/* Generate from machine description: - prototype declarations for operand predicates (tm-preds.h) - function definitions of operand predicates, if defined new-style (insn-preds.c) Copyright (C) 2001-2015 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "bconfig.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "errors.h" #include "obstack.h" #include "read-md.h" #include "gensupport.h" static char general_mem[] = { TARGET_MEM_CONSTRAINT, 0 }; /* Given a predicate expression EXP, from form NAME at location LOC, verify that it does not contain any RTL constructs which are not valid in predicate definitions. Returns true if EXP is INvalid; issues error messages, caller need not. */ static bool validate_exp (rtx exp, const char *name, file_location loc) { if (exp == 0) { message_at (loc, "%s: must give a predicate expression", name); return true; } switch (GET_CODE (exp)) { /* Ternary, binary, unary expressions: recurse into subexpressions. */ case IF_THEN_ELSE: if (validate_exp (XEXP (exp, 2), name, loc)) return true; /* else fall through */ case AND: case IOR: if (validate_exp (XEXP (exp, 1), name, loc)) return true; /* else fall through */ case NOT: return validate_exp (XEXP (exp, 0), name, loc); /* MATCH_CODE might have a syntax error in its path expression. */ case MATCH_CODE: { const char *p; for (p = XSTR (exp, 1); *p; p++) { if (!ISDIGIT (*p) && !ISLOWER (*p)) { error_at (loc, "%s: invalid character in path " "string '%s'", name, XSTR (exp, 1)); return true; } } } /* fall through */ /* These need no special checking. */ case MATCH_OPERAND: case MATCH_TEST: return false; default: error_at (loc, "%s: cannot use '%s' in a predicate expression", name, GET_RTX_NAME (GET_CODE (exp))); return true; } } /* Predicates are defined with (define_predicate) or (define_special_predicate) expressions in the machine description. */ static void process_define_predicate (md_rtx_info *info) { validate_exp (XEXP (info->def, 1), XSTR (info->def, 0), info->loc); } /* Given a predicate, if it has an embedded C block, write the block out as a static inline subroutine, and augment the RTL test with a match_test that calls that subroutine. For instance, (define_predicate "basereg_operand" (match_operand 0 "register_operand") { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return REG_POINTER (op); }) becomes static inline int basereg_operand_1(rtx op, machine_mode mode) { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return REG_POINTER (op); } (define_predicate "basereg_operand" (and (match_operand 0 "register_operand") (match_test "basereg_operand_1 (op, mode)"))) The only wart is that there's no way to insist on a { } string in an RTL template, so we have to handle "" strings. */ static void write_predicate_subfunction (struct pred_data *p) { const char *match_test_str; rtx match_test_exp, and_exp; if (p->c_block[0] == '\0') return; /* Construct the function-call expression. */ obstack_grow (rtl_obstack, p->name, strlen (p->name)); obstack_grow (rtl_obstack, "_1 (op, mode)", sizeof "_1 (op, mode)"); match_test_str = XOBFINISH (rtl_obstack, const char *); /* Add the function-call expression to the complete expression to be evaluated. */ match_test_exp = rtx_alloc (MATCH_TEST); XSTR (match_test_exp, 0) = match_test_str; and_exp = rtx_alloc (AND); XEXP (and_exp, 0) = p->exp; XEXP (and_exp, 1) = match_test_exp; p->exp = and_exp; printf ("static inline int\n" "%s_1 (rtx op, machine_mode mode ATTRIBUTE_UNUSED)\n", p->name); print_md_ptr_loc (p->c_block); if (p->c_block[0] == '{') fputs (p->c_block, stdout); else printf ("{\n %s\n}", p->c_block); fputs ("\n\n", stdout); } /* Given a predicate expression EXP, from form NAME, determine whether it refers to the variable given as VAR. */ static bool needs_variable (rtx exp, const char *var) { switch (GET_CODE (exp)) { /* Ternary, binary, unary expressions need a variable if any of their subexpressions do. */ case IF_THEN_ELSE: if (needs_variable (XEXP (exp, 2), var)) return true; /* else fall through */ case AND: case IOR: if (needs_variable (XEXP (exp, 1), var)) return true; /* else fall through */ case NOT: return needs_variable (XEXP (exp, 0), var); /* MATCH_CODE uses "op", but nothing else. */ case MATCH_CODE: return !strcmp (var, "op"); /* MATCH_OPERAND uses "op" and may use "mode". */ case MATCH_OPERAND: if (!strcmp (var, "op")) return true; if (!strcmp (var, "mode") && GET_MODE (exp) == VOIDmode) return true; return false; /* MATCH_TEST uses var if XSTR (exp, 0) =~ /\b${var}\b/o; */ case MATCH_TEST: { const char *p = XSTR (exp, 0); const char *q = strstr (p, var); if (!q) return false; if (q != p && (ISALNUM (q[-1]) || q[-1] == '_')) return false; q += strlen (var); if (ISALNUM (q[0]) || q[0] == '_') return false; } return true; default: gcc_unreachable (); } } /* Given an RTL expression EXP, find all subexpressions which we may assume to perform mode tests. Normal MATCH_OPERAND does; MATCH_CODE doesn't as such (although certain codes always have VOIDmode); and we have to assume that MATCH_TEST does not. These combine in almost-boolean fashion - the only exception is that (not X) must be assumed not to perform a mode test, whether or not X does. The mark is the RTL /v flag, which is true for subexpressions which do *not* perform mode tests. */ #define NO_MODE_TEST(EXP) RTX_FLAG (EXP, volatil) static void mark_mode_tests (rtx exp) { switch (GET_CODE (exp)) { case MATCH_OPERAND: { struct pred_data *p = lookup_predicate (XSTR (exp, 1)); if (!p) error ("reference to undefined predicate '%s'", XSTR (exp, 1)); else if (p->special || GET_MODE (exp) != VOIDmode) NO_MODE_TEST (exp) = 1; } break; case MATCH_CODE: NO_MODE_TEST (exp) = 1; break; case MATCH_TEST: case NOT: NO_MODE_TEST (exp) = 1; break; case AND: mark_mode_tests (XEXP (exp, 0)); mark_mode_tests (XEXP (exp, 1)); NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0)) && NO_MODE_TEST (XEXP (exp, 1))); break; case IOR: mark_mode_tests (XEXP (exp, 0)); mark_mode_tests (XEXP (exp, 1)); NO_MODE_TEST (exp) = (NO_MODE_TEST (XEXP (exp, 0)) || NO_MODE_TEST (XEXP (exp, 1))); break; case IF_THEN_ELSE: /* A ? B : C does a mode test if (one of A and B) does a mode test, and C does too. */ mark_mode_tests (XEXP (exp, 0)); mark_mode_tests (XEXP (exp, 1)); mark_mode_tests (XEXP (exp, 2)); NO_MODE_TEST (exp) = ((NO_MODE_TEST (XEXP (exp, 0)) && NO_MODE_TEST (XEXP (exp, 1))) || NO_MODE_TEST (XEXP (exp, 2))); break; default: gcc_unreachable (); } } /* Determine whether the expression EXP is a MATCH_CODE that should be written as a switch statement. */ static bool generate_switch_p (rtx exp) { return GET_CODE (exp) == MATCH_CODE && strchr (XSTR (exp, 0), ','); } /* Given a predicate, work out where in its RTL expression to add tests for proper modes. Special predicates do not get any such tests. We try to avoid adding tests when we don't have to; in particular, other normal predicates can be counted on to do it for us. */ static void add_mode_tests (struct pred_data *p) { rtx match_test_exp, and_exp; rtx *pos; /* Don't touch special predicates. */ if (p->special) return; /* Check whether the predicate accepts const scalar ints (which always have a stored mode of VOIDmode, but logically have a real mode) and whether it matches anything besides const scalar ints. */ bool matches_const_scalar_int_p = false; bool matches_other_p = false; for (int i = 0; i < NUM_RTX_CODE; ++i) if (p->codes[i]) switch (i) { case CONST_INT: case CONST_WIDE_INT: /* Special handling for (VOIDmode) LABEL_REFs. */ case LABEL_REF: matches_const_scalar_int_p = true; break; case CONST_DOUBLE: if (!TARGET_SUPPORTS_WIDE_INT) matches_const_scalar_int_p = true; matches_other_p = true; break; default: matches_other_p = true; break; } /* There's no need for a mode check if the predicate only accepts constant integers. The code checks in the predicate are enough to establish that the mode is VOIDmode. Note that the predicate itself should check whether a scalar integer is in range of the given mode. */ if (!matches_other_p) return; mark_mode_tests (p->exp); /* If the whole expression already tests the mode, we're done. */ if (!NO_MODE_TEST (p->exp)) return; match_test_exp = rtx_alloc (MATCH_TEST); if (matches_const_scalar_int_p) XSTR (match_test_exp, 0) = ("mode == VOIDmode || GET_MODE (op) == mode" " || GET_MODE (op) == VOIDmode"); else XSTR (match_test_exp, 0) = "mode == VOIDmode || GET_MODE (op) == mode"; and_exp = rtx_alloc (AND); XEXP (and_exp, 1) = match_test_exp; /* It is always correct to rewrite p->exp as (and (...) (match_test "mode == VOIDmode || GET_MODE (op) == mode")) but there are a couple forms where we can do better. If the top-level pattern is an IOR, and one of the two branches does test the mode, we can wrap just the branch that doesn't. Likewise, if we have an IF_THEN_ELSE, and one side of it tests the mode, we can wrap just the side that doesn't. And, of course, we can repeat this descent as many times as it works. */ pos = &p->exp; for (;;) { rtx subexp = *pos; switch (GET_CODE (subexp)) { case AND: /* The switch code generation in write_predicate_stmts prefers rtx code tests to be at the top of the expression tree. So push this AND down into the second operand of an existing AND expression. */ if (generate_switch_p (XEXP (subexp, 0))) pos = &XEXP (subexp, 1); goto break_loop; case IOR: { int test0 = NO_MODE_TEST (XEXP (subexp, 0)); int test1 = NO_MODE_TEST (XEXP (subexp, 1)); gcc_assert (test0 || test1); if (test0 && test1) goto break_loop; pos = test0 ? &XEXP (subexp, 0) : &XEXP (subexp, 1); } break; case IF_THEN_ELSE: { int test0 = NO_MODE_TEST (XEXP (subexp, 0)); int test1 = NO_MODE_TEST (XEXP (subexp, 1)); int test2 = NO_MODE_TEST (XEXP (subexp, 2)); gcc_assert ((test0 && test1) || test2); if (test0 && test1 && test2) goto break_loop; if (test0 && test1) /* Must put it on the dependent clause, not the controlling expression, or we change the meaning of the test. */ pos = &XEXP (subexp, 1); else pos = &XEXP (subexp, 2); } break; default: goto break_loop; } } break_loop: XEXP (and_exp, 0) = *pos; *pos = and_exp; } /* PATH is a string describing a path from the root of an RTL expression to an inner subexpression to be tested. Output code which computes the subexpression from the variable holding the root of the expression. */ static void write_extract_subexp (const char *path) { int len = strlen (path); int i; /* We first write out the operations (XEXP or XVECEXP) in reverse order, then write "op", then the indices in forward order. */ for (i = len - 1; i >= 0; i--) { if (ISLOWER (path[i])) fputs ("XVECEXP (", stdout); else if (ISDIGIT (path[i])) fputs ("XEXP (", stdout); else gcc_unreachable (); } fputs ("op", stdout); for (i = 0; i < len; i++) { if (ISLOWER (path[i])) printf (", 0, %d)", path[i] - 'a'); else if (ISDIGIT (path[i])) printf (", %d)", path[i] - '0'); else gcc_unreachable (); } } /* CODES is a list of RTX codes. Write out an expression which determines whether the operand has one of those codes. */ static void write_match_code (const char *path, const char *codes) { const char *code; while ((code = scan_comma_elt (&codes)) != 0) { fputs ("GET_CODE (", stdout); write_extract_subexp (path); fputs (") == ", stdout); while (code < codes) { putchar (TOUPPER (*code)); code++; } if (*codes == ',') fputs (" || ", stdout); } } /* EXP is an RTL (sub)expression for a predicate. Recursively descend the expression and write out an equivalent C expression. */ static void write_predicate_expr (rtx exp) { switch (GET_CODE (exp)) { case AND: putchar ('('); write_predicate_expr (XEXP (exp, 0)); fputs (") && (", stdout); write_predicate_expr (XEXP (exp, 1)); putchar (')'); break; case IOR: putchar ('('); write_predicate_expr (XEXP (exp, 0)); fputs (") || (", stdout); write_predicate_expr (XEXP (exp, 1)); putchar (')'); break; case NOT: fputs ("!(", stdout); write_predicate_expr (XEXP (exp, 0)); putchar (')'); break; case IF_THEN_ELSE: putchar ('('); write_predicate_expr (XEXP (exp, 0)); fputs (") ? (", stdout); write_predicate_expr (XEXP (exp, 1)); fputs (") : (", stdout); write_predicate_expr (XEXP (exp, 2)); putchar (')'); break; case MATCH_OPERAND: if (GET_MODE (exp) == VOIDmode) printf ("%s (op, mode)", XSTR (exp, 1)); else printf ("%s (op, %smode)", XSTR (exp, 1), mode_name[GET_MODE (exp)]); break; case MATCH_CODE: write_match_code (XSTR (exp, 1), XSTR (exp, 0)); break; case MATCH_TEST: print_c_condition (XSTR (exp, 0)); break; default: gcc_unreachable (); } } /* Write the MATCH_CODE expression EXP as a switch statement. */ static void write_match_code_switch (rtx exp) { const char *codes = XSTR (exp, 0); const char *path = XSTR (exp, 1); const char *code; fputs (" switch (GET_CODE (", stdout); write_extract_subexp (path); fputs ("))\n {\n", stdout); while ((code = scan_comma_elt (&codes)) != 0) { fputs (" case ", stdout); while (code < codes) { putchar (TOUPPER (*code)); code++; } fputs (":\n", stdout); } } /* Given a predicate expression EXP, write out a sequence of stmts to evaluate it. This is similar to write_predicate_expr but can generate efficient switch statements. */ static void write_predicate_stmts (rtx exp) { switch (GET_CODE (exp)) { case MATCH_CODE: if (generate_switch_p (exp)) { write_match_code_switch (exp); puts (" return true;\n" " default:\n" " break;\n" " }\n" " return false;"); return; } break; case AND: if (generate_switch_p (XEXP (exp, 0))) { write_match_code_switch (XEXP (exp, 0)); puts (" break;\n" " default:\n" " return false;\n" " }"); exp = XEXP (exp, 1); } break; case IOR: if (generate_switch_p (XEXP (exp, 0))) { write_match_code_switch (XEXP (exp, 0)); puts (" return true;\n" " default:\n" " break;\n" " }"); exp = XEXP (exp, 1); } break; case NOT: if (generate_switch_p (XEXP (exp, 0))) { write_match_code_switch (XEXP (exp, 0)); puts (" return false;\n" " default:\n" " break;\n" " }\n" " return true;"); return; } break; default: break; } fputs (" return ",stdout); write_predicate_expr (exp); fputs (";\n", stdout); } /* Given a predicate, write out a complete C function to compute it. */ static void write_one_predicate_function (struct pred_data *p) { if (!p->exp) return; write_predicate_subfunction (p); add_mode_tests (p); /* A normal predicate can legitimately not look at machine_mode if it accepts only CONST_INTs and/or CONST_WIDE_INT and/or CONST_DOUBLEs. */ printf ("int\n%s (rtx op, machine_mode mode ATTRIBUTE_UNUSED)\n{\n", p->name); write_predicate_stmts (p->exp); fputs ("}\n\n", stdout); } /* Constraints fall into two categories: register constraints (define_register_constraint), and others (define_constraint, define_memory_constraint, define_address_constraint). We work out automatically which of the various old-style macros they correspond to, and produce appropriate code. They all go in the same hash table so we can verify that there are no duplicate names. */ /* All data from one constraint definition. */ struct constraint_data { struct constraint_data *next_this_letter; struct constraint_data *next_textual; const char *name; const char *c_name; /* same as .name unless mangling is necessary */ file_location loc; /* location of definition */ size_t namelen; const char *regclass; /* for register constraints */ rtx exp; /* for other constraints */ unsigned int is_register : 1; unsigned int is_const_int : 1; unsigned int is_const_dbl : 1; unsigned int is_extra : 1; unsigned int is_memory : 1; unsigned int is_address : 1; unsigned int maybe_allows_reg : 1; unsigned int maybe_allows_mem : 1; }; /* Overview of all constraints beginning with a given letter. */ static struct constraint_data * constraints_by_letter_table[1<next_textual) /* Contraint letters that have a special meaning and that cannot be used in define*_constraints. */ static const char generic_constraint_letters[] = "g"; /* Machine-independent code expects that constraints with these (initial) letters will allow only (a subset of all) CONST_INTs. */ static const char const_int_constraints[] = "IJKLMNOP"; /* Machine-independent code expects that constraints with these (initial) letters will allow only (a subset of all) CONST_DOUBLEs. */ static const char const_dbl_constraints[] = "GH"; /* Summary data used to decide whether to output various functions and macro definitions. */ static unsigned int constraint_max_namelen; static bool have_register_constraints; static bool have_memory_constraints; static bool have_address_constraints; static bool have_extra_constraints; static bool have_const_int_constraints; static unsigned int num_constraints; static const constraint_data **enum_order; static unsigned int register_start, register_end; static unsigned int satisfied_start; static unsigned int const_int_start, const_int_end; static unsigned int memory_start, memory_end; static unsigned int address_start, address_end; static unsigned int maybe_allows_none_start, maybe_allows_none_end; static unsigned int maybe_allows_reg_start, maybe_allows_reg_end; static unsigned int maybe_allows_mem_start, maybe_allows_mem_end; /* Convert NAME, which contains angle brackets and/or underscores, to a string that can be used as part of a C identifier. The string comes from the rtl_obstack. */ static const char * mangle (const char *name) { for (; *name; name++) switch (*name) { case '_': obstack_grow (rtl_obstack, "__", 2); break; case '<': obstack_grow (rtl_obstack, "_l", 2); break; case '>': obstack_grow (rtl_obstack, "_g", 2); break; default: obstack_1grow (rtl_obstack, *name); break; } obstack_1grow (rtl_obstack, '\0'); return XOBFINISH (rtl_obstack, const char *); } /* Add one constraint, of any sort, to the tables. NAME is its name; REGCLASS is the register class, if any; EXP is the expression to test, if any; IS_MEMORY and IS_ADDRESS indicate memory and address constraints, respectively; LOC is the .md file location. Not all combinations of arguments are valid; most importantly, REGCLASS is mutually exclusive with EXP, and IS_MEMORY/IS_ADDRESS are only meaningful for constraints with EXP. This function enforces all syntactic and semantic rules about what constraints can be defined. */ static void add_constraint (const char *name, const char *regclass, rtx exp, bool is_memory, bool is_address, file_location loc) { struct constraint_data *c, **iter, **slot; const char *p; bool need_mangled_name = false; bool is_const_int; bool is_const_dbl; size_t namelen; if (strcmp (name, "TARGET_MEM_CONSTRAINT") == 0) name = general_mem; if (exp && validate_exp (exp, name, loc)) return; for (p = name; *p; p++) if (!ISALNUM (*p)) { if (*p == '<' || *p == '>' || *p == '_') need_mangled_name = true; else { error_at (loc, "constraint name '%s' must be composed of letters," " digits, underscores, and angle brackets", name); return; } } if (strchr (generic_constraint_letters, name[0])) { if (name[1] == '\0') error_at (loc, "constraint letter '%s' cannot be " "redefined by the machine description", name); else error_at (loc, "constraint name '%s' cannot be defined by the machine" " description, as it begins with '%c'", name, name[0]); return; } namelen = strlen (name); slot = &constraints_by_letter_table[(unsigned int)name[0]]; for (iter = slot; *iter; iter = &(*iter)->next_this_letter) { /* This causes slot to end up pointing to the next_this_letter field of the last constraint with a name of equal or greater length than the new constraint; hence the new constraint will be inserted after all previous constraints with names of the same length. */ if ((*iter)->namelen >= namelen) slot = iter; if (!strcmp ((*iter)->name, name)) { error_at (loc, "redefinition of constraint '%s'", name); message_at ((*iter)->loc, "previous definition is here"); return; } else if (!strncmp ((*iter)->name, name, (*iter)->namelen)) { error_at (loc, "defining constraint '%s' here", name); message_at ((*iter)->loc, "renders constraint '%s' " "(defined here) a prefix", (*iter)->name); return; } else if (!strncmp ((*iter)->name, name, namelen)) { error_at (loc, "constraint '%s' is a prefix", name); message_at ((*iter)->loc, "of constraint '%s' (defined here)", (*iter)->name); return; } } is_const_int = strchr (const_int_constraints, name[0]) != 0; is_const_dbl = strchr (const_dbl_constraints, name[0]) != 0; if (is_const_int || is_const_dbl) { enum rtx_code appropriate_code = is_const_int ? CONST_INT : CONST_DOUBLE; /* Consider relaxing this requirement in the future. */ if (regclass || GET_CODE (exp) != AND || GET_CODE (XEXP (exp, 0)) != MATCH_CODE || strcmp (XSTR (XEXP (exp, 0), 0), GET_RTX_NAME (appropriate_code))) { if (name[1] == '\0') error_at (loc, "constraint letter '%c' is reserved " "for %s constraints", name[0], GET_RTX_NAME (appropriate_code)); else error_at (loc, "constraint names beginning with '%c' " "(%s) are reserved for %s constraints", name[0], name, GET_RTX_NAME (appropriate_code)); return; } if (is_memory) { if (name[1] == '\0') error_at (loc, "constraint letter '%c' cannot be a " "memory constraint", name[0]); else error_at (loc, "constraint name '%s' begins with '%c', " "and therefore cannot be a memory constraint", name, name[0]); return; } else if (is_address) { if (name[1] == '\0') error_at (loc, "constraint letter '%c' cannot be an " "address constraint", name[0]); else error_at (loc, "constraint name '%s' begins with '%c', " "and therefore cannot be an address constraint", name, name[0]); return; } } c = XOBNEW (rtl_obstack, struct constraint_data); c->name = name; c->c_name = need_mangled_name ? mangle (name) : name; c->loc = loc; c->namelen = namelen; c->regclass = regclass; c->exp = exp; c->is_register = regclass != 0; c->is_const_int = is_const_int; c->is_const_dbl = is_const_dbl; c->is_extra = !(regclass || is_const_int || is_const_dbl); c->is_memory = is_memory; c->is_address = is_address; c->maybe_allows_reg = true; c->maybe_allows_mem = true; if (exp) { char codes[NUM_RTX_CODE]; compute_test_codes (exp, loc, codes); if (!codes[REG] && !codes[SUBREG]) c->maybe_allows_reg = false; if (!codes[MEM]) c->maybe_allows_mem = false; } c->next_this_letter = *slot; *slot = c; /* Insert this constraint in the list of all constraints in textual order. */ c->next_textual = 0; *last_constraint_ptr = c; last_constraint_ptr = &c->next_textual; constraint_max_namelen = MAX (constraint_max_namelen, strlen (name)); have_register_constraints |= c->is_register; have_const_int_constraints |= c->is_const_int; have_extra_constraints |= c->is_extra; have_memory_constraints |= c->is_memory; have_address_constraints |= c->is_address; num_constraints += 1; } /* Process a DEFINE_CONSTRAINT, DEFINE_MEMORY_CONSTRAINT, or DEFINE_ADDRESS_CONSTRAINT expression, C. */ static void process_define_constraint (md_rtx_info *info) { add_constraint (XSTR (info->def, 0), 0, XEXP (info->def, 2), GET_CODE (info->def) == DEFINE_MEMORY_CONSTRAINT, GET_CODE (info->def) == DEFINE_ADDRESS_CONSTRAINT, info->loc); } /* Process a DEFINE_REGISTER_CONSTRAINT expression, C. */ static void process_define_register_constraint (md_rtx_info *info) { add_constraint (XSTR (info->def, 0), XSTR (info->def, 1), 0, false, false, info->loc); } /* Put the constraints into enum order. We want to keep constraints of the same type together so that query functions can be simple range checks. */ static void choose_enum_order (void) { struct constraint_data *c; enum_order = XNEWVEC (const constraint_data *, num_constraints); unsigned int next = 0; register_start = next; FOR_ALL_CONSTRAINTS (c) if (c->is_register) enum_order[next++] = c; register_end = next; satisfied_start = next; const_int_start = next; FOR_ALL_CONSTRAINTS (c) if (c->is_const_int) enum_order[next++] = c; const_int_end = next; memory_start = next; FOR_ALL_CONSTRAINTS (c) if (c->is_memory) enum_order[next++] = c; memory_end = next; address_start = next; FOR_ALL_CONSTRAINTS (c) if (c->is_address) enum_order[next++] = c; address_end = next; maybe_allows_none_start = next; FOR_ALL_CONSTRAINTS (c) if (!c->is_register && !c->is_const_int && !c->is_memory && !c->is_address && !c->maybe_allows_reg && !c->maybe_allows_mem) enum_order[next++] = c; maybe_allows_none_end = next; maybe_allows_reg_start = next; FOR_ALL_CONSTRAINTS (c) if (!c->is_register && !c->is_const_int && !c->is_memory && !c->is_address && c->maybe_allows_reg && !c->maybe_allows_mem) enum_order[next++] = c; maybe_allows_reg_end = next; maybe_allows_mem_start = next; FOR_ALL_CONSTRAINTS (c) if (!c->is_register && !c->is_const_int && !c->is_memory && !c->is_address && !c->maybe_allows_reg && c->maybe_allows_mem) enum_order[next++] = c; maybe_allows_mem_end = next; FOR_ALL_CONSTRAINTS (c) if (!c->is_register && !c->is_const_int && !c->is_memory && !c->is_address && c->maybe_allows_reg && c->maybe_allows_mem) enum_order[next++] = c; gcc_assert (next == num_constraints); } /* Write out an enumeration with one entry per machine-specific constraint. */ static void write_enum_constraint_num (void) { fputs ("#define CONSTRAINT_NUM_DEFINED_P 1\n", stdout); fputs ("enum constraint_num\n" "{\n" " CONSTRAINT__UNKNOWN = 0", stdout); for (unsigned int i = 0; i < num_constraints; ++i) printf (",\n CONSTRAINT_%s", enum_order[i]->c_name); puts (",\n CONSTRAINT__LIMIT\n};\n"); } /* Write out a function which looks at a string and determines what constraint name, if any, it begins with. */ static void write_lookup_constraint_1 (void) { unsigned int i; puts ("enum constraint_num\n" "lookup_constraint_1 (const char *str)\n" "{\n" " switch (str[0])\n" " {"); for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++) { struct constraint_data *c = constraints_by_letter_table[i]; if (!c) continue; printf (" case '%c':\n", i); if (c->namelen == 1) printf (" return CONSTRAINT_%s;\n", c->c_name); else { do { printf (" if (!strncmp (str + 1, \"%s\", %lu))\n" " return CONSTRAINT_%s;\n", c->name + 1, (unsigned long int) c->namelen - 1, c->c_name); c = c->next_this_letter; } while (c); puts (" break;"); } } puts (" default: break;\n" " }\n" " return CONSTRAINT__UNKNOWN;\n" "}\n"); } /* Write out an array that maps single-letter characters to their constraints (if that fits in a character) or 255 if lookup_constraint_1 must be called. */ static void write_lookup_constraint_array (void) { unsigned int i; printf ("const unsigned char lookup_constraint_array[] = {\n "); for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++) { if (i != 0) printf (",\n "); struct constraint_data *c = constraints_by_letter_table[i]; if (!c) printf ("CONSTRAINT__UNKNOWN"); else if (c->namelen == 1) printf ("MIN ((int) CONSTRAINT_%s, (int) UCHAR_MAX)", c->c_name); else printf ("UCHAR_MAX"); } printf ("\n};\n\n"); } /* Write out a function which looks at a string and determines what the constraint name length is. */ static void write_insn_constraint_len (void) { unsigned int i; puts ("static inline size_t\n" "insn_constraint_len (char fc, const char *str ATTRIBUTE_UNUSED)\n" "{\n" " switch (fc)\n" " {"); for (i = 0; i < ARRAY_SIZE (constraints_by_letter_table); i++) { struct constraint_data *c = constraints_by_letter_table[i]; if (!c || c->namelen == 1) continue; /* Constraints with multiple characters should have the same length. */ { struct constraint_data *c2 = c->next_this_letter; size_t len = c->namelen; while (c2) { if (c2->namelen != len) error ("Multi-letter constraints with first letter '%c' " "should have same length", i); c2 = c2->next_this_letter; } } printf (" case '%c': return %lu;\n", i, (unsigned long int) c->namelen); } puts (" default: break;\n" " }\n" " return 1;\n" "}\n"); } /* Write out the function which computes the register class corresponding to a register constraint. */ static void write_reg_class_for_constraint_1 (void) { struct constraint_data *c; puts ("enum reg_class\n" "reg_class_for_constraint_1 (enum constraint_num c)\n" "{\n" " switch (c)\n" " {"); FOR_ALL_CONSTRAINTS (c) if (c->is_register) printf (" case CONSTRAINT_%s: return %s;\n", c->c_name, c->regclass); puts (" default: break;\n" " }\n" " return NO_REGS;\n" "}\n"); } /* Write out the functions which compute whether a given value matches a given non-register constraint. */ static void write_tm_constrs_h (void) { struct constraint_data *c; printf ("\ /* Generated automatically by the program '%s'\n\ from the machine description file '%s'. */\n\n", progname, in_fname); puts ("\ #ifndef GCC_TM_CONSTRS_H\n\ #define GCC_TM_CONSTRS_H\n"); FOR_ALL_CONSTRAINTS (c) if (!c->is_register) { bool needs_ival = needs_variable (c->exp, "ival"); bool needs_hval = needs_variable (c->exp, "hval"); bool needs_lval = needs_variable (c->exp, "lval"); bool needs_rval = needs_variable (c->exp, "rval"); bool needs_mode = (needs_variable (c->exp, "mode") || needs_hval || needs_lval || needs_rval); bool needs_op = (needs_variable (c->exp, "op") || needs_ival || needs_mode); printf ("static inline bool\n" "satisfies_constraint_%s (rtx %s)\n" "{\n", c->c_name, needs_op ? "op" : "ARG_UNUSED (op)"); if (needs_mode) puts (" machine_mode mode = GET_MODE (op);"); if (needs_ival) puts (" HOST_WIDE_INT ival = 0;"); if (needs_hval) puts (" HOST_WIDE_INT hval = 0;"); if (needs_lval) puts (" unsigned HOST_WIDE_INT lval = 0;"); if (needs_rval) puts (" const REAL_VALUE_TYPE *rval = 0;"); if (needs_ival) puts (" if (CONST_INT_P (op))\n" " ival = INTVAL (op);"); #if TARGET_SUPPORTS_WIDE_INT if (needs_lval || needs_hval) error ("you can't use lval or hval"); #else if (needs_hval) puts (" if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)" " hval = CONST_DOUBLE_HIGH (op);"); if (needs_lval) puts (" if (GET_CODE (op) == CONST_DOUBLE && mode == VOIDmode)" " lval = CONST_DOUBLE_LOW (op);"); #endif if (needs_rval) puts (" if (GET_CODE (op) == CONST_DOUBLE && mode != VOIDmode)" " rval = CONST_DOUBLE_REAL_VALUE (op);"); write_predicate_stmts (c->exp); fputs ("}\n", stdout); } puts ("#endif /* tm-constrs.h */"); } /* Write out the wrapper function, constraint_satisfied_p, that maps a CONSTRAINT_xxx constant to one of the predicate functions generated above. */ static void write_constraint_satisfied_p_array (void) { if (satisfied_start == num_constraints) return; printf ("bool (*constraint_satisfied_p_array[]) (rtx) = {\n "); for (unsigned int i = satisfied_start; i < num_constraints; ++i) { if (i != satisfied_start) printf (",\n "); printf ("satisfies_constraint_%s", enum_order[i]->c_name); } printf ("\n};\n\n"); } /* Write out the function which computes whether a given value matches a given CONST_INT constraint. This doesn't just forward to constraint_satisfied_p because caller passes the INTVAL, not the RTX. */ static void write_insn_const_int_ok_for_constraint (void) { struct constraint_data *c; puts ("bool\n" "insn_const_int_ok_for_constraint (HOST_WIDE_INT ival, " "enum constraint_num c)\n" "{\n" " switch (c)\n" " {"); FOR_ALL_CONSTRAINTS (c) if (c->is_const_int) { printf (" case CONSTRAINT_%s:\n return ", c->c_name); /* c->exp is guaranteed to be (and (match_code "const_int") (...)); we know at this point that we have a const_int, so we need not bother with that part of the test. */ write_predicate_expr (XEXP (c->exp, 1)); fputs (";\n\n", stdout); } puts (" default: break;\n" " }\n" " return false;\n" "}\n"); } /* Write a definition for a function NAME that returns true if a given constraint_num is in the range [START, END). */ static void write_range_function (const char *name, unsigned int start, unsigned int end) { printf ("static inline bool\n"); if (start != end) printf ("%s (enum constraint_num c)\n" "{\n" " return c >= CONSTRAINT_%s && c <= CONSTRAINT_%s;\n" "}\n\n", name, enum_order[start]->c_name, enum_order[end - 1]->c_name); else printf ("%s (enum constraint_num)\n" "{\n" " return false;\n" "}\n\n", name); } /* Write a definition for insn_extra_constraint_allows_reg_mem function. */ static void write_allows_reg_mem_function (void) { printf ("static inline void\n" "insn_extra_constraint_allows_reg_mem (enum constraint_num c,\n" "\t\t\t\t bool *allows_reg, bool *allows_mem)\n" "{\n"); if (maybe_allows_none_start != maybe_allows_none_end) printf (" if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n" " return;\n", enum_order[maybe_allows_none_start]->c_name, enum_order[maybe_allows_none_end - 1]->c_name); if (maybe_allows_reg_start != maybe_allows_reg_end) printf (" if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n" " {\n" " *allows_reg = true;\n" " return;\n" " }\n", enum_order[maybe_allows_reg_start]->c_name, enum_order[maybe_allows_reg_end - 1]->c_name); if (maybe_allows_mem_start != maybe_allows_mem_end) printf (" if (c >= CONSTRAINT_%s && c <= CONSTRAINT_%s)\n" " {\n" " *allows_mem = true;\n" " return;\n" " }\n", enum_order[maybe_allows_mem_start]->c_name, enum_order[maybe_allows_mem_end - 1]->c_name); printf (" (void) c;\n" " *allows_reg = true;\n" " *allows_mem = true;\n" "}\n\n"); } /* VEC is a list of key/value pairs, with the keys being lower bounds of a range. Output a decision tree that handles the keys covered by [VEC[START], VEC[END]), returning FALLBACK for keys lower then VEC[START]'s. INDENT is the number of spaces to indent the code. */ static void print_type_tree (const vec > &vec, unsigned int start, unsigned int end, const char *fallback, unsigned int indent) { while (start < end) { unsigned int mid = (start + end) / 2; printf ("%*sif (c >= CONSTRAINT_%s)\n", indent, "", enum_order[vec[mid].first]->c_name); if (mid + 1 == end) print_type_tree (vec, mid + 1, end, vec[mid].second, indent + 2); else { printf ("%*s{\n", indent + 2, ""); print_type_tree (vec, mid + 1, end, vec[mid].second, indent + 4); printf ("%*s}\n", indent + 2, ""); } end = mid; } printf ("%*sreturn %s;\n", indent, "", fallback); } /* Write tm-preds.h. Unfortunately, it is impossible to forward-declare an enumeration in portable C, so we have to condition all these prototypes on HAVE_MACHINE_MODES. */ static void write_tm_preds_h (void) { struct pred_data *p; printf ("\ /* Generated automatically by the program '%s'\n\ from the machine description file '%s'. */\n\n", progname, in_fname); puts ("\ #ifndef GCC_TM_PREDS_H\n\ #define GCC_TM_PREDS_H\n\ \n\ #ifdef HAVE_MACHINE_MODES"); FOR_ALL_PREDICATES (p) printf ("extern int %s (rtx, machine_mode);\n", p->name); puts ("#endif /* HAVE_MACHINE_MODES */\n"); if (constraint_max_namelen > 0) { write_enum_constraint_num (); puts ("extern enum constraint_num lookup_constraint_1 (const char *);\n" "extern const unsigned char lookup_constraint_array[];\n" "\n" "/* Return the constraint at the beginning of P, or" " CONSTRAINT__UNKNOWN if it\n" " isn't recognized. */\n" "\n" "static inline enum constraint_num\n" "lookup_constraint (const char *p)\n" "{\n" " unsigned int index = lookup_constraint_array" "[(unsigned char) *p];\n" " return (index == UCHAR_MAX\n" " ? lookup_constraint_1 (p)\n" " : (enum constraint_num) index);\n" "}\n"); if (satisfied_start == num_constraints) puts ("/* Return true if X satisfies constraint C. */\n" "\n" "static inline bool\n" "constraint_satisfied_p (rtx, enum constraint_num)\n" "{\n" " return false;\n" "}\n"); else printf ("extern bool (*constraint_satisfied_p_array[]) (rtx);\n" "\n" "/* Return true if X satisfies constraint C. */\n" "\n" "static inline bool\n" "constraint_satisfied_p (rtx x, enum constraint_num c)\n" "{\n" " int i = (int) c - (int) CONSTRAINT_%s;\n" " return i >= 0 && constraint_satisfied_p_array[i] (x);\n" "}\n" "\n", enum_order[satisfied_start]->name); write_range_function ("insn_extra_register_constraint", register_start, register_end); write_range_function ("insn_extra_memory_constraint", memory_start, memory_end); write_range_function ("insn_extra_address_constraint", address_start, address_end); write_allows_reg_mem_function (); if (constraint_max_namelen > 1) { write_insn_constraint_len (); puts ("#define CONSTRAINT_LEN(c_,s_) " "insn_constraint_len (c_,s_)\n"); } else puts ("#define CONSTRAINT_LEN(c_,s_) 1\n"); if (have_register_constraints) puts ("extern enum reg_class reg_class_for_constraint_1 " "(enum constraint_num);\n" "\n" "static inline enum reg_class\n" "reg_class_for_constraint (enum constraint_num c)\n" "{\n" " if (insn_extra_register_constraint (c))\n" " return reg_class_for_constraint_1 (c);\n" " return NO_REGS;\n" "}\n"); else puts ("static inline enum reg_class\n" "reg_class_for_constraint (enum constraint_num)\n" "{\n" " return NO_REGS;\n" "}\n"); if (have_const_int_constraints) puts ("extern bool insn_const_int_ok_for_constraint " "(HOST_WIDE_INT, enum constraint_num);\n" "#define CONST_OK_FOR_CONSTRAINT_P(v_,c_,s_) \\\n" " insn_const_int_ok_for_constraint (v_, " "lookup_constraint (s_))\n"); else puts ("static inline bool\n" "insn_const_int_ok_for_constraint (HOST_WIDE_INT," " enum constraint_num)\n" "{\n" " return false;\n" "}\n"); puts ("enum constraint_type\n" "{\n" " CT_REGISTER,\n" " CT_CONST_INT,\n" " CT_MEMORY,\n" " CT_ADDRESS,\n" " CT_FIXED_FORM\n" "};\n" "\n" "static inline enum constraint_type\n" "get_constraint_type (enum constraint_num c)\n" "{"); auto_vec , 4> values; if (const_int_start != const_int_end) values.safe_push (std::make_pair (const_int_start, "CT_CONST_INT")); if (memory_start != memory_end) values.safe_push (std::make_pair (memory_start, "CT_MEMORY")); if (address_start != address_end) values.safe_push (std::make_pair (address_start, "CT_ADDRESS")); if (address_end != num_constraints) values.safe_push (std::make_pair (address_end, "CT_FIXED_FORM")); print_type_tree (values, 0, values.length (), "CT_REGISTER", 2); puts ("}"); } puts ("#endif /* tm-preds.h */"); } /* Write insn-preds.c. N.B. the list of headers to include was copied from genrecog; it may not be ideal. FUTURE: Write #line markers referring back to the machine description. (Can't practically do this now since we don't know the line number of the C block - just the line number of the enclosing expression.) */ static void write_insn_preds_c (void) { struct pred_data *p; printf ("\ /* Generated automatically by the program '%s'\n\ from the machine description file '%s'. */\n\n", progname, in_fname); puts ("\ #include \"config.h\"\n\ #include \"system.h\"\n\ #include \"coretypes.h\"\n\ #include \"backend.h\"\n\ #include \"predict.h\"\n\ #include \"tree.h\"\n\ #include \"rtl.h\"\n\ #include \"alias.h\"\n\ #include \"varasm.h\"\n\ #include \"stor-layout.h\"\n\ #include \"calls.h\"\n\ #include \"tm_p.h\"\n\ #include \"insn-config.h\"\n\ #include \"recog.h\"\n\ #include \"output.h\"\n\ #include \"flags.h\"\n\ #include \"df.h\"\n\ #include \"resource.h\"\n\ #include \"diagnostic-core.h\"\n\ #include \"reload.h\"\n\ #include \"regs.h\"\n\ #include \"emit-rtl.h\"\n\ #include \"tm-constrs.h\"\n"); FOR_ALL_PREDICATES (p) write_one_predicate_function (p); if (constraint_max_namelen > 0) { write_lookup_constraint_1 (); write_lookup_constraint_array (); if (have_register_constraints) write_reg_class_for_constraint_1 (); write_constraint_satisfied_p_array (); if (have_const_int_constraints) write_insn_const_int_ok_for_constraint (); } } /* Argument parsing. */ static bool gen_header; static bool gen_constrs; static bool parse_option (const char *opt) { if (!strcmp (opt, "-h")) { gen_header = true; return 1; } else if (!strcmp (opt, "-c")) { gen_constrs = true; return 1; } else return 0; } /* Master control. */ int main (int argc, char **argv) { progname = argv[0]; if (argc <= 1) fatal ("no input file name"); if (!init_rtx_reader_args_cb (argc, argv, parse_option)) return FATAL_EXIT_CODE; md_rtx_info info; while (read_md_rtx (&info)) switch (GET_CODE (info.def)) { case DEFINE_PREDICATE: case DEFINE_SPECIAL_PREDICATE: process_define_predicate (&info); break; case DEFINE_CONSTRAINT: case DEFINE_MEMORY_CONSTRAINT: case DEFINE_ADDRESS_CONSTRAINT: process_define_constraint (&info); break; case DEFINE_REGISTER_CONSTRAINT: process_define_register_constraint (&info); break; default: break; } choose_enum_order (); if (gen_header) write_tm_preds_h (); else if (gen_constrs) write_tm_constrs_h (); else write_insn_preds_c (); if (have_error || ferror (stdout) || fflush (stdout) || fclose (stdout)) return FATAL_EXIT_CODE; return SUCCESS_EXIT_CODE; }