/* Expression translation Copyright (C) 2002-2015 Free Software Foundation, Inc. Contributed by Paul Brook and Steven Bosscher This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* trans-expr.c-- generate GENERIC trees for gfc_expr. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "gfortran.h" #include "alias.h" #include "tree.h" #include "options.h" #include "fold-const.h" #include "stringpool.h" #include "diagnostic-core.h" /* For fatal_error. */ #include "langhooks.h" #include "flags.h" #include "arith.h" #include "constructor.h" #include "trans.h" #include "trans-const.h" #include "trans-types.h" #include "trans-array.h" /* Only for gfc_trans_assign and gfc_trans_pointer_assign. */ #include "trans-stmt.h" #include "dependency.h" #include "gimplify.h" /* Convert a scalar to an array descriptor. To be used for assumed-rank arrays. */ static tree get_scalar_to_descriptor_type (tree scalar, symbol_attribute attr) { enum gfc_array_kind akind; if (attr.pointer) akind = GFC_ARRAY_POINTER_CONT; else if (attr.allocatable) akind = GFC_ARRAY_ALLOCATABLE; else akind = GFC_ARRAY_ASSUMED_SHAPE_CONT; if (POINTER_TYPE_P (TREE_TYPE (scalar))) scalar = TREE_TYPE (scalar); return gfc_get_array_type_bounds (TREE_TYPE (scalar), 0, 0, NULL, NULL, 1, akind, !(attr.pointer || attr.target)); } tree gfc_conv_scalar_to_descriptor (gfc_se *se, tree scalar, symbol_attribute attr) { tree desc, type; type = get_scalar_to_descriptor_type (scalar, attr); desc = gfc_create_var (type, "desc"); DECL_ARTIFICIAL (desc) = 1; if (!POINTER_TYPE_P (TREE_TYPE (scalar))) scalar = gfc_build_addr_expr (NULL_TREE, scalar); gfc_add_modify (&se->pre, gfc_conv_descriptor_dtype (desc), gfc_get_dtype (type)); gfc_conv_descriptor_data_set (&se->pre, desc, scalar); /* Copy pointer address back - but only if it could have changed and if the actual argument is a pointer and not, e.g., NULL(). */ if ((attr.pointer || attr.allocatable) && attr.intent != INTENT_IN) gfc_add_modify (&se->post, scalar, fold_convert (TREE_TYPE (scalar), gfc_conv_descriptor_data_get (desc))); return desc; } /* This is the seed for an eventual trans-class.c The following parameters should not be used directly since they might in future implementations. Use the corresponding APIs. */ #define CLASS_DATA_FIELD 0 #define CLASS_VPTR_FIELD 1 #define CLASS_LEN_FIELD 2 #define VTABLE_HASH_FIELD 0 #define VTABLE_SIZE_FIELD 1 #define VTABLE_EXTENDS_FIELD 2 #define VTABLE_DEF_INIT_FIELD 3 #define VTABLE_COPY_FIELD 4 #define VTABLE_FINAL_FIELD 5 tree gfc_class_set_static_fields (tree decl, tree vptr, tree data) { tree tmp; tree field; vec *init = NULL; field = TYPE_FIELDS (TREE_TYPE (decl)); tmp = gfc_advance_chain (field, CLASS_DATA_FIELD); CONSTRUCTOR_APPEND_ELT (init, tmp, data); tmp = gfc_advance_chain (field, CLASS_VPTR_FIELD); CONSTRUCTOR_APPEND_ELT (init, tmp, vptr); return build_constructor (TREE_TYPE (decl), init); } tree gfc_class_data_get (tree decl) { tree data; if (POINTER_TYPE_P (TREE_TYPE (decl))) decl = build_fold_indirect_ref_loc (input_location, decl); data = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (decl)), CLASS_DATA_FIELD); return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (data), decl, data, NULL_TREE); } tree gfc_class_vptr_get (tree decl) { tree vptr; /* For class arrays decl may be a temporary descriptor handle, the vptr is then available through the saved descriptor. */ if (TREE_CODE (decl) == VAR_DECL && DECL_LANG_SPECIFIC (decl) && GFC_DECL_SAVED_DESCRIPTOR (decl)) decl = GFC_DECL_SAVED_DESCRIPTOR (decl); if (POINTER_TYPE_P (TREE_TYPE (decl))) decl = build_fold_indirect_ref_loc (input_location, decl); vptr = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (decl)), CLASS_VPTR_FIELD); return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (vptr), decl, vptr, NULL_TREE); } tree gfc_class_len_get (tree decl) { tree len; /* For class arrays decl may be a temporary descriptor handle, the len is then available through the saved descriptor. */ if (TREE_CODE (decl) == VAR_DECL && DECL_LANG_SPECIFIC (decl) && GFC_DECL_SAVED_DESCRIPTOR (decl)) decl = GFC_DECL_SAVED_DESCRIPTOR (decl); if (POINTER_TYPE_P (TREE_TYPE (decl))) decl = build_fold_indirect_ref_loc (input_location, decl); len = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (decl)), CLASS_LEN_FIELD); return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (len), decl, len, NULL_TREE); } /* Get the specified FIELD from the VPTR. */ static tree vptr_field_get (tree vptr, int fieldno) { tree field; vptr = build_fold_indirect_ref_loc (input_location, vptr); field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (vptr)), fieldno); field = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), vptr, field, NULL_TREE); gcc_assert (field); return field; } /* Get the field from the class' vptr. */ static tree class_vtab_field_get (tree decl, int fieldno) { tree vptr; vptr = gfc_class_vptr_get (decl); return vptr_field_get (vptr, fieldno); } /* Define a macro for creating the class_vtab_* and vptr_* accessors in unison. */ #define VTAB_GET_FIELD_GEN(name, field) tree \ gfc_class_vtab_## name ##_get (tree cl) \ { \ return class_vtab_field_get (cl, field); \ } \ \ tree \ gfc_vptr_## name ##_get (tree vptr) \ { \ return vptr_field_get (vptr, field); \ } VTAB_GET_FIELD_GEN (hash, VTABLE_HASH_FIELD) VTAB_GET_FIELD_GEN (extends, VTABLE_EXTENDS_FIELD) VTAB_GET_FIELD_GEN (def_init, VTABLE_DEF_INIT_FIELD) VTAB_GET_FIELD_GEN (copy, VTABLE_COPY_FIELD) VTAB_GET_FIELD_GEN (final, VTABLE_FINAL_FIELD) /* The size field is returned as an array index type. Therefore treat it and only it specially. */ tree gfc_class_vtab_size_get (tree cl) { tree size; size = class_vtab_field_get (cl, VTABLE_SIZE_FIELD); /* Always return size as an array index type. */ size = fold_convert (gfc_array_index_type, size); gcc_assert (size); return size; } tree gfc_vptr_size_get (tree vptr) { tree size; size = vptr_field_get (vptr, VTABLE_SIZE_FIELD); /* Always return size as an array index type. */ size = fold_convert (gfc_array_index_type, size); gcc_assert (size); return size; } #undef CLASS_DATA_FIELD #undef CLASS_VPTR_FIELD #undef VTABLE_HASH_FIELD #undef VTABLE_SIZE_FIELD #undef VTABLE_EXTENDS_FIELD #undef VTABLE_DEF_INIT_FIELD #undef VTABLE_COPY_FIELD #undef VTABLE_FINAL_FIELD /* Search for the last _class ref in the chain of references of this expression and cut the chain there. Albeit this routine is similiar to class.c::gfc_add_component_ref (), is there a significant difference: gfc_add_component_ref () concentrates on an array ref to be the last ref in the chain. This routine is oblivious to the kind of refs following. */ gfc_expr * gfc_find_and_cut_at_last_class_ref (gfc_expr *e) { gfc_expr *base_expr; gfc_ref *ref, *class_ref, *tail; /* Find the last class reference. */ class_ref = NULL; for (ref = e->ref; ref; ref = ref->next) { if (ref->type == REF_COMPONENT && ref->u.c.component->ts.type == BT_CLASS) class_ref = ref; if (ref->next == NULL) break; } /* Remove and store all subsequent references after the CLASS reference. */ if (class_ref) { tail = class_ref->next; class_ref->next = NULL; } else { tail = e->ref; e->ref = NULL; } base_expr = gfc_expr_to_initialize (e); /* Restore the original tail expression. */ if (class_ref) { gfc_free_ref_list (class_ref->next); class_ref->next = tail; } else { gfc_free_ref_list (e->ref); e->ref = tail; } return base_expr; } /* Reset the vptr to the declared type, e.g. after deallocation. */ void gfc_reset_vptr (stmtblock_t *block, gfc_expr *e) { gfc_expr *rhs, *lhs = gfc_copy_expr (e); gfc_symbol *vtab; tree tmp; gfc_ref *ref; /* If we have a class array, we need go back to the class container. */ if (lhs->ref && lhs->ref->next && !lhs->ref->next->next && lhs->ref->next->type == REF_ARRAY && lhs->ref->next->u.ar.type == AR_FULL && lhs->ref->type == REF_COMPONENT && strcmp (lhs->ref->u.c.component->name, "_data") == 0) { gfc_free_ref_list (lhs->ref); lhs->ref = NULL; } else for (ref = lhs->ref; ref; ref = ref->next) if (ref->next && ref->next->next && !ref->next->next->next && ref->next->next->type == REF_ARRAY && ref->next->next->u.ar.type == AR_FULL && ref->next->type == REF_COMPONENT && strcmp (ref->next->u.c.component->name, "_data") == 0) { gfc_free_ref_list (ref->next); ref->next = NULL; } gfc_add_vptr_component (lhs); if (UNLIMITED_POLY (e)) rhs = gfc_get_null_expr (NULL); else { vtab = gfc_find_derived_vtab (e->ts.u.derived); rhs = gfc_lval_expr_from_sym (vtab); } tmp = gfc_trans_pointer_assignment (lhs, rhs); gfc_add_expr_to_block (block, tmp); gfc_free_expr (lhs); gfc_free_expr (rhs); } /* Reset the len for unlimited polymorphic objects. */ void gfc_reset_len (stmtblock_t *block, gfc_expr *expr) { gfc_expr *e; gfc_se se_len; e = gfc_find_and_cut_at_last_class_ref (expr); gfc_add_len_component (e); gfc_init_se (&se_len, NULL); gfc_conv_expr (&se_len, e); gfc_add_modify (block, se_len.expr, fold_convert (TREE_TYPE (se_len.expr), integer_zero_node)); gfc_free_expr (e); } /* Obtain the vptr of the last class reference in an expression. Return NULL_TREE if no class reference is found. */ tree gfc_get_vptr_from_expr (tree expr) { tree tmp; tree type; for (tmp = expr; tmp; tmp = TREE_OPERAND (tmp, 0)) { type = TREE_TYPE (tmp); while (type) { if (GFC_CLASS_TYPE_P (type)) return gfc_class_vptr_get (tmp); if (type != TYPE_CANONICAL (type)) type = TYPE_CANONICAL (type); else type = NULL_TREE; } if (TREE_CODE (tmp) == VAR_DECL) break; } return NULL_TREE; } static void class_array_data_assign (stmtblock_t *block, tree lhs_desc, tree rhs_desc, bool lhs_type) { tree tmp, tmp2, type; gfc_conv_descriptor_data_set (block, lhs_desc, gfc_conv_descriptor_data_get (rhs_desc)); gfc_conv_descriptor_offset_set (block, lhs_desc, gfc_conv_descriptor_offset_get (rhs_desc)); gfc_add_modify (block, gfc_conv_descriptor_dtype (lhs_desc), gfc_conv_descriptor_dtype (rhs_desc)); /* Assign the dimension as range-ref. */ tmp = gfc_get_descriptor_dimension (lhs_desc); tmp2 = gfc_get_descriptor_dimension (rhs_desc); type = lhs_type ? TREE_TYPE (tmp) : TREE_TYPE (tmp2); tmp = build4_loc (input_location, ARRAY_RANGE_REF, type, tmp, gfc_index_zero_node, NULL_TREE, NULL_TREE); tmp2 = build4_loc (input_location, ARRAY_RANGE_REF, type, tmp2, gfc_index_zero_node, NULL_TREE, NULL_TREE); gfc_add_modify (block, tmp, tmp2); } /* Takes a derived type expression and returns the address of a temporary class object of the 'declared' type. If vptr is not NULL, this is used for the temporary class object. optional_alloc_ptr is false when the dummy is neither allocatable nor a pointer; that's only relevant for the optional handling. */ void gfc_conv_derived_to_class (gfc_se *parmse, gfc_expr *e, gfc_typespec class_ts, tree vptr, bool optional, bool optional_alloc_ptr) { gfc_symbol *vtab; tree cond_optional = NULL_TREE; gfc_ss *ss; tree ctree; tree var; tree tmp; /* The derived type needs to be converted to a temporary CLASS object. */ tmp = gfc_typenode_for_spec (&class_ts); var = gfc_create_var (tmp, "class"); /* Set the vptr. */ ctree = gfc_class_vptr_get (var); if (vptr != NULL_TREE) { /* Use the dynamic vptr. */ tmp = vptr; } else { /* In this case the vtab corresponds to the derived type and the vptr must point to it. */ vtab = gfc_find_derived_vtab (e->ts.u.derived); gcc_assert (vtab); tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); } gfc_add_modify (&parmse->pre, ctree, fold_convert (TREE_TYPE (ctree), tmp)); /* Now set the data field. */ ctree = gfc_class_data_get (var); if (optional) cond_optional = gfc_conv_expr_present (e->symtree->n.sym); if (parmse->ss && parmse->ss->info->useflags) { /* For an array reference in an elemental procedure call we need to retain the ss to provide the scalarized array reference. */ gfc_conv_expr_reference (parmse, e); tmp = fold_convert (TREE_TYPE (ctree), parmse->expr); if (optional) tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), cond_optional, tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node)); gfc_add_modify (&parmse->pre, ctree, tmp); } else { ss = gfc_walk_expr (e); if (ss == gfc_ss_terminator) { parmse->ss = NULL; gfc_conv_expr_reference (parmse, e); /* Scalar to an assumed-rank array. */ if (class_ts.u.derived->components->as) { tree type; type = get_scalar_to_descriptor_type (parmse->expr, gfc_expr_attr (e)); gfc_add_modify (&parmse->pre, gfc_conv_descriptor_dtype (ctree), gfc_get_dtype (type)); if (optional) parmse->expr = build3_loc (input_location, COND_EXPR, TREE_TYPE (parmse->expr), cond_optional, parmse->expr, fold_convert (TREE_TYPE (parmse->expr), null_pointer_node)); gfc_conv_descriptor_data_set (&parmse->pre, ctree, parmse->expr); } else { tmp = fold_convert (TREE_TYPE (ctree), parmse->expr); if (optional) tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), cond_optional, tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node)); gfc_add_modify (&parmse->pre, ctree, tmp); } } else { stmtblock_t block; gfc_init_block (&block); parmse->ss = ss; gfc_conv_expr_descriptor (parmse, e); if (e->rank != class_ts.u.derived->components->as->rank) { gcc_assert (class_ts.u.derived->components->as->type == AS_ASSUMED_RANK); class_array_data_assign (&block, ctree, parmse->expr, false); } else { if (gfc_expr_attr (e).codimension) parmse->expr = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, TREE_TYPE (ctree), parmse->expr); gfc_add_modify (&block, ctree, parmse->expr); } if (optional) { tmp = gfc_finish_block (&block); gfc_init_block (&block); gfc_conv_descriptor_data_set (&block, ctree, null_pointer_node); tmp = build3_v (COND_EXPR, cond_optional, tmp, gfc_finish_block (&block)); gfc_add_expr_to_block (&parmse->pre, tmp); } else gfc_add_block_to_block (&parmse->pre, &block); } } if (class_ts.u.derived->components->ts.type == BT_DERIVED && class_ts.u.derived->components->ts.u.derived ->attr.unlimited_polymorphic) { /* Take care about initializing the _len component correctly. */ ctree = gfc_class_len_get (var); if (UNLIMITED_POLY (e)) { gfc_expr *len; gfc_se se; len = gfc_copy_expr (e); gfc_add_len_component (len); gfc_init_se (&se, NULL); gfc_conv_expr (&se, len); if (optional) tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (se.expr), cond_optional, se.expr, fold_convert (TREE_TYPE (se.expr), integer_zero_node)); else tmp = se.expr; } else tmp = integer_zero_node; gfc_add_modify (&parmse->pre, ctree, fold_convert (TREE_TYPE (ctree), tmp)); } /* Pass the address of the class object. */ parmse->expr = gfc_build_addr_expr (NULL_TREE, var); if (optional && optional_alloc_ptr) parmse->expr = build3_loc (input_location, COND_EXPR, TREE_TYPE (parmse->expr), cond_optional, parmse->expr, fold_convert (TREE_TYPE (parmse->expr), null_pointer_node)); } /* Create a new class container, which is required as scalar coarrays have an array descriptor while normal scalars haven't. Optionally, NULL pointer checks are added if the argument is OPTIONAL. */ static void class_scalar_coarray_to_class (gfc_se *parmse, gfc_expr *e, gfc_typespec class_ts, bool optional) { tree var, ctree, tmp; stmtblock_t block; gfc_ref *ref; gfc_ref *class_ref; gfc_init_block (&block); class_ref = NULL; for (ref = e->ref; ref; ref = ref->next) { if (ref->type == REF_COMPONENT && ref->u.c.component->ts.type == BT_CLASS) class_ref = ref; } if (class_ref == NULL && e->symtree && e->symtree->n.sym->ts.type == BT_CLASS) tmp = e->symtree->n.sym->backend_decl; else { /* Remove everything after the last class reference, convert the expression and then recover its tailend once more. */ gfc_se tmpse; ref = class_ref->next; class_ref->next = NULL; gfc_init_se (&tmpse, NULL); gfc_conv_expr (&tmpse, e); class_ref->next = ref; tmp = tmpse.expr; } var = gfc_typenode_for_spec (&class_ts); var = gfc_create_var (var, "class"); ctree = gfc_class_vptr_get (var); gfc_add_modify (&block, ctree, fold_convert (TREE_TYPE (ctree), gfc_class_vptr_get (tmp))); ctree = gfc_class_data_get (var); tmp = gfc_conv_descriptor_data_get (gfc_class_data_get (tmp)); gfc_add_modify (&block, ctree, fold_convert (TREE_TYPE (ctree), tmp)); /* Pass the address of the class object. */ parmse->expr = gfc_build_addr_expr (NULL_TREE, var); if (optional) { tree cond = gfc_conv_expr_present (e->symtree->n.sym); tree tmp2; tmp = gfc_finish_block (&block); gfc_init_block (&block); tmp2 = gfc_class_data_get (var); gfc_add_modify (&block, tmp2, fold_convert (TREE_TYPE (tmp2), null_pointer_node)); tmp2 = gfc_finish_block (&block); tmp = build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, tmp2); gfc_add_expr_to_block (&parmse->pre, tmp); } else gfc_add_block_to_block (&parmse->pre, &block); } /* Takes an intrinsic type expression and returns the address of a temporary class object of the 'declared' type. */ void gfc_conv_intrinsic_to_class (gfc_se *parmse, gfc_expr *e, gfc_typespec class_ts) { gfc_symbol *vtab; gfc_ss *ss; tree ctree; tree var; tree tmp; /* The intrinsic type needs to be converted to a temporary CLASS object. */ tmp = gfc_typenode_for_spec (&class_ts); var = gfc_create_var (tmp, "class"); /* Set the vptr. */ ctree = gfc_class_vptr_get (var); vtab = gfc_find_vtab (&e->ts); gcc_assert (vtab); tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); gfc_add_modify (&parmse->pre, ctree, fold_convert (TREE_TYPE (ctree), tmp)); /* Now set the data field. */ ctree = gfc_class_data_get (var); if (parmse->ss && parmse->ss->info->useflags) { /* For an array reference in an elemental procedure call we need to retain the ss to provide the scalarized array reference. */ gfc_conv_expr_reference (parmse, e); tmp = fold_convert (TREE_TYPE (ctree), parmse->expr); gfc_add_modify (&parmse->pre, ctree, tmp); } else { ss = gfc_walk_expr (e); if (ss == gfc_ss_terminator) { parmse->ss = NULL; gfc_conv_expr_reference (parmse, e); if (class_ts.u.derived->components->as && class_ts.u.derived->components->as->type == AS_ASSUMED_RANK) { tmp = gfc_conv_scalar_to_descriptor (parmse, parmse->expr, gfc_expr_attr (e)); tmp = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, TREE_TYPE (ctree), tmp); } else tmp = fold_convert (TREE_TYPE (ctree), parmse->expr); gfc_add_modify (&parmse->pre, ctree, tmp); } else { parmse->ss = ss; parmse->use_offset = 1; gfc_conv_expr_descriptor (parmse, e); if (class_ts.u.derived->components->as->rank != e->rank) { tmp = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, TREE_TYPE (ctree), parmse->expr); gfc_add_modify (&parmse->pre, ctree, tmp); } else gfc_add_modify (&parmse->pre, ctree, parmse->expr); } } gcc_assert (class_ts.type == BT_CLASS); if (class_ts.u.derived->components->ts.type == BT_DERIVED && class_ts.u.derived->components->ts.u.derived ->attr.unlimited_polymorphic) { ctree = gfc_class_len_get (var); /* When the actual arg is a char array, then set the _len component of the unlimited polymorphic entity, too. */ if (e->ts.type == BT_CHARACTER) { /* Start with parmse->string_length because this seems to be set to a correct value more often. */ if (parmse->string_length) tmp = parmse->string_length; /* When the string_length is not yet set, then try the backend_decl of the cl. */ else if (e->ts.u.cl->backend_decl) tmp = e->ts.u.cl->backend_decl; /* If both of the above approaches fail, then try to generate an expression from the input, which is only feasible currently, when the expression can be evaluated to a constant one. */ else { /* Try to simplify the expression. */ gfc_simplify_expr (e, 0); if (e->expr_type == EXPR_CONSTANT && !e->ts.u.cl->resolved) { /* Amazingly all data is present to compute the length of a constant string, but the expression is not yet there. */ e->ts.u.cl->length = gfc_get_constant_expr (BT_INTEGER, 4, &e->where); mpz_set_ui (e->ts.u.cl->length->value.integer, e->value.character.length); gfc_conv_const_charlen (e->ts.u.cl); e->ts.u.cl->resolved = 1; tmp = e->ts.u.cl->backend_decl; } else { gfc_error ("Can't compute the length of the char array at %L.", &e->where); } } } else tmp = integer_zero_node; gfc_add_modify (&parmse->pre, ctree, tmp); } else if (class_ts.type == BT_CLASS && class_ts.u.derived->components && class_ts.u.derived->components->ts.u .derived->attr.unlimited_polymorphic) { ctree = gfc_class_len_get (var); gfc_add_modify (&parmse->pre, ctree, fold_convert (TREE_TYPE (ctree), integer_zero_node)); } /* Pass the address of the class object. */ parmse->expr = gfc_build_addr_expr (NULL_TREE, var); } /* Takes a scalarized class array expression and returns the address of a temporary scalar class object of the 'declared' type. OOP-TODO: This could be improved by adding code that branched on the dynamic type being the same as the declared type. In this case the original class expression can be passed directly. optional_alloc_ptr is false when the dummy is neither allocatable nor a pointer; that's relevant for the optional handling. Set copyback to true if class container's _data and _vtab pointers might get modified. */ void gfc_conv_class_to_class (gfc_se *parmse, gfc_expr *e, gfc_typespec class_ts, bool elemental, bool copyback, bool optional, bool optional_alloc_ptr) { tree ctree; tree var; tree tmp; tree vptr; tree cond = NULL_TREE; tree slen = NULL_TREE; gfc_ref *ref; gfc_ref *class_ref; stmtblock_t block; bool full_array = false; gfc_init_block (&block); class_ref = NULL; for (ref = e->ref; ref; ref = ref->next) { if (ref->type == REF_COMPONENT && ref->u.c.component->ts.type == BT_CLASS) class_ref = ref; if (ref->next == NULL) break; } if ((ref == NULL || class_ref == ref) && (!class_ts.u.derived->components->as || class_ts.u.derived->components->as->rank != -1)) return; /* Test for FULL_ARRAY. */ if (e->rank == 0 && gfc_expr_attr (e).codimension && gfc_expr_attr (e).dimension) full_array = true; else gfc_is_class_array_ref (e, &full_array); /* The derived type needs to be converted to a temporary CLASS object. */ tmp = gfc_typenode_for_spec (&class_ts); var = gfc_create_var (tmp, "class"); /* Set the data. */ ctree = gfc_class_data_get (var); if (class_ts.u.derived->components->as && e->rank != class_ts.u.derived->components->as->rank) { if (e->rank == 0) { tree type = get_scalar_to_descriptor_type (parmse->expr, gfc_expr_attr (e)); gfc_add_modify (&block, gfc_conv_descriptor_dtype (ctree), gfc_get_dtype (type)); tmp = gfc_class_data_get (parmse->expr); if (!POINTER_TYPE_P (TREE_TYPE (tmp))) tmp = gfc_build_addr_expr (NULL_TREE, tmp); gfc_conv_descriptor_data_set (&block, ctree, tmp); } else class_array_data_assign (&block, ctree, parmse->expr, false); } else { if (TREE_TYPE (parmse->expr) != TREE_TYPE (ctree)) parmse->expr = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, TREE_TYPE (ctree), parmse->expr); gfc_add_modify (&block, ctree, parmse->expr); } /* Return the data component, except in the case of scalarized array references, where nullification of the cannot occur and so there is no need. */ if (!elemental && full_array && copyback) { if (class_ts.u.derived->components->as && e->rank != class_ts.u.derived->components->as->rank) { if (e->rank == 0) gfc_add_modify (&parmse->post, gfc_class_data_get (parmse->expr), gfc_conv_descriptor_data_get (ctree)); else class_array_data_assign (&parmse->post, parmse->expr, ctree, true); } else gfc_add_modify (&parmse->post, parmse->expr, ctree); } /* Set the vptr. */ ctree = gfc_class_vptr_get (var); /* The vptr is the second field of the actual argument. First we have to find the corresponding class reference. */ tmp = NULL_TREE; if (class_ref == NULL && e->symtree && e->symtree->n.sym->ts.type == BT_CLASS) { tmp = e->symtree->n.sym->backend_decl; if (DECL_LANG_SPECIFIC (tmp) && GFC_DECL_SAVED_DESCRIPTOR (tmp)) tmp = GFC_DECL_SAVED_DESCRIPTOR (tmp); slen = integer_zero_node; } else { /* Remove everything after the last class reference, convert the expression and then recover its tailend once more. */ gfc_se tmpse; ref = class_ref->next; class_ref->next = NULL; gfc_init_se (&tmpse, NULL); gfc_conv_expr (&tmpse, e); class_ref->next = ref; tmp = tmpse.expr; slen = tmpse.string_length; } gcc_assert (tmp != NULL_TREE); /* Dereference if needs be. */ if (TREE_CODE (TREE_TYPE (tmp)) == REFERENCE_TYPE) tmp = build_fold_indirect_ref_loc (input_location, tmp); vptr = gfc_class_vptr_get (tmp); gfc_add_modify (&block, ctree, fold_convert (TREE_TYPE (ctree), vptr)); /* Return the vptr component, except in the case of scalarized array references, where the dynamic type cannot change. */ if (!elemental && full_array && copyback) gfc_add_modify (&parmse->post, vptr, fold_convert (TREE_TYPE (vptr), ctree)); /* For unlimited polymorphic objects also set the _len component. */ if (class_ts.type == BT_CLASS && class_ts.u.derived->components && class_ts.u.derived->components->ts.u .derived->attr.unlimited_polymorphic) { ctree = gfc_class_len_get (var); if (UNLIMITED_POLY (e)) tmp = gfc_class_len_get (tmp); else if (e->ts.type == BT_CHARACTER) { gcc_assert (slen != NULL_TREE); tmp = slen; } else tmp = integer_zero_node; gfc_add_modify (&parmse->pre, ctree, fold_convert (TREE_TYPE (ctree), tmp)); } if (optional) { tree tmp2; cond = gfc_conv_expr_present (e->symtree->n.sym); /* parmse->pre may contain some preparatory instructions for the temporary array descriptor. Those may only be executed when the optional argument is set, therefore add parmse->pre's instructions to block, which is later guarded by an if (optional_arg_given). */ gfc_add_block_to_block (&parmse->pre, &block); block.head = parmse->pre.head; parmse->pre.head = NULL_TREE; tmp = gfc_finish_block (&block); if (optional_alloc_ptr) tmp2 = build_empty_stmt (input_location); else { gfc_init_block (&block); tmp2 = gfc_conv_descriptor_data_get (gfc_class_data_get (var)); gfc_add_modify (&block, tmp2, fold_convert (TREE_TYPE (tmp2), null_pointer_node)); tmp2 = gfc_finish_block (&block); } tmp = build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, tmp2); gfc_add_expr_to_block (&parmse->pre, tmp); } else gfc_add_block_to_block (&parmse->pre, &block); /* Pass the address of the class object. */ parmse->expr = gfc_build_addr_expr (NULL_TREE, var); if (optional && optional_alloc_ptr) parmse->expr = build3_loc (input_location, COND_EXPR, TREE_TYPE (parmse->expr), cond, parmse->expr, fold_convert (TREE_TYPE (parmse->expr), null_pointer_node)); } /* Given a class array declaration and an index, returns the address of the referenced element. */ tree gfc_get_class_array_ref (tree index, tree class_decl) { tree data = gfc_class_data_get (class_decl); tree size = gfc_class_vtab_size_get (class_decl); tree offset = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, index, size); tree ptr; data = gfc_conv_descriptor_data_get (data); ptr = fold_convert (pvoid_type_node, data); ptr = fold_build_pointer_plus_loc (input_location, ptr, offset); return fold_convert (TREE_TYPE (data), ptr); } /* Copies one class expression to another, assuming that if either 'to' or 'from' are arrays they are packed. Should 'from' be NULL_TREE, the initialization expression for 'to' is used, assuming that the _vptr is set. */ tree gfc_copy_class_to_class (tree from, tree to, tree nelems, bool unlimited) { tree fcn; tree fcn_type; tree from_data; tree from_len; tree to_data; tree to_len; tree to_ref; tree from_ref; vec *args; tree tmp; tree stdcopy; tree extcopy; tree index; args = NULL; /* To prevent warnings on uninitialized variables. */ from_len = to_len = NULL_TREE; if (from != NULL_TREE) fcn = gfc_class_vtab_copy_get (from); else fcn = gfc_class_vtab_copy_get (to); fcn_type = TREE_TYPE (TREE_TYPE (fcn)); if (from != NULL_TREE) from_data = gfc_class_data_get (from); else from_data = gfc_class_vtab_def_init_get (to); if (unlimited) { if (from != NULL_TREE && unlimited) from_len = gfc_class_len_get (from); else from_len = integer_zero_node; } to_data = gfc_class_data_get (to); if (unlimited) to_len = gfc_class_len_get (to); if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (to_data))) { stmtblock_t loopbody; stmtblock_t body; stmtblock_t ifbody; gfc_loopinfo loop; gfc_init_block (&body); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, nelems, gfc_index_one_node); nelems = gfc_evaluate_now (tmp, &body); index = gfc_create_var (gfc_array_index_type, "S"); if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (from_data))) { from_ref = gfc_get_class_array_ref (index, from); vec_safe_push (args, from_ref); } else vec_safe_push (args, from_data); to_ref = gfc_get_class_array_ref (index, to); vec_safe_push (args, to_ref); tmp = build_call_vec (fcn_type, fcn, args); /* Build the body of the loop. */ gfc_init_block (&loopbody); gfc_add_expr_to_block (&loopbody, tmp); /* Build the loop and return. */ gfc_init_loopinfo (&loop); loop.dimen = 1; loop.from[0] = gfc_index_zero_node; loop.loopvar[0] = index; loop.to[0] = nelems; gfc_trans_scalarizing_loops (&loop, &loopbody); gfc_init_block (&ifbody); gfc_add_block_to_block (&ifbody, &loop.pre); stdcopy = gfc_finish_block (&ifbody); /* In initialization mode from_len is a constant zero. */ if (unlimited && !integer_zerop (from_len)) { vec_safe_push (args, from_len); vec_safe_push (args, to_len); tmp = build_call_vec (fcn_type, fcn, args); /* Build the body of the loop. */ gfc_init_block (&loopbody); gfc_add_expr_to_block (&loopbody, tmp); /* Build the loop and return. */ gfc_init_loopinfo (&loop); loop.dimen = 1; loop.from[0] = gfc_index_zero_node; loop.loopvar[0] = index; loop.to[0] = nelems; gfc_trans_scalarizing_loops (&loop, &loopbody); gfc_init_block (&ifbody); gfc_add_block_to_block (&ifbody, &loop.pre); extcopy = gfc_finish_block (&ifbody); tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, from_len, integer_zero_node); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, tmp, extcopy, stdcopy); gfc_add_expr_to_block (&body, tmp); tmp = gfc_finish_block (&body); } else { gfc_add_expr_to_block (&body, stdcopy); tmp = gfc_finish_block (&body); } gfc_cleanup_loop (&loop); } else { gcc_assert (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (from_data))); vec_safe_push (args, from_data); vec_safe_push (args, to_data); stdcopy = build_call_vec (fcn_type, fcn, args); /* In initialization mode from_len is a constant zero. */ if (unlimited && !integer_zerop (from_len)) { vec_safe_push (args, from_len); vec_safe_push (args, to_len); extcopy = build_call_vec (fcn_type, fcn, args); tmp = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, from_len, integer_zero_node); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, tmp, extcopy, stdcopy); } else tmp = stdcopy; } /* Only copy _def_init to to_data, when it is not a NULL-pointer. */ if (from == NULL_TREE) { tree cond; cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, from_data, null_pointer_node); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); } return tmp; } static tree gfc_trans_class_array_init_assign (gfc_expr *rhs, gfc_expr *lhs, gfc_expr *obj) { gfc_actual_arglist *actual; gfc_expr *ppc; gfc_code *ppc_code; tree res; actual = gfc_get_actual_arglist (); actual->expr = gfc_copy_expr (rhs); actual->next = gfc_get_actual_arglist (); actual->next->expr = gfc_copy_expr (lhs); ppc = gfc_copy_expr (obj); gfc_add_vptr_component (ppc); gfc_add_component_ref (ppc, "_copy"); ppc_code = gfc_get_code (EXEC_CALL); ppc_code->resolved_sym = ppc->symtree->n.sym; /* Although '_copy' is set to be elemental in class.c, it is not staying that way. Find out why, sometime.... */ ppc_code->resolved_sym->attr.elemental = 1; ppc_code->ext.actual = actual; ppc_code->expr1 = ppc; /* Since '_copy' is elemental, the scalarizer will take care of arrays in gfc_trans_call. */ res = gfc_trans_call (ppc_code, false, NULL, NULL, false); gfc_free_statements (ppc_code); if (UNLIMITED_POLY(obj)) { /* Check if rhs is non-NULL. */ gfc_se src; gfc_init_se (&src, NULL); gfc_conv_expr (&src, rhs); src.expr = gfc_build_addr_expr (NULL_TREE, src.expr); tree cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, src.expr, fold_convert (TREE_TYPE (src.expr), null_pointer_node)); res = build3_loc (input_location, COND_EXPR, TREE_TYPE (res), cond, res, build_empty_stmt (input_location)); } return res; } /* Special case for initializing a polymorphic dummy with INTENT(OUT). A MEMCPY is needed to copy the full data from the default initializer of the dynamic type. */ tree gfc_trans_class_init_assign (gfc_code *code) { stmtblock_t block; tree tmp; gfc_se dst,src,memsz; gfc_expr *lhs, *rhs, *sz; gfc_start_block (&block); lhs = gfc_copy_expr (code->expr1); gfc_add_data_component (lhs); rhs = gfc_copy_expr (code->expr1); gfc_add_vptr_component (rhs); /* Make sure that the component backend_decls have been built, which will not have happened if the derived types concerned have not been referenced. */ gfc_get_derived_type (rhs->ts.u.derived); gfc_add_def_init_component (rhs); /* The _def_init is always scalar. */ rhs->rank = 0; if (code->expr1->ts.type == BT_CLASS && CLASS_DATA (code->expr1)->attr.dimension) tmp = gfc_trans_class_array_init_assign (rhs, lhs, code->expr1); else { sz = gfc_copy_expr (code->expr1); gfc_add_vptr_component (sz); gfc_add_size_component (sz); gfc_init_se (&dst, NULL); gfc_init_se (&src, NULL); gfc_init_se (&memsz, NULL); gfc_conv_expr (&dst, lhs); gfc_conv_expr (&src, rhs); gfc_conv_expr (&memsz, sz); gfc_add_block_to_block (&block, &src.pre); src.expr = gfc_build_addr_expr (NULL_TREE, src.expr); tmp = gfc_build_memcpy_call (dst.expr, src.expr, memsz.expr); if (UNLIMITED_POLY(code->expr1)) { /* Check if _def_init is non-NULL. */ tree cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, src.expr, fold_convert (TREE_TYPE (src.expr), null_pointer_node)); tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), cond, tmp, build_empty_stmt (input_location)); } } if (code->expr1->symtree->n.sym->attr.optional || code->expr1->symtree->n.sym->ns->proc_name->attr.entry_master) { tree present = gfc_conv_expr_present (code->expr1->symtree->n.sym); tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), present, tmp, build_empty_stmt (input_location)); } gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Translate an assignment to a CLASS object (pointer or ordinary assignment). */ tree gfc_trans_class_assign (gfc_expr *expr1, gfc_expr *expr2, gfc_exec_op op) { stmtblock_t block; tree tmp; gfc_expr *lhs; gfc_expr *rhs; gfc_ref *ref; gfc_start_block (&block); ref = expr1->ref; while (ref && ref->next) ref = ref->next; /* Class valued proc_pointer assignments do not need any further preparation. */ if (ref && ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer && expr2->expr_type == EXPR_VARIABLE && expr2->symtree->n.sym->attr.flavor == FL_PROCEDURE && op == EXEC_POINTER_ASSIGN) goto assign; if (expr2->ts.type != BT_CLASS) { /* Insert an additional assignment which sets the '_vptr' field. */ gfc_symbol *vtab = NULL; gfc_symtree *st; lhs = gfc_copy_expr (expr1); gfc_add_vptr_component (lhs); if (UNLIMITED_POLY (expr1) && expr2->expr_type == EXPR_NULL && expr2->ts.type == BT_UNKNOWN) { rhs = gfc_get_null_expr (&expr2->where); goto assign_vptr; } if (expr2->expr_type == EXPR_NULL) vtab = gfc_find_vtab (&expr1->ts); else vtab = gfc_find_vtab (&expr2->ts); gcc_assert (vtab); rhs = gfc_get_expr (); rhs->expr_type = EXPR_VARIABLE; gfc_find_sym_tree (vtab->name, vtab->ns, 1, &st); rhs->symtree = st; rhs->ts = vtab->ts; assign_vptr: tmp = gfc_trans_pointer_assignment (lhs, rhs); gfc_add_expr_to_block (&block, tmp); gfc_free_expr (lhs); gfc_free_expr (rhs); } else if (expr1->ts.type == BT_DERIVED && UNLIMITED_POLY (expr2)) { /* F2003:C717 only sequence and bind-C types can come here. */ gcc_assert (expr1->ts.u.derived->attr.sequence || expr1->ts.u.derived->attr.is_bind_c); gfc_add_data_component (expr2); goto assign; } else if (CLASS_DATA (expr2)->attr.dimension && expr2->expr_type != EXPR_FUNCTION) { /* Insert an additional assignment which sets the '_vptr' field. */ lhs = gfc_copy_expr (expr1); gfc_add_vptr_component (lhs); rhs = gfc_copy_expr (expr2); gfc_add_vptr_component (rhs); tmp = gfc_trans_pointer_assignment (lhs, rhs); gfc_add_expr_to_block (&block, tmp); gfc_free_expr (lhs); gfc_free_expr (rhs); } /* Do the actual CLASS assignment. */ if (expr2->ts.type == BT_CLASS && !CLASS_DATA (expr2)->attr.dimension) op = EXEC_ASSIGN; else if (expr2->expr_type != EXPR_FUNCTION || expr2->ts.type != BT_CLASS || !CLASS_DATA (expr2)->attr.dimension) gfc_add_data_component (expr1); assign: if (op == EXEC_ASSIGN) tmp = gfc_trans_assignment (expr1, expr2, false, true); else if (op == EXEC_POINTER_ASSIGN) tmp = gfc_trans_pointer_assignment (expr1, expr2); else gcc_unreachable(); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* End of prototype trans-class.c */ static void realloc_lhs_warning (bt type, bool array, locus *where) { if (array && type != BT_CLASS && type != BT_DERIVED && warn_realloc_lhs) gfc_warning (OPT_Wrealloc_lhs, "Code for reallocating the allocatable array at %L will " "be added", where); else if (warn_realloc_lhs_all) gfc_warning (OPT_Wrealloc_lhs_all, "Code for reallocating the allocatable variable at %L " "will be added", where); } static void gfc_apply_interface_mapping_to_expr (gfc_interface_mapping *, gfc_expr *); /* Copy the scalarization loop variables. */ static void gfc_copy_se_loopvars (gfc_se * dest, gfc_se * src) { dest->ss = src->ss; dest->loop = src->loop; } /* Initialize a simple expression holder. Care must be taken when multiple se are created with the same parent. The child se must be kept in sync. The easiest way is to delay creation of a child se until after after the previous se has been translated. */ void gfc_init_se (gfc_se * se, gfc_se * parent) { memset (se, 0, sizeof (gfc_se)); gfc_init_block (&se->pre); gfc_init_block (&se->post); se->parent = parent; if (parent) gfc_copy_se_loopvars (se, parent); } /* Advances to the next SS in the chain. Use this rather than setting se->ss = se->ss->next because all the parents needs to be kept in sync. See gfc_init_se. */ void gfc_advance_se_ss_chain (gfc_se * se) { gfc_se *p; gfc_ss *ss; gcc_assert (se != NULL && se->ss != NULL && se->ss != gfc_ss_terminator); p = se; /* Walk down the parent chain. */ while (p != NULL) { /* Simple consistency check. */ gcc_assert (p->parent == NULL || p->parent->ss == p->ss || p->parent->ss->nested_ss == p->ss); /* If we were in a nested loop, the next scalarized expression can be on the parent ss' next pointer. Thus we should not take the next pointer blindly, but rather go up one nest level as long as next is the end of chain. */ ss = p->ss; while (ss->next == gfc_ss_terminator && ss->parent != NULL) ss = ss->parent; p->ss = ss->next; p = p->parent; } } /* Ensures the result of the expression as either a temporary variable or a constant so that it can be used repeatedly. */ void gfc_make_safe_expr (gfc_se * se) { tree var; if (CONSTANT_CLASS_P (se->expr)) return; /* We need a temporary for this result. */ var = gfc_create_var (TREE_TYPE (se->expr), NULL); gfc_add_modify (&se->pre, var, se->expr); se->expr = var; } /* Return an expression which determines if a dummy parameter is present. Also used for arguments to procedures with multiple entry points. */ tree gfc_conv_expr_present (gfc_symbol * sym) { tree decl, cond; gcc_assert (sym->attr.dummy); decl = gfc_get_symbol_decl (sym); /* Intrinsic scalars with VALUE attribute which are passed by value use a hidden argument to denote the present status. */ if (sym->attr.value && sym->ts.type != BT_CHARACTER && sym->ts.type != BT_CLASS && sym->ts.type != BT_DERIVED && !sym->attr.dimension) { char name[GFC_MAX_SYMBOL_LEN + 2]; tree tree_name; gcc_assert (TREE_CODE (decl) == PARM_DECL); name[0] = '_'; strcpy (&name[1], sym->name); tree_name = get_identifier (name); /* Walk function argument list to find hidden arg. */ cond = DECL_ARGUMENTS (DECL_CONTEXT (decl)); for ( ; cond != NULL_TREE; cond = TREE_CHAIN (cond)) if (DECL_NAME (cond) == tree_name) break; gcc_assert (cond); return cond; } if (TREE_CODE (decl) != PARM_DECL) { /* Array parameters use a temporary descriptor, we want the real parameter. */ gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)) || GFC_ARRAY_TYPE_P (TREE_TYPE (decl))); decl = GFC_DECL_SAVED_DESCRIPTOR (decl); } cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, decl, fold_convert (TREE_TYPE (decl), null_pointer_node)); /* Fortran 2008 allows to pass null pointers and non-associated pointers as actual argument to denote absent dummies. For array descriptors, we thus also need to check the array descriptor. For BT_CLASS, it can also occur for scalars and F2003 due to type->class wrapping and class->class wrapping. Note further that BT_CLASS always uses an array descriptor for arrays, also for explicit-shape/assumed-size. */ if (!sym->attr.allocatable && ((sym->ts.type != BT_CLASS && !sym->attr.pointer) || (sym->ts.type == BT_CLASS && !CLASS_DATA (sym)->attr.allocatable && !CLASS_DATA (sym)->attr.class_pointer)) && ((gfc_option.allow_std & GFC_STD_F2008) != 0 || sym->ts.type == BT_CLASS)) { tree tmp; if ((sym->as && (sym->as->type == AS_ASSUMED_SHAPE || sym->as->type == AS_ASSUMED_RANK || sym->attr.codimension)) || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)) { tmp = build_fold_indirect_ref_loc (input_location, decl); if (sym->ts.type == BT_CLASS) tmp = gfc_class_data_get (tmp); tmp = gfc_conv_array_data (tmp); } else if (sym->ts.type == BT_CLASS) tmp = gfc_class_data_get (decl); else tmp = NULL_TREE; if (tmp != NULL_TREE) { tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node)); cond = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, boolean_type_node, cond, tmp); } } return cond; } /* Converts a missing, dummy argument into a null or zero. */ void gfc_conv_missing_dummy (gfc_se * se, gfc_expr * arg, gfc_typespec ts, int kind) { tree present; tree tmp; present = gfc_conv_expr_present (arg->symtree->n.sym); if (kind > 0) { /* Create a temporary and convert it to the correct type. */ tmp = gfc_get_int_type (kind); tmp = fold_convert (tmp, build_fold_indirect_ref_loc (input_location, se->expr)); /* Test for a NULL value. */ tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), present, tmp, fold_convert (TREE_TYPE (tmp), integer_one_node)); tmp = gfc_evaluate_now (tmp, &se->pre); se->expr = gfc_build_addr_expr (NULL_TREE, tmp); } else { tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (se->expr), present, se->expr, build_zero_cst (TREE_TYPE (se->expr))); tmp = gfc_evaluate_now (tmp, &se->pre); se->expr = tmp; } if (ts.type == BT_CHARACTER) { tmp = build_int_cst (gfc_charlen_type_node, 0); tmp = fold_build3_loc (input_location, COND_EXPR, gfc_charlen_type_node, present, se->string_length, tmp); tmp = gfc_evaluate_now (tmp, &se->pre); se->string_length = tmp; } return; } /* Get the character length of an expression, looking through gfc_refs if necessary. */ tree gfc_get_expr_charlen (gfc_expr *e) { gfc_ref *r; tree length; gcc_assert (e->expr_type == EXPR_VARIABLE && e->ts.type == BT_CHARACTER); length = NULL; /* To silence compiler warning. */ if (is_subref_array (e) && e->ts.u.cl->length) { gfc_se tmpse; gfc_init_se (&tmpse, NULL); gfc_conv_expr_type (&tmpse, e->ts.u.cl->length, gfc_charlen_type_node); e->ts.u.cl->backend_decl = tmpse.expr; return tmpse.expr; } /* First candidate: if the variable is of type CHARACTER, the expression's length could be the length of the character variable. */ if (e->symtree->n.sym->ts.type == BT_CHARACTER) length = e->symtree->n.sym->ts.u.cl->backend_decl; /* Look through the reference chain for component references. */ for (r = e->ref; r; r = r->next) { switch (r->type) { case REF_COMPONENT: if (r->u.c.component->ts.type == BT_CHARACTER) length = r->u.c.component->ts.u.cl->backend_decl; break; case REF_ARRAY: /* Do nothing. */ break; default: /* We should never got substring references here. These will be broken down by the scalarizer. */ gcc_unreachable (); break; } } gcc_assert (length != NULL); return length; } /* Return for an expression the backend decl of the coarray. */ tree gfc_get_tree_for_caf_expr (gfc_expr *expr) { tree caf_decl; bool found = false; gfc_ref *ref, *comp_ref = NULL; gcc_assert (expr && expr->expr_type == EXPR_VARIABLE); /* Not-implemented diagnostic. */ for (ref = expr->ref; ref; ref = ref->next) if (ref->type == REF_COMPONENT) { comp_ref = ref; if ((ref->u.c.component->ts.type == BT_CLASS && !CLASS_DATA (ref->u.c.component)->attr.codimension && (CLASS_DATA (ref->u.c.component)->attr.pointer || CLASS_DATA (ref->u.c.component)->attr.allocatable)) || (ref->u.c.component->ts.type != BT_CLASS && !ref->u.c.component->attr.codimension && (ref->u.c.component->attr.pointer || ref->u.c.component->attr.allocatable))) gfc_error ("Sorry, coindexed access to a pointer or allocatable " "component of the coindexed coarray at %L is not yet " "supported", &expr->where); } if ((!comp_ref && ((expr->symtree->n.sym->ts.type == BT_CLASS && CLASS_DATA (expr->symtree->n.sym)->attr.alloc_comp) || (expr->symtree->n.sym->ts.type == BT_DERIVED && expr->symtree->n.sym->ts.u.derived->attr.alloc_comp))) || (comp_ref && ((comp_ref->u.c.component->ts.type == BT_CLASS && CLASS_DATA (comp_ref->u.c.component)->attr.alloc_comp) || (comp_ref->u.c.component->ts.type == BT_DERIVED && comp_ref->u.c.component->ts.u.derived->attr.alloc_comp)))) gfc_error ("Sorry, coindexed coarray at %L with allocatable component is " "not yet supported", &expr->where); if (expr->rank) { /* Without the new array descriptor, access like "caf[i]%a(:)%b" is in general not possible as the required stride multiplier might be not a multiple of c_sizeof(b). In case of noncoindexed access, the scalarizer often takes care of it - for coarrays, it always fails. */ for (ref = expr->ref; ref; ref = ref->next) if (ref->type == REF_COMPONENT && ((ref->u.c.component->ts.type == BT_CLASS && CLASS_DATA (ref->u.c.component)->attr.codimension) || (ref->u.c.component->ts.type != BT_CLASS && ref->u.c.component->attr.codimension))) break; if (ref == NULL) ref = expr->ref; for ( ; ref; ref = ref->next) if (ref->type == REF_ARRAY && ref->u.ar.dimen) break; for ( ; ref; ref = ref->next) if (ref->type == REF_COMPONENT) gfc_error ("Sorry, coindexed access at %L to a scalar component " "with an array partref is not yet supported", &expr->where); } caf_decl = expr->symtree->n.sym->backend_decl; gcc_assert (caf_decl); if (expr->symtree->n.sym->ts.type == BT_CLASS) caf_decl = gfc_class_data_get (caf_decl); if (expr->symtree->n.sym->attr.codimension) return caf_decl; /* The following code assumes that the coarray is a component reachable via only scalar components/variables; the Fortran standard guarantees this. */ for (ref = expr->ref; ref; ref = ref->next) if (ref->type == REF_COMPONENT) { gfc_component *comp = ref->u.c.component; if (POINTER_TYPE_P (TREE_TYPE (caf_decl))) caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl); caf_decl = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (comp->backend_decl), caf_decl, comp->backend_decl, NULL_TREE); if (comp->ts.type == BT_CLASS) caf_decl = gfc_class_data_get (caf_decl); if (comp->attr.codimension) { found = true; break; } } gcc_assert (found && caf_decl); return caf_decl; } /* Obtain the Coarray token - and optionally also the offset. */ void gfc_get_caf_token_offset (tree *token, tree *offset, tree caf_decl, tree se_expr, gfc_expr *expr) { tree tmp; /* Coarray token. */ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (caf_decl))) { gcc_assert (GFC_TYPE_ARRAY_AKIND (TREE_TYPE (caf_decl)) == GFC_ARRAY_ALLOCATABLE || expr->symtree->n.sym->attr.select_type_temporary); *token = gfc_conv_descriptor_token (caf_decl); } else if (DECL_LANG_SPECIFIC (caf_decl) && GFC_DECL_TOKEN (caf_decl) != NULL_TREE) *token = GFC_DECL_TOKEN (caf_decl); else { gcc_assert (GFC_ARRAY_TYPE_P (TREE_TYPE (caf_decl)) && GFC_TYPE_ARRAY_CAF_TOKEN (TREE_TYPE (caf_decl)) != NULL_TREE); *token = GFC_TYPE_ARRAY_CAF_TOKEN (TREE_TYPE (caf_decl)); } if (offset == NULL) return; /* Offset between the coarray base address and the address wanted. */ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (caf_decl)) && (GFC_TYPE_ARRAY_AKIND (TREE_TYPE (caf_decl)) == GFC_ARRAY_ALLOCATABLE || GFC_TYPE_ARRAY_AKIND (TREE_TYPE (caf_decl)) == GFC_ARRAY_POINTER)) *offset = build_int_cst (gfc_array_index_type, 0); else if (DECL_LANG_SPECIFIC (caf_decl) && GFC_DECL_CAF_OFFSET (caf_decl) != NULL_TREE) *offset = GFC_DECL_CAF_OFFSET (caf_decl); else if (GFC_TYPE_ARRAY_CAF_OFFSET (TREE_TYPE (caf_decl)) != NULL_TREE) *offset = GFC_TYPE_ARRAY_CAF_OFFSET (TREE_TYPE (caf_decl)); else *offset = build_int_cst (gfc_array_index_type, 0); if (POINTER_TYPE_P (TREE_TYPE (se_expr)) && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se_expr)))) { tmp = build_fold_indirect_ref_loc (input_location, se_expr); tmp = gfc_conv_descriptor_data_get (tmp); } else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se_expr))) tmp = gfc_conv_descriptor_data_get (se_expr); else { gcc_assert (POINTER_TYPE_P (TREE_TYPE (se_expr))); tmp = se_expr; } *offset = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, *offset, fold_convert (gfc_array_index_type, tmp)); if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (caf_decl))) tmp = gfc_conv_descriptor_data_get (caf_decl); else { gcc_assert (POINTER_TYPE_P (TREE_TYPE (caf_decl))); tmp = caf_decl; } *offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, fold_convert (gfc_array_index_type, *offset), fold_convert (gfc_array_index_type, tmp)); } /* Convert the coindex of a coarray into an image index; the result is image_num = (idx(1)-lcobound(1)+1) + (idx(2)-lcobound(2))*extent(1) + (idx(3)-lcobound(3))*extend(1)*extent(2) + ... */ tree gfc_caf_get_image_index (stmtblock_t *block, gfc_expr *e, tree desc) { gfc_ref *ref; tree lbound, ubound, extent, tmp, img_idx; gfc_se se; int i; for (ref = e->ref; ref; ref = ref->next) if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0) break; gcc_assert (ref != NULL); img_idx = integer_zero_node; extent = integer_one_node; if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) for (i = ref->u.ar.dimen; i < ref->u.ar.dimen + ref->u.ar.codimen; i++) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, ref->u.ar.start[i], integer_type_node); gfc_add_block_to_block (block, &se.pre); lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]); tmp = fold_build2_loc (input_location, MINUS_EXPR, integer_type_node, se.expr, fold_convert(integer_type_node, lbound)); tmp = fold_build2_loc (input_location, MULT_EXPR, integer_type_node, extent, tmp); img_idx = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, img_idx, tmp); if (i < ref->u.ar.dimen + ref->u.ar.codimen - 1) { ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]); tmp = gfc_conv_array_extent_dim (lbound, ubound, NULL); tmp = fold_convert (integer_type_node, tmp); extent = fold_build2_loc (input_location, MULT_EXPR, integer_type_node, extent, tmp); } } else for (i = ref->u.ar.dimen; i < ref->u.ar.dimen + ref->u.ar.codimen; i++) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, ref->u.ar.start[i], integer_type_node); gfc_add_block_to_block (block, &se.pre); lbound = GFC_TYPE_ARRAY_LBOUND (TREE_TYPE (desc), i); lbound = fold_convert (integer_type_node, lbound); tmp = fold_build2_loc (input_location, MINUS_EXPR, integer_type_node, se.expr, lbound); tmp = fold_build2_loc (input_location, MULT_EXPR, integer_type_node, extent, tmp); img_idx = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, img_idx, tmp); if (i < ref->u.ar.dimen + ref->u.ar.codimen - 1) { ubound = GFC_TYPE_ARRAY_UBOUND (TREE_TYPE (desc), i); ubound = fold_convert (integer_type_node, ubound); tmp = fold_build2_loc (input_location, MINUS_EXPR, integer_type_node, ubound, lbound); tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, tmp, integer_one_node); extent = fold_build2_loc (input_location, MULT_EXPR, integer_type_node, extent, tmp); } } img_idx = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, img_idx, integer_one_node); return img_idx; } /* For each character array constructor subexpression without a ts.u.cl->length, replace it by its first element (if there aren't any elements, the length should already be set to zero). */ static void flatten_array_ctors_without_strlen (gfc_expr* e) { gfc_actual_arglist* arg; gfc_constructor* c; if (!e) return; switch (e->expr_type) { case EXPR_OP: flatten_array_ctors_without_strlen (e->value.op.op1); flatten_array_ctors_without_strlen (e->value.op.op2); break; case EXPR_COMPCALL: /* TODO: Implement as with EXPR_FUNCTION when needed. */ gcc_unreachable (); case EXPR_FUNCTION: for (arg = e->value.function.actual; arg; arg = arg->next) flatten_array_ctors_without_strlen (arg->expr); break; case EXPR_ARRAY: /* We've found what we're looking for. */ if (e->ts.type == BT_CHARACTER && !e->ts.u.cl->length) { gfc_constructor *c; gfc_expr* new_expr; gcc_assert (e->value.constructor); c = gfc_constructor_first (e->value.constructor); new_expr = c->expr; c->expr = NULL; flatten_array_ctors_without_strlen (new_expr); gfc_replace_expr (e, new_expr); break; } /* Otherwise, fall through to handle constructor elements. */ case EXPR_STRUCTURE: for (c = gfc_constructor_first (e->value.constructor); c; c = gfc_constructor_next (c)) flatten_array_ctors_without_strlen (c->expr); break; default: break; } } /* Generate code to initialize a string length variable. Returns the value. For array constructors, cl->length might be NULL and in this case, the first element of the constructor is needed. expr is the original expression so we can access it but can be NULL if this is not needed. */ void gfc_conv_string_length (gfc_charlen * cl, gfc_expr * expr, stmtblock_t * pblock) { gfc_se se; gfc_init_se (&se, NULL); if (!cl->length && cl->backend_decl && TREE_CODE (cl->backend_decl) == VAR_DECL) return; /* If cl->length is NULL, use gfc_conv_expr to obtain the string length but "flatten" array constructors by taking their first element; all elements should be the same length or a cl->length should be present. */ if (!cl->length) { gfc_expr* expr_flat; gcc_assert (expr); expr_flat = gfc_copy_expr (expr); flatten_array_ctors_without_strlen (expr_flat); gfc_resolve_expr (expr_flat); gfc_conv_expr (&se, expr_flat); gfc_add_block_to_block (pblock, &se.pre); cl->backend_decl = convert (gfc_charlen_type_node, se.string_length); gfc_free_expr (expr_flat); return; } /* Convert cl->length. */ gcc_assert (cl->length); gfc_conv_expr_type (&se, cl->length, gfc_charlen_type_node); se.expr = fold_build2_loc (input_location, MAX_EXPR, gfc_charlen_type_node, se.expr, build_int_cst (gfc_charlen_type_node, 0)); gfc_add_block_to_block (pblock, &se.pre); if (cl->backend_decl) gfc_add_modify (pblock, cl->backend_decl, se.expr); else cl->backend_decl = gfc_evaluate_now (se.expr, pblock); } static void gfc_conv_substring (gfc_se * se, gfc_ref * ref, int kind, const char *name, locus *where) { tree tmp; tree type; tree fault; gfc_se start; gfc_se end; char *msg; mpz_t length; type = gfc_get_character_type (kind, ref->u.ss.length); type = build_pointer_type (type); gfc_init_se (&start, se); gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node); gfc_add_block_to_block (&se->pre, &start.pre); if (integer_onep (start.expr)) gfc_conv_string_parameter (se); else { tmp = start.expr; STRIP_NOPS (tmp); /* Avoid multiple evaluation of substring start. */ if (!CONSTANT_CLASS_P (tmp) && !DECL_P (tmp)) start.expr = gfc_evaluate_now (start.expr, &se->pre); /* Change the start of the string. */ if (TYPE_STRING_FLAG (TREE_TYPE (se->expr))) tmp = se->expr; else tmp = build_fold_indirect_ref_loc (input_location, se->expr); tmp = gfc_build_array_ref (tmp, start.expr, NULL); se->expr = gfc_build_addr_expr (type, tmp); } /* Length = end + 1 - start. */ gfc_init_se (&end, se); if (ref->u.ss.end == NULL) end.expr = se->string_length; else { gfc_conv_expr_type (&end, ref->u.ss.end, gfc_charlen_type_node); gfc_add_block_to_block (&se->pre, &end.pre); } tmp = end.expr; STRIP_NOPS (tmp); if (!CONSTANT_CLASS_P (tmp) && !DECL_P (tmp)) end.expr = gfc_evaluate_now (end.expr, &se->pre); if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) { tree nonempty = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, start.expr, end.expr); /* Check lower bound. */ fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, start.expr, build_int_cst (gfc_charlen_type_node, 1)); fault = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, boolean_type_node, nonempty, fault); if (name) msg = xasprintf ("Substring out of bounds: lower bound (%%ld) of '%s' " "is less than one", name); else msg = xasprintf ("Substring out of bounds: lower bound (%%ld)" "is less than one"); gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, fold_convert (long_integer_type_node, start.expr)); free (msg); /* Check upper bound. */ fault = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, end.expr, se->string_length); fault = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, boolean_type_node, nonempty, fault); if (name) msg = xasprintf ("Substring out of bounds: upper bound (%%ld) of '%s' " "exceeds string length (%%ld)", name); else msg = xasprintf ("Substring out of bounds: upper bound (%%ld) " "exceeds string length (%%ld)"); gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, fold_convert (long_integer_type_node, end.expr), fold_convert (long_integer_type_node, se->string_length)); free (msg); } /* Try to calculate the length from the start and end expressions. */ if (ref->u.ss.end && gfc_dep_difference (ref->u.ss.end, ref->u.ss.start, &length)) { int i_len; i_len = mpz_get_si (length) + 1; if (i_len < 0) i_len = 0; tmp = build_int_cst (gfc_charlen_type_node, i_len); mpz_clear (length); /* Was initialized by gfc_dep_difference. */ } else { tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_charlen_type_node, end.expr, start.expr); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_charlen_type_node, build_int_cst (gfc_charlen_type_node, 1), tmp); tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_charlen_type_node, tmp, build_int_cst (gfc_charlen_type_node, 0)); } se->string_length = tmp; } /* Convert a derived type component reference. */ static void gfc_conv_component_ref (gfc_se * se, gfc_ref * ref) { gfc_component *c; tree tmp; tree decl; tree field; c = ref->u.c.component; if (c->backend_decl == NULL_TREE && ref->u.c.sym != NULL) gfc_get_derived_type (ref->u.c.sym); field = c->backend_decl; gcc_assert (field && TREE_CODE (field) == FIELD_DECL); decl = se->expr; /* Components can correspond to fields of different containing types, as components are created without context, whereas a concrete use of a component has the type of decl as context. So, if the type doesn't match, we search the corresponding FIELD_DECL in the parent type. To not waste too much time we cache this result in norestrict_decl. */ if (DECL_FIELD_CONTEXT (field) != TREE_TYPE (decl)) { tree f2 = c->norestrict_decl; if (!f2 || DECL_FIELD_CONTEXT (f2) != TREE_TYPE (decl)) for (f2 = TYPE_FIELDS (TREE_TYPE (decl)); f2; f2 = DECL_CHAIN (f2)) if (TREE_CODE (f2) == FIELD_DECL && DECL_NAME (f2) == DECL_NAME (field)) break; gcc_assert (f2); c->norestrict_decl = f2; field = f2; } if (ref->u.c.sym && ref->u.c.sym->ts.type == BT_CLASS && strcmp ("_data", c->name) == 0) { /* Found a ref to the _data component. Store the associated ref to the vptr in se->class_vptr. */ se->class_vptr = gfc_class_vptr_get (decl); } else se->class_vptr = NULL_TREE; tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), decl, field, NULL_TREE); se->expr = tmp; /* Allocatable deferred char arrays are to be handled by the gfc_deferred_ strlen () conditional below. */ if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer && !(c->attr.allocatable && c->ts.deferred)) { tmp = c->ts.u.cl->backend_decl; /* Components must always be constant length. */ gcc_assert (tmp && INTEGER_CST_P (tmp)); se->string_length = tmp; } if (gfc_deferred_strlen (c, &field)) { tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), decl, field, NULL_TREE); se->string_length = tmp; } if (((c->attr.pointer || c->attr.allocatable) && (!c->attr.dimension && !c->attr.codimension) && c->ts.type != BT_CHARACTER) || c->attr.proc_pointer) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); } /* This function deals with component references to components of the parent type for derived type extensions. */ static void conv_parent_component_references (gfc_se * se, gfc_ref * ref) { gfc_component *c; gfc_component *cmp; gfc_symbol *dt; gfc_ref parent; dt = ref->u.c.sym; c = ref->u.c.component; /* Return if the component is in the parent type. */ for (cmp = dt->components; cmp; cmp = cmp->next) if (strcmp (c->name, cmp->name) == 0) return; /* Build a gfc_ref to recursively call gfc_conv_component_ref. */ parent.type = REF_COMPONENT; parent.next = NULL; parent.u.c.sym = dt; parent.u.c.component = dt->components; if (dt->backend_decl == NULL) gfc_get_derived_type (dt); /* Build the reference and call self. */ gfc_conv_component_ref (se, &parent); parent.u.c.sym = dt->components->ts.u.derived; parent.u.c.component = c; conv_parent_component_references (se, &parent); } /* Return the contents of a variable. Also handles reference/pointer variables (all Fortran pointer references are implicit). */ static void gfc_conv_variable (gfc_se * se, gfc_expr * expr) { gfc_ss *ss; gfc_ref *ref; gfc_symbol *sym; tree parent_decl = NULL_TREE; int parent_flag; bool return_value; bool alternate_entry; bool entry_master; bool is_classarray; bool first_time = true; sym = expr->symtree->n.sym; is_classarray = IS_CLASS_ARRAY (sym); ss = se->ss; if (ss != NULL) { gfc_ss_info *ss_info = ss->info; /* Check that something hasn't gone horribly wrong. */ gcc_assert (ss != gfc_ss_terminator); gcc_assert (ss_info->expr == expr); /* A scalarized term. We already know the descriptor. */ se->expr = ss_info->data.array.descriptor; se->string_length = ss_info->string_length; ref = ss_info->data.array.ref; if (ref) gcc_assert (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT); else gfc_conv_tmp_array_ref (se); } else { tree se_expr = NULL_TREE; se->expr = gfc_get_symbol_decl (sym); /* Deal with references to a parent results or entries by storing the current_function_decl and moving to the parent_decl. */ return_value = sym->attr.function && sym->result == sym; alternate_entry = sym->attr.function && sym->attr.entry && sym->result == sym; entry_master = sym->attr.result && sym->ns->proc_name->attr.entry_master && !gfc_return_by_reference (sym->ns->proc_name); if (current_function_decl) parent_decl = DECL_CONTEXT (current_function_decl); if ((se->expr == parent_decl && return_value) || (sym->ns && sym->ns->proc_name && parent_decl && sym->ns->proc_name->backend_decl == parent_decl && (alternate_entry || entry_master))) parent_flag = 1; else parent_flag = 0; /* Special case for assigning the return value of a function. Self recursive functions must have an explicit return value. */ if (return_value && (se->expr == current_function_decl || parent_flag)) se_expr = gfc_get_fake_result_decl (sym, parent_flag); /* Similarly for alternate entry points. */ else if (alternate_entry && (sym->ns->proc_name->backend_decl == current_function_decl || parent_flag)) { gfc_entry_list *el = NULL; for (el = sym->ns->entries; el; el = el->next) if (sym == el->sym) { se_expr = gfc_get_fake_result_decl (sym, parent_flag); break; } } else if (entry_master && (sym->ns->proc_name->backend_decl == current_function_decl || parent_flag)) se_expr = gfc_get_fake_result_decl (sym, parent_flag); if (se_expr) se->expr = se_expr; /* Procedure actual arguments. */ else if (sym->attr.flavor == FL_PROCEDURE && se->expr != current_function_decl) { if (!sym->attr.dummy && !sym->attr.proc_pointer) { gcc_assert (TREE_CODE (se->expr) == FUNCTION_DECL); se->expr = gfc_build_addr_expr (NULL_TREE, se->expr); } return; } /* Dereference the expression, where needed. Since characters are entirely different from other types, they are treated separately. */ if (sym->ts.type == BT_CHARACTER) { /* Dereference character pointer dummy arguments or results. */ if ((sym->attr.pointer || sym->attr.allocatable) && (sym->attr.dummy || sym->attr.function || sym->attr.result)) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); } else if (!sym->attr.value) { /* Dereference temporaries for class array dummy arguments. */ if (sym->attr.dummy && is_classarray && GFC_ARRAY_TYPE_P (TREE_TYPE (se->expr))) { if (!se->descriptor_only) se->expr = GFC_DECL_SAVED_DESCRIPTOR (se->expr); se->expr = build_fold_indirect_ref_loc (input_location, se->expr); } /* Dereference non-character scalar dummy arguments. */ if (sym->attr.dummy && !sym->attr.dimension && !(sym->attr.codimension && sym->attr.allocatable) && (sym->ts.type != BT_CLASS || (!CLASS_DATA (sym)->attr.dimension && !(CLASS_DATA (sym)->attr.codimension && CLASS_DATA (sym)->attr.allocatable)))) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); /* Dereference scalar hidden result. */ if (flag_f2c && sym->ts.type == BT_COMPLEX && (sym->attr.function || sym->attr.result) && !sym->attr.dimension && !sym->attr.pointer && !sym->attr.always_explicit) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); /* Dereference non-character, non-class pointer variables. These must be dummies, results, or scalars. */ if (!is_classarray && (sym->attr.pointer || sym->attr.allocatable || gfc_is_associate_pointer (sym) || (sym->as && sym->as->type == AS_ASSUMED_RANK)) && (sym->attr.dummy || sym->attr.function || sym->attr.result || (!sym->attr.dimension && (!sym->attr.codimension || !sym->attr.allocatable)))) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); /* Now treat the class array pointer variables accordingly. */ else if (sym->ts.type == BT_CLASS && sym->attr.dummy && (CLASS_DATA (sym)->attr.dimension || CLASS_DATA (sym)->attr.codimension) && ((CLASS_DATA (sym)->as && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK) || CLASS_DATA (sym)->attr.allocatable || CLASS_DATA (sym)->attr.class_pointer)) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); /* And the case where a non-dummy, non-result, non-function, non-allotable and non-pointer classarray is present. This case was previously covered by the first if, but with introducing the condition !is_classarray there, that case has to be covered explicitly. */ else if (sym->ts.type == BT_CLASS && !sym->attr.dummy && !sym->attr.function && !sym->attr.result && (CLASS_DATA (sym)->attr.dimension || CLASS_DATA (sym)->attr.codimension) && (sym->assoc || !CLASS_DATA (sym)->attr.allocatable) && !CLASS_DATA (sym)->attr.class_pointer) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); } ref = expr->ref; } /* For character variables, also get the length. */ if (sym->ts.type == BT_CHARACTER) { /* If the character length of an entry isn't set, get the length from the master function instead. */ if (sym->attr.entry && !sym->ts.u.cl->backend_decl) se->string_length = sym->ns->proc_name->ts.u.cl->backend_decl; else se->string_length = sym->ts.u.cl->backend_decl; gcc_assert (se->string_length); } while (ref) { switch (ref->type) { case REF_ARRAY: /* Return the descriptor if that's what we want and this is an array section reference. */ if (se->descriptor_only && ref->u.ar.type != AR_ELEMENT) return; /* TODO: Pointers to single elements of array sections, eg elemental subs. */ /* Return the descriptor for array pointers and allocations. */ if (se->want_pointer && ref->next == NULL && (se->descriptor_only)) return; gfc_conv_array_ref (se, &ref->u.ar, expr, &expr->where); /* Return a pointer to an element. */ break; case REF_COMPONENT: if (first_time && is_classarray && sym->attr.dummy && se->descriptor_only && !CLASS_DATA (sym)->attr.allocatable && !CLASS_DATA (sym)->attr.class_pointer && CLASS_DATA (sym)->as && CLASS_DATA (sym)->as->type != AS_ASSUMED_RANK && strcmp ("_data", ref->u.c.component->name) == 0) /* Skip the first ref of a _data component, because for class arrays that one is already done by introducing a temporary array descriptor. */ break; if (ref->u.c.sym->attr.extension) conv_parent_component_references (se, ref); gfc_conv_component_ref (se, ref); if (!ref->next && ref->u.c.sym->attr.codimension && se->want_pointer && se->descriptor_only) return; break; case REF_SUBSTRING: gfc_conv_substring (se, ref, expr->ts.kind, expr->symtree->name, &expr->where); break; default: gcc_unreachable (); break; } first_time = false; ref = ref->next; } /* Pointer assignment, allocation or pass by reference. Arrays are handled separately. */ if (se->want_pointer) { if (expr->ts.type == BT_CHARACTER && !gfc_is_proc_ptr_comp (expr)) gfc_conv_string_parameter (se); else se->expr = gfc_build_addr_expr (NULL_TREE, se->expr); } } /* Unary ops are easy... Or they would be if ! was a valid op. */ static void gfc_conv_unary_op (enum tree_code code, gfc_se * se, gfc_expr * expr) { gfc_se operand; tree type; gcc_assert (expr->ts.type != BT_CHARACTER); /* Initialize the operand. */ gfc_init_se (&operand, se); gfc_conv_expr_val (&operand, expr->value.op.op1); gfc_add_block_to_block (&se->pre, &operand.pre); type = gfc_typenode_for_spec (&expr->ts); /* TRUTH_NOT_EXPR is not a "true" unary operator in GCC. We must convert it to a compare to 0 (e.g. EQ_EXPR (op1, 0)). All other unary operators have an equivalent GIMPLE unary operator. */ if (code == TRUTH_NOT_EXPR) se->expr = fold_build2_loc (input_location, EQ_EXPR, type, operand.expr, build_int_cst (type, 0)); else se->expr = fold_build1_loc (input_location, code, type, operand.expr); } /* Expand power operator to optimal multiplications when a value is raised to a constant integer n. See section 4.6.3, "Evaluation of Powers" of Donald E. Knuth, "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming", 3rd Edition, 1998. */ /* This code is mostly duplicated from expand_powi in the backend. We establish the "optimal power tree" lookup table with the defined size. The items in the table are the exponents used to calculate the index exponents. Any integer n less than the value can get an "addition chain", with the first node being one. */ #define POWI_TABLE_SIZE 256 /* The table is from builtins.c. */ static const unsigned char powi_table[POWI_TABLE_SIZE] = { 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */ 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */ 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */ 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */ 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */ 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */ 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */ 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */ 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */ 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */ 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */ 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */ 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */ 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */ 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */ 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */ 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */ 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */ 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */ 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */ 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */ 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */ 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */ 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */ 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */ 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */ 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */ 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */ 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */ 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */ 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */ 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */ }; /* If n is larger than lookup table's max index, we use the "window method". */ #define POWI_WINDOW_SIZE 3 /* Recursive function to expand the power operator. The temporary values are put in tmpvar. The function returns tmpvar[1] ** n. */ static tree gfc_conv_powi (gfc_se * se, unsigned HOST_WIDE_INT n, tree * tmpvar) { tree op0; tree op1; tree tmp; int digit; if (n < POWI_TABLE_SIZE) { if (tmpvar[n]) return tmpvar[n]; op0 = gfc_conv_powi (se, n - powi_table[n], tmpvar); op1 = gfc_conv_powi (se, powi_table[n], tmpvar); } else if (n & 1) { digit = n & ((1 << POWI_WINDOW_SIZE) - 1); op0 = gfc_conv_powi (se, n - digit, tmpvar); op1 = gfc_conv_powi (se, digit, tmpvar); } else { op0 = gfc_conv_powi (se, n >> 1, tmpvar); op1 = op0; } tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (op0), op0, op1); tmp = gfc_evaluate_now (tmp, &se->pre); if (n < POWI_TABLE_SIZE) tmpvar[n] = tmp; return tmp; } /* Expand lhs ** rhs. rhs is a constant integer. If it expands successfully, return 1. Else return 0 and a call to runtime library functions will have to be built. */ static int gfc_conv_cst_int_power (gfc_se * se, tree lhs, tree rhs) { tree cond; tree tmp; tree type; tree vartmp[POWI_TABLE_SIZE]; HOST_WIDE_INT m; unsigned HOST_WIDE_INT n; int sgn; wide_int wrhs = rhs; /* If exponent is too large, we won't expand it anyway, so don't bother with large integer values. */ if (!wi::fits_shwi_p (wrhs)) return 0; m = wrhs.to_shwi (); /* There's no ABS for HOST_WIDE_INT, so here we go. It also takes care of the asymmetric range of the integer type. */ n = (unsigned HOST_WIDE_INT) (m < 0 ? -m : m); type = TREE_TYPE (lhs); sgn = tree_int_cst_sgn (rhs); if (((FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations) || optimize_size) && (m > 2 || m < -1)) return 0; /* rhs == 0 */ if (sgn == 0) { se->expr = gfc_build_const (type, integer_one_node); return 1; } /* If rhs < 0 and lhs is an integer, the result is -1, 0 or 1. */ if ((sgn == -1) && (TREE_CODE (type) == INTEGER_TYPE)) { tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, lhs, build_int_cst (TREE_TYPE (lhs), -1)); cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, lhs, build_int_cst (TREE_TYPE (lhs), 1)); /* If rhs is even, result = (lhs == 1 || lhs == -1) ? 1 : 0. */ if ((n & 1) == 0) { tmp = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node, tmp, cond); se->expr = fold_build3_loc (input_location, COND_EXPR, type, tmp, build_int_cst (type, 1), build_int_cst (type, 0)); return 1; } /* If rhs is odd, result = (lhs == 1) ? 1 : (lhs == -1) ? -1 : 0. */ tmp = fold_build3_loc (input_location, COND_EXPR, type, tmp, build_int_cst (type, -1), build_int_cst (type, 0)); se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, build_int_cst (type, 1), tmp); return 1; } memset (vartmp, 0, sizeof (vartmp)); vartmp[1] = lhs; if (sgn == -1) { tmp = gfc_build_const (type, integer_one_node); vartmp[1] = fold_build2_loc (input_location, RDIV_EXPR, type, tmp, vartmp[1]); } se->expr = gfc_conv_powi (se, n, vartmp); return 1; } /* Power op (**). Constant integer exponent has special handling. */ static void gfc_conv_power_op (gfc_se * se, gfc_expr * expr) { tree gfc_int4_type_node; int kind; int ikind; int res_ikind_1, res_ikind_2; gfc_se lse; gfc_se rse; tree fndecl = NULL; gfc_init_se (&lse, se); gfc_conv_expr_val (&lse, expr->value.op.op1); lse.expr = gfc_evaluate_now (lse.expr, &lse.pre); gfc_add_block_to_block (&se->pre, &lse.pre); gfc_init_se (&rse, se); gfc_conv_expr_val (&rse, expr->value.op.op2); gfc_add_block_to_block (&se->pre, &rse.pre); if (expr->value.op.op2->ts.type == BT_INTEGER && expr->value.op.op2->expr_type == EXPR_CONSTANT) if (gfc_conv_cst_int_power (se, lse.expr, rse.expr)) return; gfc_int4_type_node = gfc_get_int_type (4); /* In case of integer operands with kinds 1 or 2, we call the integer kind 4 library routine. But in the end, we have to convert the result back if this case applies -- with res_ikind_K, we keep track whether operand K falls into this case. */ res_ikind_1 = -1; res_ikind_2 = -1; kind = expr->value.op.op1->ts.kind; switch (expr->value.op.op2->ts.type) { case BT_INTEGER: ikind = expr->value.op.op2->ts.kind; switch (ikind) { case 1: case 2: rse.expr = convert (gfc_int4_type_node, rse.expr); res_ikind_2 = ikind; /* Fall through. */ case 4: ikind = 0; break; case 8: ikind = 1; break; case 16: ikind = 2; break; default: gcc_unreachable (); } switch (kind) { case 1: case 2: if (expr->value.op.op1->ts.type == BT_INTEGER) { lse.expr = convert (gfc_int4_type_node, lse.expr); res_ikind_1 = kind; } else gcc_unreachable (); /* Fall through. */ case 4: kind = 0; break; case 8: kind = 1; break; case 10: kind = 2; break; case 16: kind = 3; break; default: gcc_unreachable (); } switch (expr->value.op.op1->ts.type) { case BT_INTEGER: if (kind == 3) /* Case 16 was not handled properly above. */ kind = 2; fndecl = gfor_fndecl_math_powi[kind][ikind].integer; break; case BT_REAL: /* Use builtins for real ** int4. */ if (ikind == 0) { switch (kind) { case 0: fndecl = builtin_decl_explicit (BUILT_IN_POWIF); break; case 1: fndecl = builtin_decl_explicit (BUILT_IN_POWI); break; case 2: fndecl = builtin_decl_explicit (BUILT_IN_POWIL); break; case 3: /* Use the __builtin_powil() only if real(kind=16) is actually the C long double type. */ if (!gfc_real16_is_float128) fndecl = builtin_decl_explicit (BUILT_IN_POWIL); break; default: gcc_unreachable (); } } /* If we don't have a good builtin for this, go for the library function. */ if (!fndecl) fndecl = gfor_fndecl_math_powi[kind][ikind].real; break; case BT_COMPLEX: fndecl = gfor_fndecl_math_powi[kind][ikind].cmplx; break; default: gcc_unreachable (); } break; case BT_REAL: fndecl = gfc_builtin_decl_for_float_kind (BUILT_IN_POW, kind); break; case BT_COMPLEX: fndecl = gfc_builtin_decl_for_float_kind (BUILT_IN_CPOW, kind); break; default: gcc_unreachable (); break; } se->expr = build_call_expr_loc (input_location, fndecl, 2, lse.expr, rse.expr); /* Convert the result back if it is of wrong integer kind. */ if (res_ikind_1 != -1 && res_ikind_2 != -1) { /* We want the maximum of both operand kinds as result. */ if (res_ikind_1 < res_ikind_2) res_ikind_1 = res_ikind_2; se->expr = convert (gfc_get_int_type (res_ikind_1), se->expr); } } /* Generate code to allocate a string temporary. */ tree gfc_conv_string_tmp (gfc_se * se, tree type, tree len) { tree var; tree tmp; if (gfc_can_put_var_on_stack (len)) { /* Create a temporary variable to hold the result. */ tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_charlen_type_node, len, build_int_cst (gfc_charlen_type_node, 1)); tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node, tmp); if (TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE) tmp = build_array_type (TREE_TYPE (TREE_TYPE (type)), tmp); else tmp = build_array_type (TREE_TYPE (type), tmp); var = gfc_create_var (tmp, "str"); var = gfc_build_addr_expr (type, var); } else { /* Allocate a temporary to hold the result. */ var = gfc_create_var (type, "pstr"); gcc_assert (POINTER_TYPE_P (type)); tmp = TREE_TYPE (type); if (TREE_CODE (tmp) == ARRAY_TYPE) tmp = TREE_TYPE (tmp); tmp = TYPE_SIZE_UNIT (tmp); tmp = fold_build2_loc (input_location, MULT_EXPR, size_type_node, fold_convert (size_type_node, len), fold_convert (size_type_node, tmp)); tmp = gfc_call_malloc (&se->pre, type, tmp); gfc_add_modify (&se->pre, var, tmp); /* Free the temporary afterwards. */ tmp = gfc_call_free (var); gfc_add_expr_to_block (&se->post, tmp); } return var; } /* Handle a string concatenation operation. A temporary will be allocated to hold the result. */ static void gfc_conv_concat_op (gfc_se * se, gfc_expr * expr) { gfc_se lse, rse; tree len, type, var, tmp, fndecl; gcc_assert (expr->value.op.op1->ts.type == BT_CHARACTER && expr->value.op.op2->ts.type == BT_CHARACTER); gcc_assert (expr->value.op.op1->ts.kind == expr->value.op.op2->ts.kind); gfc_init_se (&lse, se); gfc_conv_expr (&lse, expr->value.op.op1); gfc_conv_string_parameter (&lse); gfc_init_se (&rse, se); gfc_conv_expr (&rse, expr->value.op.op2); gfc_conv_string_parameter (&rse); gfc_add_block_to_block (&se->pre, &lse.pre); gfc_add_block_to_block (&se->pre, &rse.pre); type = gfc_get_character_type (expr->ts.kind, expr->ts.u.cl); len = TYPE_MAX_VALUE (TYPE_DOMAIN (type)); if (len == NULL_TREE) { len = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (lse.string_length), lse.string_length, rse.string_length); } type = build_pointer_type (type); var = gfc_conv_string_tmp (se, type, len); /* Do the actual concatenation. */ if (expr->ts.kind == 1) fndecl = gfor_fndecl_concat_string; else if (expr->ts.kind == 4) fndecl = gfor_fndecl_concat_string_char4; else gcc_unreachable (); tmp = build_call_expr_loc (input_location, fndecl, 6, len, var, lse.string_length, lse.expr, rse.string_length, rse.expr); gfc_add_expr_to_block (&se->pre, tmp); /* Add the cleanup for the operands. */ gfc_add_block_to_block (&se->pre, &rse.post); gfc_add_block_to_block (&se->pre, &lse.post); se->expr = var; se->string_length = len; } /* Translates an op expression. Common (binary) cases are handled by this function, others are passed on. Recursion is used in either case. We use the fact that (op1.ts == op2.ts) (except for the power operator **). Operators need no special handling for scalarized expressions as long as they call gfc_conv_simple_val to get their operands. Character strings get special handling. */ static void gfc_conv_expr_op (gfc_se * se, gfc_expr * expr) { enum tree_code code; gfc_se lse; gfc_se rse; tree tmp, type; int lop; int checkstring; checkstring = 0; lop = 0; switch (expr->value.op.op) { case INTRINSIC_PARENTHESES: if ((expr->ts.type == BT_REAL || expr->ts.type == BT_COMPLEX) && flag_protect_parens) { gfc_conv_unary_op (PAREN_EXPR, se, expr); gcc_assert (FLOAT_TYPE_P (TREE_TYPE (se->expr))); return; } /* Fallthrough. */ case INTRINSIC_UPLUS: gfc_conv_expr (se, expr->value.op.op1); return; case INTRINSIC_UMINUS: gfc_conv_unary_op (NEGATE_EXPR, se, expr); return; case INTRINSIC_NOT: gfc_conv_unary_op (TRUTH_NOT_EXPR, se, expr); return; case INTRINSIC_PLUS: code = PLUS_EXPR; break; case INTRINSIC_MINUS: code = MINUS_EXPR; break; case INTRINSIC_TIMES: code = MULT_EXPR; break; case INTRINSIC_DIVIDE: /* If expr is a real or complex expr, use an RDIV_EXPR. If op1 is an integer, we must round towards zero, so we use a TRUNC_DIV_EXPR. */ if (expr->ts.type == BT_INTEGER) code = TRUNC_DIV_EXPR; else code = RDIV_EXPR; break; case INTRINSIC_POWER: gfc_conv_power_op (se, expr); return; case INTRINSIC_CONCAT: gfc_conv_concat_op (se, expr); return; case INTRINSIC_AND: code = TRUTH_ANDIF_EXPR; lop = 1; break; case INTRINSIC_OR: code = TRUTH_ORIF_EXPR; lop = 1; break; /* EQV and NEQV only work on logicals, but since we represent them as integers, we can use EQ_EXPR and NE_EXPR for them in GIMPLE. */ case INTRINSIC_EQ: case INTRINSIC_EQ_OS: case INTRINSIC_EQV: code = EQ_EXPR; checkstring = 1; lop = 1; break; case INTRINSIC_NE: case INTRINSIC_NE_OS: case INTRINSIC_NEQV: code = NE_EXPR; checkstring = 1; lop = 1; break; case INTRINSIC_GT: case INTRINSIC_GT_OS: code = GT_EXPR; checkstring = 1; lop = 1; break; case INTRINSIC_GE: case INTRINSIC_GE_OS: code = GE_EXPR; checkstring = 1; lop = 1; break; case INTRINSIC_LT: case INTRINSIC_LT_OS: code = LT_EXPR; checkstring = 1; lop = 1; break; case INTRINSIC_LE: case INTRINSIC_LE_OS: code = LE_EXPR; checkstring = 1; lop = 1; break; case INTRINSIC_USER: case INTRINSIC_ASSIGN: /* These should be converted into function calls by the frontend. */ gcc_unreachable (); default: fatal_error (input_location, "Unknown intrinsic op"); return; } /* The only exception to this is **, which is handled separately anyway. */ gcc_assert (expr->value.op.op1->ts.type == expr->value.op.op2->ts.type); if (checkstring && expr->value.op.op1->ts.type != BT_CHARACTER) checkstring = 0; /* lhs */ gfc_init_se (&lse, se); gfc_conv_expr (&lse, expr->value.op.op1); gfc_add_block_to_block (&se->pre, &lse.pre); /* rhs */ gfc_init_se (&rse, se); gfc_conv_expr (&rse, expr->value.op.op2); gfc_add_block_to_block (&se->pre, &rse.pre); if (checkstring) { gfc_conv_string_parameter (&lse); gfc_conv_string_parameter (&rse); lse.expr = gfc_build_compare_string (lse.string_length, lse.expr, rse.string_length, rse.expr, expr->value.op.op1->ts.kind, code); rse.expr = build_int_cst (TREE_TYPE (lse.expr), 0); gfc_add_block_to_block (&lse.post, &rse.post); } type = gfc_typenode_for_spec (&expr->ts); if (lop) { /* The result of logical ops is always boolean_type_node. */ tmp = fold_build2_loc (input_location, code, boolean_type_node, lse.expr, rse.expr); se->expr = convert (type, tmp); } else se->expr = fold_build2_loc (input_location, code, type, lse.expr, rse.expr); /* Add the post blocks. */ gfc_add_block_to_block (&se->post, &rse.post); gfc_add_block_to_block (&se->post, &lse.post); } /* If a string's length is one, we convert it to a single character. */ tree gfc_string_to_single_character (tree len, tree str, int kind) { if (len == NULL || !tree_fits_uhwi_p (len) || !POINTER_TYPE_P (TREE_TYPE (str))) return NULL_TREE; if (TREE_INT_CST_LOW (len) == 1) { str = fold_convert (gfc_get_pchar_type (kind), str); return build_fold_indirect_ref_loc (input_location, str); } if (kind == 1 && TREE_CODE (str) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (str, 0)) == ARRAY_REF && TREE_CODE (TREE_OPERAND (TREE_OPERAND (str, 0), 0)) == STRING_CST && array_ref_low_bound (TREE_OPERAND (str, 0)) == TREE_OPERAND (TREE_OPERAND (str, 0), 1) && TREE_INT_CST_LOW (len) > 1 && TREE_INT_CST_LOW (len) == (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (TREE_OPERAND (TREE_OPERAND (str, 0), 0))) { tree ret = fold_convert (gfc_get_pchar_type (kind), str); ret = build_fold_indirect_ref_loc (input_location, ret); if (TREE_CODE (ret) == INTEGER_CST) { tree string_cst = TREE_OPERAND (TREE_OPERAND (str, 0), 0); int i, length = TREE_STRING_LENGTH (string_cst); const char *ptr = TREE_STRING_POINTER (string_cst); for (i = 1; i < length; i++) if (ptr[i] != ' ') return NULL_TREE; return ret; } } return NULL_TREE; } void gfc_conv_scalar_char_value (gfc_symbol *sym, gfc_se *se, gfc_expr **expr) { if (sym->backend_decl) { /* This becomes the nominal_type in function.c:assign_parm_find_data_types. */ TREE_TYPE (sym->backend_decl) = unsigned_char_type_node; /* This becomes the passed_type in function.c:assign_parm_find_data_types. C promotes char to integer for argument passing. */ DECL_ARG_TYPE (sym->backend_decl) = unsigned_type_node; DECL_BY_REFERENCE (sym->backend_decl) = 0; } if (expr != NULL) { /* If we have a constant character expression, make it into an integer. */ if ((*expr)->expr_type == EXPR_CONSTANT) { gfc_typespec ts; gfc_clear_ts (&ts); *expr = gfc_get_int_expr (gfc_default_integer_kind, NULL, (int)(*expr)->value.character.string[0]); if ((*expr)->ts.kind != gfc_c_int_kind) { /* The expr needs to be compatible with a C int. If the conversion fails, then the 2 causes an ICE. */ ts.type = BT_INTEGER; ts.kind = gfc_c_int_kind; gfc_convert_type (*expr, &ts, 2); } } else if (se != NULL && (*expr)->expr_type == EXPR_VARIABLE) { if ((*expr)->ref == NULL) { se->expr = gfc_string_to_single_character (build_int_cst (integer_type_node, 1), gfc_build_addr_expr (gfc_get_pchar_type ((*expr)->ts.kind), gfc_get_symbol_decl ((*expr)->symtree->n.sym)), (*expr)->ts.kind); } else { gfc_conv_variable (se, *expr); se->expr = gfc_string_to_single_character (build_int_cst (integer_type_node, 1), gfc_build_addr_expr (gfc_get_pchar_type ((*expr)->ts.kind), se->expr), (*expr)->ts.kind); } } } } /* Helper function for gfc_build_compare_string. Return LEN_TRIM value if STR is a string literal, otherwise return -1. */ static int gfc_optimize_len_trim (tree len, tree str, int kind) { if (kind == 1 && TREE_CODE (str) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (str, 0)) == ARRAY_REF && TREE_CODE (TREE_OPERAND (TREE_OPERAND (str, 0), 0)) == STRING_CST && array_ref_low_bound (TREE_OPERAND (str, 0)) == TREE_OPERAND (TREE_OPERAND (str, 0), 1) && tree_fits_uhwi_p (len) && tree_to_uhwi (len) >= 1 && tree_to_uhwi (len) == (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (TREE_OPERAND (TREE_OPERAND (str, 0), 0))) { tree folded = fold_convert (gfc_get_pchar_type (kind), str); folded = build_fold_indirect_ref_loc (input_location, folded); if (TREE_CODE (folded) == INTEGER_CST) { tree string_cst = TREE_OPERAND (TREE_OPERAND (str, 0), 0); int length = TREE_STRING_LENGTH (string_cst); const char *ptr = TREE_STRING_POINTER (string_cst); for (; length > 0; length--) if (ptr[length - 1] != ' ') break; return length; } } return -1; } /* Helper to build a call to memcmp. */ static tree build_memcmp_call (tree s1, tree s2, tree n) { tree tmp; if (!POINTER_TYPE_P (TREE_TYPE (s1))) s1 = gfc_build_addr_expr (pvoid_type_node, s1); else s1 = fold_convert (pvoid_type_node, s1); if (!POINTER_TYPE_P (TREE_TYPE (s2))) s2 = gfc_build_addr_expr (pvoid_type_node, s2); else s2 = fold_convert (pvoid_type_node, s2); n = fold_convert (size_type_node, n); tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMCMP), 3, s1, s2, n); return fold_convert (integer_type_node, tmp); } /* Compare two strings. If they are all single characters, the result is the subtraction of them. Otherwise, we build a library call. */ tree gfc_build_compare_string (tree len1, tree str1, tree len2, tree str2, int kind, enum tree_code code) { tree sc1; tree sc2; tree fndecl; gcc_assert (POINTER_TYPE_P (TREE_TYPE (str1))); gcc_assert (POINTER_TYPE_P (TREE_TYPE (str2))); sc1 = gfc_string_to_single_character (len1, str1, kind); sc2 = gfc_string_to_single_character (len2, str2, kind); if (sc1 != NULL_TREE && sc2 != NULL_TREE) { /* Deal with single character specially. */ sc1 = fold_convert (integer_type_node, sc1); sc2 = fold_convert (integer_type_node, sc2); return fold_build2_loc (input_location, MINUS_EXPR, integer_type_node, sc1, sc2); } if ((code == EQ_EXPR || code == NE_EXPR) && optimize && INTEGER_CST_P (len1) && INTEGER_CST_P (len2)) { /* If one string is a string literal with LEN_TRIM longer than the length of the second string, the strings compare unequal. */ int len = gfc_optimize_len_trim (len1, str1, kind); if (len > 0 && compare_tree_int (len2, len) < 0) return integer_one_node; len = gfc_optimize_len_trim (len2, str2, kind); if (len > 0 && compare_tree_int (len1, len) < 0) return integer_one_node; } /* We can compare via memcpy if the strings are known to be equal in length and they are - kind=1 - kind=4 and the comparison is for (in)equality. */ if (INTEGER_CST_P (len1) && INTEGER_CST_P (len2) && tree_int_cst_equal (len1, len2) && (kind == 1 || code == EQ_EXPR || code == NE_EXPR)) { tree tmp; tree chartype; chartype = gfc_get_char_type (kind); tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE(len1), fold_convert (TREE_TYPE(len1), TYPE_SIZE_UNIT(chartype)), len1); return build_memcmp_call (str1, str2, tmp); } /* Build a call for the comparison. */ if (kind == 1) fndecl = gfor_fndecl_compare_string; else if (kind == 4) fndecl = gfor_fndecl_compare_string_char4; else gcc_unreachable (); return build_call_expr_loc (input_location, fndecl, 4, len1, str1, len2, str2); } /* Return the backend_decl for a procedure pointer component. */ static tree get_proc_ptr_comp (gfc_expr *e) { gfc_se comp_se; gfc_expr *e2; expr_t old_type; gfc_init_se (&comp_se, NULL); e2 = gfc_copy_expr (e); /* We have to restore the expr type later so that gfc_free_expr frees the exact same thing that was allocated. TODO: This is ugly. */ old_type = e2->expr_type; e2->expr_type = EXPR_VARIABLE; gfc_conv_expr (&comp_se, e2); e2->expr_type = old_type; gfc_free_expr (e2); return build_fold_addr_expr_loc (input_location, comp_se.expr); } /* Convert a typebound function reference from a class object. */ static void conv_base_obj_fcn_val (gfc_se * se, tree base_object, gfc_expr * expr) { gfc_ref *ref; tree var; if (TREE_CODE (base_object) != VAR_DECL) { var = gfc_create_var (TREE_TYPE (base_object), NULL); gfc_add_modify (&se->pre, var, base_object); } se->expr = gfc_class_vptr_get (base_object); se->expr = build_fold_indirect_ref_loc (input_location, se->expr); ref = expr->ref; while (ref && ref->next) ref = ref->next; gcc_assert (ref && ref->type == REF_COMPONENT); if (ref->u.c.sym->attr.extension) conv_parent_component_references (se, ref); gfc_conv_component_ref (se, ref); se->expr = build_fold_addr_expr_loc (input_location, se->expr); } static void conv_function_val (gfc_se * se, gfc_symbol * sym, gfc_expr * expr) { tree tmp; if (gfc_is_proc_ptr_comp (expr)) tmp = get_proc_ptr_comp (expr); else if (sym->attr.dummy) { tmp = gfc_get_symbol_decl (sym); if (sym->attr.proc_pointer) tmp = build_fold_indirect_ref_loc (input_location, tmp); gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == POINTER_TYPE && TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) == FUNCTION_TYPE); } else { if (!sym->backend_decl) sym->backend_decl = gfc_get_extern_function_decl (sym); TREE_USED (sym->backend_decl) = 1; tmp = sym->backend_decl; if (sym->attr.cray_pointee) { /* TODO - make the cray pointee a pointer to a procedure, assign the pointer to it and use it for the call. This will do for now! */ tmp = convert (build_pointer_type (TREE_TYPE (tmp)), gfc_get_symbol_decl (sym->cp_pointer)); tmp = gfc_evaluate_now (tmp, &se->pre); } if (!POINTER_TYPE_P (TREE_TYPE (tmp))) { gcc_assert (TREE_CODE (tmp) == FUNCTION_DECL); tmp = gfc_build_addr_expr (NULL_TREE, tmp); } } se->expr = tmp; } /* Initialize MAPPING. */ void gfc_init_interface_mapping (gfc_interface_mapping * mapping) { mapping->syms = NULL; mapping->charlens = NULL; } /* Free all memory held by MAPPING (but not MAPPING itself). */ void gfc_free_interface_mapping (gfc_interface_mapping * mapping) { gfc_interface_sym_mapping *sym; gfc_interface_sym_mapping *nextsym; gfc_charlen *cl; gfc_charlen *nextcl; for (sym = mapping->syms; sym; sym = nextsym) { nextsym = sym->next; sym->new_sym->n.sym->formal = NULL; gfc_free_symbol (sym->new_sym->n.sym); gfc_free_expr (sym->expr); free (sym->new_sym); free (sym); } for (cl = mapping->charlens; cl; cl = nextcl) { nextcl = cl->next; gfc_free_expr (cl->length); free (cl); } } /* Return a copy of gfc_charlen CL. Add the returned structure to MAPPING so that it will be freed by gfc_free_interface_mapping. */ static gfc_charlen * gfc_get_interface_mapping_charlen (gfc_interface_mapping * mapping, gfc_charlen * cl) { gfc_charlen *new_charlen; new_charlen = gfc_get_charlen (); new_charlen->next = mapping->charlens; new_charlen->length = gfc_copy_expr (cl->length); mapping->charlens = new_charlen; return new_charlen; } /* A subroutine of gfc_add_interface_mapping. Return a descriptorless array variable that can be used as the actual argument for dummy argument SYM. Add any initialization code to BLOCK. PACKED is as for gfc_get_nodesc_array_type and DATA points to the first element in the passed array. */ static tree gfc_get_interface_mapping_array (stmtblock_t * block, gfc_symbol * sym, gfc_packed packed, tree data) { tree type; tree var; type = gfc_typenode_for_spec (&sym->ts); type = gfc_get_nodesc_array_type (type, sym->as, packed, !sym->attr.target && !sym->attr.pointer && !sym->attr.proc_pointer); var = gfc_create_var (type, "ifm"); gfc_add_modify (block, var, fold_convert (type, data)); return var; } /* A subroutine of gfc_add_interface_mapping. Set the stride, upper bounds and offset of descriptorless array type TYPE given that it has the same size as DESC. Add any set-up code to BLOCK. */ static void gfc_set_interface_mapping_bounds (stmtblock_t * block, tree type, tree desc) { int n; tree dim; tree offset; tree tmp; offset = gfc_index_zero_node; for (n = 0; n < GFC_TYPE_ARRAY_RANK (type); n++) { dim = gfc_rank_cst[n]; GFC_TYPE_ARRAY_STRIDE (type, n) = gfc_conv_array_stride (desc, n); if (GFC_TYPE_ARRAY_LBOUND (type, n) == NULL_TREE) { GFC_TYPE_ARRAY_LBOUND (type, n) = gfc_conv_descriptor_lbound_get (desc, dim); GFC_TYPE_ARRAY_UBOUND (type, n) = gfc_conv_descriptor_ubound_get (desc, dim); } else if (GFC_TYPE_ARRAY_UBOUND (type, n) == NULL_TREE) { tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, gfc_conv_descriptor_ubound_get (desc, dim), gfc_conv_descriptor_lbound_get (desc, dim)); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, GFC_TYPE_ARRAY_LBOUND (type, n), tmp); tmp = gfc_evaluate_now (tmp, block); GFC_TYPE_ARRAY_UBOUND (type, n) = tmp; } tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, GFC_TYPE_ARRAY_LBOUND (type, n), GFC_TYPE_ARRAY_STRIDE (type, n)); offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, tmp); } offset = gfc_evaluate_now (offset, block); GFC_TYPE_ARRAY_OFFSET (type) = offset; } /* Extend MAPPING so that it maps dummy argument SYM to the value stored in SE. The caller may still use se->expr and se->string_length after calling this function. */ void gfc_add_interface_mapping (gfc_interface_mapping * mapping, gfc_symbol * sym, gfc_se * se, gfc_expr *expr) { gfc_interface_sym_mapping *sm; tree desc; tree tmp; tree value; gfc_symbol *new_sym; gfc_symtree *root; gfc_symtree *new_symtree; /* Create a new symbol to represent the actual argument. */ new_sym = gfc_new_symbol (sym->name, NULL); new_sym->ts = sym->ts; new_sym->as = gfc_copy_array_spec (sym->as); new_sym->attr.referenced = 1; new_sym->attr.dimension = sym->attr.dimension; new_sym->attr.contiguous = sym->attr.contiguous; new_sym->attr.codimension = sym->attr.codimension; new_sym->attr.pointer = sym->attr.pointer; new_sym->attr.allocatable = sym->attr.allocatable; new_sym->attr.flavor = sym->attr.flavor; new_sym->attr.function = sym->attr.function; /* Ensure that the interface is available and that descriptors are passed for array actual arguments. */ if (sym->attr.flavor == FL_PROCEDURE) { new_sym->formal = expr->symtree->n.sym->formal; new_sym->attr.always_explicit = expr->symtree->n.sym->attr.always_explicit; } /* Create a fake symtree for it. */ root = NULL; new_symtree = gfc_new_symtree (&root, sym->name); new_symtree->n.sym = new_sym; gcc_assert (new_symtree == root); /* Create a dummy->actual mapping. */ sm = XCNEW (gfc_interface_sym_mapping); sm->next = mapping->syms; sm->old = sym; sm->new_sym = new_symtree; sm->expr = gfc_copy_expr (expr); mapping->syms = sm; /* Stabilize the argument's value. */ if (!sym->attr.function && se) se->expr = gfc_evaluate_now (se->expr, &se->pre); if (sym->ts.type == BT_CHARACTER) { /* Create a copy of the dummy argument's length. */ new_sym->ts.u.cl = gfc_get_interface_mapping_charlen (mapping, sym->ts.u.cl); sm->expr->ts.u.cl = new_sym->ts.u.cl; /* If the length is specified as "*", record the length that the caller is passing. We should use the callee's length in all other cases. */ if (!new_sym->ts.u.cl->length && se) { se->string_length = gfc_evaluate_now (se->string_length, &se->pre); new_sym->ts.u.cl->backend_decl = se->string_length; } } if (!se) return; /* Use the passed value as-is if the argument is a function. */ if (sym->attr.flavor == FL_PROCEDURE) value = se->expr; /* If the argument is either a string or a pointer to a string, convert it to a boundless character type. */ else if (!sym->attr.dimension && sym->ts.type == BT_CHARACTER) { tmp = gfc_get_character_type_len (sym->ts.kind, NULL); tmp = build_pointer_type (tmp); if (sym->attr.pointer) value = build_fold_indirect_ref_loc (input_location, se->expr); else value = se->expr; value = fold_convert (tmp, value); } /* If the argument is a scalar, a pointer to an array or an allocatable, dereference it. */ else if (!sym->attr.dimension || sym->attr.pointer || sym->attr.allocatable) value = build_fold_indirect_ref_loc (input_location, se->expr); /* For character(*), use the actual argument's descriptor. */ else if (sym->ts.type == BT_CHARACTER && !new_sym->ts.u.cl->length) value = build_fold_indirect_ref_loc (input_location, se->expr); /* If the argument is an array descriptor, use it to determine information about the actual argument's shape. */ else if (POINTER_TYPE_P (TREE_TYPE (se->expr)) && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr)))) { /* Get the actual argument's descriptor. */ desc = build_fold_indirect_ref_loc (input_location, se->expr); /* Create the replacement variable. */ tmp = gfc_conv_descriptor_data_get (desc); value = gfc_get_interface_mapping_array (&se->pre, sym, PACKED_NO, tmp); /* Use DESC to work out the upper bounds, strides and offset. */ gfc_set_interface_mapping_bounds (&se->pre, TREE_TYPE (value), desc); } else /* Otherwise we have a packed array. */ value = gfc_get_interface_mapping_array (&se->pre, sym, PACKED_FULL, se->expr); new_sym->backend_decl = value; } /* Called once all dummy argument mappings have been added to MAPPING, but before the mapping is used to evaluate expressions. Pre-evaluate the length of each argument, adding any initialization code to PRE and any finalization code to POST. */ void gfc_finish_interface_mapping (gfc_interface_mapping * mapping, stmtblock_t * pre, stmtblock_t * post) { gfc_interface_sym_mapping *sym; gfc_expr *expr; gfc_se se; for (sym = mapping->syms; sym; sym = sym->next) if (sym->new_sym->n.sym->ts.type == BT_CHARACTER && !sym->new_sym->n.sym->ts.u.cl->backend_decl) { expr = sym->new_sym->n.sym->ts.u.cl->length; gfc_apply_interface_mapping_to_expr (mapping, expr); gfc_init_se (&se, NULL); gfc_conv_expr (&se, expr); se.expr = fold_convert (gfc_charlen_type_node, se.expr); se.expr = gfc_evaluate_now (se.expr, &se.pre); gfc_add_block_to_block (pre, &se.pre); gfc_add_block_to_block (post, &se.post); sym->new_sym->n.sym->ts.u.cl->backend_decl = se.expr; } } /* Like gfc_apply_interface_mapping_to_expr, but applied to constructor C. */ static void gfc_apply_interface_mapping_to_cons (gfc_interface_mapping * mapping, gfc_constructor_base base) { gfc_constructor *c; for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c)) { gfc_apply_interface_mapping_to_expr (mapping, c->expr); if (c->iterator) { gfc_apply_interface_mapping_to_expr (mapping, c->iterator->start); gfc_apply_interface_mapping_to_expr (mapping, c->iterator->end); gfc_apply_interface_mapping_to_expr (mapping, c->iterator->step); } } } /* Like gfc_apply_interface_mapping_to_expr, but applied to reference REF. */ static void gfc_apply_interface_mapping_to_ref (gfc_interface_mapping * mapping, gfc_ref * ref) { int n; for (; ref; ref = ref->next) switch (ref->type) { case REF_ARRAY: for (n = 0; n < ref->u.ar.dimen; n++) { gfc_apply_interface_mapping_to_expr (mapping, ref->u.ar.start[n]); gfc_apply_interface_mapping_to_expr (mapping, ref->u.ar.end[n]); gfc_apply_interface_mapping_to_expr (mapping, ref->u.ar.stride[n]); } break; case REF_COMPONENT: break; case REF_SUBSTRING: gfc_apply_interface_mapping_to_expr (mapping, ref->u.ss.start); gfc_apply_interface_mapping_to_expr (mapping, ref->u.ss.end); break; } } /* Convert intrinsic function calls into result expressions. */ static bool gfc_map_intrinsic_function (gfc_expr *expr, gfc_interface_mapping *mapping) { gfc_symbol *sym; gfc_expr *new_expr; gfc_expr *arg1; gfc_expr *arg2; int d, dup; arg1 = expr->value.function.actual->expr; if (expr->value.function.actual->next) arg2 = expr->value.function.actual->next->expr; else arg2 = NULL; sym = arg1->symtree->n.sym; if (sym->attr.dummy) return false; new_expr = NULL; switch (expr->value.function.isym->id) { case GFC_ISYM_LEN: /* TODO figure out why this condition is necessary. */ if (sym->attr.function && (arg1->ts.u.cl->length == NULL || (arg1->ts.u.cl->length->expr_type != EXPR_CONSTANT && arg1->ts.u.cl->length->expr_type != EXPR_VARIABLE))) return false; new_expr = gfc_copy_expr (arg1->ts.u.cl->length); break; case GFC_ISYM_SIZE: if (!sym->as || sym->as->rank == 0) return false; if (arg2 && arg2->expr_type == EXPR_CONSTANT) { dup = mpz_get_si (arg2->value.integer); d = dup - 1; } else { dup = sym->as->rank; d = 0; } for (; d < dup; d++) { gfc_expr *tmp; if (!sym->as->upper[d] || !sym->as->lower[d]) { gfc_free_expr (new_expr); return false; } tmp = gfc_add (gfc_copy_expr (sym->as->upper[d]), gfc_get_int_expr (gfc_default_integer_kind, NULL, 1)); tmp = gfc_subtract (tmp, gfc_copy_expr (sym->as->lower[d])); if (new_expr) new_expr = gfc_multiply (new_expr, tmp); else new_expr = tmp; } break; case GFC_ISYM_LBOUND: case GFC_ISYM_UBOUND: /* TODO These implementations of lbound and ubound do not limit if the size < 0, according to F95's 13.14.53 and 13.14.113. */ if (!sym->as || sym->as->rank == 0) return false; if (arg2 && arg2->expr_type == EXPR_CONSTANT) d = mpz_get_si (arg2->value.integer) - 1; else /* TODO: If the need arises, this could produce an array of ubound/lbounds. */ gcc_unreachable (); if (expr->value.function.isym->id == GFC_ISYM_LBOUND) { if (sym->as->lower[d]) new_expr = gfc_copy_expr (sym->as->lower[d]); } else { if (sym->as->upper[d]) new_expr = gfc_copy_expr (sym->as->upper[d]); } break; default: break; } gfc_apply_interface_mapping_to_expr (mapping, new_expr); if (!new_expr) return false; gfc_replace_expr (expr, new_expr); return true; } static void gfc_map_fcn_formal_to_actual (gfc_expr *expr, gfc_expr *map_expr, gfc_interface_mapping * mapping) { gfc_formal_arglist *f; gfc_actual_arglist *actual; actual = expr->value.function.actual; f = gfc_sym_get_dummy_args (map_expr->symtree->n.sym); for (; f && actual; f = f->next, actual = actual->next) { if (!actual->expr) continue; gfc_add_interface_mapping (mapping, f->sym, NULL, actual->expr); } if (map_expr->symtree->n.sym->attr.dimension) { int d; gfc_array_spec *as; as = gfc_copy_array_spec (map_expr->symtree->n.sym->as); for (d = 0; d < as->rank; d++) { gfc_apply_interface_mapping_to_expr (mapping, as->lower[d]); gfc_apply_interface_mapping_to_expr (mapping, as->upper[d]); } expr->value.function.esym->as = as; } if (map_expr->symtree->n.sym->ts.type == BT_CHARACTER) { expr->value.function.esym->ts.u.cl->length = gfc_copy_expr (map_expr->symtree->n.sym->ts.u.cl->length); gfc_apply_interface_mapping_to_expr (mapping, expr->value.function.esym->ts.u.cl->length); } } /* EXPR is a copy of an expression that appeared in the interface associated with MAPPING. Walk it recursively looking for references to dummy arguments that MAPPING maps to actual arguments. Replace each such reference with a reference to the associated actual argument. */ static void gfc_apply_interface_mapping_to_expr (gfc_interface_mapping * mapping, gfc_expr * expr) { gfc_interface_sym_mapping *sym; gfc_actual_arglist *actual; if (!expr) return; /* Copying an expression does not copy its length, so do that here. */ if (expr->ts.type == BT_CHARACTER && expr->ts.u.cl) { expr->ts.u.cl = gfc_get_interface_mapping_charlen (mapping, expr->ts.u.cl); gfc_apply_interface_mapping_to_expr (mapping, expr->ts.u.cl->length); } /* Apply the mapping to any references. */ gfc_apply_interface_mapping_to_ref (mapping, expr->ref); /* ...and to the expression's symbol, if it has one. */ /* TODO Find out why the condition on expr->symtree had to be moved into the loop rather than being outside it, as originally. */ for (sym = mapping->syms; sym; sym = sym->next) if (expr->symtree && sym->old == expr->symtree->n.sym) { if (sym->new_sym->n.sym->backend_decl) expr->symtree = sym->new_sym; else if (sym->expr) gfc_replace_expr (expr, gfc_copy_expr (sym->expr)); } /* ...and to subexpressions in expr->value. */ switch (expr->expr_type) { case EXPR_VARIABLE: case EXPR_CONSTANT: case EXPR_NULL: case EXPR_SUBSTRING: break; case EXPR_OP: gfc_apply_interface_mapping_to_expr (mapping, expr->value.op.op1); gfc_apply_interface_mapping_to_expr (mapping, expr->value.op.op2); break; case EXPR_FUNCTION: for (actual = expr->value.function.actual; actual; actual = actual->next) gfc_apply_interface_mapping_to_expr (mapping, actual->expr); if (expr->value.function.esym == NULL && expr->value.function.isym != NULL && expr->value.function.actual->expr->symtree && gfc_map_intrinsic_function (expr, mapping)) break; for (sym = mapping->syms; sym; sym = sym->next) if (sym->old == expr->value.function.esym) { expr->value.function.esym = sym->new_sym->n.sym; gfc_map_fcn_formal_to_actual (expr, sym->expr, mapping); expr->value.function.esym->result = sym->new_sym->n.sym; } break; case EXPR_ARRAY: case EXPR_STRUCTURE: gfc_apply_interface_mapping_to_cons (mapping, expr->value.constructor); break; case EXPR_COMPCALL: case EXPR_PPC: gcc_unreachable (); break; } return; } /* Evaluate interface expression EXPR using MAPPING. Store the result in SE. */ void gfc_apply_interface_mapping (gfc_interface_mapping * mapping, gfc_se * se, gfc_expr * expr) { expr = gfc_copy_expr (expr); gfc_apply_interface_mapping_to_expr (mapping, expr); gfc_conv_expr (se, expr); se->expr = gfc_evaluate_now (se->expr, &se->pre); gfc_free_expr (expr); } /* Returns a reference to a temporary array into which a component of an actual argument derived type array is copied and then returned after the function call. */ void gfc_conv_subref_array_arg (gfc_se * parmse, gfc_expr * expr, int g77, sym_intent intent, bool formal_ptr) { gfc_se lse; gfc_se rse; gfc_ss *lss; gfc_ss *rss; gfc_loopinfo loop; gfc_loopinfo loop2; gfc_array_info *info; tree offset; tree tmp_index; tree tmp; tree base_type; tree size; stmtblock_t body; int n; int dimen; gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); /* Walk the argument expression. */ rss = gfc_walk_expr (expr); gcc_assert (rss != gfc_ss_terminator); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, rss); /* Calculate the bounds of the scalarization. */ gfc_conv_ss_startstride (&loop); /* Build an ss for the temporary. */ if (expr->ts.type == BT_CHARACTER && !expr->ts.u.cl->backend_decl) gfc_conv_string_length (expr->ts.u.cl, expr, &parmse->pre); base_type = gfc_typenode_for_spec (&expr->ts); if (GFC_ARRAY_TYPE_P (base_type) || GFC_DESCRIPTOR_TYPE_P (base_type)) base_type = gfc_get_element_type (base_type); if (expr->ts.type == BT_CLASS) base_type = gfc_typenode_for_spec (&CLASS_DATA (expr)->ts); loop.temp_ss = gfc_get_temp_ss (base_type, ((expr->ts.type == BT_CHARACTER) ? expr->ts.u.cl->backend_decl : NULL), loop.dimen); parmse->string_length = loop.temp_ss->info->string_length; /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, loop.temp_ss); /* Setup the scalarizing loops. */ gfc_conv_loop_setup (&loop, &expr->where); /* Pass the temporary descriptor back to the caller. */ info = &loop.temp_ss->info->data.array; parmse->expr = info->descriptor; /* Setup the gfc_se structures. */ gfc_copy_loopinfo_to_se (&lse, &loop); gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = rss; lse.ss = loop.temp_ss; gfc_mark_ss_chain_used (rss, 1); gfc_mark_ss_chain_used (loop.temp_ss, 1); /* Start the scalarized loop body. */ gfc_start_scalarized_body (&loop, &body); /* Translate the expression. */ gfc_conv_expr (&rse, expr); /* Reset the offset for the function call since the loop is zero based on the data pointer. Note that the temp comes first in the loop chain since it is added second. */ if (gfc_is_alloc_class_array_function (expr)) { tmp = loop.ss->loop_chain->info->data.array.descriptor; gfc_conv_descriptor_offset_set (&loop.pre, tmp, gfc_index_zero_node); } gfc_conv_tmp_array_ref (&lse); if (intent != INTENT_OUT) { tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, false, false); gfc_add_expr_to_block (&body, tmp); gcc_assert (rse.ss == gfc_ss_terminator); gfc_trans_scalarizing_loops (&loop, &body); } else { /* Make sure that the temporary declaration survives by merging all the loop declarations into the current context. */ for (n = 0; n < loop.dimen; n++) { gfc_merge_block_scope (&body); body = loop.code[loop.order[n]]; } gfc_merge_block_scope (&body); } /* Add the post block after the second loop, so that any freeing of allocated memory is done at the right time. */ gfc_add_block_to_block (&parmse->pre, &loop.pre); /**********Copy the temporary back again.*********/ gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); /* Walk the argument expression. */ lss = gfc_walk_expr (expr); rse.ss = loop.temp_ss; lse.ss = lss; /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop2); gfc_add_ss_to_loop (&loop2, lss); dimen = rse.ss->dimen; /* Skip the write-out loop for this case. */ if (gfc_is_alloc_class_array_function (expr)) goto class_array_fcn; /* Calculate the bounds of the scalarization. */ gfc_conv_ss_startstride (&loop2); /* Setup the scalarizing loops. */ gfc_conv_loop_setup (&loop2, &expr->where); gfc_copy_loopinfo_to_se (&lse, &loop2); gfc_copy_loopinfo_to_se (&rse, &loop2); gfc_mark_ss_chain_used (lss, 1); gfc_mark_ss_chain_used (loop.temp_ss, 1); /* Declare the variable to hold the temporary offset and start the scalarized loop body. */ offset = gfc_create_var (gfc_array_index_type, NULL); gfc_start_scalarized_body (&loop2, &body); /* Build the offsets for the temporary from the loop variables. The temporary array has lbounds of zero and strides of one in all dimensions, so this is very simple. The offset is only computed outside the innermost loop, so the overall transfer could be optimized further. */ info = &rse.ss->info->data.array; tmp_index = gfc_index_zero_node; for (n = dimen - 1; n > 0; n--) { tree tmp_str; tmp = rse.loop->loopvar[n]; tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp, rse.loop->from[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, tmp_index); tmp_str = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, rse.loop->to[n-1], rse.loop->from[n-1]); tmp_str = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp_str, gfc_index_one_node); tmp_index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, tmp, tmp_str); } tmp_index = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp_index, rse.loop->from[0]); gfc_add_modify (&rse.loop->code[0], offset, tmp_index); tmp_index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, rse.loop->loopvar[0], offset); /* Now use the offset for the reference. */ tmp = build_fold_indirect_ref_loc (input_location, info->data); rse.expr = gfc_build_array_ref (tmp, tmp_index, NULL); if (expr->ts.type == BT_CHARACTER) rse.string_length = expr->ts.u.cl->backend_decl; gfc_conv_expr (&lse, expr); gcc_assert (lse.ss == gfc_ss_terminator); tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, false, true); gfc_add_expr_to_block (&body, tmp); /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop2, &body); /* Wrap the whole thing up by adding the second loop to the post-block and following it by the post-block of the first loop. In this way, if the temporary needs freeing, it is done after use! */ if (intent != INTENT_IN) { gfc_add_block_to_block (&parmse->post, &loop2.pre); gfc_add_block_to_block (&parmse->post, &loop2.post); } class_array_fcn: gfc_add_block_to_block (&parmse->post, &loop.post); gfc_cleanup_loop (&loop); gfc_cleanup_loop (&loop2); /* Pass the string length to the argument expression. */ if (expr->ts.type == BT_CHARACTER) parmse->string_length = expr->ts.u.cl->backend_decl; /* Determine the offset for pointer formal arguments and set the lbounds to one. */ if (formal_ptr) { size = gfc_index_one_node; offset = gfc_index_zero_node; for (n = 0; n < dimen; n++) { tmp = gfc_conv_descriptor_ubound_get (parmse->expr, gfc_rank_cst[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); gfc_conv_descriptor_ubound_set (&parmse->pre, parmse->expr, gfc_rank_cst[n], tmp); gfc_conv_descriptor_lbound_set (&parmse->pre, parmse->expr, gfc_rank_cst[n], gfc_index_one_node); size = gfc_evaluate_now (size, &parmse->pre); offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, size); offset = gfc_evaluate_now (offset, &parmse->pre); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, rse.loop->to[n], rse.loop->from[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, gfc_index_one_node); size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, size, tmp); } gfc_conv_descriptor_offset_set (&parmse->pre, parmse->expr, offset); } /* We want either the address for the data or the address of the descriptor, depending on the mode of passing array arguments. */ if (g77) parmse->expr = gfc_conv_descriptor_data_get (parmse->expr); else parmse->expr = gfc_build_addr_expr (NULL_TREE, parmse->expr); return; } /* Generate the code for argument list functions. */ static void conv_arglist_function (gfc_se *se, gfc_expr *expr, const char *name) { /* Pass by value for g77 %VAL(arg), pass the address indirectly for %LOC, else by reference. Thus %REF is a "do-nothing" and %LOC is the same as an F95 pointer. */ if (strncmp (name, "%VAL", 4) == 0) gfc_conv_expr (se, expr); else if (strncmp (name, "%LOC", 4) == 0) { gfc_conv_expr_reference (se, expr); se->expr = gfc_build_addr_expr (NULL, se->expr); } else if (strncmp (name, "%REF", 4) == 0) gfc_conv_expr_reference (se, expr); else gfc_error ("Unknown argument list function at %L", &expr->where); } /* This function tells whether the middle-end representation of the expression E given as input may point to data otherwise accessible through a variable (sub-)reference. It is assumed that the only expressions that may alias are variables, and array constructors if ARRAY_MAY_ALIAS is true and some of its elements may alias. This function is used to decide whether freeing an expression's allocatable components is safe or should be avoided. If ARRAY_MAY_ALIAS is true, an array constructor may alias if some of its elements are copied from a variable. This ARRAY_MAY_ALIAS trick is necessary because for array constructors, aliasing depends on how the array is used: - If E is an array constructor used as argument to an elemental procedure, the array, which is generated through shallow copy by the scalarizer, is used directly and can alias the expressions it was copied from. - If E is an array constructor used as argument to a non-elemental procedure,the scalarizer is used in gfc_conv_expr_descriptor to generate the array as in the previous case, but then that array is used to initialize a new descriptor through deep copy. There is no alias possible in that case. Thus, the ARRAY_MAY_ALIAS flag is necessary to distinguish the two cases above. */ static bool expr_may_alias_variables (gfc_expr *e, bool array_may_alias) { gfc_constructor *c; if (e->expr_type == EXPR_VARIABLE) return true; else if (e->expr_type == EXPR_FUNCTION) { gfc_symbol *proc_ifc = gfc_get_proc_ifc_for_expr (e); if ((proc_ifc->result->ts.type == BT_CLASS && proc_ifc->result->ts.u.derived->attr.is_class && CLASS_DATA (proc_ifc->result)->attr.class_pointer) || proc_ifc->result->attr.pointer) return true; else return false; } else if (e->expr_type != EXPR_ARRAY || !array_may_alias) return false; for (c = gfc_constructor_first (e->value.constructor); c; c = gfc_constructor_next (c)) if (c->expr && expr_may_alias_variables (c->expr, array_may_alias)) return true; return false; } /* Generate code for a procedure call. Note can return se->post != NULL. If se->direct_byref is set then se->expr contains the return parameter. Return nonzero, if the call has alternate specifiers. 'expr' is only needed for procedure pointer components. */ int gfc_conv_procedure_call (gfc_se * se, gfc_symbol * sym, gfc_actual_arglist * args, gfc_expr * expr, vec *append_args) { gfc_interface_mapping mapping; vec *arglist; vec *retargs; tree tmp; tree fntype; gfc_se parmse; gfc_array_info *info; int byref; int parm_kind; tree type; tree var; tree len; tree base_object; vec *stringargs; vec *optionalargs; tree result = NULL; gfc_formal_arglist *formal; gfc_actual_arglist *arg; int has_alternate_specifier = 0; bool need_interface_mapping; bool callee_alloc; bool ulim_copy; gfc_typespec ts; gfc_charlen cl; gfc_expr *e; gfc_symbol *fsym; stmtblock_t post; enum {MISSING = 0, ELEMENTAL, SCALAR, SCALAR_POINTER, ARRAY}; gfc_component *comp = NULL; int arglen; unsigned int argc; arglist = NULL; retargs = NULL; stringargs = NULL; optionalargs = NULL; var = NULL_TREE; len = NULL_TREE; gfc_clear_ts (&ts); comp = gfc_get_proc_ptr_comp (expr); bool elemental_proc = (comp && comp->ts.interface && comp->ts.interface->attr.elemental) || (comp && comp->attr.elemental) || sym->attr.elemental; if (se->ss != NULL) { if (!elemental_proc) { gcc_assert (se->ss->info->type == GFC_SS_FUNCTION); if (se->ss->info->useflags) { gcc_assert ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension) || (comp && comp->attr.dimension) || gfc_is_alloc_class_array_function (expr)); gcc_assert (se->loop != NULL); /* Access the previously obtained result. */ gfc_conv_tmp_array_ref (se); return 0; } } info = &se->ss->info->data.array; } else info = NULL; gfc_init_block (&post); gfc_init_interface_mapping (&mapping); if (!comp) { formal = gfc_sym_get_dummy_args (sym); need_interface_mapping = sym->attr.dimension || (sym->ts.type == BT_CHARACTER && sym->ts.u.cl->length && sym->ts.u.cl->length->expr_type != EXPR_CONSTANT); } else { formal = comp->ts.interface ? comp->ts.interface->formal : NULL; need_interface_mapping = comp->attr.dimension || (comp->ts.type == BT_CHARACTER && comp->ts.u.cl->length && comp->ts.u.cl->length->expr_type != EXPR_CONSTANT); } base_object = NULL_TREE; /* For _vprt->_copy () routines no formal symbol is present. Nevertheless is the third and fourth argument to such a function call a value denoting the number of elements to copy (i.e., most of the time the length of a deferred length string). */ ulim_copy = formal == NULL && UNLIMITED_POLY (sym) && strcmp ("_copy", comp->name) == 0; /* Evaluate the arguments. */ for (arg = args, argc = 0; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL, ++argc) { e = arg->expr; fsym = formal ? formal->sym : NULL; parm_kind = MISSING; /* If the procedure requires an explicit interface, the actual argument is passed according to the corresponding formal argument. If the corresponding formal argument is a POINTER, ALLOCATABLE or assumed shape, we do not use g77's calling convention, and pass the address of the array descriptor instead. Otherwise we use g77's calling convention, in other words pass the array data pointer without descriptor. */ bool nodesc_arg = fsym != NULL && !(fsym->attr.pointer || fsym->attr.allocatable) && fsym->as && fsym->as->type != AS_ASSUMED_SHAPE && fsym->as->type != AS_ASSUMED_RANK; if (comp) nodesc_arg = nodesc_arg || !comp->attr.always_explicit; else nodesc_arg = nodesc_arg || !sym->attr.always_explicit; /* Class array expressions are sometimes coming completely unadorned with either arrayspec or _data component. Correct that here. OOP-TODO: Move this to the frontend. */ if (e && e->expr_type == EXPR_VARIABLE && !e->ref && e->ts.type == BT_CLASS && (CLASS_DATA (e)->attr.codimension || CLASS_DATA (e)->attr.dimension)) { gfc_typespec temp_ts = e->ts; gfc_add_class_array_ref (e); e->ts = temp_ts; } if (e == NULL) { if (se->ignore_optional) { /* Some intrinsics have already been resolved to the correct parameters. */ continue; } else if (arg->label) { has_alternate_specifier = 1; continue; } else { gfc_init_se (&parmse, NULL); /* For scalar arguments with VALUE attribute which are passed by value, pass "0" and a hidden argument gives the optional status. */ if (fsym && fsym->attr.optional && fsym->attr.value && !fsym->attr.dimension && fsym->ts.type != BT_CHARACTER && fsym->ts.type != BT_CLASS && fsym->ts.type != BT_DERIVED) { parmse.expr = fold_convert (gfc_sym_type (fsym), integer_zero_node); vec_safe_push (optionalargs, boolean_false_node); } else { /* Pass a NULL pointer for an absent arg. */ parmse.expr = null_pointer_node; if (arg->missing_arg_type == BT_CHARACTER) parmse.string_length = build_int_cst (gfc_charlen_type_node, 0); } } } else if (arg->expr->expr_type == EXPR_NULL && fsym && !fsym->attr.pointer && (fsym->ts.type != BT_CLASS || !CLASS_DATA (fsym)->attr.class_pointer)) { /* Pass a NULL pointer to denote an absent arg. */ gcc_assert (fsym->attr.optional && !fsym->attr.allocatable && (fsym->ts.type != BT_CLASS || !CLASS_DATA (fsym)->attr.allocatable)); gfc_init_se (&parmse, NULL); parmse.expr = null_pointer_node; if (arg->missing_arg_type == BT_CHARACTER) parmse.string_length = build_int_cst (gfc_charlen_type_node, 0); } else if (fsym && fsym->ts.type == BT_CLASS && e->ts.type == BT_DERIVED) { /* The derived type needs to be converted to a temporary CLASS object. */ gfc_init_se (&parmse, se); gfc_conv_derived_to_class (&parmse, e, fsym->ts, NULL, fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional, CLASS_DATA (fsym)->attr.class_pointer || CLASS_DATA (fsym)->attr.allocatable); } else if (UNLIMITED_POLY (fsym) && e->ts.type != BT_CLASS) { /* The intrinsic type needs to be converted to a temporary CLASS object for the unlimited polymorphic formal. */ gfc_init_se (&parmse, se); gfc_conv_intrinsic_to_class (&parmse, e, fsym->ts); } else if (se->ss && se->ss->info->useflags) { gfc_ss *ss; ss = se->ss; /* An elemental function inside a scalarized loop. */ gfc_init_se (&parmse, se); parm_kind = ELEMENTAL; /* When no fsym is present, ulim_copy is set and this is a third or fourth argument, use call-by-value instead of by reference to hand the length properties to the copy routine (i.e., most of the time this will be a call to a __copy_character_* routine where the third and fourth arguments are the lengths of a deferred length char array). */ if ((fsym && fsym->attr.value) || (ulim_copy && (argc == 2 || argc == 3))) gfc_conv_expr (&parmse, e); else gfc_conv_expr_reference (&parmse, e); if (e->ts.type == BT_CHARACTER && !e->rank && e->expr_type == EXPR_FUNCTION) parmse.expr = build_fold_indirect_ref_loc (input_location, parmse.expr); if (fsym && fsym->ts.type == BT_DERIVED && gfc_is_class_container_ref (e)) { parmse.expr = gfc_class_data_get (parmse.expr); if (fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional) { tree cond = gfc_conv_expr_present (e->symtree->n.sym); parmse.expr = build3_loc (input_location, COND_EXPR, TREE_TYPE (parmse.expr), cond, parmse.expr, fold_convert (TREE_TYPE (parmse.expr), null_pointer_node)); } } /* If we are passing an absent array as optional dummy to an elemental procedure, make sure that we pass NULL when the data pointer is NULL. We need this extra conditional because of scalarization which passes arrays elements to the procedure, ignoring the fact that the array can be absent/unallocated/... */ if (ss->info->can_be_null_ref && ss->info->type != GFC_SS_REFERENCE) { tree descriptor_data; descriptor_data = ss->info->data.array.data; tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, descriptor_data, fold_convert (TREE_TYPE (descriptor_data), null_pointer_node)); parmse.expr = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (parmse.expr), gfc_unlikely (tmp, PRED_FORTRAN_ABSENT_DUMMY), fold_convert (TREE_TYPE (parmse.expr), null_pointer_node), parmse.expr); } /* The scalarizer does not repackage the reference to a class array - instead it returns a pointer to the data element. */ if (fsym && fsym->ts.type == BT_CLASS && e->ts.type == BT_CLASS) gfc_conv_class_to_class (&parmse, e, fsym->ts, true, fsym->attr.intent != INTENT_IN && (CLASS_DATA (fsym)->attr.class_pointer || CLASS_DATA (fsym)->attr.allocatable), fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional, CLASS_DATA (fsym)->attr.class_pointer || CLASS_DATA (fsym)->attr.allocatable); } else { bool scalar; gfc_ss *argss; gfc_init_se (&parmse, NULL); /* Check whether the expression is a scalar or not; we cannot use e->rank as it can be nonzero for functions arguments. */ argss = gfc_walk_expr (e); scalar = argss == gfc_ss_terminator; if (!scalar) gfc_free_ss_chain (argss); /* Special handling for passing scalar polymorphic coarrays; otherwise one passes "class->_data.data" instead of "&class". */ if (e->rank == 0 && e->ts.type == BT_CLASS && fsym && fsym->ts.type == BT_CLASS && CLASS_DATA (fsym)->attr.codimension && !CLASS_DATA (fsym)->attr.dimension) { gfc_add_class_array_ref (e); parmse.want_coarray = 1; scalar = false; } /* A scalar or transformational function. */ if (scalar) { if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.cray_pointee && fsym && fsym->attr.flavor == FL_PROCEDURE) { /* The Cray pointer needs to be converted to a pointer to a type given by the expression. */ gfc_conv_expr (&parmse, e); type = build_pointer_type (TREE_TYPE (parmse.expr)); tmp = gfc_get_symbol_decl (e->symtree->n.sym->cp_pointer); parmse.expr = convert (type, tmp); } else if (fsym && fsym->attr.value) { if (fsym->ts.type == BT_CHARACTER && fsym->ts.is_c_interop && fsym->ns->proc_name != NULL && fsym->ns->proc_name->attr.is_bind_c) { parmse.expr = NULL; gfc_conv_scalar_char_value (fsym, &parmse, &e); if (parmse.expr == NULL) gfc_conv_expr (&parmse, e); } else { gfc_conv_expr (&parmse, e); if (fsym->attr.optional && fsym->ts.type != BT_CLASS && fsym->ts.type != BT_DERIVED) { if (e->expr_type != EXPR_VARIABLE || !e->symtree->n.sym->attr.optional || e->ref != NULL) vec_safe_push (optionalargs, boolean_true_node); else { tmp = gfc_conv_expr_present (e->symtree->n.sym); if (!e->symtree->n.sym->attr.value) parmse.expr = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (parmse.expr), tmp, parmse.expr, fold_convert (TREE_TYPE (parmse.expr), integer_zero_node)); vec_safe_push (optionalargs, tmp); } } } } else if (arg->name && arg->name[0] == '%') /* Argument list functions %VAL, %LOC and %REF are signalled through arg->name. */ conv_arglist_function (&parmse, arg->expr, arg->name); else if ((e->expr_type == EXPR_FUNCTION) && ((e->value.function.esym && e->value.function.esym->result->attr.pointer) || (!e->value.function.esym && e->symtree->n.sym->attr.pointer)) && fsym && fsym->attr.target) { gfc_conv_expr (&parmse, e); parmse.expr = gfc_build_addr_expr (NULL_TREE, parmse.expr); } else if (e->expr_type == EXPR_FUNCTION && e->symtree->n.sym->result && e->symtree->n.sym->result != e->symtree->n.sym && e->symtree->n.sym->result->attr.proc_pointer) { /* Functions returning procedure pointers. */ gfc_conv_expr (&parmse, e); if (fsym && fsym->attr.proc_pointer) parmse.expr = gfc_build_addr_expr (NULL_TREE, parmse.expr); } else { if (e->ts.type == BT_CLASS && fsym && fsym->ts.type == BT_CLASS && (!CLASS_DATA (fsym)->as || CLASS_DATA (fsym)->as->type != AS_ASSUMED_RANK) && CLASS_DATA (e)->attr.codimension) { gcc_assert (!CLASS_DATA (fsym)->attr.codimension); gcc_assert (!CLASS_DATA (fsym)->as); gfc_add_class_array_ref (e); parmse.want_coarray = 1; gfc_conv_expr_reference (&parmse, e); class_scalar_coarray_to_class (&parmse, e, fsym->ts, fsym->attr.optional && e->expr_type == EXPR_VARIABLE); } else if (e->ts.type == BT_CLASS && fsym && fsym->ts.type == BT_CLASS && !CLASS_DATA (fsym)->as && !CLASS_DATA (e)->as && strcmp (fsym->ts.u.derived->name, e->ts.u.derived->name)) { type = gfc_typenode_for_spec (&fsym->ts); var = gfc_create_var (type, fsym->name); gfc_conv_expr (&parmse, e); if (fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional) { stmtblock_t block; tree cond; tmp = gfc_build_addr_expr (NULL_TREE, parmse.expr); cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node)); gfc_start_block (&block); gfc_add_modify (&block, var, fold_build1_loc (input_location, VIEW_CONVERT_EXPR, type, parmse.expr)); gfc_add_expr_to_block (&parmse.pre, fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, gfc_finish_block (&block), build_empty_stmt (input_location))); parmse.expr = gfc_build_addr_expr (NULL_TREE, var); parmse.expr = build3_loc (input_location, COND_EXPR, TREE_TYPE (parmse.expr), cond, parmse.expr, fold_convert (TREE_TYPE (parmse.expr), null_pointer_node)); } else { gfc_add_modify (&parmse.pre, var, fold_build1_loc (input_location, VIEW_CONVERT_EXPR, type, parmse.expr)); parmse.expr = gfc_build_addr_expr (NULL_TREE, var); } } else gfc_conv_expr_reference (&parmse, e); /* Catch base objects that are not variables. */ if (e->ts.type == BT_CLASS && e->expr_type != EXPR_VARIABLE && expr && e == expr->base_expr) base_object = build_fold_indirect_ref_loc (input_location, parmse.expr); /* A class array element needs converting back to be a class object, if the formal argument is a class object. */ if (fsym && fsym->ts.type == BT_CLASS && e->ts.type == BT_CLASS && ((CLASS_DATA (fsym)->as && CLASS_DATA (fsym)->as->type == AS_ASSUMED_RANK) || CLASS_DATA (e)->attr.dimension)) gfc_conv_class_to_class (&parmse, e, fsym->ts, false, fsym->attr.intent != INTENT_IN && (CLASS_DATA (fsym)->attr.class_pointer || CLASS_DATA (fsym)->attr.allocatable), fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional, CLASS_DATA (fsym)->attr.class_pointer || CLASS_DATA (fsym)->attr.allocatable); /* If an ALLOCATABLE dummy argument has INTENT(OUT) and is allocated on entry, it must be deallocated. */ if (fsym && fsym->attr.intent == INTENT_OUT && (fsym->attr.allocatable || (fsym->ts.type == BT_CLASS && CLASS_DATA (fsym)->attr.allocatable))) { stmtblock_t block; tree ptr; gfc_init_block (&block); ptr = parmse.expr; if (e->ts.type == BT_CLASS) ptr = gfc_class_data_get (ptr); tmp = gfc_deallocate_scalar_with_status (ptr, NULL_TREE, true, e, e->ts); gfc_add_expr_to_block (&block, tmp); tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, ptr, null_pointer_node); gfc_add_expr_to_block (&block, tmp); if (fsym->ts.type == BT_CLASS && UNLIMITED_POLY (fsym)) { gfc_add_modify (&block, ptr, fold_convert (TREE_TYPE (ptr), null_pointer_node)); gfc_add_expr_to_block (&block, tmp); } else if (fsym->ts.type == BT_CLASS) { gfc_symbol *vtab; vtab = gfc_find_derived_vtab (fsym->ts.u.derived); tmp = gfc_get_symbol_decl (vtab); tmp = gfc_build_addr_expr (NULL_TREE, tmp); ptr = gfc_class_vptr_get (parmse.expr); gfc_add_modify (&block, ptr, fold_convert (TREE_TYPE (ptr), tmp)); gfc_add_expr_to_block (&block, tmp); } if (fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional) { tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, gfc_conv_expr_present (e->symtree->n.sym), gfc_finish_block (&block), build_empty_stmt (input_location)); } else tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&se->pre, tmp); } if (fsym && (fsym->ts.type == BT_DERIVED || fsym->ts.type == BT_ASSUMED) && e->ts.type == BT_CLASS && !CLASS_DATA (e)->attr.dimension && !CLASS_DATA (e)->attr.codimension) parmse.expr = gfc_class_data_get (parmse.expr); /* Wrap scalar variable in a descriptor. We need to convert the address of a pointer back to the pointer itself before, we can assign it to the data field. */ if (fsym && fsym->as && fsym->as->type == AS_ASSUMED_RANK && fsym->ts.type != BT_CLASS && e->expr_type != EXPR_NULL) { tmp = parmse.expr; if (TREE_CODE (tmp) == ADDR_EXPR && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp, 0)))) tmp = TREE_OPERAND (tmp, 0); parmse.expr = gfc_conv_scalar_to_descriptor (&parmse, tmp, fsym->attr); parmse.expr = gfc_build_addr_expr (NULL_TREE, parmse.expr); } else if (fsym && e->expr_type != EXPR_NULL && ((fsym->attr.pointer && fsym->attr.flavor != FL_PROCEDURE) || (fsym->attr.proc_pointer && !(e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)) || (fsym->attr.proc_pointer && e->expr_type == EXPR_VARIABLE && gfc_is_proc_ptr_comp (e)) || (fsym->attr.allocatable && fsym->attr.flavor != FL_PROCEDURE))) { /* Scalar pointer dummy args require an extra level of indirection. The null pointer already contains this level of indirection. */ parm_kind = SCALAR_POINTER; parmse.expr = gfc_build_addr_expr (NULL_TREE, parmse.expr); } } } else if (e->ts.type == BT_CLASS && fsym && fsym->ts.type == BT_CLASS && (CLASS_DATA (fsym)->attr.dimension || CLASS_DATA (fsym)->attr.codimension)) { /* Pass a class array. */ parmse.use_offset = 1; gfc_conv_expr_descriptor (&parmse, e); /* If an ALLOCATABLE dummy argument has INTENT(OUT) and is allocated on entry, it must be deallocated. */ if (fsym->attr.intent == INTENT_OUT && CLASS_DATA (fsym)->attr.allocatable) { stmtblock_t block; tree ptr; gfc_init_block (&block); ptr = parmse.expr; ptr = gfc_class_data_get (ptr); tmp = gfc_deallocate_with_status (ptr, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, true, e, false); gfc_add_expr_to_block (&block, tmp); tmp = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, ptr, null_pointer_node); gfc_add_expr_to_block (&block, tmp); gfc_reset_vptr (&block, e); if (fsym->attr.optional && e->expr_type == EXPR_VARIABLE && (!e->ref || (e->ref->type == REF_ARRAY && e->ref->u.ar.type != AR_FULL)) && e->symtree->n.sym->attr.optional) { tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, gfc_conv_expr_present (e->symtree->n.sym), gfc_finish_block (&block), build_empty_stmt (input_location)); } else tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&se->pre, tmp); } /* The conversion does not repackage the reference to a class array - _data descriptor. */ gfc_conv_class_to_class (&parmse, e, fsym->ts, false, fsym->attr.intent != INTENT_IN && (CLASS_DATA (fsym)->attr.class_pointer || CLASS_DATA (fsym)->attr.allocatable), fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional, CLASS_DATA (fsym)->attr.class_pointer || CLASS_DATA (fsym)->attr.allocatable); } else { /* If the argument is a function call that may not create a temporary for the result, we have to check that we can do it, i.e. that there is no alias between this argument and another one. */ if (gfc_get_noncopying_intrinsic_argument (e) != NULL) { gfc_expr *iarg; sym_intent intent; if (fsym != NULL) intent = fsym->attr.intent; else intent = INTENT_UNKNOWN; if (gfc_check_fncall_dependency (e, intent, sym, args, NOT_ELEMENTAL)) parmse.force_tmp = 1; iarg = e->value.function.actual->expr; /* Temporary needed if aliasing due to host association. */ if (sym->attr.contained && !sym->attr.pure && !sym->attr.implicit_pure && !sym->attr.use_assoc && iarg->expr_type == EXPR_VARIABLE && sym->ns == iarg->symtree->n.sym->ns) parmse.force_tmp = 1; /* Ditto within module. */ if (sym->attr.use_assoc && !sym->attr.pure && !sym->attr.implicit_pure && iarg->expr_type == EXPR_VARIABLE && sym->module == iarg->symtree->n.sym->module) parmse.force_tmp = 1; } if (e->expr_type == EXPR_VARIABLE && is_subref_array (e)) /* The actual argument is a component reference to an array of derived types. In this case, the argument is converted to a temporary, which is passed and then written back after the procedure call. */ gfc_conv_subref_array_arg (&parmse, e, nodesc_arg, fsym ? fsym->attr.intent : INTENT_INOUT, fsym && fsym->attr.pointer); else if (gfc_is_class_array_ref (e, NULL) && fsym && fsym->ts.type == BT_DERIVED) /* The actual argument is a component reference to an array of derived types. In this case, the argument is converted to a temporary, which is passed and then written back after the procedure call. OOP-TODO: Insert code so that if the dynamic type is the same as the declared type, copy-in/copy-out does not occur. */ gfc_conv_subref_array_arg (&parmse, e, nodesc_arg, fsym ? fsym->attr.intent : INTENT_INOUT, fsym && fsym->attr.pointer); else if (gfc_is_alloc_class_array_function (e) && fsym && fsym->ts.type == BT_DERIVED) /* See previous comment. For function actual argument, the write out is not needed so the intent is set as intent in. */ { e->must_finalize = 1; gfc_conv_subref_array_arg (&parmse, e, nodesc_arg, INTENT_IN, fsym && fsym->attr.pointer); } else gfc_conv_array_parameter (&parmse, e, nodesc_arg, fsym, sym->name, NULL); /* If an ALLOCATABLE dummy argument has INTENT(OUT) and is allocated on entry, it must be deallocated. */ if (fsym && fsym->attr.allocatable && fsym->attr.intent == INTENT_OUT) { tmp = build_fold_indirect_ref_loc (input_location, parmse.expr); tmp = gfc_trans_dealloc_allocated (tmp, false, e); if (fsym->attr.optional && e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional) tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, gfc_conv_expr_present (e->symtree->n.sym), tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&se->pre, tmp); } } } /* The case with fsym->attr.optional is that of a user subroutine with an interface indicating an optional argument. When we call an intrinsic subroutine, however, fsym is NULL, but we might still have an optional argument, so we proceed to the substitution just in case. */ if (e && (fsym == NULL || fsym->attr.optional)) { /* If an optional argument is itself an optional dummy argument, check its presence and substitute a null if absent. This is only needed when passing an array to an elemental procedure as then array elements are accessed - or no NULL pointer is allowed and a "1" or "0" should be passed if not present. When passing a non-array-descriptor full array to a non-array-descriptor dummy, no check is needed. For array-descriptor actual to array-descriptor dummy, see PR 41911 for why a check has to be inserted. fsym == NULL is checked as intrinsics required the descriptor but do not always set fsym. */ if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.optional && ((e->rank != 0 && elemental_proc) || e->representation.length || e->ts.type == BT_CHARACTER || (e->rank != 0 && (fsym == NULL || (fsym-> as && (fsym->as->type == AS_ASSUMED_SHAPE || fsym->as->type == AS_ASSUMED_RANK || fsym->as->type == AS_DEFERRED)))))) gfc_conv_missing_dummy (&parmse, e, fsym ? fsym->ts : e->ts, e->representation.length); } if (fsym && e) { /* Obtain the character length of an assumed character length length procedure from the typespec. */ if (fsym->ts.type == BT_CHARACTER && parmse.string_length == NULL_TREE && e->ts.type == BT_PROCEDURE && e->symtree->n.sym->ts.type == BT_CHARACTER && e->symtree->n.sym->ts.u.cl->length != NULL && e->symtree->n.sym->ts.u.cl->length->expr_type == EXPR_CONSTANT) { gfc_conv_const_charlen (e->symtree->n.sym->ts.u.cl); parmse.string_length = e->symtree->n.sym->ts.u.cl->backend_decl; } } if (fsym && need_interface_mapping && e) gfc_add_interface_mapping (&mapping, fsym, &parmse, e); gfc_add_block_to_block (&se->pre, &parmse.pre); gfc_add_block_to_block (&post, &parmse.post); /* Allocated allocatable components of derived types must be deallocated for non-variable scalars, array arguments to elemental procedures, and array arguments with descriptor to non-elemental procedures. As bounds information for descriptorless arrays is no longer available here, they are dealt with in trans-array.c (gfc_conv_array_parameter). */ if (e && (e->ts.type == BT_DERIVED || e->ts.type == BT_CLASS) && e->ts.u.derived->attr.alloc_comp && (e->rank == 0 || elemental_proc || !nodesc_arg) && !expr_may_alias_variables (e, elemental_proc)) { int parm_rank; /* It is known the e returns a structure type with at least one allocatable component. When e is a function, ensure that the function is called once only by using a temporary variable. */ if (!DECL_P (parmse.expr)) parmse.expr = gfc_evaluate_now_loc (input_location, parmse.expr, &se->pre); if (fsym && fsym->attr.value) tmp = parmse.expr; else tmp = build_fold_indirect_ref_loc (input_location, parmse.expr); parm_rank = e->rank; switch (parm_kind) { case (ELEMENTAL): case (SCALAR): parm_rank = 0; break; case (SCALAR_POINTER): tmp = build_fold_indirect_ref_loc (input_location, tmp); break; } if (e->expr_type == EXPR_OP && e->value.op.op == INTRINSIC_PARENTHESES && e->value.op.op1->expr_type == EXPR_VARIABLE) { tree local_tmp; local_tmp = gfc_evaluate_now (tmp, &se->pre); local_tmp = gfc_copy_alloc_comp (e->ts.u.derived, local_tmp, tmp, parm_rank); gfc_add_expr_to_block (&se->post, local_tmp); } if (e->ts.type == BT_DERIVED && fsym && fsym->ts.type == BT_CLASS) { /* The derived type is passed to gfc_deallocate_alloc_comp. Therefore, class actuals can handled correctly but derived types passed to class formals need the _data component. */ tmp = gfc_class_data_get (tmp); if (!CLASS_DATA (fsym)->attr.dimension) tmp = build_fold_indirect_ref_loc (input_location, tmp); } tmp = gfc_deallocate_alloc_comp (e->ts.u.derived, tmp, parm_rank); gfc_add_expr_to_block (&se->post, tmp); } /* Add argument checking of passing an unallocated/NULL actual to a nonallocatable/nonpointer dummy. */ if (gfc_option.rtcheck & GFC_RTCHECK_POINTER && e != NULL) { symbol_attribute attr; char *msg; tree cond; if (e->expr_type == EXPR_VARIABLE || e->expr_type == EXPR_FUNCTION) attr = gfc_expr_attr (e); else goto end_pointer_check; /* In Fortran 2008 it's allowed to pass a NULL pointer/nonallocated allocatable to an optional dummy, cf. 12.5.2.12. */ if (fsym != NULL && fsym->attr.optional && !attr.proc_pointer && (gfc_option.allow_std & GFC_STD_F2008) != 0) goto end_pointer_check; if (attr.optional) { /* If the actual argument is an optional pointer/allocatable and the formal argument takes an nonpointer optional value, it is invalid to pass a non-present argument on, even though there is no technical reason for this in gfortran. See Fortran 2003, Section 12.4.1.6 item (7)+(8). */ tree present, null_ptr, type; if (attr.allocatable && (fsym == NULL || !fsym->attr.allocatable)) msg = xasprintf ("Allocatable actual argument '%s' is not " "allocated or not present", e->symtree->n.sym->name); else if (attr.pointer && (fsym == NULL || !fsym->attr.pointer)) msg = xasprintf ("Pointer actual argument '%s' is not " "associated or not present", e->symtree->n.sym->name); else if (attr.proc_pointer && (fsym == NULL || !fsym->attr.proc_pointer)) msg = xasprintf ("Proc-pointer actual argument '%s' is not " "associated or not present", e->symtree->n.sym->name); else goto end_pointer_check; present = gfc_conv_expr_present (e->symtree->n.sym); type = TREE_TYPE (present); present = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, present, fold_convert (type, null_pointer_node)); type = TREE_TYPE (parmse.expr); null_ptr = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, parmse.expr, fold_convert (type, null_pointer_node)); cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR, boolean_type_node, present, null_ptr); } else { if (attr.allocatable && (fsym == NULL || !fsym->attr.allocatable)) msg = xasprintf ("Allocatable actual argument '%s' is not " "allocated", e->symtree->n.sym->name); else if (attr.pointer && (fsym == NULL || !fsym->attr.pointer)) msg = xasprintf ("Pointer actual argument '%s' is not " "associated", e->symtree->n.sym->name); else if (attr.proc_pointer && (fsym == NULL || !fsym->attr.proc_pointer)) msg = xasprintf ("Proc-pointer actual argument '%s' is not " "associated", e->symtree->n.sym->name); else goto end_pointer_check; tmp = parmse.expr; /* If the argument is passed by value, we need to strip the INDIRECT_REF. */ if (!POINTER_TYPE_P (TREE_TYPE (parmse.expr))) tmp = gfc_build_addr_expr (NULL_TREE, tmp); cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node)); } gfc_trans_runtime_check (true, false, cond, &se->pre, &e->where, msg); free (msg); } end_pointer_check: /* Deferred length dummies pass the character length by reference so that the value can be returned. */ if (parmse.string_length && fsym && fsym->ts.deferred) { if (INDIRECT_REF_P (parmse.string_length)) /* In chains of functions/procedure calls the string_length already is a pointer to the variable holding the length. Therefore remove the deref on call. */ parmse.string_length = TREE_OPERAND (parmse.string_length, 0); else { tmp = parmse.string_length; if (TREE_CODE (tmp) != VAR_DECL) tmp = gfc_evaluate_now (parmse.string_length, &se->pre); parmse.string_length = gfc_build_addr_expr (NULL_TREE, tmp); } } /* Character strings are passed as two parameters, a length and a pointer - except for Bind(c) which only passes the pointer. An unlimited polymorphic formal argument likewise does not need the length. */ if (parmse.string_length != NULL_TREE && !sym->attr.is_bind_c && !(fsym && UNLIMITED_POLY (fsym))) vec_safe_push (stringargs, parmse.string_length); /* When calling __copy for character expressions to unlimited polymorphic entities, the dst argument needs a string length. */ if (sym->name[0] == '_' && e && e->ts.type == BT_CHARACTER && strncmp (sym->name, "__vtab_CHARACTER", 16) == 0 && arg->next && arg->next->expr && arg->next->expr->ts.type == BT_DERIVED && arg->next->expr->ts.u.derived->attr.unlimited_polymorphic) vec_safe_push (stringargs, parmse.string_length); /* For descriptorless coarrays and assumed-shape coarray dummies, we pass the token and the offset as additional arguments. */ if (fsym && e == NULL && flag_coarray == GFC_FCOARRAY_LIB && ((fsym->ts.type != BT_CLASS && fsym->attr.codimension && !fsym->attr.allocatable) || (fsym->ts.type == BT_CLASS && CLASS_DATA (fsym)->attr.codimension && !CLASS_DATA (fsym)->attr.allocatable))) { /* Token and offset. */ vec_safe_push (stringargs, null_pointer_node); vec_safe_push (stringargs, build_int_cst (gfc_array_index_type, 0)); gcc_assert (fsym->attr.optional); } else if (fsym && flag_coarray == GFC_FCOARRAY_LIB && ((fsym->ts.type != BT_CLASS && fsym->attr.codimension && !fsym->attr.allocatable) || (fsym->ts.type == BT_CLASS && CLASS_DATA (fsym)->attr.codimension && !CLASS_DATA (fsym)->attr.allocatable))) { tree caf_decl, caf_type; tree offset, tmp2; caf_decl = gfc_get_tree_for_caf_expr (e); caf_type = TREE_TYPE (caf_decl); if (GFC_DESCRIPTOR_TYPE_P (caf_type) && (GFC_TYPE_ARRAY_AKIND (caf_type) == GFC_ARRAY_ALLOCATABLE || GFC_TYPE_ARRAY_AKIND (caf_type) == GFC_ARRAY_POINTER)) tmp = gfc_conv_descriptor_token (caf_decl); else if (DECL_LANG_SPECIFIC (caf_decl) && GFC_DECL_TOKEN (caf_decl) != NULL_TREE) tmp = GFC_DECL_TOKEN (caf_decl); else { gcc_assert (GFC_ARRAY_TYPE_P (caf_type) && GFC_TYPE_ARRAY_CAF_TOKEN (caf_type) != NULL_TREE); tmp = GFC_TYPE_ARRAY_CAF_TOKEN (caf_type); } vec_safe_push (stringargs, tmp); if (GFC_DESCRIPTOR_TYPE_P (caf_type) && GFC_TYPE_ARRAY_AKIND (caf_type) == GFC_ARRAY_ALLOCATABLE) offset = build_int_cst (gfc_array_index_type, 0); else if (DECL_LANG_SPECIFIC (caf_decl) && GFC_DECL_CAF_OFFSET (caf_decl) != NULL_TREE) offset = GFC_DECL_CAF_OFFSET (caf_decl); else if (GFC_TYPE_ARRAY_CAF_OFFSET (caf_type) != NULL_TREE) offset = GFC_TYPE_ARRAY_CAF_OFFSET (caf_type); else offset = build_int_cst (gfc_array_index_type, 0); if (GFC_DESCRIPTOR_TYPE_P (caf_type)) tmp = gfc_conv_descriptor_data_get (caf_decl); else { gcc_assert (POINTER_TYPE_P (caf_type)); tmp = caf_decl; } tmp2 = fsym->ts.type == BT_CLASS ? gfc_class_data_get (parmse.expr) : parmse.expr; if ((fsym->ts.type != BT_CLASS && (fsym->as->type == AS_ASSUMED_SHAPE || fsym->as->type == AS_ASSUMED_RANK)) || (fsym->ts.type == BT_CLASS && (CLASS_DATA (fsym)->as->type == AS_ASSUMED_SHAPE || CLASS_DATA (fsym)->as->type == AS_ASSUMED_RANK))) { if (fsym->ts.type == BT_CLASS) gcc_assert (!POINTER_TYPE_P (TREE_TYPE (tmp2))); else { gcc_assert (POINTER_TYPE_P (TREE_TYPE (tmp2))); tmp2 = build_fold_indirect_ref_loc (input_location, tmp2); } gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (tmp2))); tmp2 = gfc_conv_descriptor_data_get (tmp2); } else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (tmp2))) tmp2 = gfc_conv_descriptor_data_get (tmp2); else { gcc_assert (POINTER_TYPE_P (TREE_TYPE (tmp2))); } tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, fold_convert (gfc_array_index_type, tmp2), fold_convert (gfc_array_index_type, tmp)); offset = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, offset, tmp); vec_safe_push (stringargs, offset); } vec_safe_push (arglist, parmse.expr); } gfc_finish_interface_mapping (&mapping, &se->pre, &se->post); if (comp) ts = comp->ts; else ts = sym->ts; if (ts.type == BT_CHARACTER && sym->attr.is_bind_c) se->string_length = build_int_cst (gfc_charlen_type_node, 1); else if (ts.type == BT_CHARACTER) { if (ts.u.cl->length == NULL) { /* Assumed character length results are not allowed by 5.1.1.5 of the standard and are trapped in resolve.c; except in the case of SPREAD (and other intrinsics?) and dummy functions. In the case of SPREAD, we take the character length of the first argument for the result. For dummies, we have to look through the formal argument list for this function and use the character length found there.*/ if (ts.deferred) cl.backend_decl = gfc_create_var (gfc_charlen_type_node, "slen"); else if (!sym->attr.dummy) cl.backend_decl = (*stringargs)[0]; else { formal = gfc_sym_get_dummy_args (sym->ns->proc_name); for (; formal; formal = formal->next) if (strcmp (formal->sym->name, sym->name) == 0) cl.backend_decl = formal->sym->ts.u.cl->backend_decl; } len = cl.backend_decl; } else { tree tmp; /* Calculate the length of the returned string. */ gfc_init_se (&parmse, NULL); if (need_interface_mapping) gfc_apply_interface_mapping (&mapping, &parmse, ts.u.cl->length); else gfc_conv_expr (&parmse, ts.u.cl->length); gfc_add_block_to_block (&se->pre, &parmse.pre); gfc_add_block_to_block (&se->post, &parmse.post); tmp = fold_convert (gfc_charlen_type_node, parmse.expr); tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_charlen_type_node, tmp, build_int_cst (gfc_charlen_type_node, 0)); cl.backend_decl = tmp; } /* Set up a charlen structure for it. */ cl.next = NULL; cl.length = NULL; ts.u.cl = &cl; len = cl.backend_decl; } byref = (comp && (comp->attr.dimension || comp->ts.type == BT_CHARACTER)) || (!comp && gfc_return_by_reference (sym)); if (byref) { if (se->direct_byref) { /* Sometimes, too much indirection can be applied; e.g. for function_result = array_valued_recursive_function. */ if (TREE_TYPE (TREE_TYPE (se->expr)) && TREE_TYPE (TREE_TYPE (TREE_TYPE (se->expr))) && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (se->expr))))) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); /* If the lhs of an assignment x = f(..) is allocatable and f2003 is allowed, we must do the automatic reallocation. TODO - deal with intrinsics, without using a temporary. */ if (flag_realloc_lhs && se->ss && se->ss->loop_chain && se->ss->loop_chain->is_alloc_lhs && !expr->value.function.isym && sym->result->as != NULL) { /* Evaluate the bounds of the result, if known. */ gfc_set_loop_bounds_from_array_spec (&mapping, se, sym->result->as); /* Perform the automatic reallocation. */ tmp = gfc_alloc_allocatable_for_assignment (se->loop, expr, NULL); gfc_add_expr_to_block (&se->pre, tmp); /* Pass the temporary as the first argument. */ result = info->descriptor; } else result = build_fold_indirect_ref_loc (input_location, se->expr); vec_safe_push (retargs, se->expr); } else if (comp && comp->attr.dimension) { gcc_assert (se->loop && info); /* Set the type of the array. */ tmp = gfc_typenode_for_spec (&comp->ts); gcc_assert (se->ss->dimen == se->loop->dimen); /* Evaluate the bounds of the result, if known. */ gfc_set_loop_bounds_from_array_spec (&mapping, se, comp->as); /* If the lhs of an assignment x = f(..) is allocatable and f2003 is allowed, we must not generate the function call here but should just send back the results of the mapping. This is signalled by the function ss being flagged. */ if (flag_realloc_lhs && se->ss && se->ss->is_alloc_lhs) { gfc_free_interface_mapping (&mapping); return has_alternate_specifier; } /* Create a temporary to store the result. In case the function returns a pointer, the temporary will be a shallow copy and mustn't be deallocated. */ callee_alloc = comp->attr.allocatable || comp->attr.pointer; gfc_trans_create_temp_array (&se->pre, &se->post, se->ss, tmp, NULL_TREE, false, !comp->attr.pointer, callee_alloc, &se->ss->info->expr->where); /* Pass the temporary as the first argument. */ result = info->descriptor; tmp = gfc_build_addr_expr (NULL_TREE, result); vec_safe_push (retargs, tmp); } else if (!comp && sym->result->attr.dimension) { gcc_assert (se->loop && info); /* Set the type of the array. */ tmp = gfc_typenode_for_spec (&ts); gcc_assert (se->ss->dimen == se->loop->dimen); /* Evaluate the bounds of the result, if known. */ gfc_set_loop_bounds_from_array_spec (&mapping, se, sym->result->as); /* If the lhs of an assignment x = f(..) is allocatable and f2003 is allowed, we must not generate the function call here but should just send back the results of the mapping. This is signalled by the function ss being flagged. */ if (flag_realloc_lhs && se->ss && se->ss->is_alloc_lhs) { gfc_free_interface_mapping (&mapping); return has_alternate_specifier; } /* Create a temporary to store the result. In case the function returns a pointer, the temporary will be a shallow copy and mustn't be deallocated. */ callee_alloc = sym->attr.allocatable || sym->attr.pointer; gfc_trans_create_temp_array (&se->pre, &se->post, se->ss, tmp, NULL_TREE, false, !sym->attr.pointer, callee_alloc, &se->ss->info->expr->where); /* Pass the temporary as the first argument. */ result = info->descriptor; tmp = gfc_build_addr_expr (NULL_TREE, result); vec_safe_push (retargs, tmp); } else if (ts.type == BT_CHARACTER) { /* Pass the string length. */ type = gfc_get_character_type (ts.kind, ts.u.cl); type = build_pointer_type (type); /* Return an address to a char[0:len-1]* temporary for character pointers. */ if ((!comp && (sym->attr.pointer || sym->attr.allocatable)) || (comp && (comp->attr.pointer || comp->attr.allocatable))) { var = gfc_create_var (type, "pstr"); if ((!comp && sym->attr.allocatable) || (comp && comp->attr.allocatable)) { gfc_add_modify (&se->pre, var, fold_convert (TREE_TYPE (var), null_pointer_node)); tmp = gfc_call_free (var); gfc_add_expr_to_block (&se->post, tmp); } /* Provide an address expression for the function arguments. */ var = gfc_build_addr_expr (NULL_TREE, var); } else var = gfc_conv_string_tmp (se, type, len); vec_safe_push (retargs, var); } else { gcc_assert (flag_f2c && ts.type == BT_COMPLEX); type = gfc_get_complex_type (ts.kind); var = gfc_build_addr_expr (NULL_TREE, gfc_create_var (type, "cmplx")); vec_safe_push (retargs, var); } /* Add the string length to the argument list. */ if (ts.type == BT_CHARACTER && ts.deferred) { tmp = len; if (TREE_CODE (tmp) != VAR_DECL) tmp = gfc_evaluate_now (len, &se->pre); tmp = gfc_build_addr_expr (NULL_TREE, tmp); vec_safe_push (retargs, tmp); } else if (ts.type == BT_CHARACTER) vec_safe_push (retargs, len); } gfc_free_interface_mapping (&mapping); /* We need to glom RETARGS + ARGLIST + STRINGARGS + APPEND_ARGS. */ arglen = (vec_safe_length (arglist) + vec_safe_length (optionalargs) + vec_safe_length (stringargs) + vec_safe_length (append_args)); vec_safe_reserve (retargs, arglen); /* Add the return arguments. */ vec_safe_splice (retargs, arglist); /* Add the hidden present status for optional+value to the arguments. */ vec_safe_splice (retargs, optionalargs); /* Add the hidden string length parameters to the arguments. */ vec_safe_splice (retargs, stringargs); /* We may want to append extra arguments here. This is used e.g. for calls to libgfortran_matmul_??, which need extra information. */ vec_safe_splice (retargs, append_args); arglist = retargs; /* Generate the actual call. */ if (base_object == NULL_TREE) conv_function_val (se, sym, expr); else conv_base_obj_fcn_val (se, base_object, expr); /* If there are alternate return labels, function type should be integer. Can't modify the type in place though, since it can be shared with other functions. For dummy arguments, the typing is done to this result, even if it has to be repeated for each call. */ if (has_alternate_specifier && TREE_TYPE (TREE_TYPE (TREE_TYPE (se->expr))) != integer_type_node) { if (!sym->attr.dummy) { TREE_TYPE (sym->backend_decl) = build_function_type (integer_type_node, TYPE_ARG_TYPES (TREE_TYPE (sym->backend_decl))); se->expr = gfc_build_addr_expr (NULL_TREE, sym->backend_decl); } else TREE_TYPE (TREE_TYPE (TREE_TYPE (se->expr))) = integer_type_node; } fntype = TREE_TYPE (TREE_TYPE (se->expr)); se->expr = build_call_vec (TREE_TYPE (fntype), se->expr, arglist); /* Allocatable scalar function results must be freed and nullified after use. This necessitates the creation of a temporary to hold the result to prevent duplicate calls. */ if (!byref && sym->ts.type != BT_CHARACTER && sym->attr.allocatable && !sym->attr.dimension) { tmp = gfc_create_var (TREE_TYPE (se->expr), NULL); gfc_add_modify (&se->pre, tmp, se->expr); se->expr = tmp; tmp = gfc_call_free (tmp); gfc_add_expr_to_block (&post, tmp); gfc_add_modify (&post, se->expr, build_int_cst (TREE_TYPE (se->expr), 0)); } /* If we have a pointer function, but we don't want a pointer, e.g. something like x = f() where f is pointer valued, we have to dereference the result. */ if (!se->want_pointer && !byref && ((!comp && (sym->attr.pointer || sym->attr.allocatable)) || (comp && (comp->attr.pointer || comp->attr.allocatable)))) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); /* f2c calling conventions require a scalar default real function to return a double precision result. Convert this back to default real. We only care about the cases that can happen in Fortran 77. */ if (flag_f2c && sym->ts.type == BT_REAL && sym->ts.kind == gfc_default_real_kind && !sym->attr.always_explicit) se->expr = fold_convert (gfc_get_real_type (sym->ts.kind), se->expr); /* A pure function may still have side-effects - it may modify its parameters. */ TREE_SIDE_EFFECTS (se->expr) = 1; #if 0 if (!sym->attr.pure) TREE_SIDE_EFFECTS (se->expr) = 1; #endif if (byref) { /* Add the function call to the pre chain. There is no expression. */ gfc_add_expr_to_block (&se->pre, se->expr); se->expr = NULL_TREE; if (!se->direct_byref) { if ((sym->attr.dimension && !comp) || (comp && comp->attr.dimension)) { if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) { /* Check the data pointer hasn't been modified. This would happen in a function returning a pointer. */ tmp = gfc_conv_descriptor_data_get (info->descriptor); tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, info->data); gfc_trans_runtime_check (true, false, tmp, &se->pre, NULL, gfc_msg_fault); } se->expr = info->descriptor; /* Bundle in the string length. */ se->string_length = len; } else if (ts.type == BT_CHARACTER) { /* Dereference for character pointer results. */ if ((!comp && (sym->attr.pointer || sym->attr.allocatable)) || (comp && (comp->attr.pointer || comp->attr.allocatable))) se->expr = build_fold_indirect_ref_loc (input_location, var); else se->expr = var; se->string_length = len; } else { gcc_assert (ts.type == BT_COMPLEX && flag_f2c); se->expr = build_fold_indirect_ref_loc (input_location, var); } } } /* Follow the function call with the argument post block. */ if (byref) { gfc_add_block_to_block (&se->pre, &post); /* Transformational functions of derived types with allocatable components must have the result allocatable components copied. */ arg = expr->value.function.actual; if (result && arg && expr->rank && expr->value.function.isym && expr->value.function.isym->transformational && arg->expr->ts.type == BT_DERIVED && arg->expr->ts.u.derived->attr.alloc_comp) { tree tmp2; /* Copy the allocatable components. We have to use a temporary here to prevent source allocatable components from being corrupted. */ tmp2 = gfc_evaluate_now (result, &se->pre); tmp = gfc_copy_alloc_comp (arg->expr->ts.u.derived, result, tmp2, expr->rank); gfc_add_expr_to_block (&se->pre, tmp); tmp = gfc_copy_allocatable_data (result, tmp2, TREE_TYPE(tmp2), expr->rank); gfc_add_expr_to_block (&se->pre, tmp); /* Finally free the temporary's data field. */ tmp = gfc_conv_descriptor_data_get (tmp2); tmp = gfc_deallocate_with_status (tmp, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, true, NULL, false); gfc_add_expr_to_block (&se->pre, tmp); } } else { /* For a function with a class array result, save the result as a temporary, set the info fields needed by the scalarizer and call the finalization function of the temporary. Note that the nullification of allocatable components needed by the result is done in gfc_trans_assignment_1. */ if (expr && ((gfc_is_alloc_class_array_function (expr) && se->ss && se->ss->loop) || gfc_is_alloc_class_scalar_function (expr)) && se->expr && GFC_CLASS_TYPE_P (TREE_TYPE (se->expr)) && expr->must_finalize) { tree final_fndecl; tree is_final; int n; if (se->ss && se->ss->loop) { se->expr = gfc_evaluate_now (se->expr, &se->ss->loop->pre); tmp = gfc_class_data_get (se->expr); info->descriptor = tmp; info->data = gfc_conv_descriptor_data_get (tmp); info->offset = gfc_conv_descriptor_offset_get (tmp); for (n = 0; n < se->ss->loop->dimen; n++) { tree dim = gfc_rank_cst[n]; se->ss->loop->to[n] = gfc_conv_descriptor_ubound_get (tmp, dim); se->ss->loop->from[n] = gfc_conv_descriptor_lbound_get (tmp, dim); } } else { /* TODO Eliminate the doubling of temporaries. This one is necessary to ensure no memory leakage. */ se->expr = gfc_evaluate_now (se->expr, &se->pre); tmp = gfc_class_data_get (se->expr); tmp = gfc_conv_scalar_to_descriptor (se, tmp, CLASS_DATA (expr->value.function.esym->result)->attr); } final_fndecl = gfc_class_vtab_final_get (se->expr); is_final = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, final_fndecl, fold_convert (TREE_TYPE (final_fndecl), null_pointer_node)); final_fndecl = build_fold_indirect_ref_loc (input_location, final_fndecl); tmp = build_call_expr_loc (input_location, final_fndecl, 3, gfc_build_addr_expr (NULL, tmp), gfc_class_vtab_size_get (se->expr), boolean_false_node); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, is_final, tmp, build_empty_stmt (input_location)); if (se->ss && se->ss->loop) { gfc_add_expr_to_block (&se->ss->loop->post, tmp); tmp = gfc_call_free (info->data); gfc_add_expr_to_block (&se->ss->loop->post, tmp); } else { gfc_add_expr_to_block (&se->post, tmp); tmp = gfc_class_data_get (se->expr); tmp = gfc_call_free (tmp); gfc_add_expr_to_block (&se->post, tmp); } expr->must_finalize = 0; } gfc_add_block_to_block (&se->post, &post); } return has_alternate_specifier; } /* Fill a character string with spaces. */ static tree fill_with_spaces (tree start, tree type, tree size) { stmtblock_t block, loop; tree i, el, exit_label, cond, tmp; /* For a simple char type, we can call memset(). */ if (compare_tree_int (TYPE_SIZE_UNIT (type), 1) == 0) return build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMSET), 3, start, build_int_cst (gfc_get_int_type (gfc_c_int_kind), lang_hooks.to_target_charset (' ')), size); /* Otherwise, we use a loop: for (el = start, i = size; i > 0; el--, i+= TYPE_SIZE_UNIT (type)) *el = (type) ' '; */ /* Initialize variables. */ gfc_init_block (&block); i = gfc_create_var (sizetype, "i"); gfc_add_modify (&block, i, fold_convert (sizetype, size)); el = gfc_create_var (build_pointer_type (type), "el"); gfc_add_modify (&block, el, fold_convert (TREE_TYPE (el), start)); exit_label = gfc_build_label_decl (NULL_TREE); TREE_USED (exit_label) = 1; /* Loop body. */ gfc_init_block (&loop); /* Exit condition. */ cond = fold_build2_loc (input_location, LE_EXPR, boolean_type_node, i, build_zero_cst (sizetype)); tmp = build1_v (GOTO_EXPR, exit_label); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&loop, tmp); /* Assignment. */ gfc_add_modify (&loop, fold_build1_loc (input_location, INDIRECT_REF, type, el), build_int_cst (type, lang_hooks.to_target_charset (' '))); /* Increment loop variables. */ gfc_add_modify (&loop, i, fold_build2_loc (input_location, MINUS_EXPR, sizetype, i, TYPE_SIZE_UNIT (type))); gfc_add_modify (&loop, el, fold_build_pointer_plus_loc (input_location, el, TYPE_SIZE_UNIT (type))); /* Making the loop... actually loop! */ tmp = gfc_finish_block (&loop); tmp = build1_v (LOOP_EXPR, tmp); gfc_add_expr_to_block (&block, tmp); /* The exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Generate code to copy a string. */ void gfc_trans_string_copy (stmtblock_t * block, tree dlength, tree dest, int dkind, tree slength, tree src, int skind) { tree tmp, dlen, slen; tree dsc; tree ssc; tree cond; tree cond2; tree tmp2; tree tmp3; tree tmp4; tree chartype; stmtblock_t tempblock; gcc_assert (dkind == skind); if (slength != NULL_TREE) { slen = fold_convert (size_type_node, gfc_evaluate_now (slength, block)); ssc = gfc_string_to_single_character (slen, src, skind); } else { slen = build_int_cst (size_type_node, 1); ssc = src; } if (dlength != NULL_TREE) { dlen = fold_convert (size_type_node, gfc_evaluate_now (dlength, block)); dsc = gfc_string_to_single_character (dlen, dest, dkind); } else { dlen = build_int_cst (size_type_node, 1); dsc = dest; } /* Assign directly if the types are compatible. */ if (dsc != NULL_TREE && ssc != NULL_TREE && TREE_TYPE (dsc) == TREE_TYPE (ssc)) { gfc_add_modify (block, dsc, ssc); return; } /* Do nothing if the destination length is zero. */ cond = fold_build2_loc (input_location, GT_EXPR, boolean_type_node, dlen, build_int_cst (size_type_node, 0)); /* The following code was previously in _gfortran_copy_string: // The two strings may overlap so we use memmove. void copy_string (GFC_INTEGER_4 destlen, char * dest, GFC_INTEGER_4 srclen, const char * src) { if (srclen >= destlen) { // This will truncate if too long. memmove (dest, src, destlen); } else { memmove (dest, src, srclen); // Pad with spaces. memset (&dest[srclen], ' ', destlen - srclen); } } We're now doing it here for better optimization, but the logic is the same. */ /* For non-default character kinds, we have to multiply the string length by the base type size. */ chartype = gfc_get_char_type (dkind); slen = fold_build2_loc (input_location, MULT_EXPR, size_type_node, fold_convert (size_type_node, slen), fold_convert (size_type_node, TYPE_SIZE_UNIT (chartype))); dlen = fold_build2_loc (input_location, MULT_EXPR, size_type_node, fold_convert (size_type_node, dlen), fold_convert (size_type_node, TYPE_SIZE_UNIT (chartype))); if (dlength && POINTER_TYPE_P (TREE_TYPE (dest))) dest = fold_convert (pvoid_type_node, dest); else dest = gfc_build_addr_expr (pvoid_type_node, dest); if (slength && POINTER_TYPE_P (TREE_TYPE (src))) src = fold_convert (pvoid_type_node, src); else src = gfc_build_addr_expr (pvoid_type_node, src); /* Truncate string if source is too long. */ cond2 = fold_build2_loc (input_location, GE_EXPR, boolean_type_node, slen, dlen); tmp2 = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMMOVE), 3, dest, src, dlen); /* Else copy and pad with spaces. */ tmp3 = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMMOVE), 3, dest, src, slen); tmp4 = fold_build_pointer_plus_loc (input_location, dest, slen); tmp4 = fill_with_spaces (tmp4, chartype, fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE(dlen), dlen, slen)); gfc_init_block (&tempblock); gfc_add_expr_to_block (&tempblock, tmp3); gfc_add_expr_to_block (&tempblock, tmp4); tmp3 = gfc_finish_block (&tempblock); /* The whole copy_string function is there. */ tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond2, tmp2, tmp3); tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (block, tmp); } /* Translate a statement function. The value of a statement function reference is obtained by evaluating the expression using the values of the actual arguments for the values of the corresponding dummy arguments. */ static void gfc_conv_statement_function (gfc_se * se, gfc_expr * expr) { gfc_symbol *sym; gfc_symbol *fsym; gfc_formal_arglist *fargs; gfc_actual_arglist *args; gfc_se lse; gfc_se rse; gfc_saved_var *saved_vars; tree *temp_vars; tree type; tree tmp; int n; sym = expr->symtree->n.sym; args = expr->value.function.actual; gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); n = 0; for (fargs = gfc_sym_get_dummy_args (sym); fargs; fargs = fargs->next) n++; saved_vars = XCNEWVEC (gfc_saved_var, n); temp_vars = XCNEWVEC (tree, n); for (fargs = gfc_sym_get_dummy_args (sym), n = 0; fargs; fargs = fargs->next, n++) { /* Each dummy shall be specified, explicitly or implicitly, to be scalar. */ gcc_assert (fargs->sym->attr.dimension == 0); fsym = fargs->sym; if (fsym->ts.type == BT_CHARACTER) { /* Copy string arguments. */ tree arglen; gcc_assert (fsym->ts.u.cl && fsym->ts.u.cl->length && fsym->ts.u.cl->length->expr_type == EXPR_CONSTANT); /* Create a temporary to hold the value. */ if (fsym->ts.u.cl->backend_decl == NULL_TREE) fsym->ts.u.cl->backend_decl = gfc_conv_constant_to_tree (fsym->ts.u.cl->length); type = gfc_get_character_type (fsym->ts.kind, fsym->ts.u.cl); temp_vars[n] = gfc_create_var (type, fsym->name); arglen = TYPE_MAX_VALUE (TYPE_DOMAIN (type)); gfc_conv_expr (&rse, args->expr); gfc_conv_string_parameter (&rse); gfc_add_block_to_block (&se->pre, &lse.pre); gfc_add_block_to_block (&se->pre, &rse.pre); gfc_trans_string_copy (&se->pre, arglen, temp_vars[n], fsym->ts.kind, rse.string_length, rse.expr, fsym->ts.kind); gfc_add_block_to_block (&se->pre, &lse.post); gfc_add_block_to_block (&se->pre, &rse.post); } else { /* For everything else, just evaluate the expression. */ /* Create a temporary to hold the value. */ type = gfc_typenode_for_spec (&fsym->ts); temp_vars[n] = gfc_create_var (type, fsym->name); gfc_conv_expr (&lse, args->expr); gfc_add_block_to_block (&se->pre, &lse.pre); gfc_add_modify (&se->pre, temp_vars[n], lse.expr); gfc_add_block_to_block (&se->pre, &lse.post); } args = args->next; } /* Use the temporary variables in place of the real ones. */ for (fargs = gfc_sym_get_dummy_args (sym), n = 0; fargs; fargs = fargs->next, n++) gfc_shadow_sym (fargs->sym, temp_vars[n], &saved_vars[n]); gfc_conv_expr (se, sym->value); if (sym->ts.type == BT_CHARACTER) { gfc_conv_const_charlen (sym->ts.u.cl); /* Force the expression to the correct length. */ if (!INTEGER_CST_P (se->string_length) || tree_int_cst_lt (se->string_length, sym->ts.u.cl->backend_decl)) { type = gfc_get_character_type (sym->ts.kind, sym->ts.u.cl); tmp = gfc_create_var (type, sym->name); tmp = gfc_build_addr_expr (build_pointer_type (type), tmp); gfc_trans_string_copy (&se->pre, sym->ts.u.cl->backend_decl, tmp, sym->ts.kind, se->string_length, se->expr, sym->ts.kind); se->expr = tmp; } se->string_length = sym->ts.u.cl->backend_decl; } /* Restore the original variables. */ for (fargs = gfc_sym_get_dummy_args (sym), n = 0; fargs; fargs = fargs->next, n++) gfc_restore_sym (fargs->sym, &saved_vars[n]); free (temp_vars); free (saved_vars); } /* Translate a function expression. */ static void gfc_conv_function_expr (gfc_se * se, gfc_expr * expr) { gfc_symbol *sym; if (expr->value.function.isym) { gfc_conv_intrinsic_function (se, expr); return; } /* expr.value.function.esym is the resolved (specific) function symbol for most functions. However this isn't set for dummy procedures. */ sym = expr->value.function.esym; if (!sym) sym = expr->symtree->n.sym; /* The IEEE_ARITHMETIC functions are caught here. */ if (sym->from_intmod == INTMOD_IEEE_ARITHMETIC) if (gfc_conv_ieee_arithmetic_function (se, expr)) return; /* We distinguish statement functions from general functions to improve runtime performance. */ if (sym->attr.proc == PROC_ST_FUNCTION) { gfc_conv_statement_function (se, expr); return; } gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr, NULL); } /* Determine whether the given EXPR_CONSTANT is a zero initializer. */ static bool is_zero_initializer_p (gfc_expr * expr) { if (expr->expr_type != EXPR_CONSTANT) return false; /* We ignore constants with prescribed memory representations for now. */ if (expr->representation.string) return false; switch (expr->ts.type) { case BT_INTEGER: return mpz_cmp_si (expr->value.integer, 0) == 0; case BT_REAL: return mpfr_zero_p (expr->value.real) && MPFR_SIGN (expr->value.real) >= 0; case BT_LOGICAL: return expr->value.logical == 0; case BT_COMPLEX: return mpfr_zero_p (mpc_realref (expr->value.complex)) && MPFR_SIGN (mpc_realref (expr->value.complex)) >= 0 && mpfr_zero_p (mpc_imagref (expr->value.complex)) && MPFR_SIGN (mpc_imagref (expr->value.complex)) >= 0; default: break; } return false; } static void gfc_conv_array_constructor_expr (gfc_se * se, gfc_expr * expr) { gfc_ss *ss; ss = se->ss; gcc_assert (ss != NULL && ss != gfc_ss_terminator); gcc_assert (ss->info->expr == expr && ss->info->type == GFC_SS_CONSTRUCTOR); gfc_conv_tmp_array_ref (se); } /* Build a static initializer. EXPR is the expression for the initial value. The other parameters describe the variable of the component being initialized. EXPR may be null. */ tree gfc_conv_initializer (gfc_expr * expr, gfc_typespec * ts, tree type, bool array, bool pointer, bool procptr) { gfc_se se; if (!(expr || pointer || procptr)) return NULL_TREE; /* Check if we have ISOCBINDING_NULL_PTR or ISOCBINDING_NULL_FUNPTR (these are the only two iso_c_binding derived types that can be used as initialization expressions). If so, we need to modify the 'expr' to be that for a (void *). */ if (expr != NULL && expr->ts.type == BT_DERIVED && expr->ts.is_iso_c && expr->ts.u.derived) { gfc_symbol *derived = expr->ts.u.derived; /* The derived symbol has already been converted to a (void *). Use its kind. */ expr = gfc_get_int_expr (derived->ts.kind, NULL, 0); expr->ts.f90_type = derived->ts.f90_type; gfc_init_se (&se, NULL); gfc_conv_constant (&se, expr); gcc_assert (TREE_CODE (se.expr) != CONSTRUCTOR); return se.expr; } if (array && !procptr) { tree ctor; /* Arrays need special handling. */ if (pointer) ctor = gfc_build_null_descriptor (type); /* Special case assigning an array to zero. */ else if (is_zero_initializer_p (expr)) ctor = build_constructor (type, NULL); else ctor = gfc_conv_array_initializer (type, expr); TREE_STATIC (ctor) = 1; return ctor; } else if (pointer || procptr) { if (ts->type == BT_CLASS && !procptr) { gfc_init_se (&se, NULL); gfc_conv_structure (&se, gfc_class_initializer (ts, expr), 1); gcc_assert (TREE_CODE (se.expr) == CONSTRUCTOR); TREE_STATIC (se.expr) = 1; return se.expr; } else if (!expr || expr->expr_type == EXPR_NULL) return fold_convert (type, null_pointer_node); else { gfc_init_se (&se, NULL); se.want_pointer = 1; gfc_conv_expr (&se, expr); gcc_assert (TREE_CODE (se.expr) != CONSTRUCTOR); return se.expr; } } else { switch (ts->type) { case BT_DERIVED: case BT_CLASS: gfc_init_se (&se, NULL); if (ts->type == BT_CLASS && expr->expr_type == EXPR_NULL) gfc_conv_structure (&se, gfc_class_initializer (ts, expr), 1); else gfc_conv_structure (&se, expr, 1); gcc_assert (TREE_CODE (se.expr) == CONSTRUCTOR); TREE_STATIC (se.expr) = 1; return se.expr; case BT_CHARACTER: { tree ctor = gfc_conv_string_init (ts->u.cl->backend_decl,expr); TREE_STATIC (ctor) = 1; return ctor; } default: gfc_init_se (&se, NULL); gfc_conv_constant (&se, expr); gcc_assert (TREE_CODE (se.expr) != CONSTRUCTOR); return se.expr; } } } static tree gfc_trans_subarray_assign (tree dest, gfc_component * cm, gfc_expr * expr) { gfc_se rse; gfc_se lse; gfc_ss *rss; gfc_ss *lss; gfc_array_info *lss_array; stmtblock_t body; stmtblock_t block; gfc_loopinfo loop; int n; tree tmp; gfc_start_block (&block); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); /* Walk the rhs. */ rss = gfc_walk_expr (expr); if (rss == gfc_ss_terminator) /* The rhs is scalar. Add a ss for the expression. */ rss = gfc_get_scalar_ss (gfc_ss_terminator, expr); /* Create a SS for the destination. */ lss = gfc_get_array_ss (gfc_ss_terminator, NULL, cm->as->rank, GFC_SS_COMPONENT); lss_array = &lss->info->data.array; lss_array->shape = gfc_get_shape (cm->as->rank); lss_array->descriptor = dest; lss_array->data = gfc_conv_array_data (dest); lss_array->offset = gfc_conv_array_offset (dest); for (n = 0; n < cm->as->rank; n++) { lss_array->start[n] = gfc_conv_array_lbound (dest, n); lss_array->stride[n] = gfc_index_one_node; mpz_init (lss_array->shape[n]); mpz_sub (lss_array->shape[n], cm->as->upper[n]->value.integer, cm->as->lower[n]->value.integer); mpz_add_ui (lss_array->shape[n], lss_array->shape[n], 1); } /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, lss); gfc_add_ss_to_loop (&loop, rss); /* Calculate the bounds of the scalarization. */ gfc_conv_ss_startstride (&loop); /* Setup the scalarizing loops. */ gfc_conv_loop_setup (&loop, &expr->where); /* Setup the gfc_se structures. */ gfc_copy_loopinfo_to_se (&lse, &loop); gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = rss; gfc_mark_ss_chain_used (rss, 1); lse.ss = lss; gfc_mark_ss_chain_used (lss, 1); /* Start the scalarized loop body. */ gfc_start_scalarized_body (&loop, &body); gfc_conv_tmp_array_ref (&lse); if (cm->ts.type == BT_CHARACTER) lse.string_length = cm->ts.u.cl->backend_decl; gfc_conv_expr (&rse, expr); tmp = gfc_trans_scalar_assign (&lse, &rse, cm->ts, true, false); gfc_add_expr_to_block (&body, tmp); gcc_assert (rse.ss == gfc_ss_terminator); /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop, &body); /* Wrap the whole thing up. */ gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); gcc_assert (lss_array->shape != NULL); gfc_free_shape (&lss_array->shape, cm->as->rank); gfc_cleanup_loop (&loop); return gfc_finish_block (&block); } static tree gfc_trans_alloc_subarray_assign (tree dest, gfc_component * cm, gfc_expr * expr) { gfc_se se; stmtblock_t block; tree offset; int n; tree tmp; tree tmp2; gfc_array_spec *as; gfc_expr *arg = NULL; gfc_start_block (&block); gfc_init_se (&se, NULL); /* Get the descriptor for the expressions. */ se.want_pointer = 0; gfc_conv_expr_descriptor (&se, expr); gfc_add_block_to_block (&block, &se.pre); gfc_add_modify (&block, dest, se.expr); /* Deal with arrays of derived types with allocatable components. */ if (cm->ts.type == BT_DERIVED && cm->ts.u.derived->attr.alloc_comp) tmp = gfc_copy_alloc_comp (cm->ts.u.derived, se.expr, dest, cm->as->rank); else if (cm->ts.type == BT_CLASS && expr->ts.type == BT_DERIVED && CLASS_DATA(cm)->attr.allocatable) { if (cm->ts.u.derived->attr.alloc_comp) tmp = gfc_copy_alloc_comp (expr->ts.u.derived, se.expr, dest, expr->rank); else { tmp = TREE_TYPE (dest); tmp = gfc_duplicate_allocatable (dest, se.expr, tmp, expr->rank, NULL_TREE); } } else tmp = gfc_duplicate_allocatable (dest, se.expr, TREE_TYPE(cm->backend_decl), cm->as->rank, NULL_TREE); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&block, &se.post); if (expr->expr_type != EXPR_VARIABLE) gfc_conv_descriptor_data_set (&block, se.expr, null_pointer_node); /* We need to know if the argument of a conversion function is a variable, so that the correct lower bound can be used. */ if (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym && expr->value.function.isym->conversion && expr->value.function.actual->expr && expr->value.function.actual->expr->expr_type == EXPR_VARIABLE) arg = expr->value.function.actual->expr; /* Obtain the array spec of full array references. */ if (arg) as = gfc_get_full_arrayspec_from_expr (arg); else as = gfc_get_full_arrayspec_from_expr (expr); /* Shift the lbound and ubound of temporaries to being unity, rather than zero, based. Always calculate the offset. */ offset = gfc_conv_descriptor_offset_get (dest); gfc_add_modify (&block, offset, gfc_index_zero_node); tmp2 =gfc_create_var (gfc_array_index_type, NULL); for (n = 0; n < expr->rank; n++) { tree span; tree lbound; /* Obtain the correct lbound - ISO/IEC TR 15581:2001 page 9. TODO It looks as if gfc_conv_expr_descriptor should return the correct bounds and that the following should not be necessary. This would simplify gfc_conv_intrinsic_bound as well. */ if (as && as->lower[n]) { gfc_se lbse; gfc_init_se (&lbse, NULL); gfc_conv_expr (&lbse, as->lower[n]); gfc_add_block_to_block (&block, &lbse.pre); lbound = gfc_evaluate_now (lbse.expr, &block); } else if (as && arg) { tmp = gfc_get_symbol_decl (arg->symtree->n.sym); lbound = gfc_conv_descriptor_lbound_get (tmp, gfc_rank_cst[n]); } else if (as) lbound = gfc_conv_descriptor_lbound_get (dest, gfc_rank_cst[n]); else lbound = gfc_index_one_node; lbound = fold_convert (gfc_array_index_type, lbound); /* Shift the bounds and set the offset accordingly. */ tmp = gfc_conv_descriptor_ubound_get (dest, gfc_rank_cst[n]); span = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp, gfc_conv_descriptor_lbound_get (dest, gfc_rank_cst[n])); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, span, lbound); gfc_conv_descriptor_ubound_set (&block, dest, gfc_rank_cst[n], tmp); gfc_conv_descriptor_lbound_set (&block, dest, gfc_rank_cst[n], lbound); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, gfc_conv_descriptor_lbound_get (dest, gfc_rank_cst[n]), gfc_conv_descriptor_stride_get (dest, gfc_rank_cst[n])); gfc_add_modify (&block, tmp2, tmp); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, tmp2); gfc_conv_descriptor_offset_set (&block, dest, tmp); } if (arg) { /* If a conversion expression has a null data pointer argument, nullify the allocatable component. */ tree non_null_expr; tree null_expr; if (arg->symtree->n.sym->attr.allocatable || arg->symtree->n.sym->attr.pointer) { non_null_expr = gfc_finish_block (&block); gfc_start_block (&block); gfc_conv_descriptor_data_set (&block, dest, null_pointer_node); null_expr = gfc_finish_block (&block); tmp = gfc_conv_descriptor_data_get (arg->symtree->n.sym->backend_decl); tmp = build2_loc (input_location, EQ_EXPR, boolean_type_node, tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node)); return build3_v (COND_EXPR, tmp, null_expr, non_null_expr); } } return gfc_finish_block (&block); } /* Allocate or reallocate scalar component, as necessary. */ static void alloc_scalar_allocatable_for_subcomponent_assignment (stmtblock_t *block, tree comp, gfc_component *cm, gfc_expr *expr2, gfc_symbol *sym) { tree tmp; tree ptr; tree size; tree size_in_bytes; tree lhs_cl_size = NULL_TREE; if (!comp) return; if (!expr2 || expr2->rank) return; realloc_lhs_warning (expr2->ts.type, false, &expr2->where); if (cm->ts.type == BT_CHARACTER && cm->ts.deferred) { char name[GFC_MAX_SYMBOL_LEN+9]; gfc_component *strlen; /* Use the rhs string length and the lhs element size. */ gcc_assert (expr2->ts.type == BT_CHARACTER); if (!expr2->ts.u.cl->backend_decl) { gfc_conv_string_length (expr2->ts.u.cl, expr2, block); gcc_assert (expr2->ts.u.cl->backend_decl); } size = expr2->ts.u.cl->backend_decl; /* Ensure that cm->ts.u.cl->backend_decl is a componentref to _%s_length component. */ sprintf (name, "_%s_length", cm->name); strlen = gfc_find_component (sym, name, true, true); lhs_cl_size = fold_build3_loc (input_location, COMPONENT_REF, gfc_charlen_type_node, TREE_OPERAND (comp, 0), strlen->backend_decl, NULL_TREE); tmp = TREE_TYPE (gfc_typenode_for_spec (&cm->ts)); tmp = TYPE_SIZE_UNIT (tmp); size_in_bytes = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp), tmp, fold_convert (TREE_TYPE (tmp), size)); } else if (cm->ts.type == BT_CLASS) { gcc_assert (expr2->ts.type == BT_CLASS || expr2->ts.type == BT_DERIVED); if (expr2->ts.type == BT_DERIVED) { tmp = gfc_get_symbol_decl (expr2->ts.u.derived); size = TYPE_SIZE_UNIT (tmp); } else { gfc_expr *e2vtab; gfc_se se; e2vtab = gfc_find_and_cut_at_last_class_ref (expr2); gfc_add_vptr_component (e2vtab); gfc_add_size_component (e2vtab); gfc_init_se (&se, NULL); gfc_conv_expr (&se, e2vtab); gfc_add_block_to_block (block, &se.pre); size = fold_convert (size_type_node, se.expr); gfc_free_expr (e2vtab); } size_in_bytes = size; } else { /* Otherwise use the length in bytes of the rhs. */ size = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&cm->ts)); size_in_bytes = size; } size_in_bytes = fold_build2_loc (input_location, MAX_EXPR, size_type_node, size_in_bytes, size_one_node); if (cm->ts.type == BT_DERIVED && cm->ts.u.derived->attr.alloc_comp) { tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_CALLOC), 2, build_one_cst (size_type_node), size_in_bytes); tmp = fold_convert (TREE_TYPE (comp), tmp); gfc_add_modify (block, comp, tmp); } else { tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MALLOC), 1, size_in_bytes); if (GFC_CLASS_TYPE_P (TREE_TYPE (comp))) ptr = gfc_class_data_get (comp); else ptr = comp; tmp = fold_convert (TREE_TYPE (ptr), tmp); gfc_add_modify (block, ptr, tmp); } if (cm->ts.type == BT_CHARACTER && cm->ts.deferred) /* Update the lhs character length. */ gfc_add_modify (block, lhs_cl_size, size); } /* Assign a single component of a derived type constructor. */ static tree gfc_trans_subcomponent_assign (tree dest, gfc_component * cm, gfc_expr * expr, gfc_symbol *sym, bool init) { gfc_se se; gfc_se lse; stmtblock_t block; tree tmp; tree vtab; gfc_start_block (&block); if (cm->attr.pointer || cm->attr.proc_pointer) { /* Only care about pointers here, not about allocatables. */ gfc_init_se (&se, NULL); /* Pointer component. */ if ((cm->attr.dimension || cm->attr.codimension) && !cm->attr.proc_pointer) { /* Array pointer. */ if (expr->expr_type == EXPR_NULL) gfc_conv_descriptor_data_set (&block, dest, null_pointer_node); else { se.direct_byref = 1; se.expr = dest; gfc_conv_expr_descriptor (&se, expr); gfc_add_block_to_block (&block, &se.pre); gfc_add_block_to_block (&block, &se.post); } } else { /* Scalar pointers. */ se.want_pointer = 1; gfc_conv_expr (&se, expr); gfc_add_block_to_block (&block, &se.pre); if (expr->symtree && expr->symtree->n.sym->attr.proc_pointer && expr->symtree->n.sym->attr.dummy) se.expr = build_fold_indirect_ref_loc (input_location, se.expr); gfc_add_modify (&block, dest, fold_convert (TREE_TYPE (dest), se.expr)); gfc_add_block_to_block (&block, &se.post); } } else if (cm->ts.type == BT_CLASS && expr->expr_type == EXPR_NULL) { /* NULL initialization for CLASS components. */ tmp = gfc_trans_structure_assign (dest, gfc_class_initializer (&cm->ts, expr), false); gfc_add_expr_to_block (&block, tmp); } else if ((cm->attr.dimension || cm->attr.codimension) && !cm->attr.proc_pointer) { if (cm->attr.allocatable && expr->expr_type == EXPR_NULL) gfc_conv_descriptor_data_set (&block, dest, null_pointer_node); else if (cm->attr.allocatable) { tmp = gfc_trans_alloc_subarray_assign (dest, cm, expr); gfc_add_expr_to_block (&block, tmp); } else { tmp = gfc_trans_subarray_assign (dest, cm, expr); gfc_add_expr_to_block (&block, tmp); } } else if (cm->ts.type == BT_CLASS && CLASS_DATA (cm)->attr.dimension && CLASS_DATA (cm)->attr.allocatable && expr->ts.type == BT_DERIVED) { vtab = gfc_get_symbol_decl (gfc_find_vtab (&expr->ts)); vtab = gfc_build_addr_expr (NULL_TREE, vtab); tmp = gfc_class_vptr_get (dest); gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), vtab)); tmp = gfc_class_data_get (dest); tmp = gfc_trans_alloc_subarray_assign (tmp, cm, expr); gfc_add_expr_to_block (&block, tmp); } else if (init && (cm->attr.allocatable || (cm->ts.type == BT_CLASS && CLASS_DATA (cm)->attr.allocatable && expr->ts.type != BT_CLASS))) { /* Take care about non-array allocatable components here. The alloc_* routine below is motivated by the alloc_scalar_allocatable_for_ assignment() routine, but with the realloc portions removed and different input. */ alloc_scalar_allocatable_for_subcomponent_assignment (&block, dest, cm, expr, sym); /* The remainder of these instructions follow the if (cm->attr.pointer) if (!cm->attr.dimension) part above. */ gfc_init_se (&se, NULL); gfc_conv_expr (&se, expr); gfc_add_block_to_block (&block, &se.pre); if (expr->symtree && expr->symtree->n.sym->attr.proc_pointer && expr->symtree->n.sym->attr.dummy) se.expr = build_fold_indirect_ref_loc (input_location, se.expr); if (cm->ts.type == BT_CLASS && expr->ts.type == BT_DERIVED) { tmp = gfc_class_data_get (dest); tmp = build_fold_indirect_ref_loc (input_location, tmp); vtab = gfc_get_symbol_decl (gfc_find_vtab (&expr->ts)); vtab = gfc_build_addr_expr (NULL_TREE, vtab); gfc_add_modify (&block, gfc_class_vptr_get (dest), fold_convert (TREE_TYPE (gfc_class_vptr_get (dest)), vtab)); } else tmp = build_fold_indirect_ref_loc (input_location, dest); /* For deferred strings insert a memcpy. */ if (cm->ts.type == BT_CHARACTER && cm->ts.deferred) { tree size; gcc_assert (se.string_length || expr->ts.u.cl->backend_decl); size = size_of_string_in_bytes (cm->ts.kind, se.string_length ? se.string_length : expr->ts.u.cl->backend_decl); tmp = gfc_build_memcpy_call (tmp, se.expr, size); gfc_add_expr_to_block (&block, tmp); } else gfc_add_modify (&block, tmp, fold_convert (TREE_TYPE (tmp), se.expr)); gfc_add_block_to_block (&block, &se.post); } else if (expr->ts.type == BT_DERIVED && expr->ts.f90_type != BT_VOID) { if (expr->expr_type != EXPR_STRUCTURE) { tree dealloc = NULL_TREE; gfc_init_se (&se, NULL); gfc_conv_expr (&se, expr); gfc_add_block_to_block (&block, &se.pre); /* Prevent repeat evaluations in gfc_copy_alloc_comp by fixing the expression in a temporary variable and deallocate the allocatable components. Then we can the copy the expression to the result. */ if (cm->ts.u.derived->attr.alloc_comp && expr->expr_type != EXPR_VARIABLE) { se.expr = gfc_evaluate_now (se.expr, &block); dealloc = gfc_deallocate_alloc_comp (cm->ts.u.derived, se.expr, expr->rank); } gfc_add_modify (&block, dest, fold_convert (TREE_TYPE (dest), se.expr)); if (cm->ts.u.derived->attr.alloc_comp && expr->expr_type != EXPR_NULL) { tmp = gfc_copy_alloc_comp (cm->ts.u.derived, se.expr, dest, expr->rank); gfc_add_expr_to_block (&block, tmp); if (dealloc != NULL_TREE) gfc_add_expr_to_block (&block, dealloc); } gfc_add_block_to_block (&block, &se.post); } else { /* Nested constructors. */ tmp = gfc_trans_structure_assign (dest, expr, expr->symtree != NULL); gfc_add_expr_to_block (&block, tmp); } } else if (gfc_deferred_strlen (cm, &tmp)) { tree strlen; strlen = tmp; gcc_assert (strlen); strlen = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (strlen), TREE_OPERAND (dest, 0), strlen, NULL_TREE); if (expr->expr_type == EXPR_NULL) { tmp = build_int_cst (TREE_TYPE (cm->backend_decl), 0); gfc_add_modify (&block, dest, tmp); tmp = build_int_cst (TREE_TYPE (strlen), 0); gfc_add_modify (&block, strlen, tmp); } else { tree size; gfc_init_se (&se, NULL); gfc_conv_expr (&se, expr); size = size_of_string_in_bytes (cm->ts.kind, se.string_length); tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MALLOC), 1, size); gfc_add_modify (&block, dest, fold_convert (TREE_TYPE (dest), tmp)); gfc_add_modify (&block, strlen, se.string_length); tmp = gfc_build_memcpy_call (dest, se.expr, size); gfc_add_expr_to_block (&block, tmp); } } else if (!cm->attr.artificial) { /* Scalar component (excluding deferred parameters). */ gfc_init_se (&se, NULL); gfc_init_se (&lse, NULL); gfc_conv_expr (&se, expr); if (cm->ts.type == BT_CHARACTER) lse.string_length = cm->ts.u.cl->backend_decl; lse.expr = dest; tmp = gfc_trans_scalar_assign (&lse, &se, cm->ts, false, false); gfc_add_expr_to_block (&block, tmp); } return gfc_finish_block (&block); } /* Assign a derived type constructor to a variable. */ tree gfc_trans_structure_assign (tree dest, gfc_expr * expr, bool init) { gfc_constructor *c; gfc_component *cm; stmtblock_t block; tree field; tree tmp; gfc_start_block (&block); cm = expr->ts.u.derived->components; if (expr->ts.u.derived->from_intmod == INTMOD_ISO_C_BINDING && (expr->ts.u.derived->intmod_sym_id == ISOCBINDING_PTR || expr->ts.u.derived->intmod_sym_id == ISOCBINDING_FUNPTR)) { gfc_se se, lse; gcc_assert (cm->backend_decl == NULL); gfc_init_se (&se, NULL); gfc_init_se (&lse, NULL); gfc_conv_expr (&se, gfc_constructor_first (expr->value.constructor)->expr); lse.expr = dest; gfc_add_modify (&block, lse.expr, fold_convert (TREE_TYPE (lse.expr), se.expr)); return gfc_finish_block (&block); } for (c = gfc_constructor_first (expr->value.constructor); c; c = gfc_constructor_next (c), cm = cm->next) { /* Skip absent members in default initializers. */ if (!c->expr && !cm->attr.allocatable) continue; field = cm->backend_decl; tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), dest, field, NULL_TREE); if (!c->expr) { gfc_expr *e = gfc_get_null_expr (NULL); tmp = gfc_trans_subcomponent_assign (tmp, cm, e, expr->ts.u.derived, init); gfc_free_expr (e); } else tmp = gfc_trans_subcomponent_assign (tmp, cm, c->expr, expr->ts.u.derived, init); gfc_add_expr_to_block (&block, tmp); } return gfc_finish_block (&block); } /* Build an expression for a constructor. If init is nonzero then this is part of a static variable initializer. */ void gfc_conv_structure (gfc_se * se, gfc_expr * expr, int init) { gfc_constructor *c; gfc_component *cm; tree val; tree type; tree tmp; vec *v = NULL; gcc_assert (se->ss == NULL); gcc_assert (expr->expr_type == EXPR_STRUCTURE); type = gfc_typenode_for_spec (&expr->ts); if (!init) { /* Create a temporary variable and fill it in. */ se->expr = gfc_create_var (type, expr->ts.u.derived->name); /* The symtree in expr is NULL, if the code to generate is for initializing the static members only. */ tmp = gfc_trans_structure_assign (se->expr, expr, expr->symtree != NULL); gfc_add_expr_to_block (&se->pre, tmp); return; } cm = expr->ts.u.derived->components; for (c = gfc_constructor_first (expr->value.constructor); c; c = gfc_constructor_next (c), cm = cm->next) { /* Skip absent members in default initializers and allocatable components. Although the latter have a default initializer of EXPR_NULL,... by default, the static nullify is not needed since this is done every time we come into scope. */ if (!c->expr || (cm->attr.allocatable && cm->attr.flavor != FL_PROCEDURE)) continue; if (cm->initializer && cm->initializer->expr_type != EXPR_NULL && strcmp (cm->name, "_extends") == 0 && cm->initializer->symtree) { tree vtab; gfc_symbol *vtabs; vtabs = cm->initializer->symtree->n.sym; vtab = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtabs)); vtab = unshare_expr_without_location (vtab); CONSTRUCTOR_APPEND_ELT (v, cm->backend_decl, vtab); } else if (cm->ts.u.derived && strcmp (cm->name, "_size") == 0) { val = TYPE_SIZE_UNIT (gfc_get_derived_type (cm->ts.u.derived)); CONSTRUCTOR_APPEND_ELT (v, cm->backend_decl, fold_convert (TREE_TYPE (cm->backend_decl), val)); } else if (cm->ts.type == BT_INTEGER && strcmp (cm->name, "_len") == 0) CONSTRUCTOR_APPEND_ELT (v, cm->backend_decl, fold_convert (TREE_TYPE (cm->backend_decl), integer_zero_node)); else { val = gfc_conv_initializer (c->expr, &cm->ts, TREE_TYPE (cm->backend_decl), cm->attr.dimension, cm->attr.pointer, cm->attr.proc_pointer); val = unshare_expr_without_location (val); /* Append it to the constructor list. */ CONSTRUCTOR_APPEND_ELT (v, cm->backend_decl, val); } } se->expr = build_constructor (type, v); if (init) TREE_CONSTANT (se->expr) = 1; } /* Translate a substring expression. */ static void gfc_conv_substring_expr (gfc_se * se, gfc_expr * expr) { gfc_ref *ref; ref = expr->ref; gcc_assert (ref == NULL || ref->type == REF_SUBSTRING); se->expr = gfc_build_wide_string_const (expr->ts.kind, expr->value.character.length, expr->value.character.string); se->string_length = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (se->expr))); TYPE_STRING_FLAG (TREE_TYPE (se->expr)) = 1; if (ref) gfc_conv_substring (se, ref, expr->ts.kind, NULL, &expr->where); } /* Entry point for expression translation. Evaluates a scalar quantity. EXPR is the expression to be translated, and SE is the state structure if called from within the scalarized. */ void gfc_conv_expr (gfc_se * se, gfc_expr * expr) { gfc_ss *ss; ss = se->ss; if (ss && ss->info->expr == expr && (ss->info->type == GFC_SS_SCALAR || ss->info->type == GFC_SS_REFERENCE)) { gfc_ss_info *ss_info; ss_info = ss->info; /* Substitute a scalar expression evaluated outside the scalarization loop. */ se->expr = ss_info->data.scalar.value; if (gfc_scalar_elemental_arg_saved_as_reference (ss_info)) se->expr = build_fold_indirect_ref_loc (input_location, se->expr); se->string_length = ss_info->string_length; gfc_advance_se_ss_chain (se); return; } /* We need to convert the expressions for the iso_c_binding derived types. C_NULL_PTR and C_NULL_FUNPTR will be made EXPR_NULL, which evaluates to null_pointer_node. C_PTR and C_FUNPTR are converted to match the typespec for the C_PTR and C_FUNPTR symbols, which has already been updated to be an integer with a kind equal to the size of a (void *). */ if (expr->ts.type == BT_DERIVED && expr->ts.u.derived->ts.f90_type == BT_VOID && expr->ts.u.derived->attr.is_bind_c) { if (expr->expr_type == EXPR_VARIABLE && (expr->symtree->n.sym->intmod_sym_id == ISOCBINDING_NULL_PTR || expr->symtree->n.sym->intmod_sym_id == ISOCBINDING_NULL_FUNPTR)) { /* Set expr_type to EXPR_NULL, which will result in null_pointer_node being used below. */ expr->expr_type = EXPR_NULL; } else { /* Update the type/kind of the expression to be what the new type/kind are for the updated symbols of C_PTR/C_FUNPTR. */ expr->ts.type = BT_INTEGER; expr->ts.f90_type = BT_VOID; expr->ts.kind = gfc_index_integer_kind; } } gfc_fix_class_refs (expr); switch (expr->expr_type) { case EXPR_OP: gfc_conv_expr_op (se, expr); break; case EXPR_FUNCTION: gfc_conv_function_expr (se, expr); break; case EXPR_CONSTANT: gfc_conv_constant (se, expr); break; case EXPR_VARIABLE: gfc_conv_variable (se, expr); break; case EXPR_NULL: se->expr = null_pointer_node; break; case EXPR_SUBSTRING: gfc_conv_substring_expr (se, expr); break; case EXPR_STRUCTURE: gfc_conv_structure (se, expr, 0); break; case EXPR_ARRAY: gfc_conv_array_constructor_expr (se, expr); break; default: gcc_unreachable (); break; } } /* Like gfc_conv_expr_val, but the value is also suitable for use in the lhs of an assignment. */ void gfc_conv_expr_lhs (gfc_se * se, gfc_expr * expr) { gfc_conv_expr (se, expr); /* All numeric lvalues should have empty post chains. If not we need to figure out a way of rewriting an lvalue so that it has no post chain. */ gcc_assert (expr->ts.type == BT_CHARACTER || !se->post.head); } /* Like gfc_conv_expr, but the POST block is guaranteed to be empty for numeric expressions. Used for scalar values where inserting cleanup code is inconvenient. */ void gfc_conv_expr_val (gfc_se * se, gfc_expr * expr) { tree val; gcc_assert (expr->ts.type != BT_CHARACTER); gfc_conv_expr (se, expr); if (se->post.head) { val = gfc_create_var (TREE_TYPE (se->expr), NULL); gfc_add_modify (&se->pre, val, se->expr); se->expr = val; gfc_add_block_to_block (&se->pre, &se->post); } } /* Helper to translate an expression and convert it to a particular type. */ void gfc_conv_expr_type (gfc_se * se, gfc_expr * expr, tree type) { gfc_conv_expr_val (se, expr); se->expr = convert (type, se->expr); } /* Converts an expression so that it can be passed by reference. Scalar values only. */ void gfc_conv_expr_reference (gfc_se * se, gfc_expr * expr) { gfc_ss *ss; tree var; ss = se->ss; if (ss && ss->info->expr == expr && ss->info->type == GFC_SS_REFERENCE) { /* Returns a reference to the scalar evaluated outside the loop for this case. */ gfc_conv_expr (se, expr); if (expr->ts.type == BT_CHARACTER && expr->expr_type != EXPR_FUNCTION) gfc_conv_string_parameter (se); else se->expr = gfc_build_addr_expr (NULL_TREE, se->expr); return; } if (expr->ts.type == BT_CHARACTER) { gfc_conv_expr (se, expr); gfc_conv_string_parameter (se); return; } if (expr->expr_type == EXPR_VARIABLE) { se->want_pointer = 1; gfc_conv_expr (se, expr); if (se->post.head) { var = gfc_create_var (TREE_TYPE (se->expr), NULL); gfc_add_modify (&se->pre, var, se->expr); gfc_add_block_to_block (&se->pre, &se->post); se->expr = var; } return; } if (expr->expr_type == EXPR_FUNCTION && ((expr->value.function.esym && expr->value.function.esym->result->attr.pointer && !expr->value.function.esym->result->attr.dimension) || (!expr->value.function.esym && !expr->ref && expr->symtree->n.sym->attr.pointer && !expr->symtree->n.sym->attr.dimension))) { se->want_pointer = 1; gfc_conv_expr (se, expr); var = gfc_create_var (TREE_TYPE (se->expr), NULL); gfc_add_modify (&se->pre, var, se->expr); se->expr = var; return; } gfc_conv_expr (se, expr); /* Create a temporary var to hold the value. */ if (TREE_CONSTANT (se->expr)) { tree tmp = se->expr; STRIP_TYPE_NOPS (tmp); var = build_decl (input_location, CONST_DECL, NULL, TREE_TYPE (tmp)); DECL_INITIAL (var) = tmp; TREE_STATIC (var) = 1; pushdecl (var); } else { var = gfc_create_var (TREE_TYPE (se->expr), NULL); gfc_add_modify (&se->pre, var, se->expr); } gfc_add_block_to_block (&se->pre, &se->post); /* Take the address of that value. */ se->expr = gfc_build_addr_expr (NULL_TREE, var); } tree gfc_trans_pointer_assign (gfc_code * code) { return gfc_trans_pointer_assignment (code->expr1, code->expr2); } /* Generate code for a pointer assignment. */ tree gfc_trans_pointer_assignment (gfc_expr * expr1, gfc_expr * expr2) { gfc_expr *expr1_vptr = NULL; gfc_se lse; gfc_se rse; stmtblock_t block; tree desc; tree tmp; tree decl; bool scalar; gfc_ss *ss; gfc_start_block (&block); gfc_init_se (&lse, NULL); /* Check whether the expression is a scalar or not; we cannot use expr1->rank as it can be nonzero for proc pointers. */ ss = gfc_walk_expr (expr1); scalar = ss == gfc_ss_terminator; if (!scalar) gfc_free_ss_chain (ss); if (expr1->ts.type == BT_DERIVED && expr2->ts.type == BT_CLASS && expr2->expr_type != EXPR_FUNCTION) { gfc_add_data_component (expr2); /* The following is required as gfc_add_data_component doesn't update ts.type if there is a tailing REF_ARRAY. */ expr2->ts.type = BT_DERIVED; } if (scalar) { /* Scalar pointers. */ lse.want_pointer = 1; gfc_conv_expr (&lse, expr1); gfc_init_se (&rse, NULL); rse.want_pointer = 1; gfc_conv_expr (&rse, expr2); if (expr1->symtree->n.sym->attr.proc_pointer && expr1->symtree->n.sym->attr.dummy) lse.expr = build_fold_indirect_ref_loc (input_location, lse.expr); if (expr2->symtree && expr2->symtree->n.sym->attr.proc_pointer && expr2->symtree->n.sym->attr.dummy) rse.expr = build_fold_indirect_ref_loc (input_location, rse.expr); gfc_add_block_to_block (&block, &lse.pre); gfc_add_block_to_block (&block, &rse.pre); /* For string assignments to unlimited polymorphic pointers add an assignment of the string_length to the _len component of the pointer. */ if ((expr1->ts.type == BT_CLASS || expr1->ts.type == BT_DERIVED) && expr1->ts.u.derived->attr.unlimited_polymorphic && (expr2->ts.type == BT_CHARACTER || ((expr2->ts.type == BT_DERIVED || expr2->ts.type == BT_CLASS) && expr2->ts.u.derived->attr.unlimited_polymorphic))) { gfc_expr *len_comp; gfc_se se; len_comp = gfc_get_len_component (expr1); gfc_init_se (&se, NULL); gfc_conv_expr (&se, len_comp); /* ptr % _len = len (str) */ gfc_add_modify (&block, se.expr, rse.string_length); lse.string_length = se.expr; gfc_free_expr (len_comp); } /* Check character lengths if character expression. The test is only really added if -fbounds-check is enabled. Exclude deferred character length lefthand sides. */ if (expr1->ts.type == BT_CHARACTER && expr2->expr_type != EXPR_NULL && !expr1->ts.deferred && !expr1->symtree->n.sym->attr.proc_pointer && !gfc_is_proc_ptr_comp (expr1)) { gcc_assert (expr2->ts.type == BT_CHARACTER); gcc_assert (lse.string_length && rse.string_length); gfc_trans_same_strlen_check ("pointer assignment", &expr1->where, lse.string_length, rse.string_length, &block); } /* The assignment to an deferred character length sets the string length to that of the rhs. */ if (expr1->ts.deferred) { if (expr2->expr_type != EXPR_NULL && lse.string_length != NULL) gfc_add_modify (&block, lse.string_length, rse.string_length); else if (lse.string_length != NULL) gfc_add_modify (&block, lse.string_length, build_int_cst (gfc_charlen_type_node, 0)); } if (expr1->ts.type == BT_DERIVED && expr2->ts.type == BT_CLASS) rse.expr = gfc_class_data_get (rse.expr); gfc_add_modify (&block, lse.expr, fold_convert (TREE_TYPE (lse.expr), rse.expr)); gfc_add_block_to_block (&block, &rse.post); gfc_add_block_to_block (&block, &lse.post); } else { gfc_ref* remap; bool rank_remap; tree strlen_lhs; tree strlen_rhs = NULL_TREE; /* Array pointer. Find the last reference on the LHS and if it is an array section ref, we're dealing with bounds remapping. In this case, set it to AR_FULL so that gfc_conv_expr_descriptor does not see it and process the bounds remapping afterwards explicitly. */ for (remap = expr1->ref; remap; remap = remap->next) if (!remap->next && remap->type == REF_ARRAY && remap->u.ar.type == AR_SECTION) break; rank_remap = (remap && remap->u.ar.end[0]); gfc_init_se (&lse, NULL); if (remap) lse.descriptor_only = 1; if (expr2->expr_type == EXPR_FUNCTION && expr2->ts.type == BT_CLASS && expr1->ts.type == BT_CLASS) expr1_vptr = gfc_copy_expr (expr1); gfc_conv_expr_descriptor (&lse, expr1); strlen_lhs = lse.string_length; desc = lse.expr; if (expr2->expr_type == EXPR_NULL) { /* Just set the data pointer to null. */ gfc_conv_descriptor_data_set (&lse.pre, lse.expr, null_pointer_node); } else if (rank_remap) { /* If we are rank-remapping, just get the RHS's descriptor and process this later on. */ gfc_init_se (&rse, NULL); rse.direct_byref = 1; rse.byref_noassign = 1; if (expr2->expr_type == EXPR_FUNCTION && expr2->ts.type == BT_CLASS) { gfc_conv_function_expr (&rse, expr2); if (expr1->ts.type != BT_CLASS) rse.expr = gfc_class_data_get (rse.expr); else { gfc_add_block_to_block (&block, &rse.pre); tmp = gfc_create_var (TREE_TYPE (rse.expr), "ptrtemp"); gfc_add_modify (&lse.pre, tmp, rse.expr); gfc_add_vptr_component (expr1_vptr); gfc_init_se (&rse, NULL); rse.want_pointer = 1; gfc_conv_expr (&rse, expr1_vptr); gfc_add_modify (&lse.pre, rse.expr, fold_convert (TREE_TYPE (rse.expr), gfc_class_vptr_get (tmp))); rse.expr = gfc_class_data_get (tmp); } } else if (expr2->expr_type == EXPR_FUNCTION) { tree bound[GFC_MAX_DIMENSIONS]; int i; for (i = 0; i < expr2->rank; i++) bound[i] = NULL_TREE; tmp = gfc_typenode_for_spec (&expr2->ts); tmp = gfc_get_array_type_bounds (tmp, expr2->rank, 0, bound, bound, 0, GFC_ARRAY_POINTER_CONT, false); tmp = gfc_create_var (tmp, "ptrtemp"); lse.descriptor_only = 0; lse.expr = tmp; lse.direct_byref = 1; gfc_conv_expr_descriptor (&lse, expr2); strlen_rhs = lse.string_length; rse.expr = tmp; } else { gfc_conv_expr_descriptor (&rse, expr2); strlen_rhs = rse.string_length; } } else if (expr2->expr_type == EXPR_VARIABLE) { /* Assign directly to the LHS's descriptor. */ lse.descriptor_only = 0; lse.direct_byref = 1; gfc_conv_expr_descriptor (&lse, expr2); strlen_rhs = lse.string_length; /* If this is a subreference array pointer assignment, use the rhs descriptor element size for the lhs span. */ if (expr1->symtree->n.sym->attr.subref_array_pointer) { decl = expr1->symtree->n.sym->backend_decl; gfc_init_se (&rse, NULL); rse.descriptor_only = 1; gfc_conv_expr (&rse, expr2); tmp = gfc_get_element_type (TREE_TYPE (rse.expr)); tmp = fold_convert (gfc_array_index_type, size_in_bytes (tmp)); if (!INTEGER_CST_P (tmp)) gfc_add_block_to_block (&lse.post, &rse.pre); gfc_add_modify (&lse.post, GFC_DECL_SPAN(decl), tmp); } } else if (expr2->expr_type == EXPR_FUNCTION && expr2->ts.type == BT_CLASS) { gfc_init_se (&rse, NULL); rse.want_pointer = 1; gfc_conv_function_expr (&rse, expr2); if (expr1->ts.type != BT_CLASS) { rse.expr = gfc_class_data_get (rse.expr); gfc_add_modify (&lse.pre, desc, rse.expr); } else { gfc_add_block_to_block (&block, &rse.pre); tmp = gfc_create_var (TREE_TYPE (rse.expr), "ptrtemp"); gfc_add_modify (&lse.pre, tmp, rse.expr); gfc_add_vptr_component (expr1_vptr); gfc_init_se (&rse, NULL); rse.want_pointer = 1; gfc_conv_expr (&rse, expr1_vptr); gfc_add_modify (&lse.pre, rse.expr, fold_convert (TREE_TYPE (rse.expr), gfc_class_vptr_get (tmp))); rse.expr = gfc_class_data_get (tmp); gfc_add_modify (&lse.pre, desc, rse.expr); } } else { /* Assign to a temporary descriptor and then copy that temporary to the pointer. */ tmp = gfc_create_var (TREE_TYPE (desc), "ptrtemp"); lse.descriptor_only = 0; lse.expr = tmp; lse.direct_byref = 1; gfc_conv_expr_descriptor (&lse, expr2); strlen_rhs = lse.string_length; gfc_add_modify (&lse.pre, desc, tmp); } if (expr1_vptr) gfc_free_expr (expr1_vptr); gfc_add_block_to_block (&block, &lse.pre); if (rank_remap) gfc_add_block_to_block (&block, &rse.pre); /* If we do bounds remapping, update LHS descriptor accordingly. */ if (remap) { int dim; gcc_assert (remap->u.ar.dimen == expr1->rank); if (rank_remap) { /* Do rank remapping. We already have the RHS's descriptor converted in rse and now have to build the correct LHS descriptor for it. */ tree dtype, data; tree offs, stride; tree lbound, ubound; /* Set dtype. */ dtype = gfc_conv_descriptor_dtype (desc); tmp = gfc_get_dtype (TREE_TYPE (desc)); gfc_add_modify (&block, dtype, tmp); /* Copy data pointer. */ data = gfc_conv_descriptor_data_get (rse.expr); gfc_conv_descriptor_data_set (&block, desc, data); /* Copy offset but adjust it such that it would correspond to a lbound of zero. */ offs = gfc_conv_descriptor_offset_get (rse.expr); for (dim = 0; dim < expr2->rank; ++dim) { stride = gfc_conv_descriptor_stride_get (rse.expr, gfc_rank_cst[dim]); lbound = gfc_conv_descriptor_lbound_get (rse.expr, gfc_rank_cst[dim]); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, stride, lbound); offs = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, offs, tmp); } gfc_conv_descriptor_offset_set (&block, desc, offs); /* Set the bounds as declared for the LHS and calculate strides as well as another offset update accordingly. */ stride = gfc_conv_descriptor_stride_get (rse.expr, gfc_rank_cst[0]); for (dim = 0; dim < expr1->rank; ++dim) { gfc_se lower_se; gfc_se upper_se; gcc_assert (remap->u.ar.start[dim] && remap->u.ar.end[dim]); /* Convert declared bounds. */ gfc_init_se (&lower_se, NULL); gfc_init_se (&upper_se, NULL); gfc_conv_expr (&lower_se, remap->u.ar.start[dim]); gfc_conv_expr (&upper_se, remap->u.ar.end[dim]); gfc_add_block_to_block (&block, &lower_se.pre); gfc_add_block_to_block (&block, &upper_se.pre); lbound = fold_convert (gfc_array_index_type, lower_se.expr); ubound = fold_convert (gfc_array_index_type, upper_se.expr); lbound = gfc_evaluate_now (lbound, &block); ubound = gfc_evaluate_now (ubound, &block); gfc_add_block_to_block (&block, &lower_se.post); gfc_add_block_to_block (&block, &upper_se.post); /* Set bounds in descriptor. */ gfc_conv_descriptor_lbound_set (&block, desc, gfc_rank_cst[dim], lbound); gfc_conv_descriptor_ubound_set (&block, desc, gfc_rank_cst[dim], ubound); /* Set stride. */ stride = gfc_evaluate_now (stride, &block); gfc_conv_descriptor_stride_set (&block, desc, gfc_rank_cst[dim], stride); /* Update offset. */ offs = gfc_conv_descriptor_offset_get (desc); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, lbound, stride); offs = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offs, tmp); offs = gfc_evaluate_now (offs, &block); gfc_conv_descriptor_offset_set (&block, desc, offs); /* Update stride. */ tmp = gfc_conv_array_extent_dim (lbound, ubound, NULL); stride = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, stride, tmp); } } else { /* Bounds remapping. Just shift the lower bounds. */ gcc_assert (expr1->rank == expr2->rank); for (dim = 0; dim < remap->u.ar.dimen; ++dim) { gfc_se lbound_se; gcc_assert (remap->u.ar.start[dim]); gcc_assert (!remap->u.ar.end[dim]); gfc_init_se (&lbound_se, NULL); gfc_conv_expr (&lbound_se, remap->u.ar.start[dim]); gfc_add_block_to_block (&block, &lbound_se.pre); gfc_conv_shift_descriptor_lbound (&block, desc, dim, lbound_se.expr); gfc_add_block_to_block (&block, &lbound_se.post); } } } /* Check string lengths if applicable. The check is only really added to the output code if -fbounds-check is enabled. */ if (expr1->ts.type == BT_CHARACTER && expr2->expr_type != EXPR_NULL) { gcc_assert (expr2->ts.type == BT_CHARACTER); gcc_assert (strlen_lhs && strlen_rhs); gfc_trans_same_strlen_check ("pointer assignment", &expr1->where, strlen_lhs, strlen_rhs, &block); } /* If rank remapping was done, check with -fcheck=bounds that the target is at least as large as the pointer. */ if (rank_remap && (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)) { tree lsize, rsize; tree fault; const char* msg; lsize = gfc_conv_descriptor_size (lse.expr, expr1->rank); rsize = gfc_conv_descriptor_size (rse.expr, expr2->rank); lsize = gfc_evaluate_now (lsize, &block); rsize = gfc_evaluate_now (rsize, &block); fault = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, rsize, lsize); msg = _("Target of rank remapping is too small (%ld < %ld)"); gfc_trans_runtime_check (true, false, fault, &block, &expr2->where, msg, rsize, lsize); } gfc_add_block_to_block (&block, &lse.post); if (rank_remap) gfc_add_block_to_block (&block, &rse.post); } return gfc_finish_block (&block); } /* Makes sure se is suitable for passing as a function string parameter. */ /* TODO: Need to check all callers of this function. It may be abused. */ void gfc_conv_string_parameter (gfc_se * se) { tree type; if (TREE_CODE (se->expr) == STRING_CST) { type = TREE_TYPE (TREE_TYPE (se->expr)); se->expr = gfc_build_addr_expr (build_pointer_type (type), se->expr); return; } if (TYPE_STRING_FLAG (TREE_TYPE (se->expr))) { if (TREE_CODE (se->expr) != INDIRECT_REF) { type = TREE_TYPE (se->expr); se->expr = gfc_build_addr_expr (build_pointer_type (type), se->expr); } else { type = gfc_get_character_type_len (gfc_default_character_kind, se->string_length); type = build_pointer_type (type); se->expr = gfc_build_addr_expr (type, se->expr); } } gcc_assert (POINTER_TYPE_P (TREE_TYPE (se->expr))); } /* Generate code for assignment of scalar variables. Includes character strings and derived types with allocatable components. If you know that the LHS has no allocations, set dealloc to false. DEEP_COPY has no effect if the typespec TS is not a derived type with allocatable components. Otherwise, if it is set, an explicit copy of each allocatable component is made. This is necessary as a simple copy of the whole object would copy array descriptors as is, so that the lhs's allocatable components would point to the rhs's after the assignment. Typically, setting DEEP_COPY is necessary if the rhs is a variable, and not necessary if the rhs is a non-pointer function, as the allocatable components are not accessible by other means than the function's result after the function has returned. It is even more subtle when temporaries are involved, as the two following examples show: 1. When we evaluate an array constructor, a temporary is created. Thus there is theoretically no alias possible. However, no deep copy is made for this temporary, so that if the constructor is made of one or more variable with allocatable components, those components still point to the variable's: DEEP_COPY should be set for the assignment from the temporary to the lhs in that case. 2. When assigning a scalar to an array, we evaluate the scalar value out of the loop, store it into a temporary variable, and assign from that. In that case, deep copying when assigning to the temporary would be a waste of resources; however deep copies should happen when assigning from the temporary to each array element: again DEEP_COPY should be set for the assignment from the temporary to the lhs. */ tree gfc_trans_scalar_assign (gfc_se * lse, gfc_se * rse, gfc_typespec ts, bool deep_copy, bool dealloc) { stmtblock_t block; tree tmp; tree cond; gfc_init_block (&block); if (ts.type == BT_CHARACTER) { tree rlen = NULL; tree llen = NULL; if (lse->string_length != NULL_TREE) { gfc_conv_string_parameter (lse); gfc_add_block_to_block (&block, &lse->pre); llen = lse->string_length; } if (rse->string_length != NULL_TREE) { gcc_assert (rse->string_length != NULL_TREE); gfc_conv_string_parameter (rse); gfc_add_block_to_block (&block, &rse->pre); rlen = rse->string_length; } gfc_trans_string_copy (&block, llen, lse->expr, ts.kind, rlen, rse->expr, ts.kind); } else if (ts.type == BT_DERIVED && ts.u.derived->attr.alloc_comp) { tree tmp_var = NULL_TREE; cond = NULL_TREE; /* Are the rhs and the lhs the same? */ if (deep_copy) { cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, gfc_build_addr_expr (NULL_TREE, lse->expr), gfc_build_addr_expr (NULL_TREE, rse->expr)); cond = gfc_evaluate_now (cond, &lse->pre); } /* Deallocate the lhs allocated components as long as it is not the same as the rhs. This must be done following the assignment to prevent deallocating data that could be used in the rhs expression. */ if (dealloc) { tmp_var = gfc_evaluate_now (lse->expr, &lse->pre); tmp = gfc_deallocate_alloc_comp_no_caf (ts.u.derived, tmp_var, 0); if (deep_copy) tmp = build3_v (COND_EXPR, cond, build_empty_stmt (input_location), tmp); gfc_add_expr_to_block (&lse->post, tmp); } gfc_add_block_to_block (&block, &rse->pre); gfc_add_block_to_block (&block, &lse->pre); gfc_add_modify (&block, lse->expr, fold_convert (TREE_TYPE (lse->expr), rse->expr)); /* Restore pointer address of coarray components. */ if (ts.u.derived->attr.coarray_comp && deep_copy && tmp_var != NULL_TREE) { tmp = gfc_reassign_alloc_comp_caf (ts.u.derived, tmp_var, lse->expr); tmp = build3_v (COND_EXPR, cond, build_empty_stmt (input_location), tmp); gfc_add_expr_to_block (&block, tmp); } /* Do a deep copy if the rhs is a variable, if it is not the same as the lhs. */ if (deep_copy) { tmp = gfc_copy_alloc_comp (ts.u.derived, rse->expr, lse->expr, 0); tmp = build3_v (COND_EXPR, cond, build_empty_stmt (input_location), tmp); gfc_add_expr_to_block (&block, tmp); } } else if (ts.type == BT_DERIVED || ts.type == BT_CLASS) { gfc_add_block_to_block (&block, &lse->pre); gfc_add_block_to_block (&block, &rse->pre); tmp = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, TREE_TYPE (lse->expr), rse->expr); gfc_add_modify (&block, lse->expr, tmp); } else { gfc_add_block_to_block (&block, &lse->pre); gfc_add_block_to_block (&block, &rse->pre); gfc_add_modify (&block, lse->expr, fold_convert (TREE_TYPE (lse->expr), rse->expr)); } gfc_add_block_to_block (&block, &lse->post); gfc_add_block_to_block (&block, &rse->post); return gfc_finish_block (&block); } /* There are quite a lot of restrictions on the optimisation in using an array function assign without a temporary. */ static bool arrayfunc_assign_needs_temporary (gfc_expr * expr1, gfc_expr * expr2) { gfc_ref * ref; bool seen_array_ref; bool c = false; gfc_symbol *sym = expr1->symtree->n.sym; /* Play it safe with class functions assigned to a derived type. */ if (gfc_is_alloc_class_array_function (expr2) && expr1->ts.type == BT_DERIVED) return true; /* The caller has already checked rank>0 and expr_type == EXPR_FUNCTION. */ if (expr2->value.function.isym && !gfc_is_intrinsic_libcall (expr2)) return true; /* Elemental functions are scalarized so that they don't need a temporary in gfc_trans_assignment_1, so return a true. Otherwise, they would need special treatment in gfc_trans_arrayfunc_assign. */ if (expr2->value.function.esym != NULL && expr2->value.function.esym->attr.elemental) return true; /* Need a temporary if rhs is not FULL or a contiguous section. */ if (expr1->ref && !(gfc_full_array_ref_p (expr1->ref, &c) || c)) return true; /* Need a temporary if EXPR1 can't be expressed as a descriptor. */ if (gfc_ref_needs_temporary_p (expr1->ref)) return true; /* Functions returning pointers or allocatables need temporaries. */ c = expr2->value.function.esym ? (expr2->value.function.esym->attr.pointer || expr2->value.function.esym->attr.allocatable) : (expr2->symtree->n.sym->attr.pointer || expr2->symtree->n.sym->attr.allocatable); if (c) return true; /* Character array functions need temporaries unless the character lengths are the same. */ if (expr2->ts.type == BT_CHARACTER && expr2->rank > 0) { if (expr1->ts.u.cl->length == NULL || expr1->ts.u.cl->length->expr_type != EXPR_CONSTANT) return true; if (expr2->ts.u.cl->length == NULL || expr2->ts.u.cl->length->expr_type != EXPR_CONSTANT) return true; if (mpz_cmp (expr1->ts.u.cl->length->value.integer, expr2->ts.u.cl->length->value.integer) != 0) return true; } /* Check that no LHS component references appear during an array reference. This is needed because we do not have the means to span any arbitrary stride with an array descriptor. This check is not needed for the rhs because the function result has to be a complete type. */ seen_array_ref = false; for (ref = expr1->ref; ref; ref = ref->next) { if (ref->type == REF_ARRAY) seen_array_ref= true; else if (ref->type == REF_COMPONENT && seen_array_ref) return true; } /* Check for a dependency. */ if (gfc_check_fncall_dependency (expr1, INTENT_OUT, expr2->value.function.esym, expr2->value.function.actual, NOT_ELEMENTAL)) return true; /* If we have reached here with an intrinsic function, we do not need a temporary except in the particular case that reallocation on assignment is active and the lhs is allocatable and a target. */ if (expr2->value.function.isym) return (flag_realloc_lhs && sym->attr.allocatable && sym->attr.target); /* If the LHS is a dummy, we need a temporary if it is not INTENT(OUT). */ if (sym->attr.dummy && sym->attr.intent != INTENT_OUT) return true; /* If the lhs has been host_associated, is in common, a pointer or is a target and the function is not using a RESULT variable, aliasing can occur and a temporary is needed. */ if ((sym->attr.host_assoc || sym->attr.in_common || sym->attr.pointer || sym->attr.cray_pointee || sym->attr.target) && expr2->symtree != NULL && expr2->symtree->n.sym == expr2->symtree->n.sym->result) return true; /* A PURE function can unconditionally be called without a temporary. */ if (expr2->value.function.esym != NULL && expr2->value.function.esym->attr.pure) return false; /* Implicit_pure functions are those which could legally be declared to be PURE. */ if (expr2->value.function.esym != NULL && expr2->value.function.esym->attr.implicit_pure) return false; if (!sym->attr.use_assoc && !sym->attr.in_common && !sym->attr.pointer && !sym->attr.target && !sym->attr.cray_pointee && expr2->value.function.esym) { /* A temporary is not needed if the function is not contained and the variable is local or host associated and not a pointer or a target. */ if (!expr2->value.function.esym->attr.contained) return false; /* A temporary is not needed if the lhs has never been host associated and the procedure is contained. */ else if (!sym->attr.host_assoc) return false; /* A temporary is not needed if the variable is local and not a pointer, a target or a result. */ if (sym->ns->parent && expr2->value.function.esym->ns == sym->ns->parent) return false; } /* Default to temporary use. */ return true; } /* Provide the loop info so that the lhs descriptor can be built for reallocatable assignments from extrinsic function calls. */ static void realloc_lhs_loop_for_fcn_call (gfc_se *se, locus *where, gfc_ss **ss, gfc_loopinfo *loop) { /* Signal that the function call should not be made by gfc_conv_loop_setup. */ se->ss->is_alloc_lhs = 1; gfc_init_loopinfo (loop); gfc_add_ss_to_loop (loop, *ss); gfc_add_ss_to_loop (loop, se->ss); gfc_conv_ss_startstride (loop); gfc_conv_loop_setup (loop, where); gfc_copy_loopinfo_to_se (se, loop); gfc_add_block_to_block (&se->pre, &loop->pre); gfc_add_block_to_block (&se->pre, &loop->post); se->ss->is_alloc_lhs = 0; } /* For assignment to a reallocatable lhs from intrinsic functions, replace the se.expr (ie. the result) with a temporary descriptor. Null the data field so that the library allocates space for the result. Free the data of the original descriptor after the function, in case it appears in an argument expression and transfer the result to the original descriptor. */ static void fcncall_realloc_result (gfc_se *se, int rank) { tree desc; tree res_desc; tree tmp; tree offset; tree zero_cond; int n; /* Use the allocation done by the library. Substitute the lhs descriptor with a copy, whose data field is nulled.*/ desc = build_fold_indirect_ref_loc (input_location, se->expr); if (POINTER_TYPE_P (TREE_TYPE (desc))) desc = build_fold_indirect_ref_loc (input_location, desc); /* Unallocated, the descriptor does not have a dtype. */ tmp = gfc_conv_descriptor_dtype (desc); gfc_add_modify (&se->pre, tmp, gfc_get_dtype (TREE_TYPE (desc))); res_desc = gfc_evaluate_now (desc, &se->pre); gfc_conv_descriptor_data_set (&se->pre, res_desc, null_pointer_node); se->expr = gfc_build_addr_expr (NULL_TREE, res_desc); /* Free the lhs after the function call and copy the result data to the lhs descriptor. */ tmp = gfc_conv_descriptor_data_get (desc); zero_cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, tmp, build_int_cst (TREE_TYPE (tmp), 0)); zero_cond = gfc_evaluate_now (zero_cond, &se->post); tmp = gfc_call_free (tmp); gfc_add_expr_to_block (&se->post, tmp); tmp = gfc_conv_descriptor_data_get (res_desc); gfc_conv_descriptor_data_set (&se->post, desc, tmp); /* Check that the shapes are the same between lhs and expression. */ for (n = 0 ; n < rank; n++) { tree tmp1; tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]); tmp1 = gfc_conv_descriptor_lbound_get (res_desc, gfc_rank_cst[n]); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp, tmp1); tmp1 = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]); tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, tmp, tmp1); tmp1 = gfc_conv_descriptor_ubound_get (res_desc, gfc_rank_cst[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, tmp1); tmp = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, tmp, gfc_index_zero_node); tmp = gfc_evaluate_now (tmp, &se->post); zero_cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, boolean_type_node, tmp, zero_cond); } /* 'zero_cond' being true is equal to lhs not being allocated or the shapes being different. */ zero_cond = gfc_evaluate_now (zero_cond, &se->post); /* Now reset the bounds returned from the function call to bounds based on the lhs lbounds, except where the lhs is not allocated or the shapes of 'variable and 'expr' are different. Set the offset accordingly. */ offset = gfc_index_zero_node; for (n = 0 ; n < rank; n++) { tree lbound; lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]); lbound = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, zero_cond, gfc_index_one_node, lbound); lbound = gfc_evaluate_now (lbound, &se->post); tmp = gfc_conv_descriptor_ubound_get (res_desc, gfc_rank_cst[n]); tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, tmp, lbound); gfc_conv_descriptor_lbound_set (&se->post, desc, gfc_rank_cst[n], lbound); gfc_conv_descriptor_ubound_set (&se->post, desc, gfc_rank_cst[n], tmp); /* Set stride and accumulate the offset. */ tmp = gfc_conv_descriptor_stride_get (res_desc, gfc_rank_cst[n]); gfc_conv_descriptor_stride_set (&se->post, desc, gfc_rank_cst[n], tmp); tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, lbound, tmp); offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, offset, tmp); offset = gfc_evaluate_now (offset, &se->post); } gfc_conv_descriptor_offset_set (&se->post, desc, offset); } /* Try to translate array(:) = func (...), where func is a transformational array function, without using a temporary. Returns NULL if this isn't the case. */ static tree gfc_trans_arrayfunc_assign (gfc_expr * expr1, gfc_expr * expr2) { gfc_se se; gfc_ss *ss = NULL; gfc_component *comp = NULL; gfc_loopinfo loop; if (arrayfunc_assign_needs_temporary (expr1, expr2)) return NULL; /* The frontend doesn't seem to bother filling in expr->symtree for intrinsic functions. */ comp = gfc_get_proc_ptr_comp (expr2); gcc_assert (expr2->value.function.isym || (comp && comp->attr.dimension) || (!comp && gfc_return_by_reference (expr2->value.function.esym) && expr2->value.function.esym->result->attr.dimension)); gfc_init_se (&se, NULL); gfc_start_block (&se.pre); se.want_pointer = 1; gfc_conv_array_parameter (&se, expr1, false, NULL, NULL, NULL); if (expr1->ts.type == BT_DERIVED && expr1->ts.u.derived->attr.alloc_comp) { tree tmp; tmp = gfc_deallocate_alloc_comp_no_caf (expr1->ts.u.derived, se.expr, expr1->rank); gfc_add_expr_to_block (&se.pre, tmp); } se.direct_byref = 1; se.ss = gfc_walk_expr (expr2); gcc_assert (se.ss != gfc_ss_terminator); /* Reallocate on assignment needs the loopinfo for extrinsic functions. This is signalled to gfc_conv_procedure_call by setting is_alloc_lhs. Clearly, this cannot be done for an allocatable function result, since the shape of the result is unknown and, in any case, the function must correctly take care of the reallocation internally. For intrinsic calls, the array data is freed and the library takes care of allocation. TODO: Add logic of trans-array.c: gfc_alloc_allocatable_for_assignment to the library. */ if (flag_realloc_lhs && gfc_is_reallocatable_lhs (expr1) && !gfc_expr_attr (expr1).codimension && !gfc_is_coindexed (expr1) && !(expr2->value.function.esym && expr2->value.function.esym->result->attr.allocatable)) { realloc_lhs_warning (expr1->ts.type, true, &expr1->where); if (!expr2->value.function.isym) { ss = gfc_walk_expr (expr1); gcc_assert (ss != gfc_ss_terminator); realloc_lhs_loop_for_fcn_call (&se, &expr1->where, &ss, &loop); ss->is_alloc_lhs = 1; } else fcncall_realloc_result (&se, expr1->rank); } gfc_conv_function_expr (&se, expr2); gfc_add_block_to_block (&se.pre, &se.post); if (ss) gfc_cleanup_loop (&loop); else gfc_free_ss_chain (se.ss); return gfc_finish_block (&se.pre); } /* Try to efficiently translate array(:) = 0. Return NULL if this can't be done. */ static tree gfc_trans_zero_assign (gfc_expr * expr) { tree dest, len, type; tree tmp; gfc_symbol *sym; sym = expr->symtree->n.sym; dest = gfc_get_symbol_decl (sym); type = TREE_TYPE (dest); if (POINTER_TYPE_P (type)) type = TREE_TYPE (type); if (!GFC_ARRAY_TYPE_P (type)) return NULL_TREE; /* Determine the length of the array. */ len = GFC_TYPE_ARRAY_SIZE (type); if (!len || TREE_CODE (len) != INTEGER_CST) return NULL_TREE; tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type)); len = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, len, fold_convert (gfc_array_index_type, tmp)); /* If we are zeroing a local array avoid taking its address by emitting a = {} instead. */ if (!POINTER_TYPE_P (TREE_TYPE (dest))) return build2_loc (input_location, MODIFY_EXPR, void_type_node, dest, build_constructor (TREE_TYPE (dest), NULL)); /* Convert arguments to the correct types. */ dest = fold_convert (pvoid_type_node, dest); len = fold_convert (size_type_node, len); /* Construct call to __builtin_memset. */ tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMSET), 3, dest, integer_zero_node, len); return fold_convert (void_type_node, tmp); } /* Helper for gfc_trans_array_copy and gfc_trans_array_constructor_copy that constructs the call to __builtin_memcpy. */ tree gfc_build_memcpy_call (tree dst, tree src, tree len) { tree tmp; /* Convert arguments to the correct types. */ if (!POINTER_TYPE_P (TREE_TYPE (dst))) dst = gfc_build_addr_expr (pvoid_type_node, dst); else dst = fold_convert (pvoid_type_node, dst); if (!POINTER_TYPE_P (TREE_TYPE (src))) src = gfc_build_addr_expr (pvoid_type_node, src); else src = fold_convert (pvoid_type_node, src); len = fold_convert (size_type_node, len); /* Construct call to __builtin_memcpy. */ tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MEMCPY), 3, dst, src, len); return fold_convert (void_type_node, tmp); } /* Try to efficiently translate dst(:) = src(:). Return NULL if this can't be done. EXPR1 is the destination/lhs and EXPR2 is the source/rhs, both are gfc_full_array_ref_p which have been checked for dependencies. */ static tree gfc_trans_array_copy (gfc_expr * expr1, gfc_expr * expr2) { tree dst, dlen, dtype; tree src, slen, stype; tree tmp; dst = gfc_get_symbol_decl (expr1->symtree->n.sym); src = gfc_get_symbol_decl (expr2->symtree->n.sym); dtype = TREE_TYPE (dst); if (POINTER_TYPE_P (dtype)) dtype = TREE_TYPE (dtype); stype = TREE_TYPE (src); if (POINTER_TYPE_P (stype)) stype = TREE_TYPE (stype); if (!GFC_ARRAY_TYPE_P (dtype) || !GFC_ARRAY_TYPE_P (stype)) return NULL_TREE; /* Determine the lengths of the arrays. */ dlen = GFC_TYPE_ARRAY_SIZE (dtype); if (!dlen || TREE_CODE (dlen) != INTEGER_CST) return NULL_TREE; tmp = TYPE_SIZE_UNIT (gfc_get_element_type (dtype)); dlen = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, dlen, fold_convert (gfc_array_index_type, tmp)); slen = GFC_TYPE_ARRAY_SIZE (stype); if (!slen || TREE_CODE (slen) != INTEGER_CST) return NULL_TREE; tmp = TYPE_SIZE_UNIT (gfc_get_element_type (stype)); slen = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, slen, fold_convert (gfc_array_index_type, tmp)); /* Sanity check that they are the same. This should always be the case, as we should already have checked for conformance. */ if (!tree_int_cst_equal (slen, dlen)) return NULL_TREE; return gfc_build_memcpy_call (dst, src, dlen); } /* Try to efficiently translate array(:) = (/ ... /). Return NULL if this can't be done. EXPR1 is the destination/lhs for which gfc_full_array_ref_p is true, and EXPR2 is the source/rhs. */ static tree gfc_trans_array_constructor_copy (gfc_expr * expr1, gfc_expr * expr2) { unsigned HOST_WIDE_INT nelem; tree dst, dtype; tree src, stype; tree len; tree tmp; nelem = gfc_constant_array_constructor_p (expr2->value.constructor); if (nelem == 0) return NULL_TREE; dst = gfc_get_symbol_decl (expr1->symtree->n.sym); dtype = TREE_TYPE (dst); if (POINTER_TYPE_P (dtype)) dtype = TREE_TYPE (dtype); if (!GFC_ARRAY_TYPE_P (dtype)) return NULL_TREE; /* Determine the lengths of the array. */ len = GFC_TYPE_ARRAY_SIZE (dtype); if (!len || TREE_CODE (len) != INTEGER_CST) return NULL_TREE; /* Confirm that the constructor is the same size. */ if (compare_tree_int (len, nelem) != 0) return NULL_TREE; tmp = TYPE_SIZE_UNIT (gfc_get_element_type (dtype)); len = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, len, fold_convert (gfc_array_index_type, tmp)); stype = gfc_typenode_for_spec (&expr2->ts); src = gfc_build_constant_array_constructor (expr2, stype); stype = TREE_TYPE (src); if (POINTER_TYPE_P (stype)) stype = TREE_TYPE (stype); return gfc_build_memcpy_call (dst, src, len); } /* Tells whether the expression is to be treated as a variable reference. */ static bool expr_is_variable (gfc_expr *expr) { gfc_expr *arg; gfc_component *comp; gfc_symbol *func_ifc; if (expr->expr_type == EXPR_VARIABLE) return true; arg = gfc_get_noncopying_intrinsic_argument (expr); if (arg) { gcc_assert (expr->value.function.isym->id == GFC_ISYM_TRANSPOSE); return expr_is_variable (arg); } /* A data-pointer-returning function should be considered as a variable too. */ if (expr->expr_type == EXPR_FUNCTION && expr->ref == NULL) { if (expr->value.function.isym != NULL) return false; if (expr->value.function.esym != NULL) { func_ifc = expr->value.function.esym; goto found_ifc; } else { gcc_assert (expr->symtree); func_ifc = expr->symtree->n.sym; goto found_ifc; } gcc_unreachable (); } comp = gfc_get_proc_ptr_comp (expr); if ((expr->expr_type == EXPR_PPC || expr->expr_type == EXPR_FUNCTION) && comp) { func_ifc = comp->ts.interface; goto found_ifc; } if (expr->expr_type == EXPR_COMPCALL) { gcc_assert (!expr->value.compcall.tbp->is_generic); func_ifc = expr->value.compcall.tbp->u.specific->n.sym; goto found_ifc; } return false; found_ifc: gcc_assert (func_ifc->attr.function && func_ifc->result != NULL); return func_ifc->result->attr.pointer; } /* Is the lhs OK for automatic reallocation? */ static bool is_scalar_reallocatable_lhs (gfc_expr *expr) { gfc_ref * ref; /* An allocatable variable with no reference. */ if (expr->symtree->n.sym->attr.allocatable && !expr->ref) return true; /* All that can be left are allocatable components. */ if ((expr->symtree->n.sym->ts.type != BT_DERIVED && expr->symtree->n.sym->ts.type != BT_CLASS) || !expr->symtree->n.sym->ts.u.derived->attr.alloc_comp) return false; /* Find an allocatable component ref last. */ for (ref = expr->ref; ref; ref = ref->next) if (ref->type == REF_COMPONENT && !ref->next && ref->u.c.component->attr.allocatable) return true; return false; } /* Allocate or reallocate scalar lhs, as necessary. */ static void alloc_scalar_allocatable_for_assignment (stmtblock_t *block, tree string_length, gfc_expr *expr1, gfc_expr *expr2) { tree cond; tree tmp; tree size; tree size_in_bytes; tree jump_label1; tree jump_label2; gfc_se lse; if (!expr1 || expr1->rank) return; if (!expr2 || expr2->rank) return; realloc_lhs_warning (expr2->ts.type, false, &expr2->where); /* Since this is a scalar lhs, we can afford to do this. That is, there is no risk of side effects being repeated. */ gfc_init_se (&lse, NULL); lse.want_pointer = 1; gfc_conv_expr (&lse, expr1); jump_label1 = gfc_build_label_decl (NULL_TREE); jump_label2 = gfc_build_label_decl (NULL_TREE); /* Do the allocation if the lhs is NULL. Otherwise go to label 1. */ tmp = build_int_cst (TREE_TYPE (lse.expr), 0); cond = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, lse.expr, tmp); tmp = build3_v (COND_EXPR, cond, build1_v (GOTO_EXPR, jump_label1), build_empty_stmt (input_location)); gfc_add_expr_to_block (block, tmp); if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) { /* Use the rhs string length and the lhs element size. */ size = string_length; tmp = TREE_TYPE (gfc_typenode_for_spec (&expr1->ts)); tmp = TYPE_SIZE_UNIT (tmp); size_in_bytes = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp), tmp, fold_convert (TREE_TYPE (tmp), size)); } else { /* Otherwise use the length in bytes of the rhs. */ size = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr1->ts)); size_in_bytes = size; } size_in_bytes = fold_build2_loc (input_location, MAX_EXPR, size_type_node, size_in_bytes, size_one_node); if (expr1->ts.type == BT_DERIVED && expr1->ts.u.derived->attr.alloc_comp) { tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_CALLOC), 2, build_one_cst (size_type_node), size_in_bytes); tmp = fold_convert (TREE_TYPE (lse.expr), tmp); gfc_add_modify (block, lse.expr, tmp); } else { tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_MALLOC), 1, size_in_bytes); tmp = fold_convert (TREE_TYPE (lse.expr), tmp); gfc_add_modify (block, lse.expr, tmp); } if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) { /* Deferred characters need checking for lhs and rhs string length. Other deferred parameter variables will have to come here too. */ tmp = build1_v (GOTO_EXPR, jump_label2); gfc_add_expr_to_block (block, tmp); } tmp = build1_v (LABEL_EXPR, jump_label1); gfc_add_expr_to_block (block, tmp); /* For a deferred length character, reallocate if lengths of lhs and rhs are different. */ if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) { cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, lse.string_length, size); /* Jump past the realloc if the lengths are the same. */ tmp = build3_v (COND_EXPR, cond, build1_v (GOTO_EXPR, jump_label2), build_empty_stmt (input_location)); gfc_add_expr_to_block (block, tmp); tmp = build_call_expr_loc (input_location, builtin_decl_explicit (BUILT_IN_REALLOC), 2, fold_convert (pvoid_type_node, lse.expr), size_in_bytes); tmp = fold_convert (TREE_TYPE (lse.expr), tmp); gfc_add_modify (block, lse.expr, tmp); tmp = build1_v (LABEL_EXPR, jump_label2); gfc_add_expr_to_block (block, tmp); /* Update the lhs character length. */ size = string_length; gfc_add_modify (block, lse.string_length, size); } } /* Check for assignments of the type a = a + 4 to make sure we do not check for reallocation unneccessarily. */ static bool is_runtime_conformable (gfc_expr *expr1, gfc_expr *expr2) { gfc_actual_arglist *a; gfc_expr *e1, *e2; switch (expr2->expr_type) { case EXPR_VARIABLE: return gfc_dep_compare_expr (expr1, expr2) == 0; case EXPR_FUNCTION: if (expr2->value.function.esym && expr2->value.function.esym->attr.elemental) { for (a = expr2->value.function.actual; a != NULL; a = a->next) { e1 = a->expr; if (e1 && e1->rank > 0 && !is_runtime_conformable (expr1, e1)) return false; } return true; } else if (expr2->value.function.isym && expr2->value.function.isym->elemental) { for (a = expr2->value.function.actual; a != NULL; a = a->next) { e1 = a->expr; if (e1 && e1->rank > 0 && !is_runtime_conformable (expr1, e1)) return false; } return true; } break; case EXPR_OP: switch (expr2->value.op.op) { case INTRINSIC_NOT: case INTRINSIC_UPLUS: case INTRINSIC_UMINUS: case INTRINSIC_PARENTHESES: return is_runtime_conformable (expr1, expr2->value.op.op1); case INTRINSIC_PLUS: case INTRINSIC_MINUS: case INTRINSIC_TIMES: case INTRINSIC_DIVIDE: case INTRINSIC_POWER: case INTRINSIC_AND: case INTRINSIC_OR: case INTRINSIC_EQV: case INTRINSIC_NEQV: case INTRINSIC_EQ: case INTRINSIC_NE: case INTRINSIC_GT: case INTRINSIC_GE: case INTRINSIC_LT: case INTRINSIC_LE: case INTRINSIC_EQ_OS: case INTRINSIC_NE_OS: case INTRINSIC_GT_OS: case INTRINSIC_GE_OS: case INTRINSIC_LT_OS: case INTRINSIC_LE_OS: e1 = expr2->value.op.op1; e2 = expr2->value.op.op2; if (e1->rank == 0 && e2->rank > 0) return is_runtime_conformable (expr1, e2); else if (e1->rank > 0 && e2->rank == 0) return is_runtime_conformable (expr1, e1); else if (e1->rank > 0 && e2->rank > 0) return is_runtime_conformable (expr1, e1) && is_runtime_conformable (expr1, e2); break; default: break; } break; default: break; } return false; } /* Subroutine of gfc_trans_assignment that actually scalarizes the assignment. EXPR1 is the destination/LHS and EXPR2 is the source/RHS. init_flag indicates initialization expressions and dealloc that no deallocate prior assignment is needed (if in doubt, set true). */ static tree gfc_trans_assignment_1 (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, bool dealloc) { gfc_se lse; gfc_se rse; gfc_ss *lss; gfc_ss *lss_section; gfc_ss *rss; gfc_loopinfo loop; tree tmp; stmtblock_t block; stmtblock_t body; bool l_is_temp; bool scalar_to_array; tree string_length; int n; /* Assignment of the form lhs = rhs. */ gfc_start_block (&block); gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); /* Walk the lhs. */ lss = gfc_walk_expr (expr1); if (gfc_is_reallocatable_lhs (expr1) && !(expr2->expr_type == EXPR_FUNCTION && expr2->value.function.isym != NULL)) lss->is_alloc_lhs = 1; rss = NULL; if ((expr1->ts.type == BT_DERIVED) && (gfc_is_alloc_class_array_function (expr2) || gfc_is_alloc_class_scalar_function (expr2))) expr2->must_finalize = 1; if (lss != gfc_ss_terminator) { /* The assignment needs scalarization. */ lss_section = lss; /* Find a non-scalar SS from the lhs. */ while (lss_section != gfc_ss_terminator && lss_section->info->type != GFC_SS_SECTION) lss_section = lss_section->next; gcc_assert (lss_section != gfc_ss_terminator); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); /* Walk the rhs. */ rss = gfc_walk_expr (expr2); if (rss == gfc_ss_terminator) /* The rhs is scalar. Add a ss for the expression. */ rss = gfc_get_scalar_ss (gfc_ss_terminator, expr2); /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, lss); gfc_add_ss_to_loop (&loop, rss); /* Calculate the bounds of the scalarization. */ gfc_conv_ss_startstride (&loop); /* Enable loop reversal. */ for (n = 0; n < GFC_MAX_DIMENSIONS; n++) loop.reverse[n] = GFC_ENABLE_REVERSE; /* Resolve any data dependencies in the statement. */ gfc_conv_resolve_dependencies (&loop, lss, rss); /* Setup the scalarizing loops. */ gfc_conv_loop_setup (&loop, &expr2->where); /* Setup the gfc_se structures. */ gfc_copy_loopinfo_to_se (&lse, &loop); gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = rss; gfc_mark_ss_chain_used (rss, 1); if (loop.temp_ss == NULL) { lse.ss = lss; gfc_mark_ss_chain_used (lss, 1); } else { lse.ss = loop.temp_ss; gfc_mark_ss_chain_used (lss, 3); gfc_mark_ss_chain_used (loop.temp_ss, 3); } /* Allow the scalarizer to workshare array assignments. */ if ((ompws_flags & OMPWS_WORKSHARE_FLAG) && loop.temp_ss == NULL) ompws_flags |= OMPWS_SCALARIZER_WS; /* Start the scalarized loop body. */ gfc_start_scalarized_body (&loop, &body); } else gfc_init_block (&body); l_is_temp = (lss != gfc_ss_terminator && loop.temp_ss != NULL); /* Translate the expression. */ gfc_conv_expr (&rse, expr2); /* Deal with the case of a scalar class function assigned to a derived type. */ if (gfc_is_alloc_class_scalar_function (expr2) && expr1->ts.type == BT_DERIVED) { rse.expr = gfc_class_data_get (rse.expr); rse.expr = build_fold_indirect_ref_loc (input_location, rse.expr); } /* Stabilize a string length for temporaries. */ if (expr2->ts.type == BT_CHARACTER) string_length = gfc_evaluate_now (rse.string_length, &rse.pre); else string_length = NULL_TREE; if (l_is_temp) { gfc_conv_tmp_array_ref (&lse); if (expr2->ts.type == BT_CHARACTER) lse.string_length = string_length; } else gfc_conv_expr (&lse, expr1); /* Assignments of scalar derived types with allocatable components to arrays must be done with a deep copy and the rhs temporary must have its components deallocated afterwards. */ scalar_to_array = (expr2->ts.type == BT_DERIVED && expr2->ts.u.derived->attr.alloc_comp && !expr_is_variable (expr2) && expr1->rank && !expr2->rank); scalar_to_array |= (expr1->ts.type == BT_DERIVED && expr1->rank && expr1->ts.u.derived->attr.alloc_comp && gfc_is_alloc_class_scalar_function (expr2)); if (scalar_to_array && dealloc) { tmp = gfc_deallocate_alloc_comp_no_caf (expr2->ts.u.derived, rse.expr, 0); gfc_prepend_expr_to_block (&loop.post, tmp); } /* When assigning a character function result to a deferred-length variable, the function call must happen before the (re)allocation of the lhs - otherwise the character length of the result is not known. NOTE: This relies on having the exact dependence of the length type parameter available to the caller; gfortran saves it in the .mod files. */ if (flag_realloc_lhs && expr2->ts.type == BT_CHARACTER && expr1->ts.deferred) gfc_add_block_to_block (&block, &rse.pre); /* Nullify the allocatable components corresponding to those of the lhs derived type, so that the finalization of the function result does not affect the lhs of the assignment. Prepend is used to ensure that the nullification occurs before the call to the finalizer. In the case of a scalar to array assignment, this is done in gfc_trans_scalar_assign as part of the deep copy. */ if (!scalar_to_array && (expr1->ts.type == BT_DERIVED) && (gfc_is_alloc_class_array_function (expr2) || gfc_is_alloc_class_scalar_function (expr2))) { tmp = rse.expr; tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, rse.expr, 0); gfc_prepend_expr_to_block (&rse.post, tmp); if (lss != gfc_ss_terminator && rss == gfc_ss_terminator) gfc_add_block_to_block (&loop.post, &rse.post); } tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts, expr_is_variable (expr2) || scalar_to_array || expr2->expr_type == EXPR_ARRAY, !(l_is_temp || init_flag) && dealloc); gfc_add_expr_to_block (&body, tmp); if (lss == gfc_ss_terminator) { /* F2003: Add the code for reallocation on assignment. */ if (flag_realloc_lhs && is_scalar_reallocatable_lhs (expr1)) alloc_scalar_allocatable_for_assignment (&block, string_length, expr1, expr2); /* Use the scalar assignment as is. */ gfc_add_block_to_block (&block, &body); } else { gcc_assert (lse.ss == gfc_ss_terminator && rse.ss == gfc_ss_terminator); if (l_is_temp) { gfc_trans_scalarized_loop_boundary (&loop, &body); /* We need to copy the temporary to the actual lhs. */ gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); gfc_copy_loopinfo_to_se (&lse, &loop); gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = loop.temp_ss; lse.ss = lss; gfc_conv_tmp_array_ref (&rse); gfc_conv_expr (&lse, expr1); gcc_assert (lse.ss == gfc_ss_terminator && rse.ss == gfc_ss_terminator); if (expr2->ts.type == BT_CHARACTER) rse.string_length = string_length; tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts, false, dealloc); gfc_add_expr_to_block (&body, tmp); } /* F2003: Allocate or reallocate lhs of allocatable array. */ if (flag_realloc_lhs && gfc_is_reallocatable_lhs (expr1) && !gfc_expr_attr (expr1).codimension && !gfc_is_coindexed (expr1) && expr2->rank && !is_runtime_conformable (expr1, expr2)) { realloc_lhs_warning (expr1->ts.type, true, &expr1->where); ompws_flags &= ~OMPWS_SCALARIZER_WS; tmp = gfc_alloc_allocatable_for_assignment (&loop, expr1, expr2); if (tmp != NULL_TREE) gfc_add_expr_to_block (&loop.code[expr1->rank - 1], tmp); } /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop, &body); /* Wrap the whole thing up. */ gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); gfc_cleanup_loop (&loop); } return gfc_finish_block (&block); } /* Check whether EXPR is a copyable array. */ static bool copyable_array_p (gfc_expr * expr) { if (expr->expr_type != EXPR_VARIABLE) return false; /* First check it's an array. */ if (expr->rank < 1 || !expr->ref || expr->ref->next) return false; if (!gfc_full_array_ref_p (expr->ref, NULL)) return false; /* Next check that it's of a simple enough type. */ switch (expr->ts.type) { case BT_INTEGER: case BT_REAL: case BT_COMPLEX: case BT_LOGICAL: return true; case BT_CHARACTER: return false; case BT_DERIVED: return !expr->ts.u.derived->attr.alloc_comp; default: break; } return false; } /* Translate an assignment. */ tree gfc_trans_assignment (gfc_expr * expr1, gfc_expr * expr2, bool init_flag, bool dealloc) { tree tmp; /* Special case a single function returning an array. */ if (expr2->expr_type == EXPR_FUNCTION && expr2->rank > 0) { tmp = gfc_trans_arrayfunc_assign (expr1, expr2); if (tmp) return tmp; } /* Special case assigning an array to zero. */ if (copyable_array_p (expr1) && is_zero_initializer_p (expr2)) { tmp = gfc_trans_zero_assign (expr1); if (tmp) return tmp; } /* Special case copying one array to another. */ if (copyable_array_p (expr1) && copyable_array_p (expr2) && gfc_compare_types (&expr1->ts, &expr2->ts) && !gfc_check_dependency (expr1, expr2, 0)) { tmp = gfc_trans_array_copy (expr1, expr2); if (tmp) return tmp; } /* Special case initializing an array from a constant array constructor. */ if (copyable_array_p (expr1) && expr2->expr_type == EXPR_ARRAY && gfc_compare_types (&expr1->ts, &expr2->ts)) { tmp = gfc_trans_array_constructor_copy (expr1, expr2); if (tmp) return tmp; } /* Fallback to the scalarizer to generate explicit loops. */ return gfc_trans_assignment_1 (expr1, expr2, init_flag, dealloc); } tree gfc_trans_init_assign (gfc_code * code) { return gfc_trans_assignment (code->expr1, code->expr2, true, false); } tree gfc_trans_assign (gfc_code * code) { return gfc_trans_assignment (code->expr1, code->expr2, false, true); }