/* Handle modules, which amounts to loading and saving symbols and
their attendant structures.
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
2009, 2010
Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* The syntax of gfortran modules resembles that of lisp lists, i.e. a
sequence of atoms, which can be left or right parenthesis, names,
integers or strings. Parenthesis are always matched which allows
us to skip over sections at high speed without having to know
anything about the internal structure of the lists. A "name" is
usually a fortran 95 identifier, but can also start with '@' in
order to reference a hidden symbol.
The first line of a module is an informational message about what
created the module, the file it came from and when it was created.
The second line is a warning for people not to edit the module.
The rest of the module looks like:
( ( )
( )
...
)
( ( ... )
...
)
( ( ... )
...
)
( ( )
...
)
( equivalence list )
(
( )
...
)
(
...
)
In general, symbols refer to other symbols by their symbol number,
which are zero based. Symbols are written to the module in no
particular order. */
#include "config.h"
#include "system.h"
#include "gfortran.h"
#include "arith.h"
#include "match.h"
#include "parse.h" /* FIXME */
#include "md5.h"
#include "constructor.h"
#define MODULE_EXTENSION ".mod"
/* Don't put any single quote (') in MOD_VERSION,
if yout want it to be recognized. */
#define MOD_VERSION "5"
/* Structure that describes a position within a module file. */
typedef struct
{
int column, line;
fpos_t pos;
}
module_locus;
/* Structure for list of symbols of intrinsic modules. */
typedef struct
{
int id;
const char *name;
int value;
int standard;
}
intmod_sym;
typedef enum
{
P_UNKNOWN = 0, P_OTHER, P_NAMESPACE, P_COMPONENT, P_SYMBOL
}
pointer_t;
/* The fixup structure lists pointers to pointers that have to
be updated when a pointer value becomes known. */
typedef struct fixup_t
{
void **pointer;
struct fixup_t *next;
}
fixup_t;
/* Structure for holding extra info needed for pointers being read. */
enum gfc_rsym_state
{
UNUSED,
NEEDED,
USED
};
enum gfc_wsym_state
{
UNREFERENCED = 0,
NEEDS_WRITE,
WRITTEN
};
typedef struct pointer_info
{
BBT_HEADER (pointer_info);
int integer;
pointer_t type;
/* The first component of each member of the union is the pointer
being stored. */
fixup_t *fixup;
union
{
void *pointer; /* Member for doing pointer searches. */
struct
{
gfc_symbol *sym;
char true_name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
enum gfc_rsym_state state;
int ns, referenced, renamed;
module_locus where;
fixup_t *stfixup;
gfc_symtree *symtree;
char binding_label[GFC_MAX_SYMBOL_LEN + 1];
}
rsym;
struct
{
gfc_symbol *sym;
enum gfc_wsym_state state;
}
wsym;
}
u;
}
pointer_info;
#define gfc_get_pointer_info() XCNEW (pointer_info)
/* Local variables */
/* The FILE for the module we're reading or writing. */
static FILE *module_fp;
/* MD5 context structure. */
static struct md5_ctx ctx;
/* The name of the module we're reading (USE'ing) or writing. */
static char module_name[GFC_MAX_SYMBOL_LEN + 1];
/* The way the module we're reading was specified. */
static bool specified_nonint, specified_int;
static int module_line, module_column, only_flag;
static enum
{ IO_INPUT, IO_OUTPUT }
iomode;
static gfc_use_rename *gfc_rename_list;
static pointer_info *pi_root;
static int symbol_number; /* Counter for assigning symbol numbers */
/* Tells mio_expr_ref to make symbols for unused equivalence members. */
static bool in_load_equiv;
static locus use_locus;
/*****************************************************************/
/* Pointer/integer conversion. Pointers between structures are stored
as integers in the module file. The next couple of subroutines
handle this translation for reading and writing. */
/* Recursively free the tree of pointer structures. */
static void
free_pi_tree (pointer_info *p)
{
if (p == NULL)
return;
if (p->fixup != NULL)
gfc_internal_error ("free_pi_tree(): Unresolved fixup");
free_pi_tree (p->left);
free_pi_tree (p->right);
gfc_free (p);
}
/* Compare pointers when searching by pointer. Used when writing a
module. */
static int
compare_pointers (void *_sn1, void *_sn2)
{
pointer_info *sn1, *sn2;
sn1 = (pointer_info *) _sn1;
sn2 = (pointer_info *) _sn2;
if (sn1->u.pointer < sn2->u.pointer)
return -1;
if (sn1->u.pointer > sn2->u.pointer)
return 1;
return 0;
}
/* Compare integers when searching by integer. Used when reading a
module. */
static int
compare_integers (void *_sn1, void *_sn2)
{
pointer_info *sn1, *sn2;
sn1 = (pointer_info *) _sn1;
sn2 = (pointer_info *) _sn2;
if (sn1->integer < sn2->integer)
return -1;
if (sn1->integer > sn2->integer)
return 1;
return 0;
}
/* Initialize the pointer_info tree. */
static void
init_pi_tree (void)
{
compare_fn compare;
pointer_info *p;
pi_root = NULL;
compare = (iomode == IO_INPUT) ? compare_integers : compare_pointers;
/* Pointer 0 is the NULL pointer. */
p = gfc_get_pointer_info ();
p->u.pointer = NULL;
p->integer = 0;
p->type = P_OTHER;
gfc_insert_bbt (&pi_root, p, compare);
/* Pointer 1 is the current namespace. */
p = gfc_get_pointer_info ();
p->u.pointer = gfc_current_ns;
p->integer = 1;
p->type = P_NAMESPACE;
gfc_insert_bbt (&pi_root, p, compare);
symbol_number = 2;
}
/* During module writing, call here with a pointer to something,
returning the pointer_info node. */
static pointer_info *
find_pointer (void *gp)
{
pointer_info *p;
p = pi_root;
while (p != NULL)
{
if (p->u.pointer == gp)
break;
p = (gp < p->u.pointer) ? p->left : p->right;
}
return p;
}
/* Given a pointer while writing, returns the pointer_info tree node,
creating it if it doesn't exist. */
static pointer_info *
get_pointer (void *gp)
{
pointer_info *p;
p = find_pointer (gp);
if (p != NULL)
return p;
/* Pointer doesn't have an integer. Give it one. */
p = gfc_get_pointer_info ();
p->u.pointer = gp;
p->integer = symbol_number++;
gfc_insert_bbt (&pi_root, p, compare_pointers);
return p;
}
/* Given an integer during reading, find it in the pointer_info tree,
creating the node if not found. */
static pointer_info *
get_integer (int integer)
{
pointer_info *p, t;
int c;
t.integer = integer;
p = pi_root;
while (p != NULL)
{
c = compare_integers (&t, p);
if (c == 0)
break;
p = (c < 0) ? p->left : p->right;
}
if (p != NULL)
return p;
p = gfc_get_pointer_info ();
p->integer = integer;
p->u.pointer = NULL;
gfc_insert_bbt (&pi_root, p, compare_integers);
return p;
}
/* Recursive function to find a pointer within a tree by brute force. */
static pointer_info *
fp2 (pointer_info *p, const void *target)
{
pointer_info *q;
if (p == NULL)
return NULL;
if (p->u.pointer == target)
return p;
q = fp2 (p->left, target);
if (q != NULL)
return q;
return fp2 (p->right, target);
}
/* During reading, find a pointer_info node from the pointer value.
This amounts to a brute-force search. */
static pointer_info *
find_pointer2 (void *p)
{
return fp2 (pi_root, p);
}
/* Resolve any fixups using a known pointer. */
static void
resolve_fixups (fixup_t *f, void *gp)
{
fixup_t *next;
for (; f; f = next)
{
next = f->next;
*(f->pointer) = gp;
gfc_free (f);
}
}
/* Call here during module reading when we know what pointer to
associate with an integer. Any fixups that exist are resolved at
this time. */
static void
associate_integer_pointer (pointer_info *p, void *gp)
{
if (p->u.pointer != NULL)
gfc_internal_error ("associate_integer_pointer(): Already associated");
p->u.pointer = gp;
resolve_fixups (p->fixup, gp);
p->fixup = NULL;
}
/* During module reading, given an integer and a pointer to a pointer,
either store the pointer from an already-known value or create a
fixup structure in order to store things later. Returns zero if
the reference has been actually stored, or nonzero if the reference
must be fixed later (i.e., associate_integer_pointer must be called
sometime later. Returns the pointer_info structure. */
static pointer_info *
add_fixup (int integer, void *gp)
{
pointer_info *p;
fixup_t *f;
char **cp;
p = get_integer (integer);
if (p->integer == 0 || p->u.pointer != NULL)
{
cp = (char **) gp;
*cp = (char *) p->u.pointer;
}
else
{
f = XCNEW (fixup_t);
f->next = p->fixup;
p->fixup = f;
f->pointer = (void **) gp;
}
return p;
}
/*****************************************************************/
/* Parser related subroutines */
/* Free the rename list left behind by a USE statement. */
static void
free_rename (void)
{
gfc_use_rename *next;
for (; gfc_rename_list; gfc_rename_list = next)
{
next = gfc_rename_list->next;
gfc_free (gfc_rename_list);
}
}
/* Match a USE statement. */
match
gfc_match_use (void)
{
char name[GFC_MAX_SYMBOL_LEN + 1], module_nature[GFC_MAX_SYMBOL_LEN + 1];
gfc_use_rename *tail = NULL, *new_use;
interface_type type, type2;
gfc_intrinsic_op op;
match m;
specified_int = false;
specified_nonint = false;
if (gfc_match (" , ") == MATCH_YES)
{
if ((m = gfc_match (" %n ::", module_nature)) == MATCH_YES)
{
if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: module "
"nature in USE statement at %C") == FAILURE)
return MATCH_ERROR;
if (strcmp (module_nature, "intrinsic") == 0)
specified_int = true;
else
{
if (strcmp (module_nature, "non_intrinsic") == 0)
specified_nonint = true;
else
{
gfc_error ("Module nature in USE statement at %C shall "
"be either INTRINSIC or NON_INTRINSIC");
return MATCH_ERROR;
}
}
}
else
{
/* Help output a better error message than "Unclassifiable
statement". */
gfc_match (" %n", module_nature);
if (strcmp (module_nature, "intrinsic") == 0
|| strcmp (module_nature, "non_intrinsic") == 0)
gfc_error ("\"::\" was expected after module nature at %C "
"but was not found");
return m;
}
}
else
{
m = gfc_match (" ::");
if (m == MATCH_YES &&
gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
"\"USE :: module\" at %C") == FAILURE)
return MATCH_ERROR;
if (m != MATCH_YES)
{
m = gfc_match ("% ");
if (m != MATCH_YES)
return m;
}
}
use_locus = gfc_current_locus;
m = gfc_match_name (module_name);
if (m != MATCH_YES)
return m;
free_rename ();
only_flag = 0;
if (gfc_match_eos () == MATCH_YES)
return MATCH_YES;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
if (gfc_match (" only :") == MATCH_YES)
only_flag = 1;
if (gfc_match_eos () == MATCH_YES)
return MATCH_YES;
for (;;)
{
/* Get a new rename struct and add it to the rename list. */
new_use = gfc_get_use_rename ();
new_use->where = gfc_current_locus;
new_use->found = 0;
if (gfc_rename_list == NULL)
gfc_rename_list = new_use;
else
tail->next = new_use;
tail = new_use;
/* See what kind of interface we're dealing with. Assume it is
not an operator. */
new_use->op = INTRINSIC_NONE;
if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
goto cleanup;
switch (type)
{
case INTERFACE_NAMELESS:
gfc_error ("Missing generic specification in USE statement at %C");
goto cleanup;
case INTERFACE_USER_OP:
case INTERFACE_GENERIC:
m = gfc_match (" =>");
if (type == INTERFACE_USER_OP && m == MATCH_YES
&& (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Renaming "
"operators in USE statements at %C")
== FAILURE))
goto cleanup;
if (type == INTERFACE_USER_OP)
new_use->op = INTRINSIC_USER;
if (only_flag)
{
if (m != MATCH_YES)
strcpy (new_use->use_name, name);
else
{
strcpy (new_use->local_name, name);
m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
if (type != type2)
goto syntax;
if (m == MATCH_NO)
goto syntax;
if (m == MATCH_ERROR)
goto cleanup;
}
}
else
{
if (m != MATCH_YES)
goto syntax;
strcpy (new_use->local_name, name);
m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
if (type != type2)
goto syntax;
if (m == MATCH_NO)
goto syntax;
if (m == MATCH_ERROR)
goto cleanup;
}
if (strcmp (new_use->use_name, module_name) == 0
|| strcmp (new_use->local_name, module_name) == 0)
{
gfc_error ("The name '%s' at %C has already been used as "
"an external module name.", module_name);
goto cleanup;
}
break;
case INTERFACE_INTRINSIC_OP:
new_use->op = op;
break;
default:
gcc_unreachable ();
}
if (gfc_match_eos () == MATCH_YES)
break;
if (gfc_match_char (',') != MATCH_YES)
goto syntax;
}
return MATCH_YES;
syntax:
gfc_syntax_error (ST_USE);
cleanup:
free_rename ();
return MATCH_ERROR;
}
/* Given a name and a number, inst, return the inst name
under which to load this symbol. Returns NULL if this
symbol shouldn't be loaded. If inst is zero, returns
the number of instances of this name. If interface is
true, a user-defined operator is sought, otherwise only
non-operators are sought. */
static const char *
find_use_name_n (const char *name, int *inst, bool interface)
{
gfc_use_rename *u;
int i;
i = 0;
for (u = gfc_rename_list; u; u = u->next)
{
if (strcmp (u->use_name, name) != 0
|| (u->op == INTRINSIC_USER && !interface)
|| (u->op != INTRINSIC_USER && interface))
continue;
if (++i == *inst)
break;
}
if (!*inst)
{
*inst = i;
return NULL;
}
if (u == NULL)
return only_flag ? NULL : name;
u->found = 1;
return (u->local_name[0] != '\0') ? u->local_name : name;
}
/* Given a name, return the name under which to load this symbol.
Returns NULL if this symbol shouldn't be loaded. */
static const char *
find_use_name (const char *name, bool interface)
{
int i = 1;
return find_use_name_n (name, &i, interface);
}
/* Given a real name, return the number of use names associated with it. */
static int
number_use_names (const char *name, bool interface)
{
int i = 0;
find_use_name_n (name, &i, interface);
return i;
}
/* Try to find the operator in the current list. */
static gfc_use_rename *
find_use_operator (gfc_intrinsic_op op)
{
gfc_use_rename *u;
for (u = gfc_rename_list; u; u = u->next)
if (u->op == op)
return u;
return NULL;
}
/*****************************************************************/
/* The next couple of subroutines maintain a tree used to avoid a
brute-force search for a combination of true name and module name.
While symtree names, the name that a particular symbol is known by
can changed with USE statements, we still have to keep track of the
true names to generate the correct reference, and also avoid
loading the same real symbol twice in a program unit.
When we start reading, the true name tree is built and maintained
as symbols are read. The tree is searched as we load new symbols
to see if it already exists someplace in the namespace. */
typedef struct true_name
{
BBT_HEADER (true_name);
gfc_symbol *sym;
}
true_name;
static true_name *true_name_root;
/* Compare two true_name structures. */
static int
compare_true_names (void *_t1, void *_t2)
{
true_name *t1, *t2;
int c;
t1 = (true_name *) _t1;
t2 = (true_name *) _t2;
c = ((t1->sym->module > t2->sym->module)
- (t1->sym->module < t2->sym->module));
if (c != 0)
return c;
return strcmp (t1->sym->name, t2->sym->name);
}
/* Given a true name, search the true name tree to see if it exists
within the main namespace. */
static gfc_symbol *
find_true_name (const char *name, const char *module)
{
true_name t, *p;
gfc_symbol sym;
int c;
sym.name = gfc_get_string (name);
if (module != NULL)
sym.module = gfc_get_string (module);
else
sym.module = NULL;
t.sym = &sym;
p = true_name_root;
while (p != NULL)
{
c = compare_true_names ((void *) (&t), (void *) p);
if (c == 0)
return p->sym;
p = (c < 0) ? p->left : p->right;
}
return NULL;
}
/* Given a gfc_symbol pointer that is not in the true name tree, add it. */
static void
add_true_name (gfc_symbol *sym)
{
true_name *t;
t = XCNEW (true_name);
t->sym = sym;
gfc_insert_bbt (&true_name_root, t, compare_true_names);
}
/* Recursive function to build the initial true name tree by
recursively traversing the current namespace. */
static void
build_tnt (gfc_symtree *st)
{
if (st == NULL)
return;
build_tnt (st->left);
build_tnt (st->right);
if (find_true_name (st->n.sym->name, st->n.sym->module) != NULL)
return;
add_true_name (st->n.sym);
}
/* Initialize the true name tree with the current namespace. */
static void
init_true_name_tree (void)
{
true_name_root = NULL;
build_tnt (gfc_current_ns->sym_root);
}
/* Recursively free a true name tree node. */
static void
free_true_name (true_name *t)
{
if (t == NULL)
return;
free_true_name (t->left);
free_true_name (t->right);
gfc_free (t);
}
/*****************************************************************/
/* Module reading and writing. */
typedef enum
{
ATOM_NAME, ATOM_LPAREN, ATOM_RPAREN, ATOM_INTEGER, ATOM_STRING
}
atom_type;
static atom_type last_atom;
/* The name buffer must be at least as long as a symbol name. Right
now it's not clear how we're going to store numeric constants--
probably as a hexadecimal string, since this will allow the exact
number to be preserved (this can't be done by a decimal
representation). Worry about that later. TODO! */
#define MAX_ATOM_SIZE 100
static int atom_int;
static char *atom_string, atom_name[MAX_ATOM_SIZE];
/* Report problems with a module. Error reporting is not very
elaborate, since this sorts of errors shouldn't really happen.
This subroutine never returns. */
static void bad_module (const char *) ATTRIBUTE_NORETURN;
static void
bad_module (const char *msgid)
{
fclose (module_fp);
switch (iomode)
{
case IO_INPUT:
gfc_fatal_error ("Reading module %s at line %d column %d: %s",
module_name, module_line, module_column, msgid);
break;
case IO_OUTPUT:
gfc_fatal_error ("Writing module %s at line %d column %d: %s",
module_name, module_line, module_column, msgid);
break;
default:
gfc_fatal_error ("Module %s at line %d column %d: %s",
module_name, module_line, module_column, msgid);
break;
}
}
/* Set the module's input pointer. */
static void
set_module_locus (module_locus *m)
{
module_column = m->column;
module_line = m->line;
fsetpos (module_fp, &m->pos);
}
/* Get the module's input pointer so that we can restore it later. */
static void
get_module_locus (module_locus *m)
{
m->column = module_column;
m->line = module_line;
fgetpos (module_fp, &m->pos);
}
/* Get the next character in the module, updating our reckoning of
where we are. */
static int
module_char (void)
{
int c;
c = getc (module_fp);
if (c == EOF)
bad_module ("Unexpected EOF");
if (c == '\n')
{
module_line++;
module_column = 0;
}
module_column++;
return c;
}
/* Parse a string constant. The delimiter is guaranteed to be a
single quote. */
static void
parse_string (void)
{
module_locus start;
int len, c;
char *p;
get_module_locus (&start);
len = 0;
/* See how long the string is. */
for ( ; ; )
{
c = module_char ();
if (c == EOF)
bad_module ("Unexpected end of module in string constant");
if (c != '\'')
{
len++;
continue;
}
c = module_char ();
if (c == '\'')
{
len++;
continue;
}
break;
}
set_module_locus (&start);
atom_string = p = XCNEWVEC (char, len + 1);
for (; len > 0; len--)
{
c = module_char ();
if (c == '\'')
module_char (); /* Guaranteed to be another \'. */
*p++ = c;
}
module_char (); /* Terminating \'. */
*p = '\0'; /* C-style string for debug purposes. */
}
/* Parse a small integer. */
static void
parse_integer (int c)
{
module_locus m;
atom_int = c - '0';
for (;;)
{
get_module_locus (&m);
c = module_char ();
if (!ISDIGIT (c))
break;
atom_int = 10 * atom_int + c - '0';
if (atom_int > 99999999)
bad_module ("Integer overflow");
}
set_module_locus (&m);
}
/* Parse a name. */
static void
parse_name (int c)
{
module_locus m;
char *p;
int len;
p = atom_name;
*p++ = c;
len = 1;
get_module_locus (&m);
for (;;)
{
c = module_char ();
if (!ISALNUM (c) && c != '_' && c != '-')
break;
*p++ = c;
if (++len > GFC_MAX_SYMBOL_LEN)
bad_module ("Name too long");
}
*p = '\0';
fseek (module_fp, -1, SEEK_CUR);
module_column = m.column + len - 1;
if (c == '\n')
module_line--;
}
/* Read the next atom in the module's input stream. */
static atom_type
parse_atom (void)
{
int c;
do
{
c = module_char ();
}
while (c == ' ' || c == '\r' || c == '\n');
switch (c)
{
case '(':
return ATOM_LPAREN;
case ')':
return ATOM_RPAREN;
case '\'':
parse_string ();
return ATOM_STRING;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
parse_integer (c);
return ATOM_INTEGER;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
case 'g':
case 'h':
case 'i':
case 'j':
case 'k':
case 'l':
case 'm':
case 'n':
case 'o':
case 'p':
case 'q':
case 'r':
case 's':
case 't':
case 'u':
case 'v':
case 'w':
case 'x':
case 'y':
case 'z':
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
case 'G':
case 'H':
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
case 'Q':
case 'R':
case 'S':
case 'T':
case 'U':
case 'V':
case 'W':
case 'X':
case 'Y':
case 'Z':
parse_name (c);
return ATOM_NAME;
default:
bad_module ("Bad name");
}
/* Not reached. */
}
/* Peek at the next atom on the input. */
static atom_type
peek_atom (void)
{
module_locus m;
atom_type a;
get_module_locus (&m);
a = parse_atom ();
if (a == ATOM_STRING)
gfc_free (atom_string);
set_module_locus (&m);
return a;
}
/* Read the next atom from the input, requiring that it be a
particular kind. */
static void
require_atom (atom_type type)
{
module_locus m;
atom_type t;
const char *p;
get_module_locus (&m);
t = parse_atom ();
if (t != type)
{
switch (type)
{
case ATOM_NAME:
p = _("Expected name");
break;
case ATOM_LPAREN:
p = _("Expected left parenthesis");
break;
case ATOM_RPAREN:
p = _("Expected right parenthesis");
break;
case ATOM_INTEGER:
p = _("Expected integer");
break;
case ATOM_STRING:
p = _("Expected string");
break;
default:
gfc_internal_error ("require_atom(): bad atom type required");
}
set_module_locus (&m);
bad_module (p);
}
}
/* Given a pointer to an mstring array, require that the current input
be one of the strings in the array. We return the enum value. */
static int
find_enum (const mstring *m)
{
int i;
i = gfc_string2code (m, atom_name);
if (i >= 0)
return i;
bad_module ("find_enum(): Enum not found");
/* Not reached. */
}
/**************** Module output subroutines ***************************/
/* Output a character to a module file. */
static void
write_char (char out)
{
if (putc (out, module_fp) == EOF)
gfc_fatal_error ("Error writing modules file: %s", strerror (errno));
/* Add this to our MD5. */
md5_process_bytes (&out, sizeof (out), &ctx);
if (out != '\n')
module_column++;
else
{
module_column = 1;
module_line++;
}
}
/* Write an atom to a module. The line wrapping isn't perfect, but it
should work most of the time. This isn't that big of a deal, since
the file really isn't meant to be read by people anyway. */
static void
write_atom (atom_type atom, const void *v)
{
char buffer[20];
int i, len;
const char *p;
switch (atom)
{
case ATOM_STRING:
case ATOM_NAME:
p = (const char *) v;
break;
case ATOM_LPAREN:
p = "(";
break;
case ATOM_RPAREN:
p = ")";
break;
case ATOM_INTEGER:
i = *((const int *) v);
if (i < 0)
gfc_internal_error ("write_atom(): Writing negative integer");
sprintf (buffer, "%d", i);
p = buffer;
break;
default:
gfc_internal_error ("write_atom(): Trying to write dab atom");
}
if(p == NULL || *p == '\0')
len = 0;
else
len = strlen (p);
if (atom != ATOM_RPAREN)
{
if (module_column + len > 72)
write_char ('\n');
else
{
if (last_atom != ATOM_LPAREN && module_column != 1)
write_char (' ');
}
}
if (atom == ATOM_STRING)
write_char ('\'');
while (p != NULL && *p)
{
if (atom == ATOM_STRING && *p == '\'')
write_char ('\'');
write_char (*p++);
}
if (atom == ATOM_STRING)
write_char ('\'');
last_atom = atom;
}
/***************** Mid-level I/O subroutines *****************/
/* These subroutines let their caller read or write atoms without
caring about which of the two is actually happening. This lets a
subroutine concentrate on the actual format of the data being
written. */
static void mio_expr (gfc_expr **);
pointer_info *mio_symbol_ref (gfc_symbol **);
pointer_info *mio_interface_rest (gfc_interface **);
static void mio_symtree_ref (gfc_symtree **);
/* Read or write an enumerated value. On writing, we return the input
value for the convenience of callers. We avoid using an integer
pointer because enums are sometimes inside bitfields. */
static int
mio_name (int t, const mstring *m)
{
if (iomode == IO_OUTPUT)
write_atom (ATOM_NAME, gfc_code2string (m, t));
else
{
require_atom (ATOM_NAME);
t = find_enum (m);
}
return t;
}
/* Specialization of mio_name. */
#define DECL_MIO_NAME(TYPE) \
static inline TYPE \
MIO_NAME(TYPE) (TYPE t, const mstring *m) \
{ \
return (TYPE) mio_name ((int) t, m); \
}
#define MIO_NAME(TYPE) mio_name_##TYPE
static void
mio_lparen (void)
{
if (iomode == IO_OUTPUT)
write_atom (ATOM_LPAREN, NULL);
else
require_atom (ATOM_LPAREN);
}
static void
mio_rparen (void)
{
if (iomode == IO_OUTPUT)
write_atom (ATOM_RPAREN, NULL);
else
require_atom (ATOM_RPAREN);
}
static void
mio_integer (int *ip)
{
if (iomode == IO_OUTPUT)
write_atom (ATOM_INTEGER, ip);
else
{
require_atom (ATOM_INTEGER);
*ip = atom_int;
}
}
/* Read or write a gfc_intrinsic_op value. */
static void
mio_intrinsic_op (gfc_intrinsic_op* op)
{
/* FIXME: Would be nicer to do this via the operators symbolic name. */
if (iomode == IO_OUTPUT)
{
int converted = (int) *op;
write_atom (ATOM_INTEGER, &converted);
}
else
{
require_atom (ATOM_INTEGER);
*op = (gfc_intrinsic_op) atom_int;
}
}
/* Read or write a character pointer that points to a string on the heap. */
static const char *
mio_allocated_string (const char *s)
{
if (iomode == IO_OUTPUT)
{
write_atom (ATOM_STRING, s);
return s;
}
else
{
require_atom (ATOM_STRING);
return atom_string;
}
}
/* Functions for quoting and unquoting strings. */
static char *
quote_string (const gfc_char_t *s, const size_t slength)
{
const gfc_char_t *p;
char *res, *q;
size_t len = 0, i;
/* Calculate the length we'll need: a backslash takes two ("\\"),
non-printable characters take 10 ("\Uxxxxxxxx") and others take 1. */
for (p = s, i = 0; i < slength; p++, i++)
{
if (*p == '\\')
len += 2;
else if (!gfc_wide_is_printable (*p))
len += 10;
else
len++;
}
q = res = XCNEWVEC (char, len + 1);
for (p = s, i = 0; i < slength; p++, i++)
{
if (*p == '\\')
*q++ = '\\', *q++ = '\\';
else if (!gfc_wide_is_printable (*p))
{
sprintf (q, "\\U%08" HOST_WIDE_INT_PRINT "x",
(unsigned HOST_WIDE_INT) *p);
q += 10;
}
else
*q++ = (unsigned char) *p;
}
res[len] = '\0';
return res;
}
static gfc_char_t *
unquote_string (const char *s)
{
size_t len, i;
const char *p;
gfc_char_t *res;
for (p = s, len = 0; *p; p++, len++)
{
if (*p != '\\')
continue;
if (p[1] == '\\')
p++;
else if (p[1] == 'U')
p += 9; /* That is a "\U????????". */
else
gfc_internal_error ("unquote_string(): got bad string");
}
res = gfc_get_wide_string (len + 1);
for (i = 0, p = s; i < len; i++, p++)
{
gcc_assert (*p);
if (*p != '\\')
res[i] = (unsigned char) *p;
else if (p[1] == '\\')
{
res[i] = (unsigned char) '\\';
p++;
}
else
{
/* We read the 8-digits hexadecimal constant that follows. */
int j;
unsigned n;
gfc_char_t c = 0;
gcc_assert (p[1] == 'U');
for (j = 0; j < 8; j++)
{
c = c << 4;
gcc_assert (sscanf (&p[j+2], "%01x", &n) == 1);
c += n;
}
res[i] = c;
p += 9;
}
}
res[len] = '\0';
return res;
}
/* Read or write a character pointer that points to a wide string on the
heap, performing quoting/unquoting of nonprintable characters using the
form \U???????? (where each ? is a hexadecimal digit).
Length is the length of the string, only known and used in output mode. */
static const gfc_char_t *
mio_allocated_wide_string (const gfc_char_t *s, const size_t length)
{
if (iomode == IO_OUTPUT)
{
char *quoted = quote_string (s, length);
write_atom (ATOM_STRING, quoted);
gfc_free (quoted);
return s;
}
else
{
gfc_char_t *unquoted;
require_atom (ATOM_STRING);
unquoted = unquote_string (atom_string);
gfc_free (atom_string);
return unquoted;
}
}
/* Read or write a string that is in static memory. */
static void
mio_pool_string (const char **stringp)
{
/* TODO: one could write the string only once, and refer to it via a
fixup pointer. */
/* As a special case we have to deal with a NULL string. This
happens for the 'module' member of 'gfc_symbol's that are not in a
module. We read / write these as the empty string. */
if (iomode == IO_OUTPUT)
{
const char *p = *stringp == NULL ? "" : *stringp;
write_atom (ATOM_STRING, p);
}
else
{
require_atom (ATOM_STRING);
*stringp = atom_string[0] == '\0' ? NULL : gfc_get_string (atom_string);
gfc_free (atom_string);
}
}
/* Read or write a string that is inside of some already-allocated
structure. */
static void
mio_internal_string (char *string)
{
if (iomode == IO_OUTPUT)
write_atom (ATOM_STRING, string);
else
{
require_atom (ATOM_STRING);
strcpy (string, atom_string);
gfc_free (atom_string);
}
}
typedef enum
{ AB_ALLOCATABLE, AB_DIMENSION, AB_EXTERNAL, AB_INTRINSIC, AB_OPTIONAL,
AB_POINTER, AB_TARGET, AB_DUMMY, AB_RESULT, AB_DATA,
AB_IN_NAMELIST, AB_IN_COMMON, AB_FUNCTION, AB_SUBROUTINE, AB_SEQUENCE,
AB_ELEMENTAL, AB_PURE, AB_RECURSIVE, AB_GENERIC, AB_ALWAYS_EXPLICIT,
AB_CRAY_POINTER, AB_CRAY_POINTEE, AB_THREADPRIVATE, AB_ALLOC_COMP,
AB_POINTER_COMP, AB_PRIVATE_COMP, AB_VALUE, AB_VOLATILE, AB_PROTECTED,
AB_IS_BIND_C, AB_IS_C_INTEROP, AB_IS_ISO_C, AB_ABSTRACT, AB_ZERO_COMP,
AB_IS_CLASS, AB_PROCEDURE, AB_PROC_POINTER, AB_ASYNCHRONOUS, AB_CODIMENSION,
AB_COARRAY_COMP, AB_VTYPE, AB_VTAB
}
ab_attribute;
static const mstring attr_bits[] =
{
minit ("ALLOCATABLE", AB_ALLOCATABLE),
minit ("ASYNCHRONOUS", AB_ASYNCHRONOUS),
minit ("DIMENSION", AB_DIMENSION),
minit ("CODIMENSION", AB_CODIMENSION),
minit ("EXTERNAL", AB_EXTERNAL),
minit ("INTRINSIC", AB_INTRINSIC),
minit ("OPTIONAL", AB_OPTIONAL),
minit ("POINTER", AB_POINTER),
minit ("VOLATILE", AB_VOLATILE),
minit ("TARGET", AB_TARGET),
minit ("THREADPRIVATE", AB_THREADPRIVATE),
minit ("DUMMY", AB_DUMMY),
minit ("RESULT", AB_RESULT),
minit ("DATA", AB_DATA),
minit ("IN_NAMELIST", AB_IN_NAMELIST),
minit ("IN_COMMON", AB_IN_COMMON),
minit ("FUNCTION", AB_FUNCTION),
minit ("SUBROUTINE", AB_SUBROUTINE),
minit ("SEQUENCE", AB_SEQUENCE),
minit ("ELEMENTAL", AB_ELEMENTAL),
minit ("PURE", AB_PURE),
minit ("RECURSIVE", AB_RECURSIVE),
minit ("GENERIC", AB_GENERIC),
minit ("ALWAYS_EXPLICIT", AB_ALWAYS_EXPLICIT),
minit ("CRAY_POINTER", AB_CRAY_POINTER),
minit ("CRAY_POINTEE", AB_CRAY_POINTEE),
minit ("IS_BIND_C", AB_IS_BIND_C),
minit ("IS_C_INTEROP", AB_IS_C_INTEROP),
minit ("IS_ISO_C", AB_IS_ISO_C),
minit ("VALUE", AB_VALUE),
minit ("ALLOC_COMP", AB_ALLOC_COMP),
minit ("COARRAY_COMP", AB_COARRAY_COMP),
minit ("POINTER_COMP", AB_POINTER_COMP),
minit ("PRIVATE_COMP", AB_PRIVATE_COMP),
minit ("ZERO_COMP", AB_ZERO_COMP),
minit ("PROTECTED", AB_PROTECTED),
minit ("ABSTRACT", AB_ABSTRACT),
minit ("IS_CLASS", AB_IS_CLASS),
minit ("PROCEDURE", AB_PROCEDURE),
minit ("PROC_POINTER", AB_PROC_POINTER),
minit ("VTYPE", AB_VTYPE),
minit ("VTAB", AB_VTAB),
minit (NULL, -1)
};
/* For binding attributes. */
static const mstring binding_passing[] =
{
minit ("PASS", 0),
minit ("NOPASS", 1),
minit (NULL, -1)
};
static const mstring binding_overriding[] =
{
minit ("OVERRIDABLE", 0),
minit ("NON_OVERRIDABLE", 1),
minit ("DEFERRED", 2),
minit (NULL, -1)
};
static const mstring binding_generic[] =
{
minit ("SPECIFIC", 0),
minit ("GENERIC", 1),
minit (NULL, -1)
};
static const mstring binding_ppc[] =
{
minit ("NO_PPC", 0),
minit ("PPC", 1),
minit (NULL, -1)
};
/* Specialization of mio_name. */
DECL_MIO_NAME (ab_attribute)
DECL_MIO_NAME (ar_type)
DECL_MIO_NAME (array_type)
DECL_MIO_NAME (bt)
DECL_MIO_NAME (expr_t)
DECL_MIO_NAME (gfc_access)
DECL_MIO_NAME (gfc_intrinsic_op)
DECL_MIO_NAME (ifsrc)
DECL_MIO_NAME (save_state)
DECL_MIO_NAME (procedure_type)
DECL_MIO_NAME (ref_type)
DECL_MIO_NAME (sym_flavor)
DECL_MIO_NAME (sym_intent)
#undef DECL_MIO_NAME
/* Symbol attributes are stored in list with the first three elements
being the enumerated fields, while the remaining elements (if any)
indicate the individual attribute bits. The access field is not
saved-- it controls what symbols are exported when a module is
written. */
static void
mio_symbol_attribute (symbol_attribute *attr)
{
atom_type t;
unsigned ext_attr,extension_level;
mio_lparen ();
attr->flavor = MIO_NAME (sym_flavor) (attr->flavor, flavors);
attr->intent = MIO_NAME (sym_intent) (attr->intent, intents);
attr->proc = MIO_NAME (procedure_type) (attr->proc, procedures);
attr->if_source = MIO_NAME (ifsrc) (attr->if_source, ifsrc_types);
attr->save = MIO_NAME (save_state) (attr->save, save_status);
ext_attr = attr->ext_attr;
mio_integer ((int *) &ext_attr);
attr->ext_attr = ext_attr;
extension_level = attr->extension;
mio_integer ((int *) &extension_level);
attr->extension = extension_level;
if (iomode == IO_OUTPUT)
{
if (attr->allocatable)
MIO_NAME (ab_attribute) (AB_ALLOCATABLE, attr_bits);
if (attr->asynchronous)
MIO_NAME (ab_attribute) (AB_ASYNCHRONOUS, attr_bits);
if (attr->dimension)
MIO_NAME (ab_attribute) (AB_DIMENSION, attr_bits);
if (attr->codimension)
MIO_NAME (ab_attribute) (AB_CODIMENSION, attr_bits);
if (attr->external)
MIO_NAME (ab_attribute) (AB_EXTERNAL, attr_bits);
if (attr->intrinsic)
MIO_NAME (ab_attribute) (AB_INTRINSIC, attr_bits);
if (attr->optional)
MIO_NAME (ab_attribute) (AB_OPTIONAL, attr_bits);
if (attr->pointer)
MIO_NAME (ab_attribute) (AB_POINTER, attr_bits);
if (attr->is_protected)
MIO_NAME (ab_attribute) (AB_PROTECTED, attr_bits);
if (attr->value)
MIO_NAME (ab_attribute) (AB_VALUE, attr_bits);
if (attr->volatile_)
MIO_NAME (ab_attribute) (AB_VOLATILE, attr_bits);
if (attr->target)
MIO_NAME (ab_attribute) (AB_TARGET, attr_bits);
if (attr->threadprivate)
MIO_NAME (ab_attribute) (AB_THREADPRIVATE, attr_bits);
if (attr->dummy)
MIO_NAME (ab_attribute) (AB_DUMMY, attr_bits);
if (attr->result)
MIO_NAME (ab_attribute) (AB_RESULT, attr_bits);
/* We deliberately don't preserve the "entry" flag. */
if (attr->data)
MIO_NAME (ab_attribute) (AB_DATA, attr_bits);
if (attr->in_namelist)
MIO_NAME (ab_attribute) (AB_IN_NAMELIST, attr_bits);
if (attr->in_common)
MIO_NAME (ab_attribute) (AB_IN_COMMON, attr_bits);
if (attr->function)
MIO_NAME (ab_attribute) (AB_FUNCTION, attr_bits);
if (attr->subroutine)
MIO_NAME (ab_attribute) (AB_SUBROUTINE, attr_bits);
if (attr->generic)
MIO_NAME (ab_attribute) (AB_GENERIC, attr_bits);
if (attr->abstract)
MIO_NAME (ab_attribute) (AB_ABSTRACT, attr_bits);
if (attr->sequence)
MIO_NAME (ab_attribute) (AB_SEQUENCE, attr_bits);
if (attr->elemental)
MIO_NAME (ab_attribute) (AB_ELEMENTAL, attr_bits);
if (attr->pure)
MIO_NAME (ab_attribute) (AB_PURE, attr_bits);
if (attr->recursive)
MIO_NAME (ab_attribute) (AB_RECURSIVE, attr_bits);
if (attr->always_explicit)
MIO_NAME (ab_attribute) (AB_ALWAYS_EXPLICIT, attr_bits);
if (attr->cray_pointer)
MIO_NAME (ab_attribute) (AB_CRAY_POINTER, attr_bits);
if (attr->cray_pointee)
MIO_NAME (ab_attribute) (AB_CRAY_POINTEE, attr_bits);
if (attr->is_bind_c)
MIO_NAME(ab_attribute) (AB_IS_BIND_C, attr_bits);
if (attr->is_c_interop)
MIO_NAME(ab_attribute) (AB_IS_C_INTEROP, attr_bits);
if (attr->is_iso_c)
MIO_NAME(ab_attribute) (AB_IS_ISO_C, attr_bits);
if (attr->alloc_comp)
MIO_NAME (ab_attribute) (AB_ALLOC_COMP, attr_bits);
if (attr->pointer_comp)
MIO_NAME (ab_attribute) (AB_POINTER_COMP, attr_bits);
if (attr->private_comp)
MIO_NAME (ab_attribute) (AB_PRIVATE_COMP, attr_bits);
if (attr->coarray_comp)
MIO_NAME (ab_attribute) (AB_COARRAY_COMP, attr_bits);
if (attr->zero_comp)
MIO_NAME (ab_attribute) (AB_ZERO_COMP, attr_bits);
if (attr->is_class)
MIO_NAME (ab_attribute) (AB_IS_CLASS, attr_bits);
if (attr->procedure)
MIO_NAME (ab_attribute) (AB_PROCEDURE, attr_bits);
if (attr->proc_pointer)
MIO_NAME (ab_attribute) (AB_PROC_POINTER, attr_bits);
if (attr->vtype)
MIO_NAME (ab_attribute) (AB_VTYPE, attr_bits);
if (attr->vtab)
MIO_NAME (ab_attribute) (AB_VTAB, attr_bits);
mio_rparen ();
}
else
{
for (;;)
{
t = parse_atom ();
if (t == ATOM_RPAREN)
break;
if (t != ATOM_NAME)
bad_module ("Expected attribute bit name");
switch ((ab_attribute) find_enum (attr_bits))
{
case AB_ALLOCATABLE:
attr->allocatable = 1;
break;
case AB_ASYNCHRONOUS:
attr->asynchronous = 1;
break;
case AB_DIMENSION:
attr->dimension = 1;
break;
case AB_CODIMENSION:
attr->codimension = 1;
break;
case AB_EXTERNAL:
attr->external = 1;
break;
case AB_INTRINSIC:
attr->intrinsic = 1;
break;
case AB_OPTIONAL:
attr->optional = 1;
break;
case AB_POINTER:
attr->pointer = 1;
break;
case AB_PROTECTED:
attr->is_protected = 1;
break;
case AB_VALUE:
attr->value = 1;
break;
case AB_VOLATILE:
attr->volatile_ = 1;
break;
case AB_TARGET:
attr->target = 1;
break;
case AB_THREADPRIVATE:
attr->threadprivate = 1;
break;
case AB_DUMMY:
attr->dummy = 1;
break;
case AB_RESULT:
attr->result = 1;
break;
case AB_DATA:
attr->data = 1;
break;
case AB_IN_NAMELIST:
attr->in_namelist = 1;
break;
case AB_IN_COMMON:
attr->in_common = 1;
break;
case AB_FUNCTION:
attr->function = 1;
break;
case AB_SUBROUTINE:
attr->subroutine = 1;
break;
case AB_GENERIC:
attr->generic = 1;
break;
case AB_ABSTRACT:
attr->abstract = 1;
break;
case AB_SEQUENCE:
attr->sequence = 1;
break;
case AB_ELEMENTAL:
attr->elemental = 1;
break;
case AB_PURE:
attr->pure = 1;
break;
case AB_RECURSIVE:
attr->recursive = 1;
break;
case AB_ALWAYS_EXPLICIT:
attr->always_explicit = 1;
break;
case AB_CRAY_POINTER:
attr->cray_pointer = 1;
break;
case AB_CRAY_POINTEE:
attr->cray_pointee = 1;
break;
case AB_IS_BIND_C:
attr->is_bind_c = 1;
break;
case AB_IS_C_INTEROP:
attr->is_c_interop = 1;
break;
case AB_IS_ISO_C:
attr->is_iso_c = 1;
break;
case AB_ALLOC_COMP:
attr->alloc_comp = 1;
break;
case AB_COARRAY_COMP:
attr->coarray_comp = 1;
break;
case AB_POINTER_COMP:
attr->pointer_comp = 1;
break;
case AB_PRIVATE_COMP:
attr->private_comp = 1;
break;
case AB_ZERO_COMP:
attr->zero_comp = 1;
break;
case AB_IS_CLASS:
attr->is_class = 1;
break;
case AB_PROCEDURE:
attr->procedure = 1;
break;
case AB_PROC_POINTER:
attr->proc_pointer = 1;
break;
case AB_VTYPE:
attr->vtype = 1;
break;
case AB_VTAB:
attr->vtab = 1;
break;
}
}
}
}
static const mstring bt_types[] = {
minit ("INTEGER", BT_INTEGER),
minit ("REAL", BT_REAL),
minit ("COMPLEX", BT_COMPLEX),
minit ("LOGICAL", BT_LOGICAL),
minit ("CHARACTER", BT_CHARACTER),
minit ("DERIVED", BT_DERIVED),
minit ("CLASS", BT_CLASS),
minit ("PROCEDURE", BT_PROCEDURE),
minit ("UNKNOWN", BT_UNKNOWN),
minit ("VOID", BT_VOID),
minit (NULL, -1)
};
static void
mio_charlen (gfc_charlen **clp)
{
gfc_charlen *cl;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
cl = *clp;
if (cl != NULL)
mio_expr (&cl->length);
}
else
{
if (peek_atom () != ATOM_RPAREN)
{
cl = gfc_new_charlen (gfc_current_ns, NULL);
mio_expr (&cl->length);
*clp = cl;
}
}
mio_rparen ();
}
/* See if a name is a generated name. */
static int
check_unique_name (const char *name)
{
return *name == '@';
}
static void
mio_typespec (gfc_typespec *ts)
{
mio_lparen ();
ts->type = MIO_NAME (bt) (ts->type, bt_types);
if (ts->type != BT_DERIVED && ts->type != BT_CLASS)
mio_integer (&ts->kind);
else
mio_symbol_ref (&ts->u.derived);
/* Add info for C interop and is_iso_c. */
mio_integer (&ts->is_c_interop);
mio_integer (&ts->is_iso_c);
/* If the typespec is for an identifier either from iso_c_binding, or
a constant that was initialized to an identifier from it, use the
f90_type. Otherwise, use the ts->type, since it shouldn't matter. */
if (ts->is_iso_c)
ts->f90_type = MIO_NAME (bt) (ts->f90_type, bt_types);
else
ts->f90_type = MIO_NAME (bt) (ts->type, bt_types);
if (ts->type != BT_CHARACTER)
{
/* ts->u.cl is only valid for BT_CHARACTER. */
mio_lparen ();
mio_rparen ();
}
else
mio_charlen (&ts->u.cl);
mio_rparen ();
}
static const mstring array_spec_types[] = {
minit ("EXPLICIT", AS_EXPLICIT),
minit ("ASSUMED_SHAPE", AS_ASSUMED_SHAPE),
minit ("DEFERRED", AS_DEFERRED),
minit ("ASSUMED_SIZE", AS_ASSUMED_SIZE),
minit (NULL, -1)
};
static void
mio_array_spec (gfc_array_spec **asp)
{
gfc_array_spec *as;
int i;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
if (*asp == NULL)
goto done;
as = *asp;
}
else
{
if (peek_atom () == ATOM_RPAREN)
{
*asp = NULL;
goto done;
}
*asp = as = gfc_get_array_spec ();
}
mio_integer (&as->rank);
mio_integer (&as->corank);
as->type = MIO_NAME (array_type) (as->type, array_spec_types);
for (i = 0; i < as->rank + as->corank; i++)
{
mio_expr (&as->lower[i]);
mio_expr (&as->upper[i]);
}
done:
mio_rparen ();
}
/* Given a pointer to an array reference structure (which lives in a
gfc_ref structure), find the corresponding array specification
structure. Storing the pointer in the ref structure doesn't quite
work when loading from a module. Generating code for an array
reference also needs more information than just the array spec. */
static const mstring array_ref_types[] = {
minit ("FULL", AR_FULL),
minit ("ELEMENT", AR_ELEMENT),
minit ("SECTION", AR_SECTION),
minit (NULL, -1)
};
static void
mio_array_ref (gfc_array_ref *ar)
{
int i;
mio_lparen ();
ar->type = MIO_NAME (ar_type) (ar->type, array_ref_types);
mio_integer (&ar->dimen);
switch (ar->type)
{
case AR_FULL:
break;
case AR_ELEMENT:
for (i = 0; i < ar->dimen; i++)
mio_expr (&ar->start[i]);
break;
case AR_SECTION:
for (i = 0; i < ar->dimen; i++)
{
mio_expr (&ar->start[i]);
mio_expr (&ar->end[i]);
mio_expr (&ar->stride[i]);
}
break;
case AR_UNKNOWN:
gfc_internal_error ("mio_array_ref(): Unknown array ref");
}
/* Unfortunately, ar->dimen_type is an anonymous enumerated type so
we can't call mio_integer directly. Instead loop over each element
and cast it to/from an integer. */
if (iomode == IO_OUTPUT)
{
for (i = 0; i < ar->dimen; i++)
{
int tmp = (int)ar->dimen_type[i];
write_atom (ATOM_INTEGER, &tmp);
}
}
else
{
for (i = 0; i < ar->dimen; i++)
{
require_atom (ATOM_INTEGER);
ar->dimen_type[i] = (enum gfc_array_ref_dimen_type) atom_int;
}
}
if (iomode == IO_INPUT)
{
ar->where = gfc_current_locus;
for (i = 0; i < ar->dimen; i++)
ar->c_where[i] = gfc_current_locus;
}
mio_rparen ();
}
/* Saves or restores a pointer. The pointer is converted back and
forth from an integer. We return the pointer_info pointer so that
the caller can take additional action based on the pointer type. */
static pointer_info *
mio_pointer_ref (void *gp)
{
pointer_info *p;
if (iomode == IO_OUTPUT)
{
p = get_pointer (*((char **) gp));
write_atom (ATOM_INTEGER, &p->integer);
}
else
{
require_atom (ATOM_INTEGER);
p = add_fixup (atom_int, gp);
}
return p;
}
/* Save and load references to components that occur within
expressions. We have to describe these references by a number and
by name. The number is necessary for forward references during
reading, and the name is necessary if the symbol already exists in
the namespace and is not loaded again. */
static void
mio_component_ref (gfc_component **cp, gfc_symbol *sym)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
gfc_component *q;
pointer_info *p;
p = mio_pointer_ref (cp);
if (p->type == P_UNKNOWN)
p->type = P_COMPONENT;
if (iomode == IO_OUTPUT)
mio_pool_string (&(*cp)->name);
else
{
mio_internal_string (name);
/* It can happen that a component reference can be read before the
associated derived type symbol has been loaded. Return now and
wait for a later iteration of load_needed. */
if (sym == NULL)
return;
if (sym->components != NULL && p->u.pointer == NULL)
{
/* Symbol already loaded, so search by name. */
for (q = sym->components; q; q = q->next)
if (strcmp (q->name, name) == 0)
break;
if (q == NULL)
gfc_internal_error ("mio_component_ref(): Component not found");
associate_integer_pointer (p, q);
}
/* Make sure this symbol will eventually be loaded. */
p = find_pointer2 (sym);
if (p->u.rsym.state == UNUSED)
p->u.rsym.state = NEEDED;
}
}
static void mio_namespace_ref (gfc_namespace **nsp);
static void mio_formal_arglist (gfc_formal_arglist **formal);
static void mio_typebound_proc (gfc_typebound_proc** proc);
static void
mio_component (gfc_component *c)
{
pointer_info *p;
int n;
gfc_formal_arglist *formal;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
p = get_pointer (c);
mio_integer (&p->integer);
}
else
{
mio_integer (&n);
p = get_integer (n);
associate_integer_pointer (p, c);
}
if (p->type == P_UNKNOWN)
p->type = P_COMPONENT;
mio_pool_string (&c->name);
mio_typespec (&c->ts);
mio_array_spec (&c->as);
mio_symbol_attribute (&c->attr);
c->attr.access = MIO_NAME (gfc_access) (c->attr.access, access_types);
mio_expr (&c->initializer);
if (c->attr.proc_pointer)
{
if (iomode == IO_OUTPUT)
{
formal = c->formal;
while (formal && !formal->sym)
formal = formal->next;
if (formal)
mio_namespace_ref (&formal->sym->ns);
else
mio_namespace_ref (&c->formal_ns);
}
else
{
mio_namespace_ref (&c->formal_ns);
/* TODO: if (c->formal_ns)
{
c->formal_ns->proc_name = c;
c->refs++;
}*/
}
mio_formal_arglist (&c->formal);
mio_typebound_proc (&c->tb);
}
mio_rparen ();
}
static void
mio_component_list (gfc_component **cp)
{
gfc_component *c, *tail;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
for (c = *cp; c; c = c->next)
mio_component (c);
}
else
{
*cp = NULL;
tail = NULL;
for (;;)
{
if (peek_atom () == ATOM_RPAREN)
break;
c = gfc_get_component ();
mio_component (c);
if (tail == NULL)
*cp = c;
else
tail->next = c;
tail = c;
}
}
mio_rparen ();
}
static void
mio_actual_arg (gfc_actual_arglist *a)
{
mio_lparen ();
mio_pool_string (&a->name);
mio_expr (&a->expr);
mio_rparen ();
}
static void
mio_actual_arglist (gfc_actual_arglist **ap)
{
gfc_actual_arglist *a, *tail;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
for (a = *ap; a; a = a->next)
mio_actual_arg (a);
}
else
{
tail = NULL;
for (;;)
{
if (peek_atom () != ATOM_LPAREN)
break;
a = gfc_get_actual_arglist ();
if (tail == NULL)
*ap = a;
else
tail->next = a;
tail = a;
mio_actual_arg (a);
}
}
mio_rparen ();
}
/* Read and write formal argument lists. */
static void
mio_formal_arglist (gfc_formal_arglist **formal)
{
gfc_formal_arglist *f, *tail;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
for (f = *formal; f; f = f->next)
mio_symbol_ref (&f->sym);
}
else
{
*formal = tail = NULL;
while (peek_atom () != ATOM_RPAREN)
{
f = gfc_get_formal_arglist ();
mio_symbol_ref (&f->sym);
if (*formal == NULL)
*formal = f;
else
tail->next = f;
tail = f;
}
}
mio_rparen ();
}
/* Save or restore a reference to a symbol node. */
pointer_info *
mio_symbol_ref (gfc_symbol **symp)
{
pointer_info *p;
p = mio_pointer_ref (symp);
if (p->type == P_UNKNOWN)
p->type = P_SYMBOL;
if (iomode == IO_OUTPUT)
{
if (p->u.wsym.state == UNREFERENCED)
p->u.wsym.state = NEEDS_WRITE;
}
else
{
if (p->u.rsym.state == UNUSED)
p->u.rsym.state = NEEDED;
}
return p;
}
/* Save or restore a reference to a symtree node. */
static void
mio_symtree_ref (gfc_symtree **stp)
{
pointer_info *p;
fixup_t *f;
if (iomode == IO_OUTPUT)
mio_symbol_ref (&(*stp)->n.sym);
else
{
require_atom (ATOM_INTEGER);
p = get_integer (atom_int);
/* An unused equivalence member; make a symbol and a symtree
for it. */
if (in_load_equiv && p->u.rsym.symtree == NULL)
{
/* Since this is not used, it must have a unique name. */
p->u.rsym.symtree = gfc_get_unique_symtree (gfc_current_ns);
/* Make the symbol. */
if (p->u.rsym.sym == NULL)
{
p->u.rsym.sym = gfc_new_symbol (p->u.rsym.true_name,
gfc_current_ns);
p->u.rsym.sym->module = gfc_get_string (p->u.rsym.module);
}
p->u.rsym.symtree->n.sym = p->u.rsym.sym;
p->u.rsym.symtree->n.sym->refs++;
p->u.rsym.referenced = 1;
/* If the symbol is PRIVATE and in COMMON, load_commons will
generate a fixup symbol, which must be associated. */
if (p->fixup)
resolve_fixups (p->fixup, p->u.rsym.sym);
p->fixup = NULL;
}
if (p->type == P_UNKNOWN)
p->type = P_SYMBOL;
if (p->u.rsym.state == UNUSED)
p->u.rsym.state = NEEDED;
if (p->u.rsym.symtree != NULL)
{
*stp = p->u.rsym.symtree;
}
else
{
f = XCNEW (fixup_t);
f->next = p->u.rsym.stfixup;
p->u.rsym.stfixup = f;
f->pointer = (void **) stp;
}
}
}
static void
mio_iterator (gfc_iterator **ip)
{
gfc_iterator *iter;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
if (*ip == NULL)
goto done;
}
else
{
if (peek_atom () == ATOM_RPAREN)
{
*ip = NULL;
goto done;
}
*ip = gfc_get_iterator ();
}
iter = *ip;
mio_expr (&iter->var);
mio_expr (&iter->start);
mio_expr (&iter->end);
mio_expr (&iter->step);
done:
mio_rparen ();
}
static void
mio_constructor (gfc_constructor_base *cp)
{
gfc_constructor *c;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
for (c = gfc_constructor_first (*cp); c; c = gfc_constructor_next (c))
{
mio_lparen ();
mio_expr (&c->expr);
mio_iterator (&c->iterator);
mio_rparen ();
}
}
else
{
while (peek_atom () != ATOM_RPAREN)
{
c = gfc_constructor_append_expr (cp, NULL, NULL);
mio_lparen ();
mio_expr (&c->expr);
mio_iterator (&c->iterator);
mio_rparen ();
}
}
mio_rparen ();
}
static const mstring ref_types[] = {
minit ("ARRAY", REF_ARRAY),
minit ("COMPONENT", REF_COMPONENT),
minit ("SUBSTRING", REF_SUBSTRING),
minit (NULL, -1)
};
static void
mio_ref (gfc_ref **rp)
{
gfc_ref *r;
mio_lparen ();
r = *rp;
r->type = MIO_NAME (ref_type) (r->type, ref_types);
switch (r->type)
{
case REF_ARRAY:
mio_array_ref (&r->u.ar);
break;
case REF_COMPONENT:
mio_symbol_ref (&r->u.c.sym);
mio_component_ref (&r->u.c.component, r->u.c.sym);
break;
case REF_SUBSTRING:
mio_expr (&r->u.ss.start);
mio_expr (&r->u.ss.end);
mio_charlen (&r->u.ss.length);
break;
}
mio_rparen ();
}
static void
mio_ref_list (gfc_ref **rp)
{
gfc_ref *ref, *head, *tail;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
for (ref = *rp; ref; ref = ref->next)
mio_ref (&ref);
}
else
{
head = tail = NULL;
while (peek_atom () != ATOM_RPAREN)
{
if (head == NULL)
head = tail = gfc_get_ref ();
else
{
tail->next = gfc_get_ref ();
tail = tail->next;
}
mio_ref (&tail);
}
*rp = head;
}
mio_rparen ();
}
/* Read and write an integer value. */
static void
mio_gmp_integer (mpz_t *integer)
{
char *p;
if (iomode == IO_INPUT)
{
if (parse_atom () != ATOM_STRING)
bad_module ("Expected integer string");
mpz_init (*integer);
if (mpz_set_str (*integer, atom_string, 10))
bad_module ("Error converting integer");
gfc_free (atom_string);
}
else
{
p = mpz_get_str (NULL, 10, *integer);
write_atom (ATOM_STRING, p);
gfc_free (p);
}
}
static void
mio_gmp_real (mpfr_t *real)
{
mp_exp_t exponent;
char *p;
if (iomode == IO_INPUT)
{
if (parse_atom () != ATOM_STRING)
bad_module ("Expected real string");
mpfr_init (*real);
mpfr_set_str (*real, atom_string, 16, GFC_RND_MODE);
gfc_free (atom_string);
}
else
{
p = mpfr_get_str (NULL, &exponent, 16, 0, *real, GFC_RND_MODE);
if (mpfr_nan_p (*real) || mpfr_inf_p (*real))
{
write_atom (ATOM_STRING, p);
gfc_free (p);
return;
}
atom_string = XCNEWVEC (char, strlen (p) + 20);
sprintf (atom_string, "0.%s@%ld", p, exponent);
/* Fix negative numbers. */
if (atom_string[2] == '-')
{
atom_string[0] = '-';
atom_string[1] = '0';
atom_string[2] = '.';
}
write_atom (ATOM_STRING, atom_string);
gfc_free (atom_string);
gfc_free (p);
}
}
/* Save and restore the shape of an array constructor. */
static void
mio_shape (mpz_t **pshape, int rank)
{
mpz_t *shape;
atom_type t;
int n;
/* A NULL shape is represented by (). */
mio_lparen ();
if (iomode == IO_OUTPUT)
{
shape = *pshape;
if (!shape)
{
mio_rparen ();
return;
}
}
else
{
t = peek_atom ();
if (t == ATOM_RPAREN)
{
*pshape = NULL;
mio_rparen ();
return;
}
shape = gfc_get_shape (rank);
*pshape = shape;
}
for (n = 0; n < rank; n++)
mio_gmp_integer (&shape[n]);
mio_rparen ();
}
static const mstring expr_types[] = {
minit ("OP", EXPR_OP),
minit ("FUNCTION", EXPR_FUNCTION),
minit ("CONSTANT", EXPR_CONSTANT),
minit ("VARIABLE", EXPR_VARIABLE),
minit ("SUBSTRING", EXPR_SUBSTRING),
minit ("STRUCTURE", EXPR_STRUCTURE),
minit ("ARRAY", EXPR_ARRAY),
minit ("NULL", EXPR_NULL),
minit ("COMPCALL", EXPR_COMPCALL),
minit (NULL, -1)
};
/* INTRINSIC_ASSIGN is missing because it is used as an index for
generic operators, not in expressions. INTRINSIC_USER is also
replaced by the correct function name by the time we see it. */
static const mstring intrinsics[] =
{
minit ("UPLUS", INTRINSIC_UPLUS),
minit ("UMINUS", INTRINSIC_UMINUS),
minit ("PLUS", INTRINSIC_PLUS),
minit ("MINUS", INTRINSIC_MINUS),
minit ("TIMES", INTRINSIC_TIMES),
minit ("DIVIDE", INTRINSIC_DIVIDE),
minit ("POWER", INTRINSIC_POWER),
minit ("CONCAT", INTRINSIC_CONCAT),
minit ("AND", INTRINSIC_AND),
minit ("OR", INTRINSIC_OR),
minit ("EQV", INTRINSIC_EQV),
minit ("NEQV", INTRINSIC_NEQV),
minit ("EQ_SIGN", INTRINSIC_EQ),
minit ("EQ", INTRINSIC_EQ_OS),
minit ("NE_SIGN", INTRINSIC_NE),
minit ("NE", INTRINSIC_NE_OS),
minit ("GT_SIGN", INTRINSIC_GT),
minit ("GT", INTRINSIC_GT_OS),
minit ("GE_SIGN", INTRINSIC_GE),
minit ("GE", INTRINSIC_GE_OS),
minit ("LT_SIGN", INTRINSIC_LT),
minit ("LT", INTRINSIC_LT_OS),
minit ("LE_SIGN", INTRINSIC_LE),
minit ("LE", INTRINSIC_LE_OS),
minit ("NOT", INTRINSIC_NOT),
minit ("PARENTHESES", INTRINSIC_PARENTHESES),
minit (NULL, -1)
};
/* Remedy a couple of situations where the gfc_expr's can be defective. */
static void
fix_mio_expr (gfc_expr *e)
{
gfc_symtree *ns_st = NULL;
const char *fname;
if (iomode != IO_OUTPUT)
return;
if (e->symtree)
{
/* If this is a symtree for a symbol that came from a contained module
namespace, it has a unique name and we should look in the current
namespace to see if the required, non-contained symbol is available
yet. If so, the latter should be written. */
if (e->symtree->n.sym && check_unique_name (e->symtree->name))
ns_st = gfc_find_symtree (gfc_current_ns->sym_root,
e->symtree->n.sym->name);
/* On the other hand, if the existing symbol is the module name or the
new symbol is a dummy argument, do not do the promotion. */
if (ns_st && ns_st->n.sym
&& ns_st->n.sym->attr.flavor != FL_MODULE
&& !e->symtree->n.sym->attr.dummy)
e->symtree = ns_st;
}
else if (e->expr_type == EXPR_FUNCTION && e->value.function.name)
{
gfc_symbol *sym;
/* In some circumstances, a function used in an initialization
expression, in one use associated module, can fail to be
coupled to its symtree when used in a specification
expression in another module. */
fname = e->value.function.esym ? e->value.function.esym->name
: e->value.function.isym->name;
e->symtree = gfc_find_symtree (gfc_current_ns->sym_root, fname);
if (e->symtree)
return;
/* This is probably a reference to a private procedure from another
module. To prevent a segfault, make a generic with no specific
instances. If this module is used, without the required
specific coming from somewhere, the appropriate error message
is issued. */
gfc_get_symbol (fname, gfc_current_ns, &sym);
sym->attr.flavor = FL_PROCEDURE;
sym->attr.generic = 1;
e->symtree = gfc_find_symtree (gfc_current_ns->sym_root, fname);
}
}
/* Read and write expressions. The form "()" is allowed to indicate a
NULL expression. */
static void
mio_expr (gfc_expr **ep)
{
gfc_expr *e;
atom_type t;
int flag;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
if (*ep == NULL)
{
mio_rparen ();
return;
}
e = *ep;
MIO_NAME (expr_t) (e->expr_type, expr_types);
}
else
{
t = parse_atom ();
if (t == ATOM_RPAREN)
{
*ep = NULL;
return;
}
if (t != ATOM_NAME)
bad_module ("Expected expression type");
e = *ep = gfc_get_expr ();
e->where = gfc_current_locus;
e->expr_type = (expr_t) find_enum (expr_types);
}
mio_typespec (&e->ts);
mio_integer (&e->rank);
fix_mio_expr (e);
switch (e->expr_type)
{
case EXPR_OP:
e->value.op.op
= MIO_NAME (gfc_intrinsic_op) (e->value.op.op, intrinsics);
switch (e->value.op.op)
{
case INTRINSIC_UPLUS:
case INTRINSIC_UMINUS:
case INTRINSIC_NOT:
case INTRINSIC_PARENTHESES:
mio_expr (&e->value.op.op1);
break;
case INTRINSIC_PLUS:
case INTRINSIC_MINUS:
case INTRINSIC_TIMES:
case INTRINSIC_DIVIDE:
case INTRINSIC_POWER:
case INTRINSIC_CONCAT:
case INTRINSIC_AND:
case INTRINSIC_OR:
case INTRINSIC_EQV:
case INTRINSIC_NEQV:
case INTRINSIC_EQ:
case INTRINSIC_EQ_OS:
case INTRINSIC_NE:
case INTRINSIC_NE_OS:
case INTRINSIC_GT:
case INTRINSIC_GT_OS:
case INTRINSIC_GE:
case INTRINSIC_GE_OS:
case INTRINSIC_LT:
case INTRINSIC_LT_OS:
case INTRINSIC_LE:
case INTRINSIC_LE_OS:
mio_expr (&e->value.op.op1);
mio_expr (&e->value.op.op2);
break;
default:
bad_module ("Bad operator");
}
break;
case EXPR_FUNCTION:
mio_symtree_ref (&e->symtree);
mio_actual_arglist (&e->value.function.actual);
if (iomode == IO_OUTPUT)
{
e->value.function.name
= mio_allocated_string (e->value.function.name);
flag = e->value.function.esym != NULL;
mio_integer (&flag);
if (flag)
mio_symbol_ref (&e->value.function.esym);
else
write_atom (ATOM_STRING, e->value.function.isym->name);
}
else
{
require_atom (ATOM_STRING);
e->value.function.name = gfc_get_string (atom_string);
gfc_free (atom_string);
mio_integer (&flag);
if (flag)
mio_symbol_ref (&e->value.function.esym);
else
{
require_atom (ATOM_STRING);
e->value.function.isym = gfc_find_function (atom_string);
gfc_free (atom_string);
}
}
break;
case EXPR_VARIABLE:
mio_symtree_ref (&e->symtree);
mio_ref_list (&e->ref);
break;
case EXPR_SUBSTRING:
e->value.character.string
= CONST_CAST (gfc_char_t *,
mio_allocated_wide_string (e->value.character.string,
e->value.character.length));
mio_ref_list (&e->ref);
break;
case EXPR_STRUCTURE:
case EXPR_ARRAY:
mio_constructor (&e->value.constructor);
mio_shape (&e->shape, e->rank);
break;
case EXPR_CONSTANT:
switch (e->ts.type)
{
case BT_INTEGER:
mio_gmp_integer (&e->value.integer);
break;
case BT_REAL:
gfc_set_model_kind (e->ts.kind);
mio_gmp_real (&e->value.real);
break;
case BT_COMPLEX:
gfc_set_model_kind (e->ts.kind);
mio_gmp_real (&mpc_realref (e->value.complex));
mio_gmp_real (&mpc_imagref (e->value.complex));
break;
case BT_LOGICAL:
mio_integer (&e->value.logical);
break;
case BT_CHARACTER:
mio_integer (&e->value.character.length);
e->value.character.string
= CONST_CAST (gfc_char_t *,
mio_allocated_wide_string (e->value.character.string,
e->value.character.length));
break;
default:
bad_module ("Bad type in constant expression");
}
break;
case EXPR_NULL:
break;
case EXPR_COMPCALL:
case EXPR_PPC:
gcc_unreachable ();
break;
}
mio_rparen ();
}
/* Read and write namelists. */
static void
mio_namelist (gfc_symbol *sym)
{
gfc_namelist *n, *m;
const char *check_name;
mio_lparen ();
if (iomode == IO_OUTPUT)
{
for (n = sym->namelist; n; n = n->next)
mio_symbol_ref (&n->sym);
}
else
{
/* This departure from the standard is flagged as an error.
It does, in fact, work correctly. TODO: Allow it
conditionally? */
if (sym->attr.flavor == FL_NAMELIST)
{
check_name = find_use_name (sym->name, false);
if (check_name && strcmp (check_name, sym->name) != 0)
gfc_error ("Namelist %s cannot be renamed by USE "
"association to %s", sym->name, check_name);
}
m = NULL;
while (peek_atom () != ATOM_RPAREN)
{
n = gfc_get_namelist ();
mio_symbol_ref (&n->sym);
if (sym->namelist == NULL)
sym->namelist = n;
else
m->next = n;
m = n;
}
sym->namelist_tail = m;
}
mio_rparen ();
}
/* Save/restore lists of gfc_interface structures. When loading an
interface, we are really appending to the existing list of
interfaces. Checking for duplicate and ambiguous interfaces has to
be done later when all symbols have been loaded. */
pointer_info *
mio_interface_rest (gfc_interface **ip)
{
gfc_interface *tail, *p;
pointer_info *pi = NULL;
if (iomode == IO_OUTPUT)
{
if (ip != NULL)
for (p = *ip; p; p = p->next)
mio_symbol_ref (&p->sym);
}
else
{
if (*ip == NULL)
tail = NULL;
else
{
tail = *ip;
while (tail->next)
tail = tail->next;
}
for (;;)
{
if (peek_atom () == ATOM_RPAREN)
break;
p = gfc_get_interface ();
p->where = gfc_current_locus;
pi = mio_symbol_ref (&p->sym);
if (tail == NULL)
*ip = p;
else
tail->next = p;
tail = p;
}
}
mio_rparen ();
return pi;
}
/* Save/restore a nameless operator interface. */
static void
mio_interface (gfc_interface **ip)
{
mio_lparen ();
mio_interface_rest (ip);
}
/* Save/restore a named operator interface. */
static void
mio_symbol_interface (const char **name, const char **module,
gfc_interface **ip)
{
mio_lparen ();
mio_pool_string (name);
mio_pool_string (module);
mio_interface_rest (ip);
}
static void
mio_namespace_ref (gfc_namespace **nsp)
{
gfc_namespace *ns;
pointer_info *p;
p = mio_pointer_ref (nsp);
if (p->type == P_UNKNOWN)
p->type = P_NAMESPACE;
if (iomode == IO_INPUT && p->integer != 0)
{
ns = (gfc_namespace *) p->u.pointer;
if (ns == NULL)
{
ns = gfc_get_namespace (NULL, 0);
associate_integer_pointer (p, ns);
}
else
ns->refs++;
}
}
/* Save/restore the f2k_derived namespace of a derived-type symbol. */
static gfc_namespace* current_f2k_derived;
static void
mio_typebound_proc (gfc_typebound_proc** proc)
{
int flag;
int overriding_flag;
if (iomode == IO_INPUT)
{
*proc = gfc_get_typebound_proc ();
(*proc)->where = gfc_current_locus;
}
gcc_assert (*proc);
mio_lparen ();
(*proc)->access = MIO_NAME (gfc_access) ((*proc)->access, access_types);
/* IO the NON_OVERRIDABLE/DEFERRED combination. */
gcc_assert (!((*proc)->deferred && (*proc)->non_overridable));
overriding_flag = ((*proc)->deferred << 1) | (*proc)->non_overridable;
overriding_flag = mio_name (overriding_flag, binding_overriding);
(*proc)->deferred = ((overriding_flag & 2) != 0);
(*proc)->non_overridable = ((overriding_flag & 1) != 0);
gcc_assert (!((*proc)->deferred && (*proc)->non_overridable));
(*proc)->nopass = mio_name ((*proc)->nopass, binding_passing);
(*proc)->is_generic = mio_name ((*proc)->is_generic, binding_generic);
(*proc)->ppc = mio_name((*proc)->ppc, binding_ppc);
mio_pool_string (&((*proc)->pass_arg));
flag = (int) (*proc)->pass_arg_num;
mio_integer (&flag);
(*proc)->pass_arg_num = (unsigned) flag;
if ((*proc)->is_generic)
{
gfc_tbp_generic* g;
mio_lparen ();
if (iomode == IO_OUTPUT)
for (g = (*proc)->u.generic; g; g = g->next)
mio_allocated_string (g->specific_st->name);
else
{
(*proc)->u.generic = NULL;
while (peek_atom () != ATOM_RPAREN)
{
gfc_symtree** sym_root;
g = gfc_get_tbp_generic ();
g->specific = NULL;
require_atom (ATOM_STRING);
sym_root = ¤t_f2k_derived->tb_sym_root;
g->specific_st = gfc_get_tbp_symtree (sym_root, atom_string);
gfc_free (atom_string);
g->next = (*proc)->u.generic;
(*proc)->u.generic = g;
}
}
mio_rparen ();
}
else if (!(*proc)->ppc)
mio_symtree_ref (&(*proc)->u.specific);
mio_rparen ();
}
/* Walker-callback function for this purpose. */
static void
mio_typebound_symtree (gfc_symtree* st)
{
if (iomode == IO_OUTPUT && !st->n.tb)
return;
if (iomode == IO_OUTPUT)
{
mio_lparen ();
mio_allocated_string (st->name);
}
/* For IO_INPUT, the above is done in mio_f2k_derived. */
mio_typebound_proc (&st->n.tb);
mio_rparen ();
}
/* IO a full symtree (in all depth). */
static void
mio_full_typebound_tree (gfc_symtree** root)
{
mio_lparen ();
if (iomode == IO_OUTPUT)
gfc_traverse_symtree (*root, &mio_typebound_symtree);
else
{
while (peek_atom () == ATOM_LPAREN)
{
gfc_symtree* st;
mio_lparen ();
require_atom (ATOM_STRING);
st = gfc_get_tbp_symtree (root, atom_string);
gfc_free (atom_string);
mio_typebound_symtree (st);
}
}
mio_rparen ();
}
static void
mio_finalizer (gfc_finalizer **f)
{
if (iomode == IO_OUTPUT)
{
gcc_assert (*f);
gcc_assert ((*f)->proc_tree); /* Should already be resolved. */
mio_symtree_ref (&(*f)->proc_tree);
}
else
{
*f = gfc_get_finalizer ();
(*f)->where = gfc_current_locus; /* Value should not matter. */
(*f)->next = NULL;
mio_symtree_ref (&(*f)->proc_tree);
(*f)->proc_sym = NULL;
}
}
static void
mio_f2k_derived (gfc_namespace *f2k)
{
current_f2k_derived = f2k;
/* Handle the list of finalizer procedures. */
mio_lparen ();
if (iomode == IO_OUTPUT)
{
gfc_finalizer *f;
for (f = f2k->finalizers; f; f = f->next)
mio_finalizer (&f);
}
else
{
f2k->finalizers = NULL;
while (peek_atom () != ATOM_RPAREN)
{
gfc_finalizer *cur = NULL;
mio_finalizer (&cur);
cur->next = f2k->finalizers;
f2k->finalizers = cur;
}
}
mio_rparen ();
/* Handle type-bound procedures. */
mio_full_typebound_tree (&f2k->tb_sym_root);
/* Type-bound user operators. */
mio_full_typebound_tree (&f2k->tb_uop_root);
/* Type-bound intrinsic operators. */
mio_lparen ();
if (iomode == IO_OUTPUT)
{
int op;
for (op = GFC_INTRINSIC_BEGIN; op != GFC_INTRINSIC_END; ++op)
{
gfc_intrinsic_op realop;
if (op == INTRINSIC_USER || !f2k->tb_op[op])
continue;
mio_lparen ();
realop = (gfc_intrinsic_op) op;
mio_intrinsic_op (&realop);
mio_typebound_proc (&f2k->tb_op[op]);
mio_rparen ();
}
}
else
while (peek_atom () != ATOM_RPAREN)
{
gfc_intrinsic_op op = GFC_INTRINSIC_BEGIN; /* Silence GCC. */
mio_lparen ();
mio_intrinsic_op (&op);
mio_typebound_proc (&f2k->tb_op[op]);
mio_rparen ();
}
mio_rparen ();
}
static void
mio_full_f2k_derived (gfc_symbol *sym)
{
mio_lparen ();
if (iomode == IO_OUTPUT)
{
if (sym->f2k_derived)
mio_f2k_derived (sym->f2k_derived);
}
else
{
if (peek_atom () != ATOM_RPAREN)
{
sym->f2k_derived = gfc_get_namespace (NULL, 0);
mio_f2k_derived (sym->f2k_derived);
}
else
gcc_assert (!sym->f2k_derived);
}
mio_rparen ();
}
/* Unlike most other routines, the address of the symbol node is already
fixed on input and the name/module has already been filled in. */
static void
mio_symbol (gfc_symbol *sym)
{
int intmod = INTMOD_NONE;
mio_lparen ();
mio_symbol_attribute (&sym->attr);
mio_typespec (&sym->ts);
if (iomode == IO_OUTPUT)
mio_namespace_ref (&sym->formal_ns);
else
{
mio_namespace_ref (&sym->formal_ns);
if (sym->formal_ns)
{
sym->formal_ns->proc_name = sym;
sym->refs++;
}
}
/* Save/restore common block links. */
mio_symbol_ref (&sym->common_next);
mio_formal_arglist (&sym->formal);
if (sym->attr.flavor == FL_PARAMETER)
mio_expr (&sym->value);
mio_array_spec (&sym->as);
mio_symbol_ref (&sym->result);
if (sym->attr.cray_pointee)
mio_symbol_ref (&sym->cp_pointer);
/* Note that components are always saved, even if they are supposed
to be private. Component access is checked during searching. */
mio_component_list (&sym->components);
if (sym->components != NULL)
sym->component_access
= MIO_NAME (gfc_access) (sym->component_access, access_types);
/* Load/save the f2k_derived namespace of a derived-type symbol. */
mio_full_f2k_derived (sym);
mio_namelist (sym);
/* Add the fields that say whether this is from an intrinsic module,
and if so, what symbol it is within the module. */
/* mio_integer (&(sym->from_intmod)); */
if (iomode == IO_OUTPUT)
{
intmod = sym->from_intmod;
mio_integer (&intmod);
}
else
{
mio_integer (&intmod);
sym->from_intmod = (intmod_id) intmod;
}
mio_integer (&(sym->intmod_sym_id));
if (sym->attr.flavor == FL_DERIVED)
mio_integer (&(sym->hash_value));
mio_rparen ();
}
/************************* Top level subroutines *************************/
/* Given a root symtree node and a symbol, try to find a symtree that
references the symbol that is not a unique name. */
static gfc_symtree *
find_symtree_for_symbol (gfc_symtree *st, gfc_symbol *sym)
{
gfc_symtree *s = NULL;
if (st == NULL)
return s;
s = find_symtree_for_symbol (st->right, sym);
if (s != NULL)
return s;
s = find_symtree_for_symbol (st->left, sym);
if (s != NULL)
return s;
if (st->n.sym == sym && !check_unique_name (st->name))
return st;
return s;
}
/* A recursive function to look for a specific symbol by name and by
module. Whilst several symtrees might point to one symbol, its
is sufficient for the purposes here than one exist. Note that
generic interfaces are distinguished as are symbols that have been
renamed in another module. */
static gfc_symtree *
find_symbol (gfc_symtree *st, const char *name,
const char *module, int generic)
{
int c;
gfc_symtree *retval, *s;
if (st == NULL || st->n.sym == NULL)
return NULL;
c = strcmp (name, st->n.sym->name);
if (c == 0 && st->n.sym->module
&& strcmp (module, st->n.sym->module) == 0
&& !check_unique_name (st->name))
{
s = gfc_find_symtree (gfc_current_ns->sym_root, name);
/* Detect symbols that are renamed by use association in another
module by the absence of a symtree and null attr.use_rename,
since the latter is not transmitted in the module file. */
if (((!generic && !st->n.sym->attr.generic)
|| (generic && st->n.sym->attr.generic))
&& !(s == NULL && !st->n.sym->attr.use_rename))
return st;
}
retval = find_symbol (st->left, name, module, generic);
if (retval == NULL)
retval = find_symbol (st->right, name, module, generic);
return retval;
}
/* Skip a list between balanced left and right parens. */
static void
skip_list (void)
{
int level;
level = 0;
do
{
switch (parse_atom ())
{
case ATOM_LPAREN:
level++;
break;
case ATOM_RPAREN:
level--;
break;
case ATOM_STRING:
gfc_free (atom_string);
break;
case ATOM_NAME:
case ATOM_INTEGER:
break;
}
}
while (level > 0);
}
/* Load operator interfaces from the module. Interfaces are unusual
in that they attach themselves to existing symbols. */
static void
load_operator_interfaces (void)
{
const char *p;
char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
gfc_user_op *uop;
pointer_info *pi = NULL;
int n, i;
mio_lparen ();
while (peek_atom () != ATOM_RPAREN)
{
mio_lparen ();
mio_internal_string (name);
mio_internal_string (module);
n = number_use_names (name, true);
n = n ? n : 1;
for (i = 1; i <= n; i++)
{
/* Decide if we need to load this one or not. */
p = find_use_name_n (name, &i, true);
if (p == NULL)
{
while (parse_atom () != ATOM_RPAREN);
continue;
}
if (i == 1)
{
uop = gfc_get_uop (p);
pi = mio_interface_rest (&uop->op);
}
else
{
if (gfc_find_uop (p, NULL))
continue;
uop = gfc_get_uop (p);
uop->op = gfc_get_interface ();
uop->op->where = gfc_current_locus;
add_fixup (pi->integer, &uop->op->sym);
}
}
}
mio_rparen ();
}
/* Load interfaces from the module. Interfaces are unusual in that
they attach themselves to existing symbols. */
static void
load_generic_interfaces (void)
{
const char *p;
char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
gfc_symbol *sym;
gfc_interface *generic = NULL, *gen = NULL;
int n, i, renamed;
bool ambiguous_set = false;
mio_lparen ();
while (peek_atom () != ATOM_RPAREN)
{
mio_lparen ();
mio_internal_string (name);
mio_internal_string (module);
n = number_use_names (name, false);
renamed = n ? 1 : 0;
n = n ? n : 1;
for (i = 1; i <= n; i++)
{
gfc_symtree *st;
/* Decide if we need to load this one or not. */
p = find_use_name_n (name, &i, false);
st = find_symbol (gfc_current_ns->sym_root,
name, module_name, 1);
if (!p || gfc_find_symbol (p, NULL, 0, &sym))
{
/* Skip the specific names for these cases. */
while (i == 1 && parse_atom () != ATOM_RPAREN);
continue;
}
/* If the symbol exists already and is being USEd without being
in an ONLY clause, do not load a new symtree(11.3.2). */
if (!only_flag && st)
sym = st->n.sym;
if (!sym)
{
/* Make the symbol inaccessible if it has been added by a USE
statement without an ONLY(11.3.2). */
if (st && only_flag
&& !st->n.sym->attr.use_only
&& !st->n.sym->attr.use_rename
&& strcmp (st->n.sym->module, module_name) == 0)
{
sym = st->n.sym;
gfc_delete_symtree (&gfc_current_ns->sym_root, name);
st = gfc_get_unique_symtree (gfc_current_ns);
st->n.sym = sym;
sym = NULL;
}
else if (st)
{
sym = st->n.sym;
if (strcmp (st->name, p) != 0)
{
st = gfc_new_symtree (&gfc_current_ns->sym_root, p);
st->n.sym = sym;
sym->refs++;
}
}
/* Since we haven't found a valid generic interface, we had
better make one. */
if (!sym)
{
gfc_get_symbol (p, NULL, &sym);
sym->name = gfc_get_string (name);
sym->module = gfc_get_string (module_name);
sym->attr.flavor = FL_PROCEDURE;
sym->attr.generic = 1;
sym->attr.use_assoc = 1;
}
}
else
{
/* Unless sym is a generic interface, this reference
is ambiguous. */
if (st == NULL)
st = gfc_find_symtree (gfc_current_ns->sym_root, p);
sym = st->n.sym;
if (st && !sym->attr.generic
&& !st->ambiguous
&& sym->module
&& strcmp(module, sym->module))
{
ambiguous_set = true;
st->ambiguous = 1;
}
}
sym->attr.use_only = only_flag;
sym->attr.use_rename = renamed;
if (i == 1)
{
mio_interface_rest (&sym->generic);
generic = sym->generic;
}
else if (!sym->generic)
{
sym->generic = generic;
sym->attr.generic_copy = 1;
}
/* If a procedure that is not generic has generic interfaces
that include itself, it is generic! We need to take care
to retain symbols ambiguous that were already so. */
if (sym->attr.use_assoc
&& !sym->attr.generic
&& sym->attr.flavor == FL_PROCEDURE)
{
for (gen = generic; gen; gen = gen->next)
{
if (gen->sym == sym)
{
sym->attr.generic = 1;
if (ambiguous_set)
st->ambiguous = 0;
break;
}
}
}
}
}
mio_rparen ();
}
/* Load common blocks. */
static void
load_commons (void)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
gfc_common_head *p;
mio_lparen ();
while (peek_atom () != ATOM_RPAREN)
{
int flags;
mio_lparen ();
mio_internal_string (name);
p = gfc_get_common (name, 1);
mio_symbol_ref (&p->head);
mio_integer (&flags);
if (flags & 1)
p->saved = 1;
if (flags & 2)
p->threadprivate = 1;
p->use_assoc = 1;
/* Get whether this was a bind(c) common or not. */
mio_integer (&p->is_bind_c);
/* Get the binding label. */
mio_internal_string (p->binding_label);
mio_rparen ();
}
mio_rparen ();
}
/* Load equivalences. The flag in_load_equiv informs mio_expr_ref of this
so that unused variables are not loaded and so that the expression can
be safely freed. */
static void
load_equiv (void)
{
gfc_equiv *head, *tail, *end, *eq;
bool unused;
mio_lparen ();
in_load_equiv = true;
end = gfc_current_ns->equiv;
while (end != NULL && end->next != NULL)
end = end->next;
while (peek_atom () != ATOM_RPAREN) {
mio_lparen ();
head = tail = NULL;
while(peek_atom () != ATOM_RPAREN)
{
if (head == NULL)
head = tail = gfc_get_equiv ();
else
{
tail->eq = gfc_get_equiv ();
tail = tail->eq;
}
mio_pool_string (&tail->module);
mio_expr (&tail->expr);
}
/* Unused equivalence members have a unique name. In addition, it
must be checked that the symbols are from the same module. */
unused = true;
for (eq = head; eq; eq = eq->eq)
{
if (eq->expr->symtree->n.sym->module
&& head->expr->symtree->n.sym->module
&& strcmp (head->expr->symtree->n.sym->module,
eq->expr->symtree->n.sym->module) == 0
&& !check_unique_name (eq->expr->symtree->name))
{
unused = false;
break;
}
}
if (unused)
{
for (eq = head; eq; eq = head)
{
head = eq->eq;
gfc_free_expr (eq->expr);
gfc_free (eq);
}
}
if (end == NULL)
gfc_current_ns->equiv = head;
else
end->next = head;
if (head != NULL)
end = head;
mio_rparen ();
}
mio_rparen ();
in_load_equiv = false;
}
/* This function loads the sym_root of f2k_derived with the extensions to
the derived type. */
static void
load_derived_extensions (void)
{
int symbol, j;
gfc_symbol *derived;
gfc_symbol *dt;
gfc_symtree *st;
pointer_info *info;
char name[GFC_MAX_SYMBOL_LEN + 1];
char module[GFC_MAX_SYMBOL_LEN + 1];
const char *p;
mio_lparen ();
while (peek_atom () != ATOM_RPAREN)
{
mio_lparen ();
mio_integer (&symbol);
info = get_integer (symbol);
derived = info->u.rsym.sym;
/* This one is not being loaded. */
if (!info || !derived)
{
while (peek_atom () != ATOM_RPAREN)
skip_list ();
continue;
}
gcc_assert (derived->attr.flavor == FL_DERIVED);
if (derived->f2k_derived == NULL)
derived->f2k_derived = gfc_get_namespace (NULL, 0);
while (peek_atom () != ATOM_RPAREN)
{
mio_lparen ();
mio_internal_string (name);
mio_internal_string (module);
/* Only use one use name to find the symbol. */
j = 1;
p = find_use_name_n (name, &j, false);
if (p)
{
st = gfc_find_symtree (gfc_current_ns->sym_root, p);
dt = st->n.sym;
st = gfc_find_symtree (derived->f2k_derived->sym_root, name);
if (st == NULL)
{
/* Only use the real name in f2k_derived to ensure a single
symtree. */
st = gfc_new_symtree (&derived->f2k_derived->sym_root, name);
st->n.sym = dt;
st->n.sym->refs++;
}
}
mio_rparen ();
}
mio_rparen ();
}
mio_rparen ();
}
/* Recursive function to traverse the pointer_info tree and load a
needed symbol. We return nonzero if we load a symbol and stop the
traversal, because the act of loading can alter the tree. */
static int
load_needed (pointer_info *p)
{
gfc_namespace *ns;
pointer_info *q;
gfc_symbol *sym;
int rv;
rv = 0;
if (p == NULL)
return rv;
rv |= load_needed (p->left);
rv |= load_needed (p->right);
if (p->type != P_SYMBOL || p->u.rsym.state != NEEDED)
return rv;
p->u.rsym.state = USED;
set_module_locus (&p->u.rsym.where);
sym = p->u.rsym.sym;
if (sym == NULL)
{
q = get_integer (p->u.rsym.ns);
ns = (gfc_namespace *) q->u.pointer;
if (ns == NULL)
{
/* Create an interface namespace if necessary. These are
the namespaces that hold the formal parameters of module
procedures. */
ns = gfc_get_namespace (NULL, 0);
associate_integer_pointer (q, ns);
}
/* Use the module sym as 'proc_name' so that gfc_get_symbol_decl
doesn't go pear-shaped if the symbol is used. */
if (!ns->proc_name)
gfc_find_symbol (p->u.rsym.module, gfc_current_ns,
1, &ns->proc_name);
sym = gfc_new_symbol (p->u.rsym.true_name, ns);
sym->module = gfc_get_string (p->u.rsym.module);
strcpy (sym->binding_label, p->u.rsym.binding_label);
associate_integer_pointer (p, sym);
}
mio_symbol (sym);
sym->attr.use_assoc = 1;
if (only_flag)
sym->attr.use_only = 1;
if (p->u.rsym.renamed)
sym->attr.use_rename = 1;
return 1;
}
/* Recursive function for cleaning up things after a module has been read. */
static void
read_cleanup (pointer_info *p)
{
gfc_symtree *st;
pointer_info *q;
if (p == NULL)
return;
read_cleanup (p->left);
read_cleanup (p->right);
if (p->type == P_SYMBOL && p->u.rsym.state == USED && !p->u.rsym.referenced)
{
/* Add hidden symbols to the symtree. */
q = get_integer (p->u.rsym.ns);
st = gfc_get_unique_symtree ((gfc_namespace *) q->u.pointer);
st->n.sym = p->u.rsym.sym;
st->n.sym->refs++;
/* Fixup any symtree references. */
p->u.rsym.symtree = st;
resolve_fixups (p->u.rsym.stfixup, st);
p->u.rsym.stfixup = NULL;
}
/* Free unused symbols. */
if (p->type == P_SYMBOL && p->u.rsym.state == UNUSED)
gfc_free_symbol (p->u.rsym.sym);
}
/* It is not quite enough to check for ambiguity in the symbols by
the loaded symbol and the new symbol not being identical. */
static bool
check_for_ambiguous (gfc_symbol *st_sym, pointer_info *info)
{
gfc_symbol *rsym;
module_locus locus;
symbol_attribute attr;
rsym = info->u.rsym.sym;
if (st_sym == rsym)
return false;
if (st_sym->attr.vtab || st_sym->attr.vtype)
return false;
/* If the existing symbol is generic from a different module and
the new symbol is generic there can be no ambiguity. */
if (st_sym->attr.generic
&& st_sym->module
&& strcmp (st_sym->module, module_name))
{
/* The new symbol's attributes have not yet been read. Since
we need attr.generic, read it directly. */
get_module_locus (&locus);
set_module_locus (&info->u.rsym.where);
mio_lparen ();
attr.generic = 0;
mio_symbol_attribute (&attr);
set_module_locus (&locus);
if (attr.generic)
return false;
}
return true;
}
/* Read a module file. */
static void
read_module (void)
{
module_locus operator_interfaces, user_operators, extensions;
const char *p;
char name[GFC_MAX_SYMBOL_LEN + 1];
int i;
int ambiguous, j, nuse, symbol;
pointer_info *info, *q;
gfc_use_rename *u;
gfc_symtree *st;
gfc_symbol *sym;
get_module_locus (&operator_interfaces); /* Skip these for now. */
skip_list ();
get_module_locus (&user_operators);
skip_list ();
skip_list ();
/* Skip commons, equivalences and derived type extensions for now. */
skip_list ();
skip_list ();
get_module_locus (&extensions);
skip_list ();
mio_lparen ();
/* Create the fixup nodes for all the symbols. */
while (peek_atom () != ATOM_RPAREN)
{
require_atom (ATOM_INTEGER);
info = get_integer (atom_int);
info->type = P_SYMBOL;
info->u.rsym.state = UNUSED;
mio_internal_string (info->u.rsym.true_name);
mio_internal_string (info->u.rsym.module);
mio_internal_string (info->u.rsym.binding_label);
require_atom (ATOM_INTEGER);
info->u.rsym.ns = atom_int;
get_module_locus (&info->u.rsym.where);
skip_list ();
/* See if the symbol has already been loaded by a previous module.
If so, we reference the existing symbol and prevent it from
being loaded again. This should not happen if the symbol being
read is an index for an assumed shape dummy array (ns != 1). */
sym = find_true_name (info->u.rsym.true_name, info->u.rsym.module);
if (sym == NULL
|| (sym->attr.flavor == FL_VARIABLE && info->u.rsym.ns !=1))
continue;
info->u.rsym.state = USED;
info->u.rsym.sym = sym;
/* Some symbols do not have a namespace (eg. formal arguments),
so the automatic "unique symtree" mechanism must be suppressed
by marking them as referenced. */
q = get_integer (info->u.rsym.ns);
if (q->u.pointer == NULL)
{
info->u.rsym.referenced = 1;
continue;
}
/* If possible recycle the symtree that references the symbol.
If a symtree is not found and the module does not import one,
a unique-name symtree is found by read_cleanup. */
st = find_symtree_for_symbol (gfc_current_ns->sym_root, sym);
if (st != NULL)
{
info->u.rsym.symtree = st;
info->u.rsym.referenced = 1;
}
}
mio_rparen ();
/* Parse the symtree lists. This lets us mark which symbols need to
be loaded. Renaming is also done at this point by replacing the
symtree name. */
mio_lparen ();
while (peek_atom () != ATOM_RPAREN)
{
mio_internal_string (name);
mio_integer (&ambiguous);
mio_integer (&symbol);
info = get_integer (symbol);
/* See how many use names there are. If none, go through the start
of the loop at least once. */
nuse = number_use_names (name, false);
info->u.rsym.renamed = nuse ? 1 : 0;
if (nuse == 0)
nuse = 1;
for (j = 1; j <= nuse; j++)
{
/* Get the jth local name for this symbol. */
p = find_use_name_n (name, &j, false);
if (p == NULL && strcmp (name, module_name) == 0)
p = name;
/* Skip symtree nodes not in an ONLY clause, unless there
is an existing symtree loaded from another USE statement. */
if (p == NULL)
{
st = gfc_find_symtree (gfc_current_ns->sym_root, name);
if (st != NULL)
info->u.rsym.symtree = st;
continue;
}
/* If a symbol of the same name and module exists already,
this symbol, which is not in an ONLY clause, must not be
added to the namespace(11.3.2). Note that find_symbol
only returns the first occurrence that it finds. */
if (!only_flag && !info->u.rsym.renamed
&& strcmp (name, module_name) != 0
&& find_symbol (gfc_current_ns->sym_root, name,
module_name, 0))
continue;
st = gfc_find_symtree (gfc_current_ns->sym_root, p);
if (st != NULL)
{
/* Check for ambiguous symbols. */
if (check_for_ambiguous (st->n.sym, info))
st->ambiguous = 1;
info->u.rsym.symtree = st;
}
else
{
st = gfc_find_symtree (gfc_current_ns->sym_root, name);
/* Delete the symtree if the symbol has been added by a USE
statement without an ONLY(11.3.2). Remember that the rsym
will be the same as the symbol found in the symtree, for
this case. */
if (st && (only_flag || info->u.rsym.renamed)
&& !st->n.sym->attr.use_only
&& !st->n.sym->attr.use_rename
&& info->u.rsym.sym == st->n.sym)
gfc_delete_symtree (&gfc_current_ns->sym_root, name);
/* Create a symtree node in the current namespace for this
symbol. */
st = check_unique_name (p)
? gfc_get_unique_symtree (gfc_current_ns)
: gfc_new_symtree (&gfc_current_ns->sym_root, p);
st->ambiguous = ambiguous;
sym = info->u.rsym.sym;
/* Create a symbol node if it doesn't already exist. */
if (sym == NULL)
{
info->u.rsym.sym = gfc_new_symbol (info->u.rsym.true_name,
gfc_current_ns);
sym = info->u.rsym.sym;
sym->module = gfc_get_string (info->u.rsym.module);
/* TODO: hmm, can we test this? Do we know it will be
initialized to zeros? */
if (info->u.rsym.binding_label[0] != '\0')
strcpy (sym->binding_label, info->u.rsym.binding_label);
}
st->n.sym = sym;
st->n.sym->refs++;
if (strcmp (name, p) != 0)
sym->attr.use_rename = 1;
/* We need to set the only_flag here so that symbols from the
same USE...ONLY but earlier are not deleted from the tree in
the gfc_delete_symtree above. */
sym->attr.use_only = only_flag;
/* Store the symtree pointing to this symbol. */
info->u.rsym.symtree = st;
if (info->u.rsym.state == UNUSED)
info->u.rsym.state = NEEDED;
info->u.rsym.referenced = 1;
}
}
}
mio_rparen ();
/* Load intrinsic operator interfaces. */
set_module_locus (&operator_interfaces);
mio_lparen ();
for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
{
if (i == INTRINSIC_USER)
continue;
if (only_flag)
{
u = find_use_operator ((gfc_intrinsic_op) i);
if (u == NULL)
{
skip_list ();
continue;
}
u->found = 1;
}
mio_interface (&gfc_current_ns->op[i]);
}
mio_rparen ();
/* Load generic and user operator interfaces. These must follow the
loading of symtree because otherwise symbols can be marked as
ambiguous. */
set_module_locus (&user_operators);
load_operator_interfaces ();
load_generic_interfaces ();
load_commons ();
load_equiv ();
/* At this point, we read those symbols that are needed but haven't
been loaded yet. If one symbol requires another, the other gets
marked as NEEDED if its previous state was UNUSED. */
while (load_needed (pi_root));
/* Make sure all elements of the rename-list were found in the module. */
for (u = gfc_rename_list; u; u = u->next)
{
if (u->found)
continue;
if (u->op == INTRINSIC_NONE)
{
gfc_error ("Symbol '%s' referenced at %L not found in module '%s'",
u->use_name, &u->where, module_name);
continue;
}
if (u->op == INTRINSIC_USER)
{
gfc_error ("User operator '%s' referenced at %L not found "
"in module '%s'", u->use_name, &u->where, module_name);
continue;
}
gfc_error ("Intrinsic operator '%s' referenced at %L not found "
"in module '%s'", gfc_op2string (u->op), &u->where,
module_name);
}
/* Now we should be in a position to fill f2k_derived with derived type
extensions, since everything has been loaded. */
set_module_locus (&extensions);
load_derived_extensions ();
/* Clean up symbol nodes that were never loaded, create references
to hidden symbols. */
read_cleanup (pi_root);
}
/* Given an access type that is specific to an entity and the default
access, return nonzero if the entity is publicly accessible. If the
element is declared as PUBLIC, then it is public; if declared
PRIVATE, then private, and otherwise it is public unless the default
access in this context has been declared PRIVATE. */
bool
gfc_check_access (gfc_access specific_access, gfc_access default_access)
{
if (specific_access == ACCESS_PUBLIC)
return TRUE;
if (specific_access == ACCESS_PRIVATE)
return FALSE;
if (gfc_option.flag_module_private)
return default_access == ACCESS_PUBLIC;
else
return default_access != ACCESS_PRIVATE;
}
/* A structure to remember which commons we've already written. */
struct written_common
{
BBT_HEADER(written_common);
const char *name, *label;
};
static struct written_common *written_commons = NULL;
/* Comparison function used for balancing the binary tree. */
static int
compare_written_commons (void *a1, void *b1)
{
const char *aname = ((struct written_common *) a1)->name;
const char *alabel = ((struct written_common *) a1)->label;
const char *bname = ((struct written_common *) b1)->name;
const char *blabel = ((struct written_common *) b1)->label;
int c = strcmp (aname, bname);
return (c != 0 ? c : strcmp (alabel, blabel));
}
/* Free a list of written commons. */
static void
free_written_common (struct written_common *w)
{
if (!w)
return;
if (w->left)
free_written_common (w->left);
if (w->right)
free_written_common (w->right);
gfc_free (w);
}
/* Write a common block to the module -- recursive helper function. */
static void
write_common_0 (gfc_symtree *st, bool this_module)
{
gfc_common_head *p;
const char * name;
int flags;
const char *label;
struct written_common *w;
bool write_me = true;
if (st == NULL)
return;
write_common_0 (st->left, this_module);
/* We will write out the binding label, or the name if no label given. */
name = st->n.common->name;
p = st->n.common;
label = p->is_bind_c ? p->binding_label : p->name;
/* Check if we've already output this common. */
w = written_commons;
while (w)
{
int c = strcmp (name, w->name);
c = (c != 0 ? c : strcmp (label, w->label));
if (c == 0)
write_me = false;
w = (c < 0) ? w->left : w->right;
}
if (this_module && p->use_assoc)
write_me = false;
if (write_me)
{
/* Write the common to the module. */
mio_lparen ();
mio_pool_string (&name);
mio_symbol_ref (&p->head);
flags = p->saved ? 1 : 0;
if (p->threadprivate)
flags |= 2;
mio_integer (&flags);
/* Write out whether the common block is bind(c) or not. */
mio_integer (&(p->is_bind_c));
mio_pool_string (&label);
mio_rparen ();
/* Record that we have written this common. */
w = XCNEW (struct written_common);
w->name = p->name;
w->label = label;
gfc_insert_bbt (&written_commons, w, compare_written_commons);
}
write_common_0 (st->right, this_module);
}
/* Write a common, by initializing the list of written commons, calling
the recursive function write_common_0() and cleaning up afterwards. */
static void
write_common (gfc_symtree *st)
{
written_commons = NULL;
write_common_0 (st, true);
write_common_0 (st, false);
free_written_common (written_commons);
written_commons = NULL;
}
/* Write the blank common block to the module. */
static void
write_blank_common (void)
{
const char * name = BLANK_COMMON_NAME;
int saved;
/* TODO: Blank commons are not bind(c). The F2003 standard probably says
this, but it hasn't been checked. Just making it so for now. */
int is_bind_c = 0;
if (gfc_current_ns->blank_common.head == NULL)
return;
mio_lparen ();
mio_pool_string (&name);
mio_symbol_ref (&gfc_current_ns->blank_common.head);
saved = gfc_current_ns->blank_common.saved;
mio_integer (&saved);
/* Write out whether the common block is bind(c) or not. */
mio_integer (&is_bind_c);
/* Write out the binding label, which is BLANK_COMMON_NAME, though
it doesn't matter because the label isn't used. */
mio_pool_string (&name);
mio_rparen ();
}
/* Write equivalences to the module. */
static void
write_equiv (void)
{
gfc_equiv *eq, *e;
int num;
num = 0;
for (eq = gfc_current_ns->equiv; eq; eq = eq->next)
{
mio_lparen ();
for (e = eq; e; e = e->eq)
{
if (e->module == NULL)
e->module = gfc_get_string ("%s.eq.%d", module_name, num);
mio_allocated_string (e->module);
mio_expr (&e->expr);
}
num++;
mio_rparen ();
}
}
/* Write derived type extensions to the module. */
static void
write_dt_extensions (gfc_symtree *st)
{
if (!gfc_check_access (st->n.sym->attr.access,
st->n.sym->ns->default_access))
return;
mio_lparen ();
mio_pool_string (&st->n.sym->name);
if (st->n.sym->module != NULL)
mio_pool_string (&st->n.sym->module);
else
mio_internal_string (module_name);
mio_rparen ();
}
static void
write_derived_extensions (gfc_symtree *st)
{
if (!((st->n.sym->attr.flavor == FL_DERIVED)
&& (st->n.sym->f2k_derived != NULL)
&& (st->n.sym->f2k_derived->sym_root != NULL)))
return;
mio_lparen ();
mio_symbol_ref (&(st->n.sym));
gfc_traverse_symtree (st->n.sym->f2k_derived->sym_root,
write_dt_extensions);
mio_rparen ();
}
/* Write a symbol to the module. */
static void
write_symbol (int n, gfc_symbol *sym)
{
const char *label;
if (sym->attr.flavor == FL_UNKNOWN || sym->attr.flavor == FL_LABEL)
gfc_internal_error ("write_symbol(): bad module symbol '%s'", sym->name);
mio_integer (&n);
mio_pool_string (&sym->name);
mio_pool_string (&sym->module);
if (sym->attr.is_bind_c || sym->attr.is_iso_c)
{
label = sym->binding_label;
mio_pool_string (&label);
}
else
mio_pool_string (&sym->name);
mio_pointer_ref (&sym->ns);
mio_symbol (sym);
write_char ('\n');
}
/* Recursive traversal function to write the initial set of symbols to
the module. We check to see if the symbol should be written
according to the access specification. */
static void
write_symbol0 (gfc_symtree *st)
{
gfc_symbol *sym;
pointer_info *p;
bool dont_write = false;
if (st == NULL)
return;
write_symbol0 (st->left);
sym = st->n.sym;
if (sym->module == NULL)
sym->module = gfc_get_string (module_name);
if (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
&& !sym->attr.subroutine && !sym->attr.function)
dont_write = true;
if (!gfc_check_access (sym->attr.access, sym->ns->default_access))
dont_write = true;
if (!dont_write)
{
p = get_pointer (sym);
if (p->type == P_UNKNOWN)
p->type = P_SYMBOL;
if (p->u.wsym.state != WRITTEN)
{
write_symbol (p->integer, sym);
p->u.wsym.state = WRITTEN;
}
}
write_symbol0 (st->right);
}
/* Recursive traversal function to write the secondary set of symbols
to the module file. These are symbols that were not public yet are
needed by the public symbols or another dependent symbol. The act
of writing a symbol can modify the pointer_info tree, so we cease
traversal if we find a symbol to write. We return nonzero if a
symbol was written and pass that information upwards. */
static int
write_symbol1 (pointer_info *p)
{
int result;
if (!p)
return 0;
result = write_symbol1 (p->left);
if (!(p->type != P_SYMBOL || p->u.wsym.state != NEEDS_WRITE))
{
p->u.wsym.state = WRITTEN;
write_symbol (p->integer, p->u.wsym.sym);
result = 1;
}
result |= write_symbol1 (p->right);
return result;
}
/* Write operator interfaces associated with a symbol. */
static void
write_operator (gfc_user_op *uop)
{
static char nullstring[] = "";
const char *p = nullstring;
if (uop->op == NULL
|| !gfc_check_access (uop->access, uop->ns->default_access))
return;
mio_symbol_interface (&uop->name, &p, &uop->op);
}
/* Write generic interfaces from the namespace sym_root. */
static void
write_generic (gfc_symtree *st)
{
gfc_symbol *sym;
if (st == NULL)
return;
write_generic (st->left);
write_generic (st->right);
sym = st->n.sym;
if (!sym || check_unique_name (st->name))
return;
if (sym->generic == NULL
|| !gfc_check_access (sym->attr.access, sym->ns->default_access))
return;
if (sym->module == NULL)
sym->module = gfc_get_string (module_name);
mio_symbol_interface (&st->name, &sym->module, &sym->generic);
}
static void
write_symtree (gfc_symtree *st)
{
gfc_symbol *sym;
pointer_info *p;
sym = st->n.sym;
/* A symbol in an interface body must not be visible in the
module file. */
if (sym->ns != gfc_current_ns
&& sym->ns->proc_name
&& sym->ns->proc_name->attr.if_source == IFSRC_IFBODY)
return;
if (!gfc_check_access (sym->attr.access, sym->ns->default_access)
|| (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
&& !sym->attr.subroutine && !sym->attr.function))
return;
if (check_unique_name (st->name))
return;
p = find_pointer (sym);
if (p == NULL)
gfc_internal_error ("write_symtree(): Symbol not written");
mio_pool_string (&st->name);
mio_integer (&st->ambiguous);
mio_integer (&p->integer);
}
static void
write_module (void)
{
int i;
/* Write the operator interfaces. */
mio_lparen ();
for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
{
if (i == INTRINSIC_USER)
continue;
mio_interface (gfc_check_access (gfc_current_ns->operator_access[i],
gfc_current_ns->default_access)
? &gfc_current_ns->op[i] : NULL);
}
mio_rparen ();
write_char ('\n');
write_char ('\n');
mio_lparen ();
gfc_traverse_user_op (gfc_current_ns, write_operator);
mio_rparen ();
write_char ('\n');
write_char ('\n');
mio_lparen ();
write_generic (gfc_current_ns->sym_root);
mio_rparen ();
write_char ('\n');
write_char ('\n');
mio_lparen ();
write_blank_common ();
write_common (gfc_current_ns->common_root);
mio_rparen ();
write_char ('\n');
write_char ('\n');
mio_lparen ();
write_equiv ();
mio_rparen ();
write_char ('\n');
write_char ('\n');
mio_lparen ();
gfc_traverse_symtree (gfc_current_ns->sym_root,
write_derived_extensions);
mio_rparen ();
write_char ('\n');
write_char ('\n');
/* Write symbol information. First we traverse all symbols in the
primary namespace, writing those that need to be written.
Sometimes writing one symbol will cause another to need to be
written. A list of these symbols ends up on the write stack, and
we end by popping the bottom of the stack and writing the symbol
until the stack is empty. */
mio_lparen ();
write_symbol0 (gfc_current_ns->sym_root);
while (write_symbol1 (pi_root))
/* Nothing. */;
mio_rparen ();
write_char ('\n');
write_char ('\n');
mio_lparen ();
gfc_traverse_symtree (gfc_current_ns->sym_root, write_symtree);
mio_rparen ();
}
/* Read a MD5 sum from the header of a module file. If the file cannot
be opened, or we have any other error, we return -1. */
static int
read_md5_from_module_file (const char * filename, unsigned char md5[16])
{
FILE *file;
char buf[1024];
int n;
/* Open the file. */
if ((file = fopen (filename, "r")) == NULL)
return -1;
/* Read the first line. */
if (fgets (buf, sizeof (buf) - 1, file) == NULL)
{
fclose (file);
return -1;
}
/* The file also needs to be overwritten if the version number changed. */
n = strlen ("GFORTRAN module version '" MOD_VERSION "' created");
if (strncmp (buf, "GFORTRAN module version '" MOD_VERSION "' created", n) != 0)
{
fclose (file);
return -1;
}
/* Read a second line. */
if (fgets (buf, sizeof (buf) - 1, file) == NULL)
{
fclose (file);
return -1;
}
/* Close the file. */
fclose (file);
/* If the header is not what we expect, or is too short, bail out. */
if (strncmp (buf, "MD5:", 4) != 0 || strlen (buf) < 4 + 16)
return -1;
/* Now, we have a real MD5, read it into the array. */
for (n = 0; n < 16; n++)
{
unsigned int x;
if (sscanf (&(buf[4+2*n]), "%02x", &x) != 1)
return -1;
md5[n] = x;
}
return 0;
}
/* Given module, dump it to disk. If there was an error while
processing the module, dump_flag will be set to zero and we delete
the module file, even if it was already there. */
void
gfc_dump_module (const char *name, int dump_flag)
{
int n;
char *filename, *filename_tmp, *p;
time_t now;
fpos_t md5_pos;
unsigned char md5_new[16], md5_old[16];
n = strlen (name) + strlen (MODULE_EXTENSION) + 1;
if (gfc_option.module_dir != NULL)
{
n += strlen (gfc_option.module_dir);
filename = (char *) alloca (n);
strcpy (filename, gfc_option.module_dir);
strcat (filename, name);
}
else
{
filename = (char *) alloca (n);
strcpy (filename, name);
}
strcat (filename, MODULE_EXTENSION);
/* Name of the temporary file used to write the module. */
filename_tmp = (char *) alloca (n + 1);
strcpy (filename_tmp, filename);
strcat (filename_tmp, "0");
/* There was an error while processing the module. We delete the
module file, even if it was already there. */
if (!dump_flag)
{
unlink (filename);
return;
}
/* Write the module to the temporary file. */
module_fp = fopen (filename_tmp, "w");
if (module_fp == NULL)
gfc_fatal_error ("Can't open module file '%s' for writing at %C: %s",
filename_tmp, strerror (errno));
/* Write the header, including space reserved for the MD5 sum. */
now = time (NULL);
p = ctime (&now);
*strchr (p, '\n') = '\0';
fprintf (module_fp, "GFORTRAN module version '%s' created from %s on %s\n"
"MD5:", MOD_VERSION, gfc_source_file, p);
fgetpos (module_fp, &md5_pos);
fputs ("00000000000000000000000000000000 -- "
"If you edit this, you'll get what you deserve.\n\n", module_fp);
/* Initialize the MD5 context that will be used for output. */
md5_init_ctx (&ctx);
/* Write the module itself. */
iomode = IO_OUTPUT;
strcpy (module_name, name);
init_pi_tree ();
write_module ();
free_pi_tree (pi_root);
pi_root = NULL;
write_char ('\n');
/* Write the MD5 sum to the header of the module file. */
md5_finish_ctx (&ctx, md5_new);
fsetpos (module_fp, &md5_pos);
for (n = 0; n < 16; n++)
fprintf (module_fp, "%02x", md5_new[n]);
if (fclose (module_fp))
gfc_fatal_error ("Error writing module file '%s' for writing: %s",
filename_tmp, strerror (errno));
/* Read the MD5 from the header of the old module file and compare. */
if (read_md5_from_module_file (filename, md5_old) != 0
|| memcmp (md5_old, md5_new, sizeof (md5_old)) != 0)
{
/* Module file have changed, replace the old one. */
if (unlink (filename) && errno != ENOENT)
gfc_fatal_error ("Can't delete module file '%s': %s", filename,
strerror (errno));
if (rename (filename_tmp, filename))
gfc_fatal_error ("Can't rename module file '%s' to '%s': %s",
filename_tmp, filename, strerror (errno));
}
else
{
if (unlink (filename_tmp))
gfc_fatal_error ("Can't delete temporary module file '%s': %s",
filename_tmp, strerror (errno));
}
}
static void
sort_iso_c_rename_list (void)
{
gfc_use_rename *tmp_list = NULL;
gfc_use_rename *curr;
gfc_use_rename *kinds_used[ISOCBINDING_NUMBER] = {NULL};
int c_kind;
int i;
for (curr = gfc_rename_list; curr; curr = curr->next)
{
c_kind = get_c_kind (curr->use_name, c_interop_kinds_table);
if (c_kind == ISOCBINDING_INVALID || c_kind == ISOCBINDING_LAST)
{
gfc_error ("Symbol '%s' referenced at %L does not exist in "
"intrinsic module ISO_C_BINDING.", curr->use_name,
&curr->where);
}
else
/* Put it in the list. */
kinds_used[c_kind] = curr;
}
/* Make a new (sorted) rename list. */
i = 0;
while (i < ISOCBINDING_NUMBER && kinds_used[i] == NULL)
i++;
if (i < ISOCBINDING_NUMBER)
{
tmp_list = kinds_used[i];
i++;
curr = tmp_list;
for (; i < ISOCBINDING_NUMBER; i++)
if (kinds_used[i] != NULL)
{
curr->next = kinds_used[i];
curr = curr->next;
curr->next = NULL;
}
}
gfc_rename_list = tmp_list;
}
/* Import the intrinsic ISO_C_BINDING module, generating symbols in
the current namespace for all named constants, pointer types, and
procedures in the module unless the only clause was used or a rename
list was provided. */
static void
import_iso_c_binding_module (void)
{
gfc_symbol *mod_sym = NULL;
gfc_symtree *mod_symtree = NULL;
const char *iso_c_module_name = "__iso_c_binding";
gfc_use_rename *u;
int i;
char *local_name;
/* Look only in the current namespace. */
mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, iso_c_module_name);
if (mod_symtree == NULL)
{
/* symtree doesn't already exist in current namespace. */
gfc_get_sym_tree (iso_c_module_name, gfc_current_ns, &mod_symtree,
false);
if (mod_symtree != NULL)
mod_sym = mod_symtree->n.sym;
else
gfc_internal_error ("import_iso_c_binding_module(): Unable to "
"create symbol for %s", iso_c_module_name);
mod_sym->attr.flavor = FL_MODULE;
mod_sym->attr.intrinsic = 1;
mod_sym->module = gfc_get_string (iso_c_module_name);
mod_sym->from_intmod = INTMOD_ISO_C_BINDING;
}
/* Generate the symbols for the named constants representing
the kinds for intrinsic data types. */
if (only_flag)
{
/* Sort the rename list because there are dependencies between types
and procedures (e.g., c_loc needs c_ptr). */
sort_iso_c_rename_list ();
for (u = gfc_rename_list; u; u = u->next)
{
i = get_c_kind (u->use_name, c_interop_kinds_table);
if (i == ISOCBINDING_INVALID || i == ISOCBINDING_LAST)
{
gfc_error ("Symbol '%s' referenced at %L does not exist in "
"intrinsic module ISO_C_BINDING.", u->use_name,
&u->where);
continue;
}
generate_isocbinding_symbol (iso_c_module_name,
(iso_c_binding_symbol) i,
u->local_name);
}
}
else
{
for (i = 0; i < ISOCBINDING_NUMBER; i++)
{
local_name = NULL;
for (u = gfc_rename_list; u; u = u->next)
{
if (strcmp (c_interop_kinds_table[i].name, u->use_name) == 0)
{
local_name = u->local_name;
u->found = 1;
break;
}
}
generate_isocbinding_symbol (iso_c_module_name,
(iso_c_binding_symbol) i,
local_name);
}
for (u = gfc_rename_list; u; u = u->next)
{
if (u->found)
continue;
gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
"module ISO_C_BINDING", u->use_name, &u->where);
}
}
}
/* Add an integer named constant from a given module. */
static void
create_int_parameter (const char *name, int value, const char *modname,
intmod_id module, int id)
{
gfc_symtree *tmp_symtree;
gfc_symbol *sym;
tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
if (tmp_symtree != NULL)
{
if (strcmp (modname, tmp_symtree->n.sym->module) == 0)
return;
else
gfc_error ("Symbol '%s' already declared", name);
}
gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree, false);
sym = tmp_symtree->n.sym;
sym->module = gfc_get_string (modname);
sym->attr.flavor = FL_PARAMETER;
sym->ts.type = BT_INTEGER;
sym->ts.kind = gfc_default_integer_kind;
sym->value = gfc_get_int_expr (gfc_default_integer_kind, NULL, value);
sym->attr.use_assoc = 1;
sym->from_intmod = module;
sym->intmod_sym_id = id;
}
/* USE the ISO_FORTRAN_ENV intrinsic module. */
static void
use_iso_fortran_env_module (void)
{
static char mod[] = "iso_fortran_env";
const char *local_name;
gfc_use_rename *u;
gfc_symbol *mod_sym;
gfc_symtree *mod_symtree;
int i;
intmod_sym symbol[] = {
#define NAMED_INTCST(a,b,c,d) { a, b, 0, d },
#include "iso-fortran-env.def"
#undef NAMED_INTCST
{ ISOFORTRANENV_INVALID, NULL, -1234, 0 } };
i = 0;
#define NAMED_INTCST(a,b,c,d) symbol[i++].value = c;
#include "iso-fortran-env.def"
#undef NAMED_INTCST
/* Generate the symbol for the module itself. */
mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, mod);
if (mod_symtree == NULL)
{
gfc_get_sym_tree (mod, gfc_current_ns, &mod_symtree, false);
gcc_assert (mod_symtree);
mod_sym = mod_symtree->n.sym;
mod_sym->attr.flavor = FL_MODULE;
mod_sym->attr.intrinsic = 1;
mod_sym->module = gfc_get_string (mod);
mod_sym->from_intmod = INTMOD_ISO_FORTRAN_ENV;
}
else
if (!mod_symtree->n.sym->attr.intrinsic)
gfc_error ("Use of intrinsic module '%s' at %C conflicts with "
"non-intrinsic module name used previously", mod);
/* Generate the symbols for the module integer named constants. */
if (only_flag)
for (u = gfc_rename_list; u; u = u->next)
{
for (i = 0; symbol[i].name; i++)
if (strcmp (symbol[i].name, u->use_name) == 0)
break;
if (symbol[i].name == NULL)
{
gfc_error ("Symbol '%s' referenced at %L does not exist in "
"intrinsic module ISO_FORTRAN_ENV", u->use_name,
&u->where);
continue;
}
if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
&& symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named constant "
"from intrinsic module ISO_FORTRAN_ENV at %L is "
"incompatible with option %s", &u->where,
gfc_option.flag_default_integer
? "-fdefault-integer-8" : "-fdefault-real-8");
if (gfc_notify_std (symbol[i].standard, "The symbol '%s', referrenced "
"at %C, is not in the selected standard",
symbol[i].name) == FAILURE)
continue;
create_int_parameter (u->local_name[0] ? u->local_name
: symbol[i].name,
symbol[i].value, mod, INTMOD_ISO_FORTRAN_ENV,
symbol[i].id);
}
else
{
for (i = 0; symbol[i].name; i++)
{
local_name = NULL;
for (u = gfc_rename_list; u; u = u->next)
{
if (strcmp (symbol[i].name, u->use_name) == 0)
{
local_name = u->local_name;
u->found = 1;
break;
}
}
if (u && gfc_notify_std (symbol[i].standard, "The symbol '%s', "
"referrenced at %C, is not in the selected "
"standard", symbol[i].name) == FAILURE)
continue;
else if ((gfc_option.allow_std & symbol[i].standard) == 0)
continue;
if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
&& symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named constant "
"from intrinsic module ISO_FORTRAN_ENV at %C is "
"incompatible with option %s",
gfc_option.flag_default_integer
? "-fdefault-integer-8" : "-fdefault-real-8");
create_int_parameter (local_name ? local_name : symbol[i].name,
symbol[i].value, mod, INTMOD_ISO_FORTRAN_ENV,
symbol[i].id);
}
for (u = gfc_rename_list; u; u = u->next)
{
if (u->found)
continue;
gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
"module ISO_FORTRAN_ENV", u->use_name, &u->where);
}
}
}
/* Process a USE directive. */
void
gfc_use_module (void)
{
char *filename;
gfc_state_data *p;
int c, line, start;
gfc_symtree *mod_symtree;
gfc_use_list *use_stmt;
filename = (char *) alloca (strlen (module_name) + strlen (MODULE_EXTENSION)
+ 1);
strcpy (filename, module_name);
strcat (filename, MODULE_EXTENSION);
/* First, try to find an non-intrinsic module, unless the USE statement
specified that the module is intrinsic. */
module_fp = NULL;
if (!specified_int)
module_fp = gfc_open_included_file (filename, true, true);
/* Then, see if it's an intrinsic one, unless the USE statement
specified that the module is non-intrinsic. */
if (module_fp == NULL && !specified_nonint)
{
if (strcmp (module_name, "iso_fortran_env") == 0
&& gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ISO_FORTRAN_ENV "
"intrinsic module at %C") != FAILURE)
{
use_iso_fortran_env_module ();
return;
}
if (strcmp (module_name, "iso_c_binding") == 0
&& gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
"ISO_C_BINDING module at %C") != FAILURE)
{
import_iso_c_binding_module();
return;
}
module_fp = gfc_open_intrinsic_module (filename);
if (module_fp == NULL && specified_int)
gfc_fatal_error ("Can't find an intrinsic module named '%s' at %C",
module_name);
}
if (module_fp == NULL)
gfc_fatal_error ("Can't open module file '%s' for reading at %C: %s",
filename, strerror (errno));
/* Check that we haven't already USEd an intrinsic module with the
same name. */
mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, module_name);
if (mod_symtree && mod_symtree->n.sym->attr.intrinsic)
gfc_error ("Use of non-intrinsic module '%s' at %C conflicts with "
"intrinsic module name used previously", module_name);
iomode = IO_INPUT;
module_line = 1;
module_column = 1;
start = 0;
/* Skip the first two lines of the module, after checking that this is
a gfortran module file. */
line = 0;
while (line < 2)
{
c = module_char ();
if (c == EOF)
bad_module ("Unexpected end of module");
if (start++ < 3)
parse_name (c);
if ((start == 1 && strcmp (atom_name, "GFORTRAN") != 0)
|| (start == 2 && strcmp (atom_name, " module") != 0))
gfc_fatal_error ("File '%s' opened at %C is not a GFORTRAN module "
"file", filename);
if (start == 3)
{
if (strcmp (atom_name, " version") != 0
|| module_char () != ' '
|| parse_atom () != ATOM_STRING)
gfc_fatal_error ("Parse error when checking module version"
" for file '%s' opened at %C", filename);
if (strcmp (atom_string, MOD_VERSION))
{
gfc_fatal_error ("Wrong module version '%s' (expected '%s') "
"for file '%s' opened at %C", atom_string,
MOD_VERSION, filename);
}
}
if (c == '\n')
line++;
}
/* Make sure we're not reading the same module that we may be building. */
for (p = gfc_state_stack; p; p = p->previous)
if (p->state == COMP_MODULE && strcmp (p->sym->name, module_name) == 0)
gfc_fatal_error ("Can't USE the same module we're building!");
init_pi_tree ();
init_true_name_tree ();
read_module ();
free_true_name (true_name_root);
true_name_root = NULL;
free_pi_tree (pi_root);
pi_root = NULL;
fclose (module_fp);
use_stmt = gfc_get_use_list ();
use_stmt->module_name = gfc_get_string (module_name);
use_stmt->only_flag = only_flag;
use_stmt->rename = gfc_rename_list;
use_stmt->where = use_locus;
gfc_rename_list = NULL;
use_stmt->next = gfc_current_ns->use_stmts;
gfc_current_ns->use_stmts = use_stmt;
}
void
gfc_free_use_stmts (gfc_use_list *use_stmts)
{
gfc_use_list *next;
for (; use_stmts; use_stmts = next)
{
gfc_use_rename *next_rename;
for (; use_stmts->rename; use_stmts->rename = next_rename)
{
next_rename = use_stmts->rename->next;
gfc_free (use_stmts->rename);
}
next = use_stmts->next;
gfc_free (use_stmts);
}
}
void
gfc_module_init_2 (void)
{
last_atom = ATOM_LPAREN;
}
void
gfc_module_done_2 (void)
{
free_rename ();
}