break; } #ifdef FUNCTION_BEGIN_EPILOGUE if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG) { FUNCTION_BEGIN_EPILOGUE (file); break; } #endif if (write_symbols == NO_DEBUG) break; if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG) { #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG) sdbout_begin_function (last_linenum); #endif #ifdef XCOFF_DEBUGGING_INFO if (write_symbols == XCOFF_DEBUG) xcoffout_begin_function (file, last_linenum); #endif break; } if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED) break; /* An insn that was "deleted" */ if (app_on) { fprintf (file, ASM_APP_OFF); app_on = 0; } if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG && (debug_info_level == DINFO_LEVEL_NORMAL || debug_info_level == DINFO_LEVEL_VERBOSE #ifdef DWARF_DEBUGGING_INFO || write_symbols == DWARF_DEBUG #endif ) ) { /* Beginning of a symbol-block. Assign it a sequence number and push the number onto the stack PENDING_BLOCKS. */ if (block_depth == max_block_depth) { /* PENDING_BLOCKS is full; make it longer. */ max_block_depth *= 2; pending_blocks = (int *) xrealloc (pending_blocks, max_block_depth * sizeof (int)); } pending_blocks[block_depth++] = next_block_index; /* Output debugging info about the symbol-block beginning. */ #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG) sdbout_begin_block (file, last_linenum, next_block_index); #endif #ifdef XCOFF_DEBUGGING_INFO if (write_symbols == XCOFF_DEBUG) xcoffout_begin_block (file, last_linenum, next_block_index); #endif #ifdef DBX_DEBUGGING_INFO if (write_symbols == DBX_DEBUG) ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index); #endif #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG && block_depth > 1) dwarfout_begin_block (next_block_index); #endif next_block_index++; } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END && (debug_info_level == DINFO_LEVEL_NORMAL || debug_info_level == DINFO_LEVEL_VERBOSE #ifdef DWARF_DEBUGGING_INFO || write_symbols == DWARF_DEBUG #endif ) ) { /* End of a symbol-block. Pop its sequence number off PENDING_BLOCKS and output debugging info based on that. */ --block_depth; #ifdef XCOFF_DEBUGGING_INFO if (write_symbols == XCOFF_DEBUG && block_depth >= 0) xcoffout_end_block (file, last_linenum, pending_blocks[block_depth]); #endif #ifdef DBX_DEBUGGING_INFO if (write_symbols == DBX_DEBUG && block_depth >= 0) ASM_OUTPUT_INTERNAL_LABEL (file, "LBE", pending_blocks[block_depth]); #endif #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG && block_depth >= 0) sdbout_end_block (file, last_linenum); #endif #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG && block_depth >= 1) dwarfout_end_block (pending_blocks[block_depth]); #endif } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL && (debug_info_level == DINFO_LEVEL_NORMAL || debug_info_level == DINFO_LEVEL_VERBOSE)) { #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG) dwarfout_label (insn); #endif } else if (NOTE_LINE_NUMBER (insn) > 0) /* This note is a line-number. */ { register rtx note; #if 0 /* This is what we used to do. */ output_source_line (file, insn); #endif int note_after = 0; /* If there is anything real after this note, output it. If another line note follows, omit this one. */ for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note)) { if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL) break; /* These types of notes can be significant so make sure the preceding line number stays. */ else if (GET_CODE (note) == NOTE && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG)) break; else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0) { /* Another line note follows; we can delete this note if no intervening line numbers have notes elsewhere. */ int num; for (num = NOTE_LINE_NUMBER (insn) + 1; num < NOTE_LINE_NUMBER (note); num++) if (line_note_exists[num]) break; if (num >= NOTE_LINE_NUMBER (note)) note_after = 1; break; } } /* Output this line note if it is the first or the last line note in a row. */ if (!note_after) output_source_line (file, insn); } break; case BARRIER: #ifdef ASM_OUTPUT_ALIGN_CODE /* Don't litter the assembler output with needless alignments. A BARRIER will be placed at the end of every function if HAVE_epilogue is true. */ if (NEXT_INSN (insn)) ASM_OUTPUT_ALIGN_CODE (file); #endif break; case CODE_LABEL: CC_STATUS_INIT; if (prescan > 0) break; new_block = 1; #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG && LABEL_NAME (insn)) sdbout_label (insn); #endif #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn)) dwarfout_label (insn); #endif if (app_on) { fprintf (file, ASM_APP_OFF); app_on = 0; } if (NEXT_INSN (insn) != 0 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN) { rtx nextbody = PATTERN (NEXT_INSN (insn)); /* If this label is followed by a jump-table, make sure we put the label in the read-only section. Also possibly write the label and jump table together. */ if (GET_CODE (nextbody) == ADDR_VEC || GET_CODE (nextbody) == ADDR_DIFF_VEC) { #ifndef JUMP_TABLES_IN_TEXT_SECTION readonly_data_section (); #ifdef READONLY_DATA_SECTION ASM_OUTPUT_ALIGN (file, exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT)); #endif /* READONLY_DATA_SECTION */ #else /* JUMP_TABLES_IN_TEXT_SECTION */ text_section (); #endif /* JUMP_TABLES_IN_TEXT_SECTION */ #ifdef ASM_OUTPUT_CASE_LABEL ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), NEXT_INSN (insn)); #else ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn)); #endif break; } } ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn)); break; default: { register rtx body = PATTERN (insn); int insn_code_number; char *template; rtx note; /* An INSN, JUMP_INSN or CALL_INSN. First check for special kinds that recog doesn't recognize. */ if (GET_CODE (body) == USE /* These are just declarations */ || GET_CODE (body) == CLOBBER) break; #ifdef HAVE_cc0 /* If there is a REG_CC_SETTER note on this insn, it means that the setting of the condition code was done in the delay slot of the insn that branched here. So recover the cc status from the insn that set it. */ note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); if (note) { NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0)); cc_prev_status = cc_status; } #endif /* Detect insns that are really jump-tables and output them as such. */ if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC) { register int vlen, idx; if (prescan > 0) break; if (app_on) { fprintf (file, ASM_APP_OFF); app_on = 0; } vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC); for (idx = 0; idx < vlen; idx++) { if (GET_CODE (body) == ADDR_VEC) { #ifdef ASM_OUTPUT_ADDR_VEC_ELT ASM_OUTPUT_ADDR_VEC_ELT (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); #else abort (); #endif } else { #ifdef ASM_OUTPUT_ADDR_DIFF_ELT ASM_OUTPUT_ADDR_DIFF_ELT (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0))); #else abort (); #endif } } #ifdef ASM_OUTPUT_CASE_END ASM_OUTPUT_CASE_END (file, CODE_LABEL_NUMBER (PREV_INSN (insn)), insn); #endif text_section (); break; } /* Do basic-block profiling when we reach a new block. Done here to avoid jump tables. */ if (profile_block_flag && new_block) { new_block = 0; /* Enable the table of basic-block use counts to point at the code it applies to. */ ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks); /* Before first insn of this basic block, increment the count of times it was entered. */ #ifdef BLOCK_PROFILER BLOCK_PROFILER (file, count_basic_blocks); CC_STATUS_INIT; #endif count_basic_blocks++; } if (GET_CODE (body) == ASM_INPUT) { /* There's no telling what that did to the condition codes. */ CC_STATUS_INIT; if (prescan > 0) break; if (! app_on) { fprintf (file, ASM_APP_ON); app_on = 1; } fprintf (asm_out_file, "\t%s\n", XSTR (body, 0)); break; } /* Detect `asm' construct with operands. */ if (asm_noperands (body) >= 0) { int noperands = asm_noperands (body); rtx *ops; char *string; /* There's no telling what that did to the condition codes. */ CC_STATUS_INIT; if (prescan > 0) break; /* alloca won't do here, since only return from `final' would free it. */ if (noperands > 0) ops = (rtx *) xmalloc (noperands * sizeof (rtx)); if (! app_on) { fprintf (file, ASM_APP_ON); app_on = 1; } /* Get out the operand values. */ string = decode_asm_operands (body, ops, NULL_PTR, NULL_PTR, NULL_PTR); /* Inhibit aborts on what would otherwise be compiler bugs. */ insn_noperands = noperands; this_is_asm_operands = insn; /* Output the insn using them. */ output_asm_insn (string, ops); this_is_asm_operands = 0; if (noperands > 0) free (ops); break; } if (prescan <= 0 && app_on) { fprintf (file, ASM_APP_OFF); app_on = 0; } if (GET_CODE (body) == SEQUENCE) { /* A delayed-branch sequence */ register int i; rtx next; if (prescan > 0) break; final_sequence = body; /* The first insn in this SEQUENCE might be a JUMP_INSN that will force the restoration of a comparison that was previously thought unnecessary. If that happens, cancel this sequence and cause that insn to be restored. */ next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1); if (next != XVECEXP (body, 0, 1)) { final_sequence = 0; return next; } for (i = 1; i < XVECLEN (body, 0); i++) final_scan_insn (XVECEXP (body, 0, i), file, 0, prescan, 1); #ifdef DBR_OUTPUT_SEQEND DBR_OUTPUT_SEQEND (file); #endif final_sequence = 0; /* If the insn requiring the delay slot was a CALL_INSN, the insns in the delay slot are actually executed before the called function. Hence we don't preserve any CC-setting actions in these insns and the CC must be marked as being clobbered by the function. */ if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN) CC_STATUS_INIT; /* Following a conditional branch sequence, we have a new basic block. */ if (profile_block_flag) { rtx insn = XVECEXP (body, 0, 0); rtx body = PATTERN (insn); if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) != LABEL_REF) || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL && GET_CODE (XVECEXP (body, 0, 0)) == SET && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)) new_block = 1; } break; } /* We have a real machine instruction as rtl. */ body = PATTERN (insn); #ifdef HAVE_cc0 /* Check for redundant test and compare instructions (when the condition codes are already set up as desired). This is done only when optimizing; if not optimizing, it should be possible for the user to alter a variable with the debugger in between statements and the next statement should reexamine the variable to compute the condition codes. */ if (optimize && GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == CC0 && insn != last_ignored_compare) { if (GET_CODE (SET_SRC (body)) == SUBREG) SET_SRC (body) = alter_subreg (SET_SRC (body)); else if (GET_CODE (SET_SRC (body)) == COMPARE) { if (GET_CODE (XEXP (SET_SRC (body), 0)) == SUBREG) XEXP (SET_SRC (body), 0) = alter_subreg (XEXP (SET_SRC (body), 0)); if (GET_CODE (XEXP (SET_SRC (body), 1)) == SUBREG) XEXP (SET_SRC (body), 1) = alter_subreg (XEXP (SET_SRC (body), 1)); } if ((cc_status.value1 != 0 && rtx_equal_p (SET_SRC (body), cc_status.value1)) || (cc_status.value2 != 0 && rtx_equal_p (SET_SRC (body), cc_status.value2))) { /* Don't delete insn if it has an addressing side-effect. */ if (! FIND_REG_INC_NOTE (insn, 0) /* or if anything in it is volatile. */ && ! volatile_refs_p (PATTERN (insn))) { /* We don't really delete the insn; just ignore it. */ last_ignored_compare = insn; break; } } } #endif /* Following a conditional branch, we have a new basic block. But if we are inside a sequence, the new block starts after the last insn of the sequence. */ if (profile_block_flag && final_sequence == 0 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) != LABEL_REF) || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL && GET_CODE (XVECEXP (body, 0, 0)) == SET && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))) new_block = 1; #ifndef STACK_REGS /* Don't bother outputting obvious no-ops, even without -O. This optimization is fast and doesn't interfere with debugging. Don't do this if the insn is in a delay slot, since this will cause an improper number of delay insns to be written. */ if (final_sequence == 0 && prescan >= 0 && GET_CODE (insn) == INSN && GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == REG && GET_CODE (SET_DEST (body)) == REG && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body))) break; #endif #ifdef HAVE_cc0 /* If this is a conditional branch, maybe modify it if the cc's are in a nonstandard state so that it accomplishes the same thing that it would do straightforwardly if the cc's were set up normally. */ if (cc_status.flags != 0 && GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET && SET_DEST (body) == pc_rtx && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE /* This is done during prescan; it is not done again in final scan when prescan has been done. */ && prescan >= 0) { /* This function may alter the contents of its argument and clear some of the cc_status.flags bits. It may also return 1 meaning condition now always true or -1 meaning condition now always false or 2 meaning condition nontrivial but altered. */ register int result = alter_cond (XEXP (SET_SRC (body), 0)); /* If condition now has fixed value, replace the IF_THEN_ELSE with its then-operand or its else-operand. */ if (result == 1) SET_SRC (body) = XEXP (SET_SRC (body), 1); if (result == -1) SET_SRC (body) = XEXP (SET_SRC (body), 2); /* The jump is now either unconditional or a no-op. If it has become a no-op, don't try to output it. (It would not be recognized.) */ if (SET_SRC (body) == pc_rtx) { PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; break; } else if (GET_CODE (SET_SRC (body)) == RETURN) /* Replace (set (pc) (return)) with (return). */ PATTERN (insn) = body = SET_SRC (body); /* Rerecognize the instruction if it has changed. */ if (result != 0) INSN_CODE (insn) = -1; } /* Make same adjustments to instructions that examine the condition codes without jumping (if this machine has them). */ if (cc_status.flags != 0 && GET_CODE (body) == SET) { switch (GET_CODE (SET_SRC (body))) { case GTU: case GT: case LTU: case LT: case GEU: case GE: case LEU: case LE: case EQ: case NE: { register int result; if (XEXP (SET_SRC (body), 0) != cc0_rtx) break; result = alter_cond (SET_SRC (body)); if (result == 1) validate_change (insn, &SET_SRC (body), const_true_rtx, 0); else if (result == -1) validate_change (insn, &SET_SRC (body), const0_rtx, 0); else if (result == 2) INSN_CODE (insn) = -1; } } } #endif /* Do machine-specific peephole optimizations if desired. */ if (optimize && !flag_no_peephole && !nopeepholes) { rtx next = peephole (insn); /* When peepholing, if there were notes within the peephole, emit them before the peephole. */ if (next != 0 && next != NEXT_INSN (insn)) { rtx prev = PREV_INSN (insn); rtx note; for (note = NEXT_INSN (insn); note != next; note = NEXT_INSN (note)) final_scan_insn (note, file, optimize, prescan, nopeepholes); /* In case this is prescan, put the notes in proper position for later rescan. */ note = NEXT_INSN (insn); PREV_INSN (note) = prev; NEXT_INSN (prev) = note; NEXT_INSN (PREV_INSN (next)) = insn; PREV_INSN (insn) = PREV_INSN (next); NEXT_INSN (insn) = next; PREV_INSN (next) = insn; } /* PEEPHOLE might have changed this. */ body = PATTERN (insn); } /* Try to recognize the instruction. If successful, verify that the operands satisfy the constraints for the instruction. Crash if they don't, since `reload' should have changed them so that they do. */ insn_code_number = recog_memoized (insn); insn_extract (insn); for (i = 0; i < insn_n_operands[insn_code_number]; i++) { if (GET_CODE (recog_operand[i]) == SUBREG) recog_operand[i] = alter_subreg (recog_operand[i]); } #ifdef REGISTER_CONSTRAINTS if (! constrain_operands (insn_code_number, 1)) fatal_insn_not_found (insn); #endif /* Some target machines need to prescan each insn before it is output. */ #ifdef FINAL_PRESCAN_INSN FINAL_PRESCAN_INSN (insn, recog_operand, insn_n_operands[insn_code_number]); #endif #ifdef HAVE_cc0 cc_prev_status = cc_status; /* Update `cc_status' for this instruction. The instruction's output routine may change it further. If the output routine for a jump insn needs to depend on the cc status, it should look at cc_prev_status. */ NOTICE_UPDATE_CC (body, insn); #endif debug_insn = insn; /* If the proper template needs to be chosen by some C code, run that code and get the real template. */ template = insn_template[insn_code_number]; if (template == 0) { template = (*insn_outfun[insn_code_number]) (recog_operand, insn); /* If the C code returns 0, it means that it is a jump insn which follows a deleted test insn, and that test insn needs to be reinserted. */ if (template == 0) { if (prev_nonnote_insn (insn) != last_ignored_compare) abort (); new_block = 0; return prev_nonnote_insn (insn); } } /* If the template is the string "#", it means that this insn must be split. */ if (template[0] == '#' && template[1] == '\0') { rtx new = try_split (body, insn, 0); /* If we didn't split the insn, go away. */ if (new == insn && PATTERN (new) == body) abort (); new_block = 0; return new; } if (prescan > 0) break; /* Output assembler code from the template. */ output_asm_insn (template, recog_operand); #if 0 /* It's not at all clear why we did this and doing so interferes with tests we'd like to do to use REG_WAS_0 notes, so let's try with this out. */ /* Mark this insn as having been output. */ INSN_DELETED_P (insn) = 1; #endif debug_insn = 0; } } return NEXT_INSN (insn); } /* Output debugging info to the assembler file FILE based on the NOTE-insn INSN, assumed to be a line number. */ static void output_source_line (file, insn) FILE *file; rtx insn; { char ltext_label_name[100]; register char *filename = NOTE_SOURCE_FILE (insn); last_linenum = NOTE_LINE_NUMBER (insn); if (write_symbols != NO_DEBUG) { #ifdef SDB_DEBUGGING_INFO if (write_symbols == SDB_DEBUG #if 0 /* People like having line numbers even in wrong file! */ /* COFF can't handle multiple source files--lose, lose. */ && !strcmp (filename, main_input_filename) #endif /* COFF relative line numbers must be positive. */ && last_linenum > sdb_begin_function_line) { #ifdef ASM_OUTPUT_SOURCE_LINE ASM_OUTPUT_SOURCE_LINE (file, last_linenum); #else fprintf (file, "\t.ln\t%d\n", ((sdb_begin_function_line > -1) ? last_linenum - sdb_begin_function_line : 1)); #endif } #endif #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG) dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn)); #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */ #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG) dwarfout_line (filename, NOTE_LINE_NUMBER (insn)); #endif } } /* If X is a SUBREG, replace it with a REG or a MEM, based on the thing it is a subreg of. */ rtx alter_subreg (x) register rtx x; { register rtx y = SUBREG_REG (x); if (GET_CODE (y) == SUBREG) y = alter_subreg (y); if (GET_CODE (y) == REG) { /* If the containing reg really gets a hard reg, so do we. */ PUT_CODE (x, REG); REGNO (x) = REGNO (y) + SUBREG_WORD (x); } else if (GET_CODE (y) == MEM) { register int offset = SUBREG_WORD (x) * UNITS_PER_WORD; #if BYTES_BIG_ENDIAN offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))) - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y)))); #endif PUT_CODE (x, MEM); MEM_VOLATILE_P (x) = MEM_VOLATILE_P (y); XEXP (x, 0) = plus_constant (XEXP (y, 0), offset); } return x; } /* Do alter_subreg on all the SUBREGs contained in X. */ static rtx walk_alter_subreg (x) rtx x; { switch (GET_CODE (x)) { case PLUS: case MULT: XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0)); XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1)); break; case MEM: XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0)); break; case SUBREG: return alter_subreg (x); } return x; } #ifdef HAVE_cc0 /* Given BODY, the body of a jump instruction, alter the jump condition as required by the bits that are set in cc_status.flags. Not all of the bits there can be handled at this level in all cases. The value is normally 0. 1 means that the condition has become always true. -1 means that the condition has become always false. 2 means that COND has been altered. */ static int alter_cond (cond) register rtx cond; { int value = 0; if (cc_status.flags & CC_REVERSED) { value = 2; PUT_CODE (cond, swap_condition (GET_CODE (cond))); } if (cc_status.flags & CC_INVERTED) { value = 2; PUT_CODE (cond, reverse_condition (GET_CODE (cond))); } if (cc_status.flags & CC_NOT_POSITIVE) switch (GET_CODE (cond)) { case LE: case LEU: case GEU: /* Jump becomes unconditional. */ return 1; case GT: case GTU: case LTU: /* Jump becomes no-op. */ return -1; case GE: PUT_CODE (cond, EQ); value = 2; break; case LT: PUT_CODE (cond, NE); value = 2; break; } if (cc_status.flags & CC_NOT_NEGATIVE) switch (GET_CODE (cond)) { case GE: case GEU: /* Jump becomes unconditional. */ return 1; case LT: case LTU: /* Jump becomes no-op. */ return -1; case LE: case LEU: PUT_CODE (cond, EQ); value = 2; break; case GT: case GTU: PUT_CODE (cond, NE); value = 2; break; } if (cc_status.flags & CC_NO_OVERFLOW) switch (GET_CODE (cond)) { case GEU: /* Jump becomes unconditional. */ return 1; case LEU: PUT_CODE (cond, EQ); value = 2; break; case GTU: PUT_CODE (cond, NE); value = 2; break; case LTU: /* Jump becomes no-op. */ return -1; } if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N)) switch (GET_CODE (cond)) { case LE: case LEU: case GE: case GEU: case LT: case LTU: case GT: case GTU: abort (); case NE: PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT); value = 2; break; case EQ: PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE); value = 2; break; } return value; } #endif /* Report inconsistency between the assembler template and the operands. In an `asm', it's the user's fault; otherwise, the compiler's fault. */ void output_operand_lossage (str) char *str; { if (this_is_asm_operands) error_for_asm (this_is_asm_operands, "invalid `asm': %s", str); else abort (); } /* Output of assembler code from a template, and its subroutines. */ /* Output text from TEMPLATE to the assembler output file, obeying %-directions to substitute operands taken from the vector OPERANDS. %N (for N a digit) means print operand N in usual manner. %lN means require operand N to be a CODE_LABEL or LABEL_REF and print the label name with no punctuation. %cN means require operand N to be a constant and print the constant expression with no punctuation. %aN means expect operand N to be a memory address (not a memory reference!) and print a reference to that address. %nN means expect operand N to be a constant and print a constant expression for minus the value of the operand, with no other punctuation. */ void output_asm_insn (template, operands) char *template; rtx *operands; { register char *p; register int c; /* An insn may return a null string template in a case where no assembler code is needed. */ if (*template == 0) return; p = template; putc ('\t', asm_out_file); #ifdef ASM_OUTPUT_OPCODE ASM_OUTPUT_OPCODE (asm_out_file, p); #endif while (c = *p++) { #ifdef ASM_OUTPUT_OPCODE if (c == '\n') { putc (c, asm_out_file); while ((c = *p) == '\t') { putc (c, asm_out_file); p++; } ASM_OUTPUT_OPCODE (asm_out_file, p); } else #endif if (c != '%') putc (c, asm_out_file); else { /* %% outputs a single %. */ if (*p == '%') { p++; putc (c, asm_out_file); } /* %= outputs a number which is unique to each insn in the entire compilation. This is useful for making local labels that are referred to more than once in a given insn. */ else if (*p == '=') fprintf (asm_out_file, "%d", insn_counter); /* % followed by a letter and some digits outputs an operand in a special way depending on the letter. Letters `acln' are implemented directly. Other letters are passed to `output_operand' so that the PRINT_OPERAND macro can define them. */ else if ((*p >= 'a' && *p <= 'z') || (*p >= 'A' && *p <= 'Z')) { int letter = *p++; c = atoi (p); if (! (*p >= '0' && *p <= '9')) output_operand_lossage ("operand number missing after %-letter"); else if (this_is_asm_operands && c >= (unsigned) insn_noperands) output_operand_lossage ("operand number out of range"); else if (letter == 'l') output_asm_label (operands[c]); else if (letter == 'a') output_address (operands[c]); else if (letter == 'c') { if (CONSTANT_ADDRESS_P (operands[c])) output_addr_const (asm_out_file, operands[c]); else output_operand (operands[c], 'c'); } else if (letter == 'n') { if (GET_CODE (operands[c]) == CONST_INT) fprintf (asm_out_file, #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT "%d", #else "%ld", #endif - INTVAL (operands[c])); else { putc ('-', asm_out_file); output_addr_const (asm_out_file, operands[c]); } } else output_operand (operands[c], letter); while ((c = *p) >= '0' && c <= '9') p++; } /* % followed by a digit outputs an operand the default way. */ else if (*p >= '0' && *p <= '9') { c = atoi (p); if (this_is_asm_operands && c >= (unsigned) insn_noperands) output_operand_lossage ("operand number out of range"); else output_operand (operands[c], 0); while ((c = *p) >= '0' && c <= '9') p++; } /* % followed by punctuation: output something for that punctuation character alone, with no operand. The PRINT_OPERAND macro decides what is actually done. */ #ifdef PRINT_OPERAND_PUNCT_VALID_P else if (PRINT_OPERAND_PUNCT_VALID_P (*p)) output_operand (NULL_RTX, *p++); #endif else output_operand_lossage ("invalid %%-code"); } } if (flag_print_asm_name) { /* Annotate the assembly with a comment describing the pattern and alternative used. */ if (debug_insn) { register int num = INSN_CODE (debug_insn); fprintf (asm_out_file, " %s %d %s", ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]); if (insn_n_alternatives[num] > 1) fprintf (asm_out_file, "/%d", which_alternative + 1); /* Clear this so only the first assembler insn of any rtl insn will get the special comment for -dp. */ debug_insn = 0; } } putc ('\n', asm_out_file); } /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */ void output_asm_label (x) rtx x; { char buf[256]; if (GET_CODE (x) == LABEL_REF) ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0))); else if (GET_CODE (x) == CODE_LABEL) ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); else output_operand_lossage ("`%l' operand isn't a label"); assemble_name (asm_out_file, buf); } /* Print operand X using machine-dependent assembler syntax. The macro PRINT_OPERAND is defined just to control this function. CODE is a non-digit that preceded the operand-number in the % spec, such as 'z' if the spec was `%z3'. CODE is 0 if there was no char between the % and the digits. When CODE is a non-letter, X is 0. The meanings of the letters are machine-dependent and controlled by PRINT_OPERAND. */ static void output_operand (x, code) rtx x; int code; { if (x && GET_CODE (x) == SUBREG) x = alter_subreg (x); /* If X is a pseudo-register, abort now rather than writing trash to the assembler file. */ if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER) abort (); PRINT_OPERAND (asm_out_file, x, code); } /* Print a memory reference operand for address X using machine-dependent assembler syntax. The macro PRINT_OPERAND_ADDRESS exists just to control this function. */ void output_address (x) rtx x; { walk_alter_subreg (x); PRINT_OPERAND_ADDRESS (asm_out_file, x); } /* Print an integer constant expression in assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. */ void output_addr_const (file, x) FILE *file; rtx x; { char buf[256]; restart: switch (GET_CODE (x)) { case PC: if (flag_pic) putc ('.', file); else abort (); break; case SYMBOL_REF: assemble_name (file, XSTR (x, 0)); break; case LABEL_REF: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0))); assemble_name (asm_out_file, buf); break; case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); assemble_name (asm_out_file, buf); break; case CONST_INT: fprintf (file, #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT "%d", #else "%ld", #endif INTVAL (x)); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ output_addr_const (file, XEXP (x, 0)); break; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { /* We can use %d if the number is one word and positive. */ if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0) fprintf (file, #if HOST_BITS_PER_WIDE_INT == 64 #if HOST_BITS_PER_WIDE_INT != HOST_BITS_PER_INT " 0x%lx%016lx", #else " 0x%x%016x", #endif #else #if HOST_BITS_PER_WIDE_INT != HOST_BITS_PER_INT " 0x%lx%08lx", #else " 0x%x%08x", #endif #endif CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x)); else fprintf (file, #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT "%d", #else "%ld", #endif CONST_DOUBLE_LOW (x)); } else /* We can't handle floating point constants; PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear last (eg masm). */ if (GET_CODE (XEXP (x, 0)) == CONST_INT) { output_addr_const (file, XEXP (x, 1)); if (INTVAL (XEXP (x, 0)) >= 0) fprintf (file, "+"); output_addr_const (file, XEXP (x, 0)); } else { output_addr_const (file, XEXP (x, 0)); if (INTVAL (XEXP (x, 1)) >= 0) fprintf (file, "+"); output_addr_const (file, XEXP (x, 1)); } break; case MINUS: output_addr_const (file, XEXP (x, 0)); fprintf (file, "-"); if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) < 0) { fprintf (file, ASM_OPEN_PAREN); output_addr_const (file, XEXP (x, 1)); fprintf (file, ASM_CLOSE_PAREN); } else output_addr_const (file, XEXP (x, 1)); break; case ZERO_EXTEND: case SIGN_EXTEND: output_addr_const (file, XEXP (x, 0)); break; default: output_operand_lossage ("invalid expression as operand"); } } /* A poor man's fprintf, with the added features of %I, %R, %L, and %U. %R prints the value of REGISTER_PREFIX. %L prints the value of LOCAL_LABEL_PREFIX. %U prints the value of USER_LABEL_PREFIX. %I prints the value of IMMEDIATE_PREFIX. %O runs ASM_OUTPUT_OPCODE to transform what follows in the string. Also supported are %d, %x, %s, %e, %f, %g and %%. */ void asm_fprintf (va_alist) va_dcl { va_list argptr; FILE *file; char buf[10]; char *p, *q, c; va_start (argptr); file = va_arg (argptr, FILE *); p = va_arg (argptr, char *); buf[0] = '%'; while (c = *p++) switch (c) { case '%': c = *p++; q = &buf[1]; while ((c >= '0' && c <= '9') || c == '.') { *q++ = c; c = *p++; } switch (c) { case '%': fprintf (file, "%%"); break; case 'd': case 'i': case 'u': case 'x': case 'p': case 'X': case 'o': *q++ = c; *q = 0; fprintf (file, buf, va_arg (argptr, int)); break; case 'e': case 'f': case 'g': *q++ = c; *q = 0; fprintf (file, buf, va_arg (argptr, double)); break; case 's': *q++ = c; *q = 0; fprintf (file, buf, va_arg (argptr, char *)); break; case 'O': #ifdef ASM_OUTPUT_OPCODE ASM_OUTPUT_OPCODE (asm_out_file, p); #endif break; case 'R': #ifdef REGISTER_PREFIX fprintf (file, "%s", REGISTER_PREFIX); #endif break; case 'I': #ifdef IMMEDIATE_PREFIX fprintf (file, "%s", IMMEDIATE_PREFIX); #endif break; case 'L': #ifdef LOCAL_LABEL_PREFIX fprintf (file, "%s", LOCAL_LABEL_PREFIX); #endif break; case 'U': #ifdef USER_LABEL_PREFIX fprintf (file, "%s", USER_LABEL_PREFIX); #endif break; default: abort (); } break; default: fputc (c, file); } } /* Split up a CONST_DOUBLE or integer constant rtx into two rtx's for single words, storing in *FIRST the word that comes first in memory in the target and in *SECOND the other. */ void split_double (value, first, second) rtx value; rtx *first, *second; { if (GET_CODE (value) == CONST_INT) { /* The rule for using CONST_INT for a wider mode is that we regard the value as signed. So sign-extend it. */ rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx); #if WORDS_BIG_ENDIAN *first = high; *second = value; #else *first = value; *second = high; #endif } else if (GET_CODE (value) != CONST_DOUBLE) { #if WORDS_BIG_ENDIAN *first = const0_rtx; *second = value; #else *first = value; *second = const0_rtx; #endif } else if (GET_MODE (value) == VOIDmode /* This is the old way we did CONST_DOUBLE integers. */ || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT) { /* In an integer, the words are defined as most and least significant. So order them by the target's convention. */ #if WORDS_BIG_ENDIAN *first = GEN_INT (CONST_DOUBLE_HIGH (value)); *second = GEN_INT (CONST_DOUBLE_LOW (value)); #else *first = GEN_INT (CONST_DOUBLE_LOW (value)); *second = GEN_INT (CONST_DOUBLE_HIGH (value)); #endif } else { if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD) && ! flag_pretend_float) abort (); #if defined (HOST_WORDS_BIG_ENDIAN) == WORDS_BIG_ENDIAN /* Host and target agree => no need to swap. */ *first = GEN_INT (CONST_DOUBLE_LOW (value)); *second = GEN_INT (CONST_DOUBLE_HIGH (value)); #else *second = GEN_INT (CONST_DOUBLE_LOW (value)); *first = GEN_INT (CONST_DOUBLE_HIGH (value)); #endif } } /* Return nonzero if this function has no function calls. */ int leaf_function_p () { rtx insn; if (profile_flag || profile_block_flag) return 0; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == CALL_INSN) return 0; if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN) return 0; } for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1)) { if (GET_CODE (XEXP (insn, 0)) == CALL_INSN) return 0; if (GET_CODE (XEXP (insn, 0)) == INSN && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN) return 0; } return 1; } /* On some machines, a function with no call insns can run faster if it doesn't create its own register window. When output, the leaf function should use only the "output" registers. Ordinarily, the function would be compiled to use the "input" registers to find its arguments; it is a candidate for leaf treatment if it uses only the "input" registers. Leaf function treatment means renumbering so the function uses the "output" registers instead. */ #ifdef LEAF_REGISTERS static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS; /* Return 1 if this function uses only the registers that can be safely renumbered. */ int only_leaf_regs_used () { int i; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if ((regs_ever_live[i] || global_regs[i]) && ! permitted_reg_in_leaf_functions[i]) return 0; } return 1; } /* Scan all instructions and renumber all registers into those available in leaf functions. */ static void leaf_renumber_regs (first) rtx first; { rtx insn; /* Renumber only the actual patterns. The reg-notes can contain frame pointer refs, and renumbering them could crash, and should not be needed. */ for (insn = first; insn; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') leaf_renumber_regs_insn (PATTERN (insn)); for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1)) if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i') leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0))); } /* Scan IN_RTX and its subexpressions, and renumber all regs into those available in leaf functions. */ void leaf_renumber_regs_insn (in_rtx) register rtx in_rtx; { register int i, j; register char *format_ptr; if (in_rtx == 0) return; /* Renumber all input-registers into output-registers. renumbered_regs would be 1 for an output-register; they */ if (GET_CODE (in_rtx) == REG) { int newreg; /* Don't renumber the same reg twice. */ if (in_rtx->used) return; newreg = REGNO (in_rtx); /* Don't try to renumber pseudo regs. It is possible for a pseudo reg to reach here as part of a REG_NOTE. */ if (newreg >= FIRST_PSEUDO_REGISTER) { in_rtx->used = 1; return; } newreg = LEAF_REG_REMAP (newreg); if (newreg < 0) abort (); regs_ever_live[REGNO (in_rtx)] = 0; regs_ever_live[newreg] = 1; REGNO (in_rtx) = newreg; in_rtx->used = 1; } if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i') { /* Inside a SEQUENCE, we find insns. Renumber just the patterns of these insns, just as we do for the top-level insns. */ leaf_renumber_regs_insn (PATTERN (in_rtx)); return; } format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++) switch (*format_ptr++) { case 'e': leaf_renumber_regs_insn (XEXP (in_rtx, i)); break; case 'E': if (NULL != XVEC (in_rtx, i)) { for (j = 0; j < XVECLEN (in_rtx, i); j++) leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j)); } break; case 'S': case 's': case '0': case 'i': case 'w': case 'n': case 'u': break; default: abort (); } } #endif