/* Deal with I/O statements & related stuff. Copyright (C) 2000-2016 Free Software Foundation, Inc. Contributed by Andy Vaught This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "options.h" #include "gfortran.h" #include "match.h" #include "parse.h" gfc_st_label format_asterisk = {0, NULL, NULL, -1, ST_LABEL_FORMAT, ST_LABEL_FORMAT, NULL, 0, {NULL, NULL}, NULL}; typedef struct { const char *name, *spec, *value; bt type; } io_tag; static const io_tag tag_file = {"FILE", " file =", " %e", BT_CHARACTER }, tag_status = {"STATUS", " status =", " %e", BT_CHARACTER}, tag_e_access = {"ACCESS", " access =", " %e", BT_CHARACTER}, tag_e_form = {"FORM", " form =", " %e", BT_CHARACTER}, tag_e_recl = {"RECL", " recl =", " %e", BT_INTEGER}, tag_e_blank = {"BLANK", " blank =", " %e", BT_CHARACTER}, tag_e_position = {"POSITION", " position =", " %e", BT_CHARACTER}, tag_e_action = {"ACTION", " action =", " %e", BT_CHARACTER}, tag_e_delim = {"DELIM", " delim =", " %e", BT_CHARACTER}, tag_e_pad = {"PAD", " pad =", " %e", BT_CHARACTER}, tag_e_decimal = {"DECIMAL", " decimal =", " %e", BT_CHARACTER}, tag_e_encoding = {"ENCODING", " encoding =", " %e", BT_CHARACTER}, tag_e_async = {"ASYNCHRONOUS", " asynchronous =", " %e", BT_CHARACTER}, tag_e_round = {"ROUND", " round =", " %e", BT_CHARACTER}, tag_e_sign = {"SIGN", " sign =", " %e", BT_CHARACTER}, tag_unit = {"UNIT", " unit =", " %e", BT_INTEGER}, tag_advance = {"ADVANCE", " advance =", " %e", BT_CHARACTER}, tag_rec = {"REC", " rec =", " %e", BT_INTEGER}, tag_spos = {"POSITION", " pos =", " %e", BT_INTEGER}, tag_format = {"FORMAT", NULL, NULL, BT_CHARACTER}, tag_iomsg = {"IOMSG", " iomsg =", " %e", BT_CHARACTER}, tag_iostat = {"IOSTAT", " iostat =", " %v", BT_INTEGER}, tag_size = {"SIZE", " size =", " %v", BT_INTEGER}, tag_exist = {"EXIST", " exist =", " %v", BT_LOGICAL}, tag_opened = {"OPENED", " opened =", " %v", BT_LOGICAL}, tag_named = {"NAMED", " named =", " %v", BT_LOGICAL}, tag_name = {"NAME", " name =", " %v", BT_CHARACTER}, tag_number = {"NUMBER", " number =", " %v", BT_INTEGER}, tag_s_access = {"ACCESS", " access =", " %v", BT_CHARACTER}, tag_sequential = {"SEQUENTIAL", " sequential =", " %v", BT_CHARACTER}, tag_direct = {"DIRECT", " direct =", " %v", BT_CHARACTER}, tag_s_form = {"FORM", " form =", " %v", BT_CHARACTER}, tag_formatted = {"FORMATTED", " formatted =", " %v", BT_CHARACTER}, tag_unformatted = {"UNFORMATTED", " unformatted =", " %v", BT_CHARACTER}, tag_s_recl = {"RECL", " recl =", " %v", BT_INTEGER}, tag_nextrec = {"NEXTREC", " nextrec =", " %v", BT_INTEGER}, tag_s_blank = {"BLANK", " blank =", " %v", BT_CHARACTER}, tag_s_position = {"POSITION", " position =", " %v", BT_CHARACTER}, tag_s_action = {"ACTION", " action =", " %v", BT_CHARACTER}, tag_read = {"READ", " read =", " %v", BT_CHARACTER}, tag_write = {"WRITE", " write =", " %v", BT_CHARACTER}, tag_readwrite = {"READWRITE", " readwrite =", " %v", BT_CHARACTER}, tag_s_delim = {"DELIM", " delim =", " %v", BT_CHARACTER}, tag_s_pad = {"PAD", " pad =", " %v", BT_CHARACTER}, tag_s_decimal = {"DECIMAL", " decimal =", " %v", BT_CHARACTER}, tag_s_encoding = {"ENCODING", " encoding =", " %v", BT_CHARACTER}, tag_s_async = {"ASYNCHRONOUS", " asynchronous =", " %v", BT_CHARACTER}, tag_s_round = {"ROUND", " round =", " %v", BT_CHARACTER}, tag_s_sign = {"SIGN", " sign =", " %v", BT_CHARACTER}, tag_iolength = {"IOLENGTH", " iolength =", " %v", BT_INTEGER}, tag_convert = {"CONVERT", " convert =", " %e", BT_CHARACTER}, tag_strm_out = {"POS", " pos =", " %v", BT_INTEGER}, tag_err = {"ERR", " err =", " %l", BT_UNKNOWN}, tag_end = {"END", " end =", " %l", BT_UNKNOWN}, tag_eor = {"EOR", " eor =", " %l", BT_UNKNOWN}, tag_id = {"ID", " id =", " %v", BT_INTEGER}, tag_pending = {"PENDING", " pending =", " %v", BT_LOGICAL}, tag_newunit = {"NEWUNIT", " newunit =", " %v", BT_INTEGER}, tag_s_iqstream = {"STREAM", " stream =", " %v", BT_CHARACTER}; static gfc_dt *current_dt; #define RESOLVE_TAG(x, y) if (!resolve_tag (x, y)) return false; /**************** Fortran 95 FORMAT parser *****************/ /* FORMAT tokens returned by format_lex(). */ enum format_token { FMT_NONE, FMT_UNKNOWN, FMT_SIGNED_INT, FMT_ZERO, FMT_POSINT, FMT_PERIOD, FMT_COMMA, FMT_COLON, FMT_SLASH, FMT_DOLLAR, FMT_LPAREN, FMT_RPAREN, FMT_X, FMT_SIGN, FMT_BLANK, FMT_CHAR, FMT_P, FMT_IBOZ, FMT_F, FMT_E, FMT_EN, FMT_ES, FMT_G, FMT_L, FMT_A, FMT_D, FMT_H, FMT_END, FMT_ERROR, FMT_DC, FMT_DP, FMT_T, FMT_TR, FMT_TL, FMT_STAR, FMT_RC, FMT_RD, FMT_RN, FMT_RP, FMT_RU, FMT_RZ }; /* Local variables for checking format strings. The saved_token is used to back up by a single format token during the parsing process. */ static gfc_char_t *format_string; static int format_string_pos; static int format_length, use_last_char; static char error_element; static locus format_locus; static format_token saved_token; static enum { MODE_STRING, MODE_FORMAT, MODE_COPY } mode; /* Return the next character in the format string. */ static char next_char (gfc_instring in_string) { static gfc_char_t c; if (use_last_char) { use_last_char = 0; return c; } format_length++; if (mode == MODE_STRING) c = *format_string++; else { c = gfc_next_char_literal (in_string); if (c == '\n') c = '\0'; } if (flag_backslash && c == '\\') { locus old_locus = gfc_current_locus; if (gfc_match_special_char (&c) == MATCH_NO) gfc_current_locus = old_locus; if (!(gfc_option.allow_std & GFC_STD_GNU) && !inhibit_warnings) gfc_warning (0, "Extension: backslash character at %C"); } if (mode == MODE_COPY) *format_string++ = c; if (mode != MODE_STRING) format_locus = gfc_current_locus; format_string_pos++; c = gfc_wide_toupper (c); return c; } /* Back up one character position. Only works once. */ static void unget_char (void) { use_last_char = 1; } /* Eat up the spaces and return a character. */ static char next_char_not_space (bool *error) { char c; do { error_element = c = next_char (NONSTRING); if (c == '\t') { if (gfc_option.allow_std & GFC_STD_GNU) gfc_warning (0, "Extension: Tab character in format at %C"); else { gfc_error ("Extension: Tab character in format at %C"); *error = true; return c; } } } while (gfc_is_whitespace (c)); return c; } static int value = 0; /* Simple lexical analyzer for getting the next token in a FORMAT statement. */ static format_token format_lex (void) { format_token token; char c, delim; int zflag; int negative_flag; bool error = false; if (saved_token != FMT_NONE) { token = saved_token; saved_token = FMT_NONE; return token; } c = next_char_not_space (&error); negative_flag = 0; switch (c) { case '-': negative_flag = 1; /* Falls through. */ case '+': c = next_char_not_space (&error); if (!ISDIGIT (c)) { token = FMT_UNKNOWN; break; } value = c - '0'; do { c = next_char_not_space (&error); if (ISDIGIT (c)) value = 10 * value + c - '0'; } while (ISDIGIT (c)); unget_char (); if (negative_flag) value = -value; token = FMT_SIGNED_INT; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': zflag = (c == '0'); value = c - '0'; do { c = next_char_not_space (&error); if (ISDIGIT (c)) { value = 10 * value + c - '0'; if (c != '0') zflag = 0; } } while (ISDIGIT (c)); unget_char (); token = zflag ? FMT_ZERO : FMT_POSINT; break; case '.': token = FMT_PERIOD; break; case ',': token = FMT_COMMA; break; case ':': token = FMT_COLON; break; case '/': token = FMT_SLASH; break; case '$': token = FMT_DOLLAR; break; case 'T': c = next_char_not_space (&error); switch (c) { case 'L': token = FMT_TL; break; case 'R': token = FMT_TR; break; default: token = FMT_T; unget_char (); } break; case '(': token = FMT_LPAREN; break; case ')': token = FMT_RPAREN; break; case 'X': token = FMT_X; break; case 'S': c = next_char_not_space (&error); if (c != 'P' && c != 'S') unget_char (); token = FMT_SIGN; break; case 'B': c = next_char_not_space (&error); if (c == 'N' || c == 'Z') token = FMT_BLANK; else { unget_char (); token = FMT_IBOZ; } break; case '\'': case '"': delim = c; value = 0; for (;;) { c = next_char (INSTRING_WARN); if (c == '\0') { token = FMT_END; break; } if (c == delim) { c = next_char (NONSTRING); if (c == '\0') { token = FMT_END; break; } if (c != delim) { unget_char (); token = FMT_CHAR; break; } } value++; } break; case 'P': token = FMT_P; break; case 'I': case 'O': case 'Z': token = FMT_IBOZ; break; case 'F': token = FMT_F; break; case 'E': c = next_char_not_space (&error); if (c == 'N' ) token = FMT_EN; else if (c == 'S') token = FMT_ES; else { token = FMT_E; unget_char (); } break; case 'G': token = FMT_G; break; case 'H': token = FMT_H; break; case 'L': token = FMT_L; break; case 'A': token = FMT_A; break; case 'D': c = next_char_not_space (&error); if (c == 'P') { if (!gfc_notify_std (GFC_STD_F2003, "DP format " "specifier not allowed at %C")) return FMT_ERROR; token = FMT_DP; } else if (c == 'C') { if (!gfc_notify_std (GFC_STD_F2003, "DC format " "specifier not allowed at %C")) return FMT_ERROR; token = FMT_DC; } else { token = FMT_D; unget_char (); } break; case 'R': c = next_char_not_space (&error); switch (c) { case 'C': token = FMT_RC; break; case 'D': token = FMT_RD; break; case 'N': token = FMT_RN; break; case 'P': token = FMT_RP; break; case 'U': token = FMT_RU; break; case 'Z': token = FMT_RZ; break; default: token = FMT_UNKNOWN; unget_char (); break; } break; case '\0': token = FMT_END; break; case '*': token = FMT_STAR; break; default: token = FMT_UNKNOWN; break; } if (error) return FMT_ERROR; return token; } static const char * token_to_string (format_token t) { switch (t) { case FMT_D: return "D"; case FMT_G: return "G"; case FMT_E: return "E"; case FMT_EN: return "EN"; case FMT_ES: return "ES"; default: return ""; } } /* Check a format statement. The format string, either from a FORMAT statement or a constant in an I/O statement has already been parsed by itself, and we are checking it for validity. The dual origin means that the warning message is a little less than great. */ static bool check_format (bool is_input) { const char *posint_required = _("Positive width required"); const char *nonneg_required = _("Nonnegative width required"); const char *unexpected_element = _("Unexpected element %qc in format " "string at %L"); const char *unexpected_end = _("Unexpected end of format string"); const char *zero_width = _("Zero width in format descriptor"); const char *error; format_token t, u; int level; int repeat; bool rv; use_last_char = 0; saved_token = FMT_NONE; level = 0; repeat = 0; rv = true; format_string_pos = 0; t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_LPAREN) { error = _("Missing leading left parenthesis"); goto syntax; } t = format_lex (); if (t == FMT_ERROR) goto fail; if (t == FMT_RPAREN) goto finished; /* Empty format is legal */ saved_token = t; format_item: /* In this state, the next thing has to be a format item. */ t = format_lex (); if (t == FMT_ERROR) goto fail; format_item_1: switch (t) { case FMT_STAR: repeat = -1; t = format_lex (); if (t == FMT_ERROR) goto fail; if (t == FMT_LPAREN) { level++; goto format_item; } error = _("Left parenthesis required after %<*%>"); goto syntax; case FMT_POSINT: repeat = value; t = format_lex (); if (t == FMT_ERROR) goto fail; if (t == FMT_LPAREN) { level++; goto format_item; } if (t == FMT_SLASH) goto optional_comma; goto data_desc; case FMT_LPAREN: level++; goto format_item; case FMT_SIGNED_INT: case FMT_ZERO: /* Signed integer can only precede a P format. */ t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_P) { error = _("Expected P edit descriptor"); goto syntax; } goto data_desc; case FMT_P: /* P requires a prior number. */ error = _("P descriptor requires leading scale factor"); goto syntax; case FMT_X: /* X requires a prior number if we're being pedantic. */ if (mode != MODE_FORMAT) format_locus.nextc += format_string_pos; if (!gfc_notify_std (GFC_STD_GNU, "X descriptor requires leading " "space count at %L", &format_locus)) return false; goto between_desc; case FMT_SIGN: case FMT_BLANK: case FMT_DP: case FMT_DC: case FMT_RC: case FMT_RD: case FMT_RN: case FMT_RP: case FMT_RU: case FMT_RZ: goto between_desc; case FMT_CHAR: goto extension_optional_comma; case FMT_COLON: case FMT_SLASH: goto optional_comma; case FMT_DOLLAR: t = format_lex (); if (t == FMT_ERROR) goto fail; if (!gfc_notify_std (GFC_STD_GNU, "$ descriptor at %L", &format_locus)) return false; if (t != FMT_RPAREN || level > 0) { gfc_warning (0, "$ should be the last specifier in format at %L", &format_locus); goto optional_comma_1; } goto finished; case FMT_T: case FMT_TL: case FMT_TR: case FMT_IBOZ: case FMT_F: case FMT_E: case FMT_EN: case FMT_ES: case FMT_G: case FMT_L: case FMT_A: case FMT_D: case FMT_H: goto data_desc; case FMT_END: error = unexpected_end; goto syntax; default: error = unexpected_element; goto syntax; } data_desc: /* In this state, t must currently be a data descriptor. Deal with things that can/must follow the descriptor. */ switch (t) { case FMT_SIGN: case FMT_BLANK: case FMT_DP: case FMT_DC: case FMT_X: break; case FMT_P: /* No comma after P allowed only for F, E, EN, ES, D, or G. 10.1.1 (1). */ t = format_lex (); if (t == FMT_ERROR) goto fail; if (!(gfc_option.allow_std & GFC_STD_F2003) && t != FMT_COMMA && t != FMT_F && t != FMT_E && t != FMT_EN && t != FMT_ES && t != FMT_D && t != FMT_G && t != FMT_RPAREN && t != FMT_SLASH) { error = _("Comma required after P descriptor"); goto syntax; } if (t != FMT_COMMA) { if (t == FMT_POSINT) { t = format_lex (); if (t == FMT_ERROR) goto fail; } if (t != FMT_F && t != FMT_E && t != FMT_EN && t != FMT_ES && t != FMT_D && t != FMT_G && t != FMT_RPAREN && t != FMT_SLASH) { error = _("Comma required after P descriptor"); goto syntax; } } saved_token = t; goto optional_comma; case FMT_T: case FMT_TL: case FMT_TR: t = format_lex (); if (t != FMT_POSINT) { error = _("Positive width required with T descriptor"); goto syntax; } break; case FMT_L: t = format_lex (); if (t == FMT_ERROR) goto fail; if (t == FMT_POSINT) break; switch (gfc_notification_std (GFC_STD_GNU)) { case WARNING: if (mode != MODE_FORMAT) format_locus.nextc += format_string_pos; gfc_warning (0, "Extension: Missing positive width after L " "descriptor at %L", &format_locus); saved_token = t; break; case ERROR: error = posint_required; goto syntax; case SILENT: saved_token = t; break; default: gcc_unreachable (); } break; case FMT_A: t = format_lex (); if (t == FMT_ERROR) goto fail; if (t == FMT_ZERO) { error = zero_width; goto syntax; } if (t != FMT_POSINT) saved_token = t; break; case FMT_D: case FMT_E: case FMT_G: case FMT_EN: case FMT_ES: u = format_lex (); if (t == FMT_G && u == FMT_ZERO) { if (is_input) { error = zero_width; goto syntax; } if (!gfc_notify_std (GFC_STD_F2008, "% in format at %L", &format_locus)) return false; u = format_lex (); if (u != FMT_PERIOD) { saved_token = u; break; } u = format_lex (); if (u != FMT_POSINT) { error = posint_required; goto syntax; } u = format_lex (); if (u == FMT_E) { error = _("E specifier not allowed with g0 descriptor"); goto syntax; } saved_token = u; break; } if (u != FMT_POSINT) { format_locus.nextc += format_string_pos; gfc_error ("Positive width required in format " "specifier %s at %L", token_to_string (t), &format_locus); saved_token = u; goto fail; } u = format_lex (); if (u == FMT_ERROR) goto fail; if (u != FMT_PERIOD) { /* Warn if -std=legacy, otherwise error. */ format_locus.nextc += format_string_pos; if (gfc_option.warn_std != 0) { gfc_error ("Period required in format " "specifier %s at %L", token_to_string (t), &format_locus); saved_token = u; goto fail; } else gfc_warning (0, "Period required in format " "specifier %s at %L", token_to_string (t), &format_locus); /* If we go to finished, we need to unwind this before the next round. */ format_locus.nextc -= format_string_pos; saved_token = u; break; } u = format_lex (); if (u == FMT_ERROR) goto fail; if (u != FMT_ZERO && u != FMT_POSINT) { error = nonneg_required; goto syntax; } if (t == FMT_D) break; /* Look for optional exponent. */ u = format_lex (); if (u == FMT_ERROR) goto fail; if (u != FMT_E) { saved_token = u; } else { u = format_lex (); if (u == FMT_ERROR) goto fail; if (u != FMT_POSINT) { error = _("Positive exponent width required"); goto syntax; } } break; case FMT_F: t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } else if (is_input && t == FMT_ZERO) { error = posint_required; goto syntax; } t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_PERIOD) { /* Warn if -std=legacy, otherwise error. */ if (gfc_option.warn_std != 0) { error = _("Period required in format specifier"); goto syntax; } if (mode != MODE_FORMAT) format_locus.nextc += format_string_pos; gfc_warning (0, "Period required in format specifier at %L", &format_locus); saved_token = t; break; } t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } break; case FMT_H: if (!(gfc_option.allow_std & GFC_STD_GNU) && !inhibit_warnings) { if (mode != MODE_FORMAT) format_locus.nextc += format_string_pos; gfc_warning (0, "The H format specifier at %L is" " a Fortran 95 deleted feature", &format_locus); } if (mode == MODE_STRING) { format_string += value; format_length -= value; format_string_pos += repeat; } else { while (repeat >0) { next_char (INSTRING_WARN); repeat -- ; } } break; case FMT_IBOZ: t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } else if (is_input && t == FMT_ZERO) { error = posint_required; goto syntax; } t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_PERIOD) { saved_token = t; } else { t = format_lex (); if (t == FMT_ERROR) goto fail; if (t != FMT_ZERO && t != FMT_POSINT) { error = nonneg_required; goto syntax; } } break; default: error = unexpected_element; goto syntax; } between_desc: /* Between a descriptor and what comes next. */ t = format_lex (); if (t == FMT_ERROR) goto fail; switch (t) { case FMT_COMMA: goto format_item; case FMT_RPAREN: level--; if (level < 0) goto finished; goto between_desc; case FMT_COLON: case FMT_SLASH: goto optional_comma; case FMT_END: error = unexpected_end; goto syntax; default: if (mode != MODE_FORMAT) format_locus.nextc += format_string_pos - 1; if (!gfc_notify_std (GFC_STD_GNU, "Missing comma at %L", &format_locus)) return false; /* If we do not actually return a failure, we need to unwind this before the next round. */ if (mode != MODE_FORMAT) format_locus.nextc -= format_string_pos; goto format_item_1; } optional_comma: /* Optional comma is a weird between state where we've just finished reading a colon, slash, dollar or P descriptor. */ t = format_lex (); if (t == FMT_ERROR) goto fail; optional_comma_1: switch (t) { case FMT_COMMA: break; case FMT_RPAREN: level--; if (level < 0) goto finished; goto between_desc; default: /* Assume that we have another format item. */ saved_token = t; break; } goto format_item; extension_optional_comma: /* As a GNU extension, permit a missing comma after a string literal. */ t = format_lex (); if (t == FMT_ERROR) goto fail; switch (t) { case FMT_COMMA: break; case FMT_RPAREN: level--; if (level < 0) goto finished; goto between_desc; case FMT_COLON: case FMT_SLASH: goto optional_comma; case FMT_END: error = unexpected_end; goto syntax; default: if (mode != MODE_FORMAT) format_locus.nextc += format_string_pos; if (!gfc_notify_std (GFC_STD_GNU, "Missing comma at %L", &format_locus)) return false; /* If we do not actually return a failure, we need to unwind this before the next round. */ if (mode != MODE_FORMAT) format_locus.nextc -= format_string_pos; saved_token = t; break; } goto format_item; syntax: if (mode != MODE_FORMAT) format_locus.nextc += format_string_pos; if (error == unexpected_element) gfc_error (error, error_element, &format_locus); else gfc_error ("%s in format string at %L", error, &format_locus); fail: rv = false; finished: return rv; } /* Given an expression node that is a constant string, see if it looks like a format string. */ static bool check_format_string (gfc_expr *e, bool is_input) { bool rv; int i; if (!e || e->ts.type != BT_CHARACTER || e->expr_type != EXPR_CONSTANT) return true; mode = MODE_STRING; format_string = e->value.character.string; /* More elaborate measures are needed to show where a problem is within a format string that has been calculated, but that's probably not worth the effort. */ format_locus = e->where; rv = check_format (is_input); /* check for extraneous characters at the end of an otherwise valid format string, like '(A10,I3)F5' start at the end and move back to the last character processed, spaces are OK */ if (rv && e->value.character.length > format_string_pos) for (i=e->value.character.length-1;i>format_string_pos-1;i--) if (e->value.character.string[i] != ' ') { format_locus.nextc += format_length + 1; gfc_warning (0, "Extraneous characters in format at %L", &format_locus); break; } return rv; } /************ Fortran I/O statement matchers *************/ /* Match a FORMAT statement. This amounts to actually parsing the format descriptors in order to correctly locate the end of the format string. */ match gfc_match_format (void) { gfc_expr *e; locus start; if (gfc_current_ns->proc_name && gfc_current_ns->proc_name->attr.flavor == FL_MODULE) { gfc_error ("Format statement in module main block at %C"); return MATCH_ERROR; } /* Before parsing the rest of a FORMAT statement, check F2008:c1206. */ if ((gfc_current_state () == COMP_FUNCTION || gfc_current_state () == COMP_SUBROUTINE) && gfc_state_stack->previous->state == COMP_INTERFACE) { gfc_error ("FORMAT statement at %C cannot appear within an INTERFACE"); return MATCH_ERROR; } if (gfc_statement_label == NULL) { gfc_error ("Missing format label at %C"); return MATCH_ERROR; } gfc_gobble_whitespace (); mode = MODE_FORMAT; format_length = 0; start = gfc_current_locus; if (!check_format (false)) return MATCH_ERROR; if (gfc_match_eos () != MATCH_YES) { gfc_syntax_error (ST_FORMAT); return MATCH_ERROR; } /* The label doesn't get created until after the statement is done being matched, so we have to leave the string for later. */ gfc_current_locus = start; /* Back to the beginning */ new_st.loc = start; new_st.op = EXEC_NOP; e = gfc_get_character_expr (gfc_default_character_kind, &start, NULL, format_length); format_string = e->value.character.string; gfc_statement_label->format = e; mode = MODE_COPY; check_format (false); /* Guaranteed to succeed */ gfc_match_eos (); /* Guaranteed to succeed */ return MATCH_YES; } /* Check for a CHARACTER variable. The check for scalar is done in resolve_tag. */ static bool check_char_variable (gfc_expr *e) { if (e->expr_type != EXPR_VARIABLE || e->ts.type != BT_CHARACTER) { gfc_error("IOMSG must be a scalar-default-char-variable at %L", &e->where); return false; } return true; } static bool is_char_type (const char *name, gfc_expr *e) { gfc_resolve_expr (e); if (e->ts.type != BT_CHARACTER) { gfc_error ("%s requires a scalar-default-char-expr at %L", name, &e->where); return false; } return true; } /* Match an expression I/O tag of some sort. */ static match match_etag (const io_tag *tag, gfc_expr **v) { gfc_expr *result; match m; m = gfc_match (tag->spec); if (m != MATCH_YES) return m; m = gfc_match (tag->value, &result); if (m != MATCH_YES) { gfc_error ("Invalid value for %s specification at %C", tag->name); return MATCH_ERROR; } if (*v != NULL) { gfc_error ("Duplicate %s specification at %C", tag->name); gfc_free_expr (result); return MATCH_ERROR; } *v = result; return MATCH_YES; } /* Match a variable I/O tag of some sort. */ static match match_vtag (const io_tag *tag, gfc_expr **v) { gfc_expr *result; match m; m = gfc_match (tag->spec); if (m != MATCH_YES) return m; m = gfc_match (tag->value, &result); if (m != MATCH_YES) { gfc_error ("Invalid value for %s specification at %C", tag->name); return MATCH_ERROR; } if (*v != NULL) { gfc_error ("Duplicate %s specification at %C", tag->name); gfc_free_expr (result); return MATCH_ERROR; } if (result->symtree->n.sym->attr.intent == INTENT_IN) { gfc_error ("Variable %s cannot be INTENT(IN) at %C", tag->name); gfc_free_expr (result); return MATCH_ERROR; } bool impure = gfc_impure_variable (result->symtree->n.sym); if (impure && gfc_pure (NULL)) { gfc_error ("Variable %s cannot be assigned in PURE procedure at %C", tag->name); gfc_free_expr (result); return MATCH_ERROR; } if (impure) gfc_unset_implicit_pure (NULL); *v = result; return MATCH_YES; } /* Match I/O tags that cause variables to become redefined. */ static match match_out_tag (const io_tag *tag, gfc_expr **result) { match m; m = match_vtag (tag, result); if (m == MATCH_YES) gfc_check_do_variable ((*result)->symtree); return m; } /* Match a label I/O tag. */ static match match_ltag (const io_tag *tag, gfc_st_label ** label) { match m; gfc_st_label *old; old = *label; m = gfc_match (tag->spec); if (m != MATCH_YES) return m; m = gfc_match (tag->value, label); if (m != MATCH_YES) { gfc_error ("Invalid value for %s specification at %C", tag->name); return MATCH_ERROR; } if (old) { gfc_error ("Duplicate %s label specification at %C", tag->name); return MATCH_ERROR; } if (!gfc_reference_st_label (*label, ST_LABEL_TARGET)) return MATCH_ERROR; return m; } /* Resolution of the FORMAT tag, to be called from resolve_tag. */ static bool resolve_tag_format (const gfc_expr *e) { if (e->expr_type == EXPR_CONSTANT && (e->ts.type != BT_CHARACTER || e->ts.kind != gfc_default_character_kind)) { gfc_error ("Constant expression in FORMAT tag at %L must be " "of type default CHARACTER", &e->where); return false; } /* If e's rank is zero and e is not an element of an array, it should be of integer or character type. The integer variable should be ASSIGNED. */ if (e->rank == 0 && (e->expr_type != EXPR_VARIABLE || e->symtree == NULL || e->symtree->n.sym->as == NULL || e->symtree->n.sym->as->rank == 0)) { if ((e->ts.type != BT_CHARACTER || e->ts.kind != gfc_default_character_kind) && e->ts.type != BT_INTEGER) { gfc_error ("FORMAT tag at %L must be of type default-kind CHARACTER " "or of INTEGER", &e->where); return false; } else if (e->ts.type == BT_INTEGER && e->expr_type == EXPR_VARIABLE) { if (!gfc_notify_std (GFC_STD_F95_DEL, "ASSIGNED variable in " "FORMAT tag at %L", &e->where)) return false; if (e->symtree->n.sym->attr.assign != 1) { gfc_error ("Variable %qs at %L has not been assigned a " "format label", e->symtree->n.sym->name, &e->where); return false; } } else if (e->ts.type == BT_INTEGER) { gfc_error ("Scalar %qs in FORMAT tag at %L is not an ASSIGNED " "variable", gfc_basic_typename (e->ts.type), &e->where); return false; } return true; } /* If rank is nonzero and type is not character, we allow it under GFC_STD_LEGACY. It may be assigned an Hollerith constant. */ if (e->ts.type != BT_CHARACTER) { if (!gfc_notify_std (GFC_STD_LEGACY, "Non-character in FORMAT tag " "at %L", &e->where)) return false; if (e->rank == 0 && e->symtree->n.sym->as->type == AS_ASSUMED_SHAPE) { gfc_error ("Non-character assumed shape array element in FORMAT" " tag at %L", &e->where); return false; } if (e->rank == 0 && e->symtree->n.sym->as->type == AS_ASSUMED_SIZE) { gfc_error ("Non-character assumed size array element in FORMAT" " tag at %L", &e->where); return false; } if (e->rank == 0 && e->symtree->n.sym->attr.pointer) { gfc_error ("Non-character pointer array element in FORMAT tag at %L", &e->where); return false; } } return true; } /* Do expression resolution and type-checking on an expression tag. */ static bool resolve_tag (const io_tag *tag, gfc_expr *e) { if (e == NULL) return true; if (!gfc_resolve_expr (e)) return false; if (tag == &tag_format) return resolve_tag_format (e); if (e->ts.type != tag->type) { gfc_error ("%s tag at %L must be of type %s", tag->name, &e->where, gfc_basic_typename (tag->type)); return false; } if (e->ts.type == BT_CHARACTER && e->ts.kind != gfc_default_character_kind) { gfc_error ("%s tag at %L must be a character string of default kind", tag->name, &e->where); return false; } if (e->rank != 0) { gfc_error ("%s tag at %L must be scalar", tag->name, &e->where); return false; } if (tag == &tag_iomsg) { if (!gfc_notify_std (GFC_STD_F2003, "IOMSG tag at %L", &e->where)) return false; } if ((tag == &tag_iostat || tag == &tag_size || tag == &tag_iolength || tag == &tag_number || tag == &tag_nextrec || tag == &tag_s_recl) && e->ts.kind != gfc_default_integer_kind) { if (!gfc_notify_std (GFC_STD_F2003, "Fortran 95 requires default " "INTEGER in %s tag at %L", tag->name, &e->where)) return false; } if (e->ts.kind != gfc_default_logical_kind && (tag == &tag_exist || tag == &tag_named || tag == &tag_opened || tag == &tag_pending)) { if (!gfc_notify_std (GFC_STD_F2008, "Non-default LOGICAL kind " "in %s tag at %L", tag->name, &e->where)) return false; } if (tag == &tag_newunit) { if (!gfc_notify_std (GFC_STD_F2008, "NEWUNIT specifier at %L", &e->where)) return false; } /* NEWUNIT, IOSTAT, SIZE and IOMSG are variable definition contexts. */ if (tag == &tag_newunit || tag == &tag_iostat || tag == &tag_size || tag == &tag_iomsg) { char context[64]; sprintf (context, _("%s tag"), tag->name); if (!gfc_check_vardef_context (e, false, false, false, context)) return false; } if (tag == &tag_convert) { if (!gfc_notify_std (GFC_STD_GNU, "CONVERT tag at %L", &e->where)) return false; } return true; } /* Match a single tag of an OPEN statement. */ static match match_open_element (gfc_open *open) { match m; m = match_etag (&tag_e_async, &open->asynchronous); if (m == MATCH_YES && !is_char_type ("ASYNCHRONOUS", open->asynchronous)) return MATCH_ERROR; if (m != MATCH_NO) return m; m = match_etag (&tag_unit, &open->unit); if (m != MATCH_NO) return m; m = match_etag (&tag_iomsg, &open->iomsg); if (m == MATCH_YES && !check_char_variable (open->iomsg)) return MATCH_ERROR; if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &open->iostat); if (m != MATCH_NO) return m; m = match_etag (&tag_file, &open->file); if (m != MATCH_NO) return m; m = match_etag (&tag_status, &open->status); if (m != MATCH_NO) return m; m = match_etag (&tag_e_access, &open->access); if (m != MATCH_NO) return m; m = match_etag (&tag_e_form, &open->form); if (m != MATCH_NO) return m; m = match_etag (&tag_e_recl, &open->recl); if (m != MATCH_NO) return m; m = match_etag (&tag_e_blank, &open->blank); if (m != MATCH_NO) return m; m = match_etag (&tag_e_position, &open->position); if (m != MATCH_NO) return m; m = match_etag (&tag_e_action, &open->action); if (m != MATCH_NO) return m; m = match_etag (&tag_e_delim, &open->delim); if (m != MATCH_NO) return m; m = match_etag (&tag_e_pad, &open->pad); if (m != MATCH_NO) return m; m = match_etag (&tag_e_decimal, &open->decimal); if (m != MATCH_NO) return m; m = match_etag (&tag_e_encoding, &open->encoding); if (m != MATCH_NO) return m; m = match_etag (&tag_e_round, &open->round); if (m != MATCH_NO) return m; m = match_etag (&tag_e_sign, &open->sign); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &open->err); if (m != MATCH_NO) return m; m = match_etag (&tag_convert, &open->convert); if (m != MATCH_NO) return m; m = match_out_tag (&tag_newunit, &open->newunit); if (m != MATCH_NO) return m; return MATCH_NO; } /* Free the gfc_open structure and all the expressions it contains. */ void gfc_free_open (gfc_open *open) { if (open == NULL) return; gfc_free_expr (open->unit); gfc_free_expr (open->iomsg); gfc_free_expr (open->iostat); gfc_free_expr (open->file); gfc_free_expr (open->status); gfc_free_expr (open->access); gfc_free_expr (open->form); gfc_free_expr (open->recl); gfc_free_expr (open->blank); gfc_free_expr (open->position); gfc_free_expr (open->action); gfc_free_expr (open->delim); gfc_free_expr (open->pad); gfc_free_expr (open->decimal); gfc_free_expr (open->encoding); gfc_free_expr (open->round); gfc_free_expr (open->sign); gfc_free_expr (open->convert); gfc_free_expr (open->asynchronous); gfc_free_expr (open->newunit); free (open); } /* Resolve everything in a gfc_open structure. */ bool gfc_resolve_open (gfc_open *open) { RESOLVE_TAG (&tag_unit, open->unit); RESOLVE_TAG (&tag_iomsg, open->iomsg); RESOLVE_TAG (&tag_iostat, open->iostat); RESOLVE_TAG (&tag_file, open->file); RESOLVE_TAG (&tag_status, open->status); RESOLVE_TAG (&tag_e_access, open->access); RESOLVE_TAG (&tag_e_form, open->form); RESOLVE_TAG (&tag_e_recl, open->recl); RESOLVE_TAG (&tag_e_blank, open->blank); RESOLVE_TAG (&tag_e_position, open->position); RESOLVE_TAG (&tag_e_action, open->action); RESOLVE_TAG (&tag_e_delim, open->delim); RESOLVE_TAG (&tag_e_pad, open->pad); RESOLVE_TAG (&tag_e_decimal, open->decimal); RESOLVE_TAG (&tag_e_encoding, open->encoding); RESOLVE_TAG (&tag_e_async, open->asynchronous); RESOLVE_TAG (&tag_e_round, open->round); RESOLVE_TAG (&tag_e_sign, open->sign); RESOLVE_TAG (&tag_convert, open->convert); RESOLVE_TAG (&tag_newunit, open->newunit); if (!gfc_reference_st_label (open->err, ST_LABEL_TARGET)) return false; return true; } /* Check if a given value for a SPECIFIER is either in the list of values allowed in F95 or F2003, issuing an error message and returning a zero value if it is not allowed. */ static int compare_to_allowed_values (const char *specifier, const char *allowed[], const char *allowed_f2003[], const char *allowed_gnu[], gfc_char_t *value, const char *statement, bool warn) { int i; unsigned int len; len = gfc_wide_strlen (value); if (len > 0) { for (len--; len > 0; len--) if (value[len] != ' ') break; len++; } for (i = 0; allowed[i]; i++) if (len == strlen (allowed[i]) && gfc_wide_strncasecmp (value, allowed[i], strlen (allowed[i])) == 0) return 1; for (i = 0; allowed_f2003 && allowed_f2003[i]; i++) if (len == strlen (allowed_f2003[i]) && gfc_wide_strncasecmp (value, allowed_f2003[i], strlen (allowed_f2003[i])) == 0) { notification n = gfc_notification_std (GFC_STD_F2003); if (n == WARNING || (warn && n == ERROR)) { gfc_warning (0, "Fortran 2003: %s specifier in %s statement at %C " "has value %qs", specifier, statement, allowed_f2003[i]); return 1; } else if (n == ERROR) { gfc_notify_std (GFC_STD_F2003, "%s specifier in " "%s statement at %C has value %qs", specifier, statement, allowed_f2003[i]); return 0; } /* n == SILENT */ return 1; } for (i = 0; allowed_gnu && allowed_gnu[i]; i++) if (len == strlen (allowed_gnu[i]) && gfc_wide_strncasecmp (value, allowed_gnu[i], strlen (allowed_gnu[i])) == 0) { notification n = gfc_notification_std (GFC_STD_GNU); if (n == WARNING || (warn && n == ERROR)) { gfc_warning (0, "Extension: %s specifier in %s statement at %C " "has value %qs", specifier, statement, allowed_gnu[i]); return 1; } else if (n == ERROR) { gfc_notify_std (GFC_STD_GNU, "%s specifier in " "%s statement at %C has value %qs", specifier, statement, allowed_gnu[i]); return 0; } /* n == SILENT */ return 1; } if (warn) { char *s = gfc_widechar_to_char (value, -1); gfc_warning (0, "%s specifier in %s statement at %C has invalid value %qs", specifier, statement, s); free (s); return 1; } else { char *s = gfc_widechar_to_char (value, -1); gfc_error ("%s specifier in %s statement at %C has invalid value %qs", specifier, statement, s); free (s); return 0; } } /* Match an OPEN statement. */ match gfc_match_open (void) { gfc_open *open; match m; bool warn; m = gfc_match_char ('('); if (m == MATCH_NO) return m; open = XCNEW (gfc_open); m = match_open_element (open); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { m = gfc_match_expr (&open->unit); if (m == MATCH_ERROR) goto cleanup; } for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_open_element (open); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } if (gfc_match_eos () == MATCH_NO) goto syntax; if (gfc_pure (NULL)) { gfc_error ("OPEN statement not allowed in PURE procedure at %C"); goto cleanup; } gfc_unset_implicit_pure (NULL); warn = (open->err || open->iostat) ? true : false; /* Checks on NEWUNIT specifier. */ if (open->newunit) { if (open->unit) { gfc_error ("UNIT specifier not allowed with NEWUNIT at %C"); goto cleanup; } if (!(open->file || (open->status && gfc_wide_strncasecmp (open->status->value.character.string, "scratch", 7) == 0))) { gfc_error ("NEWUNIT specifier must have FILE= " "or STATUS='scratch' at %C"); goto cleanup; } } else if (!open->unit) { gfc_error ("OPEN statement at %C must have UNIT or NEWUNIT specified"); goto cleanup; } /* Checks on the ACCESS specifier. */ if (open->access && open->access->expr_type == EXPR_CONSTANT) { static const char *access_f95[] = { "SEQUENTIAL", "DIRECT", NULL }; static const char *access_f2003[] = { "STREAM", NULL }; static const char *access_gnu[] = { "APPEND", NULL }; if (!is_char_type ("ACCESS", open->access)) goto cleanup; if (!compare_to_allowed_values ("ACCESS", access_f95, access_f2003, access_gnu, open->access->value.character.string, "OPEN", warn)) goto cleanup; } /* Checks on the ACTION specifier. */ if (open->action && open->action->expr_type == EXPR_CONSTANT) { static const char *action[] = { "READ", "WRITE", "READWRITE", NULL }; if (!is_char_type ("ACTION", open->action)) goto cleanup; if (!compare_to_allowed_values ("ACTION", action, NULL, NULL, open->action->value.character.string, "OPEN", warn)) goto cleanup; } /* Checks on the ASYNCHRONOUS specifier. */ if (open->asynchronous) { if (!gfc_notify_std (GFC_STD_F2003, "ASYNCHRONOUS= at %C " "not allowed in Fortran 95")) goto cleanup; if (!is_char_type ("ASYNCHRONOUS", open->asynchronous)) goto cleanup; if (open->asynchronous->expr_type == EXPR_CONSTANT) { static const char * asynchronous[] = { "YES", "NO", NULL }; if (!compare_to_allowed_values ("ASYNCHRONOUS", asynchronous, NULL, NULL, open->asynchronous->value.character.string, "OPEN", warn)) goto cleanup; } } /* Checks on the BLANK specifier. */ if (open->blank) { if (!gfc_notify_std (GFC_STD_F2003, "BLANK= at %C " "not allowed in Fortran 95")) goto cleanup; if (!is_char_type ("BLANK", open->blank)) goto cleanup; if (open->blank->expr_type == EXPR_CONSTANT) { static const char *blank[] = { "ZERO", "NULL", NULL }; if (!compare_to_allowed_values ("BLANK", blank, NULL, NULL, open->blank->value.character.string, "OPEN", warn)) goto cleanup; } } /* Checks on the DECIMAL specifier. */ if (open->decimal) { if (!gfc_notify_std (GFC_STD_F2003, "DECIMAL= at %C " "not allowed in Fortran 95")) goto cleanup; if (!is_char_type ("DECIMAL", open->decimal)) goto cleanup; if (open->decimal->expr_type == EXPR_CONSTANT) { static const char * decimal[] = { "COMMA", "POINT", NULL }; if (!compare_to_allowed_values ("DECIMAL", decimal, NULL, NULL, open->decimal->value.character.string, "OPEN", warn)) goto cleanup; } } /* Checks on the DELIM specifier. */ if (open->delim) { if (open->delim->expr_type == EXPR_CONSTANT) { static const char *delim[] = { "APOSTROPHE", "QUOTE", "NONE", NULL }; if (!is_char_type ("DELIM", open->delim)) goto cleanup; if (!compare_to_allowed_values ("DELIM", delim, NULL, NULL, open->delim->value.character.string, "OPEN", warn)) goto cleanup; } } /* Checks on the ENCODING specifier. */ if (open->encoding) { if (!gfc_notify_std (GFC_STD_F2003, "ENCODING= at %C " "not allowed in Fortran 95")) goto cleanup; if (!is_char_type ("ENCODING", open->encoding)) goto cleanup; if (open->encoding->expr_type == EXPR_CONSTANT) { static const char * encoding[] = { "DEFAULT", "UTF-8", NULL }; if (!compare_to_allowed_values ("ENCODING", encoding, NULL, NULL, open->encoding->value.character.string, "OPEN", warn)) goto cleanup; } } /* Checks on the FORM specifier. */ if (open->form && open->form->expr_type == EXPR_CONSTANT) { static const char *form[] = { "FORMATTED", "UNFORMATTED", NULL }; if (!is_char_type ("FORM", open->form)) goto cleanup; if (!compare_to_allowed_values ("FORM", form, NULL, NULL, open->form->value.character.string, "OPEN", warn)) goto cleanup; } /* Checks on the PAD specifier. */ if (open->pad && open->pad->expr_type == EXPR_CONSTANT) { static const char *pad[] = { "YES", "NO", NULL }; if (!is_char_type ("PAD", open->pad)) goto cleanup; if (!compare_to_allowed_values ("PAD", pad, NULL, NULL, open->pad->value.character.string, "OPEN", warn)) goto cleanup; } /* Checks on the POSITION specifier. */ if (open->position && open->position->expr_type == EXPR_CONSTANT) { static const char *position[] = { "ASIS", "REWIND", "APPEND", NULL }; if (!is_char_type ("POSITION", open->position)) goto cleanup; if (!compare_to_allowed_values ("POSITION", position, NULL, NULL, open->position->value.character.string, "OPEN", warn)) goto cleanup; } /* Checks on the ROUND specifier. */ if (open->round) { if (!gfc_notify_std (GFC_STD_F2003, "ROUND= at %C " "not allowed in Fortran 95")) goto cleanup; if (!is_char_type ("ROUND", open->round)) goto cleanup; if (open->round->expr_type == EXPR_CONSTANT) { static const char * round[] = { "UP", "DOWN", "ZERO", "NEAREST", "COMPATIBLE", "PROCESSOR_DEFINED", NULL }; if (!compare_to_allowed_values ("ROUND", round, NULL, NULL, open->round->value.character.string, "OPEN", warn)) goto cleanup; } } /* Checks on the SIGN specifier. */ if (open->sign) { if (!gfc_notify_std (GFC_STD_F2003, "SIGN= at %C " "not allowed in Fortran 95")) goto cleanup; if (!is_char_type ("SIGN", open->sign)) goto cleanup; if (open->sign->expr_type == EXPR_CONSTANT) { static const char * sign[] = { "PLUS", "SUPPRESS", "PROCESSOR_DEFINED", NULL }; if (!compare_to_allowed_values ("SIGN", sign, NULL, NULL, open->sign->value.character.string, "OPEN", warn)) goto cleanup; } } #define warn_or_error(...) \ { \ if (warn) \ gfc_warning (0, __VA_ARGS__); \ else \ { \ gfc_error (__VA_ARGS__); \ goto cleanup; \ } \ } /* Checks on the RECL specifier. */ if (open->recl && open->recl->expr_type == EXPR_CONSTANT && open->recl->ts.type == BT_INTEGER && mpz_sgn (open->recl->value.integer) != 1) { warn_or_error ("RECL in OPEN statement at %C must be positive"); } /* Checks on the STATUS specifier. */ if (open->status && open->status->expr_type == EXPR_CONSTANT) { static const char *status[] = { "OLD", "NEW", "SCRATCH", "REPLACE", "UNKNOWN", NULL }; if (!is_char_type ("STATUS", open->status)) goto cleanup; if (!compare_to_allowed_values ("STATUS", status, NULL, NULL, open->status->value.character.string, "OPEN", warn)) goto cleanup; /* F2003, 9.4.5: If the STATUS= specifier has the value NEW or REPLACE, the FILE= specifier shall appear. */ if (open->file == NULL && (gfc_wide_strncasecmp (open->status->value.character.string, "replace", 7) == 0 || gfc_wide_strncasecmp (open->status->value.character.string, "new", 3) == 0)) { char *s = gfc_widechar_to_char (open->status->value.character.string, -1); warn_or_error ("The STATUS specified in OPEN statement at %C is " "%qs and no FILE specifier is present", s); free (s); } /* F2003, 9.4.5: If the STATUS= specifier has the value SCRATCH, the FILE= specifier shall not appear. */ if (gfc_wide_strncasecmp (open->status->value.character.string, "scratch", 7) == 0 && open->file) { warn_or_error ("The STATUS specified in OPEN statement at %C " "cannot have the value SCRATCH if a FILE specifier " "is present"); } } /* Things that are not allowed for unformatted I/O. */ if (open->form && open->form->expr_type == EXPR_CONSTANT && (open->delim || open->decimal || open->encoding || open->round || open->sign || open->pad || open->blank) && gfc_wide_strncasecmp (open->form->value.character.string, "unformatted", 11) == 0) { const char *spec = (open->delim ? "DELIM " : (open->pad ? "PAD " : open->blank ? "BLANK " : "")); warn_or_error ("%s specifier at %C not allowed in OPEN statement for " "unformatted I/O", spec); } if (open->recl && open->access && open->access->expr_type == EXPR_CONSTANT && gfc_wide_strncasecmp (open->access->value.character.string, "stream", 6) == 0) { warn_or_error ("RECL specifier not allowed in OPEN statement at %C for " "stream I/O"); } if (open->position && open->access && open->access->expr_type == EXPR_CONSTANT && !(gfc_wide_strncasecmp (open->access->value.character.string, "sequential", 10) == 0 || gfc_wide_strncasecmp (open->access->value.character.string, "stream", 6) == 0 || gfc_wide_strncasecmp (open->access->value.character.string, "append", 6) == 0)) { warn_or_error ("POSITION specifier in OPEN statement at %C only allowed " "for stream or sequential ACCESS"); } #undef warn_or_error new_st.op = EXEC_OPEN; new_st.ext.open = open; return MATCH_YES; syntax: gfc_syntax_error (ST_OPEN); cleanup: gfc_free_open (open); return MATCH_ERROR; } /* Free a gfc_close structure an all its expressions. */ void gfc_free_close (gfc_close *close) { if (close == NULL) return; gfc_free_expr (close->unit); gfc_free_expr (close->iomsg); gfc_free_expr (close->iostat); gfc_free_expr (close->status); free (close); } /* Match elements of a CLOSE statement. */ static match match_close_element (gfc_close *close) { match m; m = match_etag (&tag_unit, &close->unit); if (m != MATCH_NO) return m; m = match_etag (&tag_status, &close->status); if (m != MATCH_NO) return m; m = match_etag (&tag_iomsg, &close->iomsg); if (m == MATCH_YES && !check_char_variable (close->iomsg)) return MATCH_ERROR; if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &close->iostat); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &close->err); if (m != MATCH_NO) return m; return MATCH_NO; } /* Match a CLOSE statement. */ match gfc_match_close (void) { gfc_close *close; match m; bool warn; m = gfc_match_char ('('); if (m == MATCH_NO) return m; close = XCNEW (gfc_close); m = match_close_element (close); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { m = gfc_match_expr (&close->unit); if (m == MATCH_NO) goto syntax; if (m == MATCH_ERROR) goto cleanup; } for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_close_element (close); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } if (gfc_match_eos () == MATCH_NO) goto syntax; if (gfc_pure (NULL)) { gfc_error ("CLOSE statement not allowed in PURE procedure at %C"); goto cleanup; } gfc_unset_implicit_pure (NULL); warn = (close->iostat || close->err) ? true : false; /* Checks on the STATUS specifier. */ if (close->status && close->status->expr_type == EXPR_CONSTANT) { static const char *status[] = { "KEEP", "DELETE", NULL }; if (!is_char_type ("STATUS", close->status)) goto cleanup; if (!compare_to_allowed_values ("STATUS", status, NULL, NULL, close->status->value.character.string, "CLOSE", warn)) goto cleanup; } new_st.op = EXEC_CLOSE; new_st.ext.close = close; return MATCH_YES; syntax: gfc_syntax_error (ST_CLOSE); cleanup: gfc_free_close (close); return MATCH_ERROR; } /* Resolve everything in a gfc_close structure. */ bool gfc_resolve_close (gfc_close *close) { RESOLVE_TAG (&tag_unit, close->unit); RESOLVE_TAG (&tag_iomsg, close->iomsg); RESOLVE_TAG (&tag_iostat, close->iostat); RESOLVE_TAG (&tag_status, close->status); if (!gfc_reference_st_label (close->err, ST_LABEL_TARGET)) return false; if (close->unit == NULL) { /* Find a locus from one of the arguments to close, when UNIT is not specified. */ locus loc = gfc_current_locus; if (close->status) loc = close->status->where; else if (close->iostat) loc = close->iostat->where; else if (close->iomsg) loc = close->iomsg->where; else if (close->err) loc = close->err->where; gfc_error ("CLOSE statement at %L requires a UNIT number", &loc); return false; } if (close->unit->expr_type == EXPR_CONSTANT && close->unit->ts.type == BT_INTEGER && mpz_sgn (close->unit->value.integer) < 0) { gfc_error ("UNIT number in CLOSE statement at %L must be non-negative", &close->unit->where); } return true; } /* Free a gfc_filepos structure. */ void gfc_free_filepos (gfc_filepos *fp) { gfc_free_expr (fp->unit); gfc_free_expr (fp->iomsg); gfc_free_expr (fp->iostat); free (fp); } /* Match elements of a REWIND, BACKSPACE, ENDFILE, or FLUSH statement. */ static match match_file_element (gfc_filepos *fp) { match m; m = match_etag (&tag_unit, &fp->unit); if (m != MATCH_NO) return m; m = match_etag (&tag_iomsg, &fp->iomsg); if (m == MATCH_YES && !check_char_variable (fp->iomsg)) return MATCH_ERROR; if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &fp->iostat); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &fp->err); if (m != MATCH_NO) return m; return MATCH_NO; } /* Match the second half of the file-positioning statements, REWIND, BACKSPACE, ENDFILE, or the FLUSH statement. */ static match match_filepos (gfc_statement st, gfc_exec_op op) { gfc_filepos *fp; match m; fp = XCNEW (gfc_filepos); if (gfc_match_char ('(') == MATCH_NO) { m = gfc_match_expr (&fp->unit); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; goto done; } m = match_file_element (fp); if (m == MATCH_ERROR) goto done; if (m == MATCH_NO) { m = gfc_match_expr (&fp->unit); if (m == MATCH_ERROR || m == MATCH_NO) goto syntax; } for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_file_element (fp); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } done: if (gfc_match_eos () != MATCH_YES) goto syntax; if (gfc_pure (NULL)) { gfc_error ("%s statement not allowed in PURE procedure at %C", gfc_ascii_statement (st)); goto cleanup; } gfc_unset_implicit_pure (NULL); new_st.op = op; new_st.ext.filepos = fp; return MATCH_YES; syntax: gfc_syntax_error (st); cleanup: gfc_free_filepos (fp); return MATCH_ERROR; } bool gfc_resolve_filepos (gfc_filepos *fp) { RESOLVE_TAG (&tag_unit, fp->unit); RESOLVE_TAG (&tag_iostat, fp->iostat); RESOLVE_TAG (&tag_iomsg, fp->iomsg); if (!gfc_reference_st_label (fp->err, ST_LABEL_TARGET)) return false; if (!fp->unit && (fp->iostat || fp->iomsg)) { locus where; where = fp->iostat ? fp->iostat->where : fp->iomsg->where; gfc_error ("UNIT number missing in statement at %L", &where); return false; } if (fp->unit->expr_type == EXPR_CONSTANT && fp->unit->ts.type == BT_INTEGER && mpz_sgn (fp->unit->value.integer) < 0) { gfc_error ("UNIT number in statement at %L must be non-negative", &fp->unit->where); return false; } return true; } /* Match the file positioning statements: ENDFILE, BACKSPACE, REWIND, and the FLUSH statement. */ match gfc_match_endfile (void) { return match_filepos (ST_END_FILE, EXEC_ENDFILE); } match gfc_match_backspace (void) { return match_filepos (ST_BACKSPACE, EXEC_BACKSPACE); } match gfc_match_rewind (void) { return match_filepos (ST_REWIND, EXEC_REWIND); } match gfc_match_flush (void) { if (!gfc_notify_std (GFC_STD_F2003, "FLUSH statement at %C")) return MATCH_ERROR; return match_filepos (ST_FLUSH, EXEC_FLUSH); } /******************** Data Transfer Statements *********************/ /* Return a default unit number. */ static gfc_expr * default_unit (io_kind k) { int unit; if (k == M_READ) unit = 5; else unit = 6; return gfc_get_int_expr (gfc_default_integer_kind, NULL, unit); } /* Match a unit specification for a data transfer statement. */ static match match_dt_unit (io_kind k, gfc_dt *dt) { gfc_expr *e; if (gfc_match_char ('*') == MATCH_YES) { if (dt->io_unit != NULL) goto conflict; dt->io_unit = default_unit (k); return MATCH_YES; } if (gfc_match_expr (&e) == MATCH_YES) { if (dt->io_unit != NULL) { gfc_free_expr (e); goto conflict; } dt->io_unit = e; return MATCH_YES; } return MATCH_NO; conflict: gfc_error ("Duplicate UNIT specification at %C"); return MATCH_ERROR; } /* Match a format specification. */ static match match_dt_format (gfc_dt *dt) { locus where; gfc_expr *e; gfc_st_label *label; match m; where = gfc_current_locus; if (gfc_match_char ('*') == MATCH_YES) { if (dt->format_expr != NULL || dt->format_label != NULL) goto conflict; dt->format_label = &format_asterisk; return MATCH_YES; } if ((m = gfc_match_st_label (&label)) == MATCH_YES) { char c; /* Need to check if the format label is actually either an operand to a user-defined operator or is a kind type parameter. That is, print 2.ip.8 ! .ip. is a user-defined operator return CHARACTER. print 1_'(I0)', i ! 1_'(I0)' is a default character string. */ gfc_gobble_whitespace (); c = gfc_peek_ascii_char (); if (c == '.' || c == '_') gfc_current_locus = where; else { if (dt->format_expr != NULL || dt->format_label != NULL) { gfc_free_st_label (label); goto conflict; } if (!gfc_reference_st_label (label, ST_LABEL_FORMAT)) return MATCH_ERROR; dt->format_label = label; return MATCH_YES; } } else if (m == MATCH_ERROR) /* The label was zero or too large. Emit the correct diagnosis. */ return MATCH_ERROR; if (gfc_match_expr (&e) == MATCH_YES) { if (dt->format_expr != NULL || dt->format_label != NULL) { gfc_free_expr (e); goto conflict; } dt->format_expr = e; return MATCH_YES; } gfc_current_locus = where; /* The only case where we have to restore */ return MATCH_NO; conflict: gfc_error ("Duplicate format specification at %C"); return MATCH_ERROR; } /* Traverse a namelist that is part of a READ statement to make sure that none of the variables in the namelist are INTENT(IN). Returns nonzero if we find such a variable. */ static int check_namelist (gfc_symbol *sym) { gfc_namelist *p; for (p = sym->namelist; p; p = p->next) if (p->sym->attr.intent == INTENT_IN) { gfc_error ("Symbol %qs in namelist %qs is INTENT(IN) at %C", p->sym->name, sym->name); return 1; } return 0; } /* Match a single data transfer element. */ static match match_dt_element (io_kind k, gfc_dt *dt) { char name[GFC_MAX_SYMBOL_LEN + 1]; gfc_symbol *sym; match m; if (gfc_match (" unit =") == MATCH_YES) { m = match_dt_unit (k, dt); if (m != MATCH_NO) return m; } if (gfc_match (" fmt =") == MATCH_YES) { m = match_dt_format (dt); if (m != MATCH_NO) return m; } if (gfc_match (" nml = %n", name) == MATCH_YES) { if (dt->namelist != NULL) { gfc_error ("Duplicate NML specification at %C"); return MATCH_ERROR; } if (gfc_find_symbol (name, NULL, 1, &sym)) return MATCH_ERROR; if (sym == NULL || sym->attr.flavor != FL_NAMELIST) { gfc_error ("Symbol %qs at %C must be a NAMELIST group name", sym != NULL ? sym->name : name); return MATCH_ERROR; } dt->namelist = sym; if (k == M_READ && check_namelist (sym)) return MATCH_ERROR; return MATCH_YES; } m = match_etag (&tag_e_async, &dt->asynchronous); if (m == MATCH_YES && !is_char_type ("ASYNCHRONOUS", dt->asynchronous)) return MATCH_ERROR; if (m != MATCH_NO) return m; m = match_etag (&tag_e_blank, &dt->blank); if (m != MATCH_NO) return m; m = match_etag (&tag_e_delim, &dt->delim); if (m != MATCH_NO) return m; m = match_etag (&tag_e_pad, &dt->pad); if (m != MATCH_NO) return m; m = match_etag (&tag_e_sign, &dt->sign); if (m != MATCH_NO) return m; m = match_etag (&tag_e_round, &dt->round); if (m != MATCH_NO) return m; m = match_out_tag (&tag_id, &dt->id); if (m != MATCH_NO) return m; m = match_etag (&tag_e_decimal, &dt->decimal); if (m != MATCH_NO) return m; m = match_etag (&tag_rec, &dt->rec); if (m != MATCH_NO) return m; m = match_etag (&tag_spos, &dt->pos); if (m != MATCH_NO) return m; m = match_etag (&tag_iomsg, &dt->iomsg); if (m == MATCH_YES && !check_char_variable (dt->iomsg)) return MATCH_ERROR; if (m != MATCH_NO) return m; m = match_out_tag (&tag_iostat, &dt->iostat); if (m != MATCH_NO) return m; m = match_ltag (&tag_err, &dt->err); if (m == MATCH_YES) dt->err_where = gfc_current_locus; if (m != MATCH_NO) return m; m = match_etag (&tag_advance, &dt->advance); if (m != MATCH_NO) return m; m = match_out_tag (&tag_size, &dt->size); if (m != MATCH_NO) return m; m = match_ltag (&tag_end, &dt->end); if (m == MATCH_YES) { if (k == M_WRITE) { gfc_error ("END tag at %C not allowed in output statement"); return MATCH_ERROR; } dt->end_where = gfc_current_locus; } if (m != MATCH_NO) return m; m = match_ltag (&tag_eor, &dt->eor); if (m == MATCH_YES) dt->eor_where = gfc_current_locus; if (m != MATCH_NO) return m; return MATCH_NO; } /* Free a data transfer structure and everything below it. */ void gfc_free_dt (gfc_dt *dt) { if (dt == NULL) return; gfc_free_expr (dt->io_unit); gfc_free_expr (dt->format_expr); gfc_free_expr (dt->rec); gfc_free_expr (dt->advance); gfc_free_expr (dt->iomsg); gfc_free_expr (dt->iostat); gfc_free_expr (dt->size); gfc_free_expr (dt->pad); gfc_free_expr (dt->delim); gfc_free_expr (dt->sign); gfc_free_expr (dt->round); gfc_free_expr (dt->blank); gfc_free_expr (dt->decimal); gfc_free_expr (dt->pos); gfc_free_expr (dt->dt_io_kind); /* dt->extra_comma is a link to dt_io_kind if it is set. */ free (dt); } /* Resolve everything in a gfc_dt structure. */ bool gfc_resolve_dt (gfc_dt *dt, locus *loc) { gfc_expr *e; io_kind k; /* This is set in any case. */ gcc_assert (dt->dt_io_kind); k = dt->dt_io_kind->value.iokind; RESOLVE_TAG (&tag_format, dt->format_expr); RESOLVE_TAG (&tag_rec, dt->rec); RESOLVE_TAG (&tag_spos, dt->pos); RESOLVE_TAG (&tag_advance, dt->advance); RESOLVE_TAG (&tag_id, dt->id); RESOLVE_TAG (&tag_iomsg, dt->iomsg); RESOLVE_TAG (&tag_iostat, dt->iostat); RESOLVE_TAG (&tag_size, dt->size); RESOLVE_TAG (&tag_e_pad, dt->pad); RESOLVE_TAG (&tag_e_delim, dt->delim); RESOLVE_TAG (&tag_e_sign, dt->sign); RESOLVE_TAG (&tag_e_round, dt->round); RESOLVE_TAG (&tag_e_blank, dt->blank); RESOLVE_TAG (&tag_e_decimal, dt->decimal); RESOLVE_TAG (&tag_e_async, dt->asynchronous); e = dt->io_unit; if (e == NULL) { gfc_error ("UNIT not specified at %L", loc); return false; } if (gfc_resolve_expr (e) && (e->ts.type != BT_INTEGER && (e->ts.type != BT_CHARACTER || e->expr_type != EXPR_VARIABLE))) { /* If there is no extra comma signifying the "format" form of the IO statement, then this must be an error. */ if (!dt->extra_comma) { gfc_error ("UNIT specification at %L must be an INTEGER expression " "or a CHARACTER variable", &e->where); return false; } else { /* At this point, we have an extra comma. If io_unit has arrived as type character, we assume its really the "format" form of the I/O statement. We set the io_unit to the default unit and format to the character expression. See F95 Standard section 9.4. */ if (e->ts.type == BT_CHARACTER && (k == M_READ || k == M_PRINT)) { dt->format_expr = dt->io_unit; dt->io_unit = default_unit (k); /* Nullify this pointer now so that a warning/error is not triggered below for the "Extension". */ dt->extra_comma = NULL; } if (k == M_WRITE) { gfc_error ("Invalid form of WRITE statement at %L, UNIT required", &dt->extra_comma->where); return false; } } } if (e->ts.type == BT_CHARACTER) { if (gfc_has_vector_index (e)) { gfc_error ("Internal unit with vector subscript at %L", &e->where); return false; } /* If we are writing, make sure the internal unit can be changed. */ gcc_assert (k != M_PRINT); if (k == M_WRITE && !gfc_check_vardef_context (e, false, false, false, _("internal unit in WRITE"))) return false; } if (e->rank && e->ts.type != BT_CHARACTER) { gfc_error ("External IO UNIT cannot be an array at %L", &e->where); return false; } if (e->expr_type == EXPR_CONSTANT && e->ts.type == BT_INTEGER && mpz_sgn (e->value.integer) < 0) { gfc_error ("UNIT number in statement at %L must be non-negative", &e->where); return false; } /* If we are reading and have a namelist, check that all namelist symbols can appear in a variable definition context. */ if (k == M_READ && dt->namelist) { gfc_namelist* n; for (n = dt->namelist->namelist; n; n = n->next) { gfc_expr* e; bool t; e = gfc_get_variable_expr (gfc_find_sym_in_symtree (n->sym)); t = gfc_check_vardef_context (e, false, false, false, NULL); gfc_free_expr (e); if (!t) { gfc_error ("NAMELIST %qs in READ statement at %L contains" " the symbol %qs which may not appear in a" " variable definition context", dt->namelist->name, loc, n->sym->name); return false; } } } if (dt->extra_comma && !gfc_notify_std (GFC_STD_GNU, "Comma before i/o item list at %L", &dt->extra_comma->where)) return false; if (dt->err) { if (!gfc_reference_st_label (dt->err, ST_LABEL_TARGET)) return false; if (dt->err->defined == ST_LABEL_UNKNOWN) { gfc_error ("ERR tag label %d at %L not defined", dt->err->value, &dt->err_where); return false; } } if (dt->end) { if (!gfc_reference_st_label (dt->end, ST_LABEL_TARGET)) return false; if (dt->end->defined == ST_LABEL_UNKNOWN) { gfc_error ("END tag label %d at %L not defined", dt->end->value, &dt->end_where); return false; } } if (dt->eor) { if (!gfc_reference_st_label (dt->eor, ST_LABEL_TARGET)) return false; if (dt->eor->defined == ST_LABEL_UNKNOWN) { gfc_error ("EOR tag label %d at %L not defined", dt->eor->value, &dt->eor_where); return false; } } /* Check the format label actually exists. */ if (dt->format_label && dt->format_label != &format_asterisk && dt->format_label->defined == ST_LABEL_UNKNOWN) { gfc_error ("FORMAT label %d at %L not defined", dt->format_label->value, &dt->format_label->where); return false; } return true; } /* Given an io_kind, return its name. */ static const char * io_kind_name (io_kind k) { const char *name; switch (k) { case M_READ: name = "READ"; break; case M_WRITE: name = "WRITE"; break; case M_PRINT: name = "PRINT"; break; case M_INQUIRE: name = "INQUIRE"; break; default: gfc_internal_error ("io_kind_name(): bad I/O-kind"); } return name; } /* Match an IO iteration statement of the form: ( [ ,] , I = , [, ] ) which is equivalent to a single IO element. This function is mutually recursive with match_io_element(). */ static match match_io_element (io_kind, gfc_code **); static match match_io_iterator (io_kind k, gfc_code **result) { gfc_code *head, *tail, *new_code; gfc_iterator *iter; locus old_loc; match m; int n; iter = NULL; head = NULL; old_loc = gfc_current_locus; if (gfc_match_char ('(') != MATCH_YES) return MATCH_NO; m = match_io_element (k, &head); tail = head; if (m != MATCH_YES || gfc_match_char (',') != MATCH_YES) { m = MATCH_NO; goto cleanup; } /* Can't be anything but an IO iterator. Build a list. */ iter = gfc_get_iterator (); for (n = 1;; n++) { m = gfc_match_iterator (iter, 0); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_YES) { gfc_check_do_variable (iter->var->symtree); break; } m = match_io_element (k, &new_code); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { if (n > 2) goto syntax; goto cleanup; } tail = gfc_append_code (tail, new_code); if (gfc_match_char (',') != MATCH_YES) { if (n > 2) goto syntax; m = MATCH_NO; goto cleanup; } } if (gfc_match_char (')') != MATCH_YES) goto syntax; new_code = gfc_get_code (EXEC_DO); new_code->ext.iterator = iter; new_code->block = gfc_get_code (EXEC_DO); new_code->block->next = head; *result = new_code; return MATCH_YES; syntax: gfc_error ("Syntax error in I/O iterator at %C"); m = MATCH_ERROR; cleanup: gfc_free_iterator (iter, 1); gfc_free_statements (head); gfc_current_locus = old_loc; return m; } /* Match a single element of an IO list, which is either a single expression or an IO Iterator. */ static match match_io_element (io_kind k, gfc_code **cpp) { gfc_expr *expr; gfc_code *cp; match m; expr = NULL; m = match_io_iterator (k, cpp); if (m == MATCH_YES) return MATCH_YES; if (k == M_READ) { m = gfc_match_variable (&expr, 0); if (m == MATCH_NO) gfc_error ("Expected variable in READ statement at %C"); } else { m = gfc_match_expr (&expr); if (m == MATCH_NO) gfc_error ("Expected expression in %s statement at %C", io_kind_name (k)); } if (m == MATCH_YES && k == M_READ && gfc_check_do_variable (expr->symtree)) m = MATCH_ERROR; if (m != MATCH_YES) { gfc_free_expr (expr); return MATCH_ERROR; } cp = gfc_get_code (EXEC_TRANSFER); cp->expr1 = expr; if (k != M_INQUIRE) cp->ext.dt = current_dt; *cpp = cp; return MATCH_YES; } /* Match an I/O list, building gfc_code structures as we go. */ static match match_io_list (io_kind k, gfc_code **head_p) { gfc_code *head, *tail, *new_code; match m; *head_p = head = tail = NULL; if (gfc_match_eos () == MATCH_YES) return MATCH_YES; for (;;) { m = match_io_element (k, &new_code); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; tail = gfc_append_code (tail, new_code); if (head == NULL) head = new_code; if (gfc_match_eos () == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; } *head_p = head; return MATCH_YES; syntax: gfc_error ("Syntax error in %s statement at %C", io_kind_name (k)); cleanup: gfc_free_statements (head); return MATCH_ERROR; } /* Attach the data transfer end node. */ static void terminate_io (gfc_code *io_code) { gfc_code *c; if (io_code == NULL) io_code = new_st.block; c = gfc_get_code (EXEC_DT_END); /* Point to structure that is already there */ c->ext.dt = new_st.ext.dt; gfc_append_code (io_code, c); } /* Check the constraints for a data transfer statement. The majority of the constraints appearing in 9.4 of the standard appear here. Some are handled in resolve_tag and others in gfc_resolve_dt. */ static match check_io_constraints (io_kind k, gfc_dt *dt, gfc_code *io_code, locus *spec_end) { #define io_constraint(condition,msg,arg)\ if (condition) \ {\ gfc_error(msg,arg);\ m = MATCH_ERROR;\ } match m; gfc_expr *expr; gfc_symbol *sym = NULL; bool warn, unformatted; warn = (dt->err || dt->iostat) ? true : false; unformatted = dt->format_expr == NULL && dt->format_label == NULL && dt->namelist == NULL; m = MATCH_YES; expr = dt->io_unit; if (expr && expr->expr_type == EXPR_VARIABLE && expr->ts.type == BT_CHARACTER) { sym = expr->symtree->n.sym; io_constraint (k == M_WRITE && sym->attr.intent == INTENT_IN, "Internal file at %L must not be INTENT(IN)", &expr->where); io_constraint (gfc_has_vector_index (dt->io_unit), "Internal file incompatible with vector subscript at %L", &expr->where); io_constraint (dt->rec != NULL, "REC tag at %L is incompatible with internal file", &dt->rec->where); io_constraint (dt->pos != NULL, "POS tag at %L is incompatible with internal file", &dt->pos->where); io_constraint (unformatted, "Unformatted I/O not allowed with internal unit at %L", &dt->io_unit->where); io_constraint (dt->asynchronous != NULL, "ASYNCHRONOUS tag at %L not allowed with internal file", &dt->asynchronous->where); if (dt->namelist != NULL) { if (!gfc_notify_std (GFC_STD_F2003, "Internal file at %L with " "namelist", &expr->where)) m = MATCH_ERROR; } io_constraint (dt->advance != NULL, "ADVANCE tag at %L is incompatible with internal file", &dt->advance->where); } if (expr && expr->ts.type != BT_CHARACTER) { io_constraint (gfc_pure (NULL) && (k == M_READ || k == M_WRITE), "IO UNIT in %s statement at %C must be " "an internal file in a PURE procedure", io_kind_name (k)); if (k == M_READ || k == M_WRITE) gfc_unset_implicit_pure (NULL); } if (k != M_READ) { io_constraint (dt->end, "END tag not allowed with output at %L", &dt->end_where); io_constraint (dt->eor, "EOR tag not allowed with output at %L", &dt->eor_where); io_constraint (dt->blank, "BLANK= specifier not allowed with output at %L", &dt->blank->where); io_constraint (dt->pad, "PAD= specifier not allowed with output at %L", &dt->pad->where); io_constraint (dt->size, "SIZE= specifier not allowed with output at %L", &dt->size->where); } else { io_constraint (dt->size && dt->advance == NULL, "SIZE tag at %L requires an ADVANCE tag", &dt->size->where); io_constraint (dt->eor && dt->advance == NULL, "EOR tag at %L requires an ADVANCE tag", &dt->eor_where); } if (dt->asynchronous) { static const char * asynchronous[] = { "YES", "NO", NULL }; if (!gfc_reduce_init_expr (dt->asynchronous)) { gfc_error ("ASYNCHRONOUS= specifier at %L must be an initialization " "expression", &dt->asynchronous->where); return MATCH_ERROR; } if (!is_char_type ("ASYNCHRONOUS", dt->asynchronous)) return MATCH_ERROR; if (!compare_to_allowed_values ("ASYNCHRONOUS", asynchronous, NULL, NULL, dt->asynchronous->value.character.string, io_kind_name (k), warn)) return MATCH_ERROR; } if (dt->id) { bool not_yes = !dt->asynchronous || gfc_wide_strlen (dt->asynchronous->value.character.string) != 3 || gfc_wide_strncasecmp (dt->asynchronous->value.character.string, "yes", 3) != 0; io_constraint (not_yes, "ID= specifier at %L must be with ASYNCHRONOUS='yes' " "specifier", &dt->id->where); } if (dt->decimal) { if (!gfc_notify_std (GFC_STD_F2003, "DECIMAL= at %C " "not allowed in Fortran 95")) return MATCH_ERROR; if (dt->decimal->expr_type == EXPR_CONSTANT) { static const char * decimal[] = { "COMMA", "POINT", NULL }; if (!is_char_type ("DECIMAL", dt->decimal)) return MATCH_ERROR; if (!compare_to_allowed_values ("DECIMAL", decimal, NULL, NULL, dt->decimal->value.character.string, io_kind_name (k), warn)) return MATCH_ERROR; io_constraint (unformatted, "the DECIMAL= specifier at %L must be with an " "explicit format expression", &dt->decimal->where); } } if (dt->blank) { if (!gfc_notify_std (GFC_STD_F2003, "BLANK= at %C " "not allowed in Fortran 95")) return MATCH_ERROR; if (!is_char_type ("BLANK", dt->blank)) return MATCH_ERROR; if (dt->blank->expr_type == EXPR_CONSTANT) { static const char * blank[] = { "NULL", "ZERO", NULL }; if (!compare_to_allowed_values ("BLANK", blank, NULL, NULL, dt->blank->value.character.string, io_kind_name (k), warn)) return MATCH_ERROR; io_constraint (unformatted, "the BLANK= specifier at %L must be with an " "explicit format expression", &dt->blank->where); } } if (dt->pad) { if (!gfc_notify_std (GFC_STD_F2003, "PAD= at %C " "not allowed in Fortran 95")) return MATCH_ERROR; if (!is_char_type ("PAD", dt->pad)) return MATCH_ERROR; if (dt->pad->expr_type == EXPR_CONSTANT) { static const char * pad[] = { "YES", "NO", NULL }; if (!compare_to_allowed_values ("PAD", pad, NULL, NULL, dt->pad->value.character.string, io_kind_name (k), warn)) return MATCH_ERROR; io_constraint (unformatted, "the PAD= specifier at %L must be with an " "explicit format expression", &dt->pad->where); } } if (dt->round) { if (!gfc_notify_std (GFC_STD_F2003, "ROUND= at %C " "not allowed in Fortran 95")) return MATCH_ERROR; if (!is_char_type ("ROUND", dt->round)) return MATCH_ERROR; if (dt->round->expr_type == EXPR_CONSTANT) { static const char * round[] = { "UP", "DOWN", "ZERO", "NEAREST", "COMPATIBLE", "PROCESSOR_DEFINED", NULL }; if (!compare_to_allowed_values ("ROUND", round, NULL, NULL, dt->round->value.character.string, io_kind_name (k), warn)) return MATCH_ERROR; } } if (dt->sign) { /* When implemented, change the following to use gfc_notify_std F2003. if (gfc_notify_std (GFC_STD_F2003, "SIGN= at %C " "not allowed in Fortran 95") == false) return MATCH_ERROR; */ if (!is_char_type ("SIGN", dt->sign)) return MATCH_ERROR; if (dt->sign->expr_type == EXPR_CONSTANT) { static const char * sign[] = { "PLUS", "SUPPRESS", "PROCESSOR_DEFINED", NULL }; if (!compare_to_allowed_values ("SIGN", sign, NULL, NULL, dt->sign->value.character.string, io_kind_name (k), warn)) return MATCH_ERROR; io_constraint (unformatted, "SIGN= specifier at %L must be with an " "explicit format expression", &dt->sign->where); io_constraint (k == M_READ, "SIGN= specifier at %L not allowed in a " "READ statement", &dt->sign->where); } } if (dt->delim) { if (!gfc_notify_std (GFC_STD_F2003, "DELIM= at %C " "not allowed in Fortran 95")) return MATCH_ERROR; if (!is_char_type ("DELIM", dt->delim)) return MATCH_ERROR; if (dt->delim->expr_type == EXPR_CONSTANT) { static const char *delim[] = { "APOSTROPHE", "QUOTE", "NONE", NULL }; if (!compare_to_allowed_values ("DELIM", delim, NULL, NULL, dt->delim->value.character.string, io_kind_name (k), warn)) return MATCH_ERROR; io_constraint (k == M_READ, "DELIM= specifier at %L not allowed in a " "READ statement", &dt->delim->where); io_constraint (dt->format_label != &format_asterisk && dt->namelist == NULL, "DELIM= specifier at %L must have FMT=*", &dt->delim->where); io_constraint (unformatted && dt->namelist == NULL, "DELIM= specifier at %L must be with FMT=* or " "NML= specifier ", &dt->delim->where); } } if (dt->namelist) { io_constraint (io_code && dt->namelist, "NAMELIST cannot be followed by IO-list at %L", &io_code->loc); io_constraint (dt->format_expr, "IO spec-list cannot contain both NAMELIST group name " "and format specification at %L", &dt->format_expr->where); io_constraint (dt->format_label, "IO spec-list cannot contain both NAMELIST group name " "and format label at %L", spec_end); io_constraint (dt->rec, "NAMELIST IO is not allowed with a REC= specifier " "at %L", &dt->rec->where); io_constraint (dt->advance, "NAMELIST IO is not allowed with a ADVANCE= specifier " "at %L", &dt->advance->where); } if (dt->rec) { io_constraint (dt->end, "An END tag is not allowed with a " "REC= specifier at %L", &dt->end_where); io_constraint (dt->format_label == &format_asterisk, "FMT=* is not allowed with a REC= specifier " "at %L", spec_end); io_constraint (dt->pos, "POS= is not allowed with REC= specifier " "at %L", &dt->pos->where); } if (dt->advance) { int not_yes, not_no; expr = dt->advance; io_constraint (dt->format_label == &format_asterisk, "List directed format(*) is not allowed with a " "ADVANCE= specifier at %L.", &expr->where); io_constraint (unformatted, "the ADVANCE= specifier at %L must appear with an " "explicit format expression", &expr->where); if (expr->expr_type == EXPR_CONSTANT && expr->ts.type == BT_CHARACTER) { const gfc_char_t *advance = expr->value.character.string; not_no = gfc_wide_strlen (advance) != 2 || gfc_wide_strncasecmp (advance, "no", 2) != 0; not_yes = gfc_wide_strlen (advance) != 3 || gfc_wide_strncasecmp (advance, "yes", 3) != 0; } else { not_no = 0; not_yes = 0; } io_constraint (not_no && not_yes, "ADVANCE= specifier at %L must have value = " "YES or NO.", &expr->where); io_constraint (dt->size && not_no && k == M_READ, "SIZE tag at %L requires an ADVANCE = %", &dt->size->where); io_constraint (dt->eor && not_no && k == M_READ, "EOR tag at %L requires an ADVANCE = %", &dt->eor_where); } expr = dt->format_expr; if (!gfc_simplify_expr (expr, 0) || !check_format_string (expr, k == M_READ)) return MATCH_ERROR; return m; } #undef io_constraint /* Match a READ, WRITE or PRINT statement. */ static match match_io (io_kind k) { char name[GFC_MAX_SYMBOL_LEN + 1]; gfc_code *io_code; gfc_symbol *sym; int comma_flag; locus where; locus spec_end; gfc_dt *dt; match m; where = gfc_current_locus; comma_flag = 0; current_dt = dt = XCNEW (gfc_dt); m = gfc_match_char ('('); if (m == MATCH_NO) { where = gfc_current_locus; if (k == M_WRITE) goto syntax; else if (k == M_PRINT) { /* Treat the non-standard case of PRINT namelist. */ if ((gfc_current_form == FORM_FIXED || gfc_peek_ascii_char () == ' ') && gfc_match_name (name) == MATCH_YES) { gfc_find_symbol (name, NULL, 1, &sym); if (sym && sym->attr.flavor == FL_NAMELIST) { if (!gfc_notify_std (GFC_STD_GNU, "PRINT namelist at " "%C is an extension")) { m = MATCH_ERROR; goto cleanup; } dt->io_unit = default_unit (k); dt->namelist = sym; goto get_io_list; } else gfc_current_locus = where; } } if (gfc_current_form == FORM_FREE) { char c = gfc_peek_ascii_char (); if (c != ' ' && c != '*' && c != '\'' && c != '"') { m = MATCH_NO; goto cleanup; } } m = match_dt_format (dt); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; comma_flag = 1; dt->io_unit = default_unit (k); goto get_io_list; } else { /* Before issuing an error for a malformed 'print (1,*)' type of error, check for a default-char-expr of the form ('(I0)'). */ if (k == M_PRINT && m == MATCH_YES) { /* Reset current locus to get the initial '(' in an expression. */ gfc_current_locus = where; dt->format_expr = NULL; m = match_dt_format (dt); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO || dt->format_expr == NULL) goto syntax; comma_flag = 1; dt->io_unit = default_unit (k); goto get_io_list; } } /* Match a control list */ if (match_dt_element (k, dt) == MATCH_YES) goto next; if (match_dt_unit (k, dt) != MATCH_YES) goto loop; if (gfc_match_char (')') == MATCH_YES) goto get_io_list; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_dt_element (k, dt); if (m == MATCH_YES) goto next; if (m == MATCH_ERROR) goto cleanup; m = match_dt_format (dt); if (m == MATCH_YES) goto next; if (m == MATCH_ERROR) goto cleanup; where = gfc_current_locus; m = gfc_match_name (name); if (m == MATCH_YES) { gfc_find_symbol (name, NULL, 1, &sym); if (sym && sym->attr.flavor == FL_NAMELIST) { dt->namelist = sym; if (k == M_READ && check_namelist (sym)) { m = MATCH_ERROR; goto cleanup; } goto next; } } gfc_current_locus = where; goto loop; /* No matches, try regular elements */ next: if (gfc_match_char (')') == MATCH_YES) goto get_io_list; if (gfc_match_char (',') != MATCH_YES) goto syntax; loop: for (;;) { m = match_dt_element (k, dt); if (m == MATCH_NO) goto syntax; if (m == MATCH_ERROR) goto cleanup; if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; } get_io_list: /* Used in check_io_constraints, where no locus is available. */ spec_end = gfc_current_locus; /* Save the IO kind for later use. */ dt->dt_io_kind = gfc_get_iokind_expr (&gfc_current_locus, k); /* Optional leading comma (non-standard). We use a gfc_expr structure here to save the locus. This is used later when resolving transfer statements that might have a format expression without unit number. */ if (!comma_flag && gfc_match_char (',') == MATCH_YES) dt->extra_comma = dt->dt_io_kind; io_code = NULL; if (gfc_match_eos () != MATCH_YES) { if (comma_flag && gfc_match_char (',') != MATCH_YES) { gfc_error ("Expected comma in I/O list at %C"); m = MATCH_ERROR; goto cleanup; } m = match_io_list (k, &io_code); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } /* A full IO statement has been matched. Check the constraints. spec_end is supplied for cases where no locus is supplied. */ m = check_io_constraints (k, dt, io_code, &spec_end); if (m == MATCH_ERROR) goto cleanup; new_st.op = (k == M_READ) ? EXEC_READ : EXEC_WRITE; new_st.ext.dt = dt; new_st.block = gfc_get_code (new_st.op); new_st.block->next = io_code; terminate_io (io_code); return MATCH_YES; syntax: gfc_error ("Syntax error in %s statement at %C", io_kind_name (k)); m = MATCH_ERROR; cleanup: gfc_free_dt (dt); return m; } match gfc_match_read (void) { return match_io (M_READ); } match gfc_match_write (void) { return match_io (M_WRITE); } match gfc_match_print (void) { match m; m = match_io (M_PRINT); if (m != MATCH_YES) return m; if (gfc_pure (NULL)) { gfc_error ("PRINT statement at %C not allowed within PURE procedure"); return MATCH_ERROR; } gfc_unset_implicit_pure (NULL); return MATCH_YES; } /* Free a gfc_inquire structure. */ void gfc_free_inquire (gfc_inquire *inquire) { if (inquire == NULL) return; gfc_free_expr (inquire->unit); gfc_free_expr (inquire->file); gfc_free_expr (inquire->iomsg); gfc_free_expr (inquire->iostat); gfc_free_expr (inquire->exist); gfc_free_expr (inquire->opened); gfc_free_expr (inquire->number); gfc_free_expr (inquire->named); gfc_free_expr (inquire->name); gfc_free_expr (inquire->access); gfc_free_expr (inquire->sequential); gfc_free_expr (inquire->direct); gfc_free_expr (inquire->form); gfc_free_expr (inquire->formatted); gfc_free_expr (inquire->unformatted); gfc_free_expr (inquire->recl); gfc_free_expr (inquire->nextrec); gfc_free_expr (inquire->blank); gfc_free_expr (inquire->position); gfc_free_expr (inquire->action); gfc_free_expr (inquire->read); gfc_free_expr (inquire->write); gfc_free_expr (inquire->readwrite); gfc_free_expr (inquire->delim); gfc_free_expr (inquire->encoding); gfc_free_expr (inquire->pad); gfc_free_expr (inquire->iolength); gfc_free_expr (inquire->convert); gfc_free_expr (inquire->strm_pos); gfc_free_expr (inquire->asynchronous); gfc_free_expr (inquire->decimal); gfc_free_expr (inquire->pending); gfc_free_expr (inquire->id); gfc_free_expr (inquire->sign); gfc_free_expr (inquire->size); gfc_free_expr (inquire->round); free (inquire); } /* Match an element of an INQUIRE statement. */ #define RETM if (m != MATCH_NO) return m; static match match_inquire_element (gfc_inquire *inquire) { match m; m = match_etag (&tag_unit, &inquire->unit); RETM m = match_etag (&tag_file, &inquire->file); RETM m = match_ltag (&tag_err, &inquire->err); RETM m = match_etag (&tag_iomsg, &inquire->iomsg); if (m == MATCH_YES && !check_char_variable (inquire->iomsg)) return MATCH_ERROR; RETM m = match_out_tag (&tag_iostat, &inquire->iostat); RETM m = match_vtag (&tag_exist, &inquire->exist); RETM m = match_vtag (&tag_opened, &inquire->opened); RETM m = match_vtag (&tag_named, &inquire->named); RETM m = match_vtag (&tag_name, &inquire->name); RETM m = match_out_tag (&tag_number, &inquire->number); RETM m = match_vtag (&tag_s_access, &inquire->access); RETM m = match_vtag (&tag_sequential, &inquire->sequential); RETM m = match_vtag (&tag_direct, &inquire->direct); RETM m = match_vtag (&tag_s_form, &inquire->form); RETM m = match_vtag (&tag_formatted, &inquire->formatted); RETM m = match_vtag (&tag_unformatted, &inquire->unformatted); RETM m = match_out_tag (&tag_s_recl, &inquire->recl); RETM m = match_out_tag (&tag_nextrec, &inquire->nextrec); RETM m = match_vtag (&tag_s_blank, &inquire->blank); RETM m = match_vtag (&tag_s_position, &inquire->position); RETM m = match_vtag (&tag_s_action, &inquire->action); RETM m = match_vtag (&tag_read, &inquire->read); RETM m = match_vtag (&tag_write, &inquire->write); RETM m = match_vtag (&tag_readwrite, &inquire->readwrite); RETM m = match_vtag (&tag_s_async, &inquire->asynchronous); if (m == MATCH_YES && !is_char_type ("ASYNCHRONOUS", inquire->asynchronous)) return MATCH_ERROR; RETM m = match_vtag (&tag_s_delim, &inquire->delim); RETM m = match_vtag (&tag_s_decimal, &inquire->decimal); RETM m = match_out_tag (&tag_size, &inquire->size); RETM m = match_vtag (&tag_s_encoding, &inquire->encoding); RETM m = match_vtag (&tag_s_round, &inquire->round); RETM m = match_vtag (&tag_s_sign, &inquire->sign); RETM m = match_vtag (&tag_s_pad, &inquire->pad); RETM m = match_out_tag (&tag_iolength, &inquire->iolength); RETM m = match_vtag (&tag_convert, &inquire->convert); RETM m = match_out_tag (&tag_strm_out, &inquire->strm_pos); RETM m = match_vtag (&tag_pending, &inquire->pending); RETM m = match_vtag (&tag_id, &inquire->id); RETM m = match_vtag (&tag_s_iqstream, &inquire->iqstream); RETM return MATCH_NO; } #undef RETM match gfc_match_inquire (void) { gfc_inquire *inquire; gfc_code *code; match m; locus loc; m = gfc_match_char ('('); if (m == MATCH_NO) return m; inquire = XCNEW (gfc_inquire); loc = gfc_current_locus; m = match_inquire_element (inquire); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { m = gfc_match_expr (&inquire->unit); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } /* See if we have the IOLENGTH form of the inquire statement. */ if (inquire->iolength != NULL) { if (gfc_match_char (')') != MATCH_YES) goto syntax; m = match_io_list (M_INQUIRE, &code); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; new_st.op = EXEC_IOLENGTH; new_st.expr1 = inquire->iolength; new_st.ext.inquire = inquire; if (gfc_pure (NULL)) { gfc_free_statements (code); gfc_error ("INQUIRE statement not allowed in PURE procedure at %C"); return MATCH_ERROR; } gfc_unset_implicit_pure (NULL); new_st.block = gfc_get_code (EXEC_IOLENGTH); terminate_io (code); new_st.block->next = code; return MATCH_YES; } /* At this point, we have the non-IOLENGTH inquire statement. */ for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_inquire_element (inquire); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; if (inquire->iolength != NULL) { gfc_error ("IOLENGTH tag invalid in INQUIRE statement at %C"); goto cleanup; } } if (gfc_match_eos () != MATCH_YES) goto syntax; if (inquire->unit != NULL && inquire->file != NULL) { gfc_error ("INQUIRE statement at %L cannot contain both FILE and " "UNIT specifiers", &loc); goto cleanup; } if (inquire->unit == NULL && inquire->file == NULL) { gfc_error ("INQUIRE statement at %L requires either FILE or " "UNIT specifier", &loc); goto cleanup; } if (inquire->unit != NULL && inquire->unit->expr_type == EXPR_CONSTANT && inquire->unit->ts.type == BT_INTEGER && mpz_get_si (inquire->unit->value.integer) == GFC_INTERNAL_UNIT) { gfc_error ("UNIT number in INQUIRE statement at %L can not be -1", &loc); goto cleanup; } if (gfc_pure (NULL)) { gfc_error ("INQUIRE statement not allowed in PURE procedure at %C"); goto cleanup; } gfc_unset_implicit_pure (NULL); if (inquire->id != NULL && inquire->pending == NULL) { gfc_error ("INQUIRE statement at %L requires a PENDING= specifier with " "the ID= specifier", &loc); goto cleanup; } new_st.op = EXEC_INQUIRE; new_st.ext.inquire = inquire; return MATCH_YES; syntax: gfc_syntax_error (ST_INQUIRE); cleanup: gfc_free_inquire (inquire); return MATCH_ERROR; } /* Resolve everything in a gfc_inquire structure. */ bool gfc_resolve_inquire (gfc_inquire *inquire) { RESOLVE_TAG (&tag_unit, inquire->unit); RESOLVE_TAG (&tag_file, inquire->file); RESOLVE_TAG (&tag_id, inquire->id); /* For INQUIRE, all tags except FILE, ID and UNIT are variable definition contexts. Thus, use an extended RESOLVE_TAG macro for that. */ #define INQUIRE_RESOLVE_TAG(tag, expr) \ RESOLVE_TAG (tag, expr); \ if (expr) \ { \ char context[64]; \ sprintf (context, _("%s tag with INQUIRE"), (tag)->name); \ if (gfc_check_vardef_context ((expr), false, false, false, \ context) == false) \ return false; \ } INQUIRE_RESOLVE_TAG (&tag_iomsg, inquire->iomsg); INQUIRE_RESOLVE_TAG (&tag_iostat, inquire->iostat); INQUIRE_RESOLVE_TAG (&tag_exist, inquire->exist); INQUIRE_RESOLVE_TAG (&tag_opened, inquire->opened); INQUIRE_RESOLVE_TAG (&tag_number, inquire->number); INQUIRE_RESOLVE_TAG (&tag_named, inquire->named); INQUIRE_RESOLVE_TAG (&tag_name, inquire->name); INQUIRE_RESOLVE_TAG (&tag_s_access, inquire->access); INQUIRE_RESOLVE_TAG (&tag_sequential, inquire->sequential); INQUIRE_RESOLVE_TAG (&tag_direct, inquire->direct); INQUIRE_RESOLVE_TAG (&tag_s_form, inquire->form); INQUIRE_RESOLVE_TAG (&tag_formatted, inquire->formatted); INQUIRE_RESOLVE_TAG (&tag_unformatted, inquire->unformatted); INQUIRE_RESOLVE_TAG (&tag_s_recl, inquire->recl); INQUIRE_RESOLVE_TAG (&tag_nextrec, inquire->nextrec); INQUIRE_RESOLVE_TAG (&tag_s_blank, inquire->blank); INQUIRE_RESOLVE_TAG (&tag_s_position, inquire->position); INQUIRE_RESOLVE_TAG (&tag_s_action, inquire->action); INQUIRE_RESOLVE_TAG (&tag_read, inquire->read); INQUIRE_RESOLVE_TAG (&tag_write, inquire->write); INQUIRE_RESOLVE_TAG (&tag_readwrite, inquire->readwrite); INQUIRE_RESOLVE_TAG (&tag_s_delim, inquire->delim); INQUIRE_RESOLVE_TAG (&tag_s_pad, inquire->pad); INQUIRE_RESOLVE_TAG (&tag_s_encoding, inquire->encoding); INQUIRE_RESOLVE_TAG (&tag_s_round, inquire->round); INQUIRE_RESOLVE_TAG (&tag_iolength, inquire->iolength); INQUIRE_RESOLVE_TAG (&tag_convert, inquire->convert); INQUIRE_RESOLVE_TAG (&tag_strm_out, inquire->strm_pos); INQUIRE_RESOLVE_TAG (&tag_s_async, inquire->asynchronous); INQUIRE_RESOLVE_TAG (&tag_s_sign, inquire->sign); INQUIRE_RESOLVE_TAG (&tag_s_round, inquire->round); INQUIRE_RESOLVE_TAG (&tag_pending, inquire->pending); INQUIRE_RESOLVE_TAG (&tag_size, inquire->size); INQUIRE_RESOLVE_TAG (&tag_s_decimal, inquire->decimal); INQUIRE_RESOLVE_TAG (&tag_s_iqstream, inquire->iqstream); #undef INQUIRE_RESOLVE_TAG if (!gfc_reference_st_label (inquire->err, ST_LABEL_TARGET)) return false; return true; } void gfc_free_wait (gfc_wait *wait) { if (wait == NULL) return; gfc_free_expr (wait->unit); gfc_free_expr (wait->iostat); gfc_free_expr (wait->iomsg); gfc_free_expr (wait->id); free (wait); } bool gfc_resolve_wait (gfc_wait *wait) { RESOLVE_TAG (&tag_unit, wait->unit); RESOLVE_TAG (&tag_iomsg, wait->iomsg); RESOLVE_TAG (&tag_iostat, wait->iostat); RESOLVE_TAG (&tag_id, wait->id); if (!gfc_reference_st_label (wait->err, ST_LABEL_TARGET)) return false; if (!gfc_reference_st_label (wait->end, ST_LABEL_TARGET)) return false; return true; } /* Match an element of a WAIT statement. */ #define RETM if (m != MATCH_NO) return m; static match match_wait_element (gfc_wait *wait) { match m; m = match_etag (&tag_unit, &wait->unit); RETM m = match_ltag (&tag_err, &wait->err); RETM m = match_ltag (&tag_end, &wait->eor); RETM m = match_ltag (&tag_eor, &wait->end); RETM m = match_etag (&tag_iomsg, &wait->iomsg); if (m == MATCH_YES && !check_char_variable (wait->iomsg)) return MATCH_ERROR; RETM m = match_out_tag (&tag_iostat, &wait->iostat); RETM m = match_etag (&tag_id, &wait->id); RETM return MATCH_NO; } #undef RETM match gfc_match_wait (void) { gfc_wait *wait; match m; m = gfc_match_char ('('); if (m == MATCH_NO) return m; wait = XCNEW (gfc_wait); m = match_wait_element (wait); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) { m = gfc_match_expr (&wait->unit); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } for (;;) { if (gfc_match_char (')') == MATCH_YES) break; if (gfc_match_char (',') != MATCH_YES) goto syntax; m = match_wait_element (wait); if (m == MATCH_ERROR) goto cleanup; if (m == MATCH_NO) goto syntax; } if (!gfc_notify_std (GFC_STD_F2003, "WAIT at %C " "not allowed in Fortran 95")) goto cleanup; if (gfc_pure (NULL)) { gfc_error ("WAIT statement not allowed in PURE procedure at %C"); goto cleanup; } gfc_unset_implicit_pure (NULL); new_st.op = EXEC_WAIT; new_st.ext.wait = wait; return MATCH_YES; syntax: gfc_syntax_error (ST_WAIT); cleanup: gfc_free_wait (wait); return MATCH_ERROR; }