/* Simple garbage collection for the GNU compiler. Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Generic garbage collection (GC) functions and data, not specific to any particular GC implementation. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "hashtab.h" #include "varray.h" #include "ggc.h" #include "langhooks.h" #ifdef ENABLE_VALGRIND_CHECKING #include #else /* Avoid #ifdef:s when we can help it. */ #define VALGRIND_DISCARD(x) #endif /* Statistics about the allocation. */ static ggc_statistics *ggc_stats; static int ggc_htab_delete PARAMS ((void **, void *)); /* Maintain global roots that are preserved during GC. */ /* Global roots that are preserved during calls to gc. */ struct ggc_root { struct ggc_root *next; void *base; int nelt; int size; void (*cb) PARAMS ((void *)); }; static struct ggc_root *roots; /* Add BASE as a new garbage collection root. It is an array of length NELT with each element SIZE bytes long. CB is a function that will be called with a pointer to each element of the array; it is the intention that CB call the appropriate routine to mark gc-able memory for that element. */ void ggc_add_root (base, nelt, size, cb) void *base; int nelt, size; void (*cb) PARAMS ((void *)); { struct ggc_root *x = (struct ggc_root *) xmalloc (sizeof (*x)); x->next = roots; x->base = base; x->nelt = nelt; x->size = size; x->cb = cb; roots = x; } /* Process a slot of an htab by deleting it if it has not been marked. */ static int ggc_htab_delete (slot, info) void **slot; void *info; { const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info; if (! (*r->marked_p) (*slot)) htab_clear_slot (*r->base, slot); else (*r->cb) (*slot); return 1; } /* Iterate through all registered roots and mark each element. */ void ggc_mark_roots () { struct ggc_root *x; const struct ggc_root_tab *const *rt; const struct ggc_root_tab *rti; const struct ggc_cache_tab *const *ct; const struct ggc_cache_tab *cti; size_t i; for (rt = gt_ggc_deletable_rtab; *rt; rt++) for (rti = *rt; rti->base != NULL; rti++) memset (rti->base, 0, rti->stride); for (rt = gt_ggc_rtab; *rt; rt++) for (rti = *rt; rti->base != NULL; rti++) for (i = 0; i < rti->nelt; i++) (*rti->cb)(*(void **)((char *)rti->base + rti->stride * i)); for (x = roots; x != NULL; x = x->next) { char *elt = x->base; int s = x->size, n = x->nelt; void (*cb) PARAMS ((void *)) = x->cb; int i; for (i = 0; i < n; ++i, elt += s) (*cb)(elt); } /* Now scan all hash tables that have objects which are to be deleted if they are not already marked. */ for (ct = gt_ggc_cache_rtab; *ct; ct++) for (cti = *ct; cti->base != NULL; cti++) if (*cti->base) htab_traverse (*cti->base, ggc_htab_delete, (PTR) cti); } /* Allocate a block of memory, then clear it. */ void * ggc_alloc_cleared (size) size_t size; { void *buf = ggc_alloc (size); memset (buf, 0, size); return buf; } /* Resize a block of memory, possibly re-allocating it. */ void * ggc_realloc (x, size) void *x; size_t size; { void *r; size_t old_size; if (x == NULL) return ggc_alloc (size); old_size = ggc_get_size (x); if (size <= old_size) { /* Mark the unwanted memory as unaccessible. We also need to make the "new" size accessible, since ggc_get_size returns the size of the pool, not the size of the individually allocated object, the size which was previously made accessible. Unfortunately, we don't know that previously allocated size. Without that knowledge we have to lose some initialization-tracking for the old parts of the object. An alternative is to mark the whole old_size as reachable, but that would lose tracking of writes after the end of the object (by small offsets). Discard the handle to avoid handle leak. */ VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) x + size, old_size - size)); VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, size)); return x; } r = ggc_alloc (size); /* Since ggc_get_size returns the size of the pool, not the size of the individually allocated object, we'd access parts of the old object that were marked invalid with the memcpy below. We lose a bit of the initialization-tracking since some of it may be uninitialized. */ VALGRIND_DISCARD (VALGRIND_MAKE_READABLE (x, old_size)); memcpy (r, x, old_size); /* The old object is not supposed to be used anymore. */ VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (x, old_size)); return r; } /* Like ggc_alloc_cleared, but performs a multiplication. */ void * ggc_calloc (s1, s2) size_t s1, s2; { return ggc_alloc_cleared (s1 * s2); } /* Print statistics that are independent of the collector in use. */ #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ ? (x) \ : ((x) < 1024*1024*10 \ ? (x) / 1024 \ : (x) / (1024*1024)))) #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) void ggc_print_common_statistics (stream, stats) FILE *stream; ggc_statistics *stats; { int code; /* Set the pointer so that during collection we will actually gather the statistics. */ ggc_stats = stats; /* Then do one collection to fill in the statistics. */ ggc_collect (); /* Total the statistics. */ for (code = 0; code < MAX_TREE_CODES; ++code) { stats->total_num_trees += stats->num_trees[code]; stats->total_size_trees += stats->size_trees[code]; } for (code = 0; code < NUM_RTX_CODE; ++code) { stats->total_num_rtxs += stats->num_rtxs[code]; stats->total_size_rtxs += stats->size_rtxs[code]; } /* Print the statistics for trees. */ fprintf (stream, "\n%-17s%10s %16s %10s\n", "Tree", "Number", "Bytes", "% Total"); for (code = 0; code < MAX_TREE_CODES; ++code) if (ggc_stats->num_trees[code]) { fprintf (stream, "%-17s%10u%16ld%c %10.3f\n", tree_code_name[code], ggc_stats->num_trees[code], SCALE (ggc_stats->size_trees[code]), LABEL (ggc_stats->size_trees[code]), (100 * ((double) ggc_stats->size_trees[code]) / ggc_stats->total_size_trees)); } fprintf (stream, "%-17s%10u%16ld%c\n", "Total", ggc_stats->total_num_trees, SCALE (ggc_stats->total_size_trees), LABEL (ggc_stats->total_size_trees)); /* Print the statistics for RTL. */ fprintf (stream, "\n%-17s%10s %16s %10s\n", "RTX", "Number", "Bytes", "% Total"); for (code = 0; code < NUM_RTX_CODE; ++code) if (ggc_stats->num_rtxs[code]) { fprintf (stream, "%-17s%10u%16ld%c %10.3f\n", rtx_name[code], ggc_stats->num_rtxs[code], SCALE (ggc_stats->size_rtxs[code]), LABEL (ggc_stats->size_rtxs[code]), (100 * ((double) ggc_stats->size_rtxs[code]) / ggc_stats->total_size_rtxs)); } fprintf (stream, "%-17s%10u%16ld%c\n", "Total", ggc_stats->total_num_rtxs, SCALE (ggc_stats->total_size_rtxs), LABEL (ggc_stats->total_size_rtxs)); /* Don't gather statistics any more. */ ggc_stats = NULL; }