/* Statement simplification on GIMPLE. Copyright (C) 2010 Free Software Foundation, Inc. Split out from tree-ssa-ccp.c. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "rtl.h" #include "tm_p.h" #include "ggc.h" #include "basic-block.h" #include "output.h" #include "expr.h" #include "function.h" #include "diagnostic.h" #include "timevar.h" #include "tree-dump.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-ssa-propagate.h" #include "value-prof.h" #include "langhooks.h" #include "target.h" /* If SYM is a constant variable with known value, return the value. NULL_TREE is returned otherwise. */ tree get_symbol_constant_value (tree sym) { if (TREE_STATIC (sym) && (TREE_READONLY (sym) || TREE_CODE (sym) == CONST_DECL)) { tree val = DECL_INITIAL (sym); if (val) { STRIP_NOPS (val); if (is_gimple_min_invariant (val)) { if (TREE_CODE (val) == ADDR_EXPR) { tree base = get_base_address (TREE_OPERAND (val, 0)); if (base && TREE_CODE (base) == VAR_DECL) { TREE_ADDRESSABLE (base) = 1; if (gimple_referenced_vars (cfun)) add_referenced_var (base); } } return val; } } /* Variables declared 'const' without an initializer have zero as the initializer if they may not be overridden at link or run time. */ if (!val && !DECL_EXTERNAL (sym) && targetm.binds_local_p (sym) && (INTEGRAL_TYPE_P (TREE_TYPE (sym)) || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym)))) return fold_convert (TREE_TYPE (sym), integer_zero_node); } return NULL_TREE; } /* Return true if we may propagate the address expression ADDR into the dereference DEREF and cancel them. */ bool may_propagate_address_into_dereference (tree addr, tree deref) { gcc_assert (INDIRECT_REF_P (deref) && TREE_CODE (addr) == ADDR_EXPR); /* Don't propagate if ADDR's operand has incomplete type. */ if (!COMPLETE_TYPE_P (TREE_TYPE (TREE_OPERAND (addr, 0)))) return false; /* If the address is invariant then we do not need to preserve restrict qualifications. But we do need to preserve volatile qualifiers until we can annotate the folded dereference itself properly. */ if (is_gimple_min_invariant (addr) && (!TREE_THIS_VOLATILE (deref) || TYPE_VOLATILE (TREE_TYPE (addr)))) return useless_type_conversion_p (TREE_TYPE (deref), TREE_TYPE (TREE_OPERAND (addr, 0))); /* Else both the address substitution and the folding must result in a valid useless type conversion sequence. */ return (useless_type_conversion_p (TREE_TYPE (TREE_OPERAND (deref, 0)), TREE_TYPE (addr)) && useless_type_conversion_p (TREE_TYPE (deref), TREE_TYPE (TREE_OPERAND (addr, 0)))); } /* A subroutine of fold_stmt. Attempts to fold *(A+O) to A[X]. BASE is an array type. OFFSET is a byte displacement. ORIG_TYPE is the desired result type. LOC is the location of the original expression. */ static tree maybe_fold_offset_to_array_ref (location_t loc, tree base, tree offset, tree orig_type, bool allow_negative_idx) { tree min_idx, idx, idx_type, elt_offset = integer_zero_node; tree array_type, elt_type, elt_size; tree domain_type; /* If BASE is an ARRAY_REF, we can pick up another offset (this time measured in units of the size of elements type) from that ARRAY_REF). We can't do anything if either is variable. The case we handle here is *(&A[N]+O). */ if (TREE_CODE (base) == ARRAY_REF) { tree low_bound = array_ref_low_bound (base); elt_offset = TREE_OPERAND (base, 1); if (TREE_CODE (low_bound) != INTEGER_CST || TREE_CODE (elt_offset) != INTEGER_CST) return NULL_TREE; elt_offset = int_const_binop (MINUS_EXPR, elt_offset, low_bound, 0); base = TREE_OPERAND (base, 0); } /* Ignore stupid user tricks of indexing non-array variables. */ array_type = TREE_TYPE (base); if (TREE_CODE (array_type) != ARRAY_TYPE) return NULL_TREE; elt_type = TREE_TYPE (array_type); if (!useless_type_conversion_p (orig_type, elt_type)) return NULL_TREE; /* Use signed size type for intermediate computation on the index. */ idx_type = ssizetype; /* If OFFSET and ELT_OFFSET are zero, we don't care about the size of the element type (so we can use the alignment if it's not constant). Otherwise, compute the offset as an index by using a division. If the division isn't exact, then don't do anything. */ elt_size = TYPE_SIZE_UNIT (elt_type); if (!elt_size) return NULL; if (integer_zerop (offset)) { if (TREE_CODE (elt_size) != INTEGER_CST) elt_size = size_int (TYPE_ALIGN (elt_type)); idx = build_int_cst (idx_type, 0); } else { unsigned HOST_WIDE_INT lquo, lrem; HOST_WIDE_INT hquo, hrem; double_int soffset; /* The final array offset should be signed, so we need to sign-extend the (possibly pointer) offset here and use signed division. */ soffset = double_int_sext (tree_to_double_int (offset), TYPE_PRECISION (TREE_TYPE (offset))); if (TREE_CODE (elt_size) != INTEGER_CST || div_and_round_double (TRUNC_DIV_EXPR, 0, soffset.low, soffset.high, TREE_INT_CST_LOW (elt_size), TREE_INT_CST_HIGH (elt_size), &lquo, &hquo, &lrem, &hrem) || lrem || hrem) return NULL_TREE; idx = build_int_cst_wide (idx_type, lquo, hquo); } /* Assume the low bound is zero. If there is a domain type, get the low bound, if any, convert the index into that type, and add the low bound. */ min_idx = build_int_cst (idx_type, 0); domain_type = TYPE_DOMAIN (array_type); if (domain_type) { idx_type = domain_type; if (TYPE_MIN_VALUE (idx_type)) min_idx = TYPE_MIN_VALUE (idx_type); else min_idx = fold_convert (idx_type, min_idx); if (TREE_CODE (min_idx) != INTEGER_CST) return NULL_TREE; elt_offset = fold_convert (idx_type, elt_offset); } if (!integer_zerop (min_idx)) idx = int_const_binop (PLUS_EXPR, idx, min_idx, 0); if (!integer_zerop (elt_offset)) idx = int_const_binop (PLUS_EXPR, idx, elt_offset, 0); /* Make sure to possibly truncate late after offsetting. */ idx = fold_convert (idx_type, idx); /* We don't want to construct access past array bounds. For example char *(c[4]); c[3][2]; should not be simplified into (*c)[14] or tree-vrp will give false warnings. The same is true for struct A { long x; char d[0]; } *a; (char *)a - 4; which should be not folded to &a->d[-8]. */ if (domain_type && TYPE_MAX_VALUE (domain_type) && TREE_CODE (TYPE_MAX_VALUE (domain_type)) == INTEGER_CST) { tree up_bound = TYPE_MAX_VALUE (domain_type); if (tree_int_cst_lt (up_bound, idx) /* Accesses after the end of arrays of size 0 (gcc extension) and 1 are likely intentional ("struct hack"). */ && compare_tree_int (up_bound, 1) > 0) return NULL_TREE; } if (domain_type && TYPE_MIN_VALUE (domain_type)) { if (!allow_negative_idx && TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST && tree_int_cst_lt (idx, TYPE_MIN_VALUE (domain_type))) return NULL_TREE; } else if (!allow_negative_idx && compare_tree_int (idx, 0) < 0) return NULL_TREE; { tree t = build4 (ARRAY_REF, elt_type, base, idx, NULL_TREE, NULL_TREE); SET_EXPR_LOCATION (t, loc); return t; } } /* Attempt to fold *(S+O) to S.X. BASE is a record type. OFFSET is a byte displacement. ORIG_TYPE is the desired result type. LOC is the location of the original expression. */ static tree maybe_fold_offset_to_component_ref (location_t loc, tree record_type, tree base, tree offset, tree orig_type) { tree f, t, field_type, tail_array_field, field_offset; tree ret; tree new_base; if (TREE_CODE (record_type) != RECORD_TYPE && TREE_CODE (record_type) != UNION_TYPE && TREE_CODE (record_type) != QUAL_UNION_TYPE) return NULL_TREE; /* Short-circuit silly cases. */ if (useless_type_conversion_p (record_type, orig_type)) return NULL_TREE; tail_array_field = NULL_TREE; for (f = TYPE_FIELDS (record_type); f ; f = TREE_CHAIN (f)) { int cmp; if (TREE_CODE (f) != FIELD_DECL) continue; if (DECL_BIT_FIELD (f)) continue; if (!DECL_FIELD_OFFSET (f)) continue; field_offset = byte_position (f); if (TREE_CODE (field_offset) != INTEGER_CST) continue; /* ??? Java creates "interesting" fields for representing base classes. They have no name, and have no context. With no context, we get into trouble with nonoverlapping_component_refs_p. Skip them. */ if (!DECL_FIELD_CONTEXT (f)) continue; /* The previous array field isn't at the end. */ tail_array_field = NULL_TREE; /* Check to see if this offset overlaps with the field. */ cmp = tree_int_cst_compare (field_offset, offset); if (cmp > 0) continue; field_type = TREE_TYPE (f); /* Here we exactly match the offset being checked. If the types match, then we can return that field. */ if (cmp == 0 && useless_type_conversion_p (orig_type, field_type)) { t = fold_build3 (COMPONENT_REF, field_type, base, f, NULL_TREE); return t; } /* Don't care about offsets into the middle of scalars. */ if (!AGGREGATE_TYPE_P (field_type)) continue; /* Check for array at the end of the struct. This is often used as for flexible array members. We should be able to turn this into an array access anyway. */ if (TREE_CODE (field_type) == ARRAY_TYPE) tail_array_field = f; /* Check the end of the field against the offset. */ if (!DECL_SIZE_UNIT (f) || TREE_CODE (DECL_SIZE_UNIT (f)) != INTEGER_CST) continue; t = int_const_binop (MINUS_EXPR, offset, field_offset, 1); if (!tree_int_cst_lt (t, DECL_SIZE_UNIT (f))) continue; /* If we matched, then set offset to the displacement into this field. */ new_base = fold_build3 (COMPONENT_REF, field_type, base, f, NULL_TREE); SET_EXPR_LOCATION (new_base, loc); /* Recurse to possibly find the match. */ ret = maybe_fold_offset_to_array_ref (loc, new_base, t, orig_type, f == TYPE_FIELDS (record_type)); if (ret) return ret; ret = maybe_fold_offset_to_component_ref (loc, field_type, new_base, t, orig_type); if (ret) return ret; } if (!tail_array_field) return NULL_TREE; f = tail_array_field; field_type = TREE_TYPE (f); offset = int_const_binop (MINUS_EXPR, offset, byte_position (f), 1); /* If we get here, we've got an aggregate field, and a possibly nonzero offset into them. Recurse and hope for a valid match. */ base = fold_build3 (COMPONENT_REF, field_type, base, f, NULL_TREE); SET_EXPR_LOCATION (base, loc); t = maybe_fold_offset_to_array_ref (loc, base, offset, orig_type, f == TYPE_FIELDS (record_type)); if (t) return t; return maybe_fold_offset_to_component_ref (loc, field_type, base, offset, orig_type); } /* Attempt to express (ORIG_TYPE)BASE+OFFSET as BASE->field_of_orig_type or BASE[index] or by combination of those. LOC is the location of original expression. Before attempting the conversion strip off existing ADDR_EXPRs and handled component refs. */ tree maybe_fold_offset_to_reference (location_t loc, tree base, tree offset, tree orig_type) { tree ret; tree type; STRIP_NOPS (base); if (TREE_CODE (base) != ADDR_EXPR) return NULL_TREE; base = TREE_OPERAND (base, 0); /* Handle case where existing COMPONENT_REF pick e.g. wrong field of union, so it needs to be removed and new COMPONENT_REF constructed. The wrong COMPONENT_REF are often constructed by folding the (type *)&object within the expression (type *)&object+offset */ if (handled_component_p (base)) { HOST_WIDE_INT sub_offset, size, maxsize; tree newbase; newbase = get_ref_base_and_extent (base, &sub_offset, &size, &maxsize); gcc_assert (newbase); if (size == maxsize && size != -1 && !(sub_offset & (BITS_PER_UNIT - 1))) { base = newbase; if (sub_offset) offset = int_const_binop (PLUS_EXPR, offset, build_int_cst (TREE_TYPE (offset), sub_offset / BITS_PER_UNIT), 1); } } if (useless_type_conversion_p (orig_type, TREE_TYPE (base)) && integer_zerop (offset)) return base; type = TREE_TYPE (base); ret = maybe_fold_offset_to_component_ref (loc, type, base, offset, orig_type); if (!ret) ret = maybe_fold_offset_to_array_ref (loc, base, offset, orig_type, true); return ret; } /* Attempt to express (ORIG_TYPE)&BASE+OFFSET as &BASE->field_of_orig_type or &BASE[index] or by combination of those. LOC is the location of the original expression. Before attempting the conversion strip off existing component refs. */ tree maybe_fold_offset_to_address (location_t loc, tree addr, tree offset, tree orig_type) { tree t; gcc_assert (POINTER_TYPE_P (TREE_TYPE (addr)) && POINTER_TYPE_P (orig_type)); t = maybe_fold_offset_to_reference (loc, addr, offset, TREE_TYPE (orig_type)); if (t != NULL_TREE) { tree orig = addr; tree ptr_type; /* For __builtin_object_size to function correctly we need to make sure not to fold address arithmetic so that we change reference from one array to another. This would happen for example for struct X { char s1[10]; char s2[10] } s; char *foo (void) { return &s.s2[-4]; } where we need to avoid generating &s.s1[6]. As the C and C++ frontends create different initial trees (char *) &s.s1 + -4 vs. &s.s1[-4] we have to do some sophisticated comparisons here. Note that checking for the condition after the fact is easier than trying to avoid doing the folding. */ STRIP_NOPS (orig); if (TREE_CODE (orig) == ADDR_EXPR) orig = TREE_OPERAND (orig, 0); if ((TREE_CODE (orig) == ARRAY_REF || (TREE_CODE (orig) == COMPONENT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (orig, 1))) == ARRAY_TYPE)) && (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == COMPONENT_REF) && !operand_equal_p (TREE_CODE (orig) == ARRAY_REF ? TREE_OPERAND (orig, 0) : orig, TREE_CODE (t) == ARRAY_REF ? TREE_OPERAND (t, 0) : t, 0)) return NULL_TREE; ptr_type = build_pointer_type (TREE_TYPE (t)); if (!useless_type_conversion_p (orig_type, ptr_type)) return NULL_TREE; return build_fold_addr_expr_with_type_loc (loc, t, ptr_type); } return NULL_TREE; } /* A subroutine of fold_stmt. Attempt to simplify *(BASE+OFFSET). Return the simplified expression, or NULL if nothing could be done. */ static tree maybe_fold_stmt_indirect (tree expr, tree base, tree offset) { tree t; bool volatile_p = TREE_THIS_VOLATILE (expr); location_t loc = EXPR_LOCATION (expr); /* We may well have constructed a double-nested PLUS_EXPR via multiple substitutions. Fold that down to one. Remove NON_LVALUE_EXPRs that are sometimes added. */ base = fold (base); STRIP_TYPE_NOPS (base); TREE_OPERAND (expr, 0) = base; /* One possibility is that the address reduces to a string constant. */ t = fold_read_from_constant_string (expr); if (t) return t; /* Add in any offset from a POINTER_PLUS_EXPR. */ if (TREE_CODE (base) == POINTER_PLUS_EXPR) { tree offset2; offset2 = TREE_OPERAND (base, 1); if (TREE_CODE (offset2) != INTEGER_CST) return NULL_TREE; base = TREE_OPERAND (base, 0); offset = fold_convert (sizetype, int_const_binop (PLUS_EXPR, offset, offset2, 1)); } if (TREE_CODE (base) == ADDR_EXPR) { tree base_addr = base; /* Strip the ADDR_EXPR. */ base = TREE_OPERAND (base, 0); /* Fold away CONST_DECL to its value, if the type is scalar. */ if (TREE_CODE (base) == CONST_DECL && is_gimple_min_invariant (DECL_INITIAL (base))) return DECL_INITIAL (base); /* If there is no offset involved simply return the folded base. */ if (integer_zerop (offset)) return base; /* Try folding *(&B+O) to B.X. */ t = maybe_fold_offset_to_reference (loc, base_addr, offset, TREE_TYPE (expr)); if (t) { /* Preserve volatileness of the original expression. We can end up with a plain decl here which is shared and we shouldn't mess with its flags. */ if (!SSA_VAR_P (t)) TREE_THIS_VOLATILE (t) = volatile_p; return t; } } else { /* We can get here for out-of-range string constant accesses, such as "_"[3]. Bail out of the entire substitution search and arrange for the entire statement to be replaced by a call to __builtin_trap. In all likelihood this will all be constant-folded away, but in the meantime we can't leave with something that get_expr_operands can't understand. */ t = base; STRIP_NOPS (t); if (TREE_CODE (t) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == STRING_CST) { /* FIXME: Except that this causes problems elsewhere with dead code not being deleted, and we die in the rtl expanders because we failed to remove some ssa_name. In the meantime, just return zero. */ /* FIXME2: This condition should be signaled by fold_read_from_constant_string directly, rather than re-checking for it here. */ return integer_zero_node; } /* Try folding *(B+O) to B->X. Still an improvement. */ if (POINTER_TYPE_P (TREE_TYPE (base))) { t = maybe_fold_offset_to_reference (loc, base, offset, TREE_TYPE (expr)); if (t) return t; } } /* Otherwise we had an offset that we could not simplify. */ return NULL_TREE; } /* A quaint feature extant in our address arithmetic is that there can be hidden type changes here. The type of the result need not be the same as the type of the input pointer. What we're after here is an expression of the form (T *)(&array + const) where array is OP0, const is OP1, RES_TYPE is T and the cast doesn't actually exist, but is implicit in the type of the POINTER_PLUS_EXPR. We'd like to turn this into &array[x] which may be able to propagate further. */ tree maybe_fold_stmt_addition (location_t loc, tree res_type, tree op0, tree op1) { tree ptd_type; tree t; /* The first operand should be an ADDR_EXPR. */ if (TREE_CODE (op0) != ADDR_EXPR) return NULL_TREE; op0 = TREE_OPERAND (op0, 0); /* It had better be a constant. */ if (TREE_CODE (op1) != INTEGER_CST) { /* Or op0 should now be A[0] and the non-constant offset defined via a multiplication by the array element size. */ if (TREE_CODE (op0) == ARRAY_REF && integer_zerop (TREE_OPERAND (op0, 1)) && TREE_CODE (op1) == SSA_NAME && host_integerp (TYPE_SIZE_UNIT (TREE_TYPE (op0)), 1)) { gimple offset_def = SSA_NAME_DEF_STMT (op1); if (!is_gimple_assign (offset_def)) return NULL_TREE; /* As we will end up creating a variable index array access in the outermost array dimension make sure there isn't a more inner array that the index could overflow to. */ if (TREE_CODE (TREE_OPERAND (op0, 0)) == ARRAY_REF) return NULL_TREE; /* Do not build array references of something that we can't see the true number of array dimensions for. */ if (!DECL_P (TREE_OPERAND (op0, 0)) && !handled_component_p (TREE_OPERAND (op0, 0))) return NULL_TREE; if (gimple_assign_rhs_code (offset_def) == MULT_EXPR && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST && tree_int_cst_equal (gimple_assign_rhs2 (offset_def), TYPE_SIZE_UNIT (TREE_TYPE (op0)))) return build_fold_addr_expr (build4 (ARRAY_REF, TREE_TYPE (op0), TREE_OPERAND (op0, 0), gimple_assign_rhs1 (offset_def), TREE_OPERAND (op0, 2), TREE_OPERAND (op0, 3))); else if (integer_onep (TYPE_SIZE_UNIT (TREE_TYPE (op0))) && gimple_assign_rhs_code (offset_def) != MULT_EXPR) return build_fold_addr_expr (build4 (ARRAY_REF, TREE_TYPE (op0), TREE_OPERAND (op0, 0), op1, TREE_OPERAND (op0, 2), TREE_OPERAND (op0, 3))); } return NULL_TREE; } /* If the first operand is an ARRAY_REF, expand it so that we can fold the offset into it. */ while (TREE_CODE (op0) == ARRAY_REF) { tree array_obj = TREE_OPERAND (op0, 0); tree array_idx = TREE_OPERAND (op0, 1); tree elt_type = TREE_TYPE (op0); tree elt_size = TYPE_SIZE_UNIT (elt_type); tree min_idx; if (TREE_CODE (array_idx) != INTEGER_CST) break; if (TREE_CODE (elt_size) != INTEGER_CST) break; /* Un-bias the index by the min index of the array type. */ min_idx = TYPE_DOMAIN (TREE_TYPE (array_obj)); if (min_idx) { min_idx = TYPE_MIN_VALUE (min_idx); if (min_idx) { if (TREE_CODE (min_idx) != INTEGER_CST) break; array_idx = fold_convert (TREE_TYPE (min_idx), array_idx); if (!integer_zerop (min_idx)) array_idx = int_const_binop (MINUS_EXPR, array_idx, min_idx, 0); } } /* Convert the index to a byte offset. */ array_idx = fold_convert (sizetype, array_idx); array_idx = int_const_binop (MULT_EXPR, array_idx, elt_size, 0); /* Update the operands for the next round, or for folding. */ op1 = int_const_binop (PLUS_EXPR, array_idx, op1, 0); op0 = array_obj; } ptd_type = TREE_TYPE (res_type); /* If we want a pointer to void, reconstruct the reference from the array element type. A pointer to that can be trivially converted to void *. This happens as we fold (void *)(ptr p+ off). */ if (VOID_TYPE_P (ptd_type) && TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE) ptd_type = TREE_TYPE (TREE_TYPE (op0)); /* At which point we can try some of the same things as for indirects. */ t = maybe_fold_offset_to_array_ref (loc, op0, op1, ptd_type, true); if (!t) t = maybe_fold_offset_to_component_ref (loc, TREE_TYPE (op0), op0, op1, ptd_type); if (t) { t = build1 (ADDR_EXPR, res_type, t); SET_EXPR_LOCATION (t, loc); } return t; } /* Subroutine of fold_stmt. We perform several simplifications of the memory reference tree EXPR and make sure to re-gimplify them properly after propagation of constant addresses. IS_LHS is true if the reference is supposed to be an lvalue. */ static tree maybe_fold_reference (tree expr, bool is_lhs) { tree *t = &expr; if (TREE_CODE (expr) == ARRAY_REF && !is_lhs) { tree tem = fold_read_from_constant_string (expr); if (tem) return tem; } /* ??? We might want to open-code the relevant remaining cases to avoid using the generic fold. */ if (handled_component_p (*t) && CONSTANT_CLASS_P (TREE_OPERAND (*t, 0))) { tree tem = fold (*t); if (tem != *t) return tem; } while (handled_component_p (*t)) t = &TREE_OPERAND (*t, 0); if (TREE_CODE (*t) == INDIRECT_REF) { tree tem = maybe_fold_stmt_indirect (*t, TREE_OPERAND (*t, 0), integer_zero_node); /* Avoid folding *"abc" = 5 into 'a' = 5. */ if (is_lhs && tem && CONSTANT_CLASS_P (tem)) tem = NULL_TREE; if (!tem && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR) /* If we had a good reason for propagating the address here, make sure we end up with valid gimple. See PR34989. */ tem = TREE_OPERAND (TREE_OPERAND (*t, 0), 0); if (tem) { *t = tem; tem = maybe_fold_reference (expr, is_lhs); if (tem) return tem; return expr; } } else if (!is_lhs && DECL_P (*t)) { tree tem = get_symbol_constant_value (*t); if (tem && useless_type_conversion_p (TREE_TYPE (*t), TREE_TYPE (tem))) { *t = unshare_expr (tem); tem = maybe_fold_reference (expr, is_lhs); if (tem) return tem; return expr; } } return NULL_TREE; } /* Attempt to fold an assignment statement pointed-to by SI. Returns a replacement rhs for the statement or NULL_TREE if no simplification could be made. It is assumed that the operands have been previously folded. */ static tree fold_gimple_assign (gimple_stmt_iterator *si) { gimple stmt = gsi_stmt (*si); enum tree_code subcode = gimple_assign_rhs_code (stmt); location_t loc = gimple_location (stmt); tree result = NULL_TREE; switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: { tree rhs = gimple_assign_rhs1 (stmt); /* Try to fold a conditional expression. */ if (TREE_CODE (rhs) == COND_EXPR) { tree op0 = COND_EXPR_COND (rhs); tree tem; bool set = false; location_t cond_loc = EXPR_LOCATION (rhs); if (COMPARISON_CLASS_P (op0)) { fold_defer_overflow_warnings (); tem = fold_binary_loc (cond_loc, TREE_CODE (op0), TREE_TYPE (op0), TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1)); /* This is actually a conditional expression, not a GIMPLE conditional statement, however, the valid_gimple_rhs_p test still applies. */ set = (tem && is_gimple_condexpr (tem) && valid_gimple_rhs_p (tem)); fold_undefer_overflow_warnings (set, stmt, 0); } else if (is_gimple_min_invariant (op0)) { tem = op0; set = true; } else return NULL_TREE; if (set) result = fold_build3_loc (cond_loc, COND_EXPR, TREE_TYPE (rhs), tem, COND_EXPR_THEN (rhs), COND_EXPR_ELSE (rhs)); } else if (TREE_CODE (rhs) == TARGET_MEM_REF) return maybe_fold_tmr (rhs); else if (REFERENCE_CLASS_P (rhs)) return maybe_fold_reference (rhs, false); else if (TREE_CODE (rhs) == ADDR_EXPR) { tree tem = maybe_fold_reference (TREE_OPERAND (rhs, 0), true); if (tem) result = fold_convert (TREE_TYPE (rhs), build_fold_addr_expr_loc (loc, tem)); } else if (TREE_CODE (rhs) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE && (CONSTRUCTOR_NELTS (rhs) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)))) { /* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */ unsigned i; tree val; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) if (TREE_CODE (val) != INTEGER_CST && TREE_CODE (val) != REAL_CST && TREE_CODE (val) != FIXED_CST) return NULL_TREE; return build_vector_from_ctor (TREE_TYPE (rhs), CONSTRUCTOR_ELTS (rhs)); } else if (DECL_P (rhs)) return unshare_expr (get_symbol_constant_value (rhs)); /* If we couldn't fold the RHS, hand over to the generic fold routines. */ if (result == NULL_TREE) result = fold (rhs); /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that may have been added by fold, and "useless" type conversions that might now be apparent due to propagation. */ STRIP_USELESS_TYPE_CONVERSION (result); if (result != rhs && valid_gimple_rhs_p (result)) return result; return NULL_TREE; } break; case GIMPLE_UNARY_RHS: { tree rhs = gimple_assign_rhs1 (stmt); result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs); if (result) { /* If the operation was a conversion do _not_ mark a resulting constant with TREE_OVERFLOW if the original constant was not. These conversions have implementation defined behavior and retaining the TREE_OVERFLOW flag here would confuse later passes such as VRP. */ if (CONVERT_EXPR_CODE_P (subcode) && TREE_CODE (result) == INTEGER_CST && TREE_CODE (rhs) == INTEGER_CST) TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs); STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; } else if (CONVERT_EXPR_CODE_P (subcode) && POINTER_TYPE_P (gimple_expr_type (stmt)) && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))) { tree type = gimple_expr_type (stmt); tree t = maybe_fold_offset_to_address (loc, gimple_assign_rhs1 (stmt), integer_zero_node, type); if (t) return t; } } break; case GIMPLE_BINARY_RHS: /* Try to fold pointer addition. */ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) { tree type = TREE_TYPE (gimple_assign_rhs1 (stmt)); if (TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE) { type = build_pointer_type (TREE_TYPE (TREE_TYPE (type))); if (!useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)), type)) type = TREE_TYPE (gimple_assign_rhs1 (stmt)); } result = maybe_fold_stmt_addition (gimple_location (stmt), type, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); } if (!result) result = fold_binary_loc (loc, subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; /* Fold might have produced non-GIMPLE, so if we trust it blindly we lose canonicalization opportunities. Do not go again through fold here though, or the same non-GIMPLE will be produced. */ if (commutative_tree_code (subcode) && tree_swap_operands_p (gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), false)) return build2 (subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs2 (stmt), gimple_assign_rhs1 (stmt)); } break; case GIMPLE_INVALID_RHS: gcc_unreachable (); } return NULL_TREE; } /* Attempt to fold a conditional statement. Return true if any changes were made. We only attempt to fold the condition expression, and do not perform any transformation that would require alteration of the cfg. It is assumed that the operands have been previously folded. */ static bool fold_gimple_cond (gimple stmt) { tree result = fold_binary_loc (gimple_location (stmt), gimple_cond_code (stmt), boolean_type_node, gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result)) { gimple_cond_set_condition_from_tree (stmt, result); return true; } } return false; } /* Convert EXPR into a GIMPLE value suitable for substitution on the RHS of an assignment. Insert the necessary statements before iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL is replaced. If the call is expected to produces a result, then it is replaced by an assignment of the new RHS to the result variable. If the result is to be ignored, then the call is replaced by a GIMPLE_NOP. */ void gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) { tree lhs; tree tmp = NULL_TREE; /* Silence warning. */ gimple stmt, new_stmt; gimple_stmt_iterator i; gimple_seq stmts = gimple_seq_alloc(); struct gimplify_ctx gctx; gimple last = NULL; stmt = gsi_stmt (*si_p); gcc_assert (is_gimple_call (stmt)); lhs = gimple_call_lhs (stmt); push_gimplify_context (&gctx); if (lhs == NULL_TREE) gimplify_and_add (expr, &stmts); else tmp = get_initialized_tmp_var (expr, &stmts, NULL); pop_gimplify_context (NULL); if (gimple_has_location (stmt)) annotate_all_with_location (stmts, gimple_location (stmt)); /* The replacement can expose previously unreferenced variables. */ for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i)) { if (last) { gsi_insert_before (si_p, last, GSI_NEW_STMT); gsi_next (si_p); } new_stmt = gsi_stmt (i); find_new_referenced_vars (new_stmt); mark_symbols_for_renaming (new_stmt); last = new_stmt; } if (lhs == NULL_TREE) { unlink_stmt_vdef (stmt); release_defs (stmt); new_stmt = last; } else { if (last) { gsi_insert_before (si_p, last, GSI_NEW_STMT); gsi_next (si_p); } new_stmt = gimple_build_assign (lhs, tmp); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); move_ssa_defining_stmt_for_defs (new_stmt, stmt); } gimple_set_location (new_stmt, gimple_location (stmt)); gsi_replace (si_p, new_stmt, false); } /* Return the string length, maximum string length or maximum value of ARG in LENGTH. If ARG is an SSA name variable, follow its use-def chains. If LENGTH is not NULL and, for TYPE == 0, its value is not equal to the length we determine or if we are unable to determine the length or value, return false. VISITED is a bitmap of visited variables. TYPE is 0 if string length should be returned, 1 for maximum string length and 2 for maximum value ARG can have. */ static bool get_maxval_strlen (tree arg, tree *length, bitmap visited, int type) { tree var, val; gimple def_stmt; if (TREE_CODE (arg) != SSA_NAME) { if (TREE_CODE (arg) == COND_EXPR) return get_maxval_strlen (COND_EXPR_THEN (arg), length, visited, type) && get_maxval_strlen (COND_EXPR_ELSE (arg), length, visited, type); /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */ else if (TREE_CODE (arg) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1))) { tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); if (TREE_CODE (aop0) == INDIRECT_REF && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME) return get_maxval_strlen (TREE_OPERAND (aop0, 0), length, visited, type); } if (type == 2) { val = arg; if (TREE_CODE (val) != INTEGER_CST || tree_int_cst_sgn (val) < 0) return false; } else val = c_strlen (arg, 1); if (!val) return false; if (*length) { if (type > 0) { if (TREE_CODE (*length) != INTEGER_CST || TREE_CODE (val) != INTEGER_CST) return false; if (tree_int_cst_lt (*length, val)) *length = val; return true; } else if (simple_cst_equal (val, *length) != 1) return false; } *length = val; return true; } /* If we were already here, break the infinite cycle. */ if (bitmap_bit_p (visited, SSA_NAME_VERSION (arg))) return true; bitmap_set_bit (visited, SSA_NAME_VERSION (arg)); var = arg; def_stmt = SSA_NAME_DEF_STMT (var); switch (gimple_code (def_stmt)) { case GIMPLE_ASSIGN: /* The RHS of the statement defining VAR must either have a constant length or come from another SSA_NAME with a constant length. */ if (gimple_assign_single_p (def_stmt) || gimple_assign_unary_nop_p (def_stmt)) { tree rhs = gimple_assign_rhs1 (def_stmt); return get_maxval_strlen (rhs, length, visited, type); } return false; case GIMPLE_PHI: { /* All the arguments of the PHI node must have the same constant length. */ unsigned i; for (i = 0; i < gimple_phi_num_args (def_stmt); i++) { tree arg = gimple_phi_arg (def_stmt, i)->def; /* If this PHI has itself as an argument, we cannot determine the string length of this argument. However, if we can find a constant string length for the other PHI args then we can still be sure that this is a constant string length. So be optimistic and just continue with the next argument. */ if (arg == gimple_phi_result (def_stmt)) continue; if (!get_maxval_strlen (arg, length, visited, type)) return false; } } return true; default: return false; } } /* Fold builtin call in statement STMT. Returns a simplified tree. We may return a non-constant expression, including another call to a different function and with different arguments, e.g., substituting memcpy for strcpy when the string length is known. Note that some builtins expand into inline code that may not be valid in GIMPLE. Callers must take care. */ tree gimple_fold_builtin (gimple stmt) { tree result, val[3]; tree callee, a; int arg_idx, type; bitmap visited; bool ignore; int nargs; location_t loc = gimple_location (stmt); gcc_assert (is_gimple_call (stmt)); ignore = (gimple_call_lhs (stmt) == NULL); /* First try the generic builtin folder. If that succeeds, return the result directly. */ result = fold_call_stmt (stmt, ignore); if (result) { if (ignore) STRIP_NOPS (result); return result; } /* Ignore MD builtins. */ callee = gimple_call_fndecl (stmt); if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD) return NULL_TREE; /* If the builtin could not be folded, and it has no argument list, we're done. */ nargs = gimple_call_num_args (stmt); if (nargs == 0) return NULL_TREE; /* Limit the work only for builtins we know how to simplify. */ switch (DECL_FUNCTION_CODE (callee)) { case BUILT_IN_STRLEN: case BUILT_IN_FPUTS: case BUILT_IN_FPUTS_UNLOCKED: arg_idx = 0; type = 0; break; case BUILT_IN_STRCPY: case BUILT_IN_STRNCPY: arg_idx = 1; type = 0; break; case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: case BUILT_IN_STRNCPY_CHK: arg_idx = 2; type = 2; break; case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: arg_idx = 1; type = 1; break; case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: arg_idx = 1; type = 2; break; default: return NULL_TREE; } if (arg_idx >= nargs) return NULL_TREE; /* Try to use the dataflow information gathered by the CCP process. */ visited = BITMAP_ALLOC (NULL); bitmap_clear (visited); memset (val, 0, sizeof (val)); a = gimple_call_arg (stmt, arg_idx); if (!get_maxval_strlen (a, &val[arg_idx], visited, type)) val[arg_idx] = NULL_TREE; BITMAP_FREE (visited); result = NULL_TREE; switch (DECL_FUNCTION_CODE (callee)) { case BUILT_IN_STRLEN: if (val[0] && nargs == 1) { tree new_val = fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]); /* If the result is not a valid gimple value, or not a cast of a valid gimple value, then we can not use the result. */ if (is_gimple_val (new_val) || (is_gimple_cast (new_val) && is_gimple_val (TREE_OPERAND (new_val, 0)))) return new_val; } break; case BUILT_IN_STRCPY: if (val[1] && is_gimple_val (val[1]) && nargs == 2) result = fold_builtin_strcpy (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), val[1]); break; case BUILT_IN_STRNCPY: if (val[1] && is_gimple_val (val[1]) && nargs == 3) result = fold_builtin_strncpy (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), val[1]); break; case BUILT_IN_FPUTS: if (nargs == 2) result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), ignore, false, val[0]); break; case BUILT_IN_FPUTS_UNLOCKED: if (nargs == 2) result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), ignore, true, val[0]); break; case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: if (val[2] && is_gimple_val (val[2]) && nargs == 4) result = fold_builtin_memory_chk (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), val[2], ignore, DECL_FUNCTION_CODE (callee)); break; case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: if (val[1] && is_gimple_val (val[1]) && nargs == 3) result = fold_builtin_stxcpy_chk (loc, callee, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), val[1], ignore, DECL_FUNCTION_CODE (callee)); break; case BUILT_IN_STRNCPY_CHK: if (val[2] && is_gimple_val (val[2]) && nargs == 4) result = fold_builtin_strncpy_chk (loc, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), val[2]); break; case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: if (val[1] && is_gimple_val (val[1])) result = gimple_fold_builtin_snprintf_chk (stmt, val[1], DECL_FUNCTION_CODE (callee)); break; default: gcc_unreachable (); } if (result && ignore) result = fold_ignored_result (result); return result; } /* Search for a base binfo of BINFO that corresponds to TYPE and return it if it is found or NULL_TREE if it is not. */ static tree get_base_binfo_for_type (tree binfo, tree type) { int i; tree base_binfo; tree res = NULL_TREE; for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) if (TREE_TYPE (base_binfo) == type) { gcc_assert (!res); res = base_binfo; } return res; } /* Return a binfo describing the part of object referenced by expression REF. Return NULL_TREE if it cannot be determined. REF can consist of a series of COMPONENT_REFs of a declaration or of an INDIRECT_REF or it can also be just a simple declaration, indirect reference or an SSA_NAME. If the function discovers an INDIRECT_REF or an SSA_NAME, it will assume that the encapsulating type is described by KNOWN_BINFO, if it is not NULL_TREE. Otherwise the first non-artificial field declaration or the base declaration will be examined to get the encapsulating type. */ tree gimple_get_relevant_ref_binfo (tree ref, tree known_binfo) { while (true) { if (TREE_CODE (ref) == COMPONENT_REF) { tree par_type; tree binfo, base_binfo; tree field = TREE_OPERAND (ref, 1); if (!DECL_ARTIFICIAL (field)) { tree type = TREE_TYPE (field); if (TREE_CODE (type) == RECORD_TYPE) return TYPE_BINFO (type); else return NULL_TREE; } par_type = TREE_TYPE (TREE_OPERAND (ref, 0)); binfo = TYPE_BINFO (par_type); if (!binfo || BINFO_N_BASE_BINFOS (binfo) == 0) return NULL_TREE; base_binfo = BINFO_BASE_BINFO (binfo, 0); if (BINFO_TYPE (base_binfo) != TREE_TYPE (field)) { tree d_binfo; d_binfo = gimple_get_relevant_ref_binfo (TREE_OPERAND (ref, 0), known_binfo); /* Get descendant binfo. */ if (!d_binfo) return NULL_TREE; return get_base_binfo_for_type (d_binfo, TREE_TYPE (field)); } ref = TREE_OPERAND (ref, 0); } else if (DECL_P (ref) && TREE_CODE (TREE_TYPE (ref)) == RECORD_TYPE) return TYPE_BINFO (TREE_TYPE (ref)); else if (known_binfo && (TREE_CODE (ref) == SSA_NAME || TREE_CODE (ref) == INDIRECT_REF)) return known_binfo; else return NULL_TREE; } } /* Fold a OBJ_TYPE_REF expression to the address of a function. TOKEN is integer form of OBJ_TYPE_REF_TOKEN of the reference expression. KNOWN_BINFO carries the binfo describing the true type of OBJ_TYPE_REF_OBJECT(REF). */ tree gimple_fold_obj_type_ref_known_binfo (HOST_WIDE_INT token, tree known_binfo) { HOST_WIDE_INT i; tree v, fndecl; v = BINFO_VIRTUALS (known_binfo); i = 0; while (i != token) { i += (TARGET_VTABLE_USES_DESCRIPTORS ? TARGET_VTABLE_USES_DESCRIPTORS : 1); v = TREE_CHAIN (v); } fndecl = TREE_VALUE (v); return build_fold_addr_expr (fndecl); } /* Fold a OBJ_TYPE_REF expression to the address of a function. If KNOWN_TYPE is not NULL_TREE, it is the true type of the outmost encapsulating object if that comes from a pointer SSA_NAME. If the true outmost encapsulating type can be determined from a declaration OBJ_TYPE_REF_OBJECT(REF), it is used regardless of KNOWN_TYPE (which thus can be NULL_TREE). */ tree gimple_fold_obj_type_ref (tree ref, tree known_type) { tree obj = OBJ_TYPE_REF_OBJECT (ref); tree known_binfo = known_type ? TYPE_BINFO (known_type) : NULL_TREE; tree binfo; if (TREE_CODE (obj) == ADDR_EXPR) obj = TREE_OPERAND (obj, 0); binfo = gimple_get_relevant_ref_binfo (obj, known_binfo); if (binfo) { HOST_WIDE_INT token = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1); return gimple_fold_obj_type_ref_known_binfo (token, binfo); } else return NULL_TREE; } /* Attempt to fold a call statement referenced by the statement iterator GSI. The statement may be replaced by another statement, e.g., if the call simplifies to a constant value. Return true if any changes were made. It is assumed that the operands have been previously folded. */ static bool fold_gimple_call (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree callee = gimple_call_fndecl (stmt); /* Check for builtins that CCP can handle using information not available in the generic fold routines. */ if (callee && DECL_BUILT_IN (callee)) { tree result = gimple_fold_builtin (stmt); if (result) { if (!update_call_from_tree (gsi, result)) gimplify_and_update_call_from_tree (gsi, result); return true; } } else { /* ??? Should perhaps do this in fold proper. However, doing it there requires that we create a new CALL_EXPR, and that requires copying EH region info to the new node. Easier to just do it here where we can just smash the call operand. */ /* ??? Is there a good reason not to do this in fold_stmt_inplace? */ callee = gimple_call_fn (stmt); if (TREE_CODE (callee) == OBJ_TYPE_REF && TREE_CODE (OBJ_TYPE_REF_OBJECT (callee)) == ADDR_EXPR) { tree t; t = gimple_fold_obj_type_ref (callee, NULL_TREE); if (t) { gimple_call_set_fn (stmt, t); return true; } } } return false; } /* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument distinguishes both cases. */ static bool fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace) { bool changed = false; gimple stmt = gsi_stmt (*gsi); unsigned i; /* Fold the main computation performed by the statement. */ switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { unsigned old_num_ops = gimple_num_ops (stmt); tree new_rhs = fold_gimple_assign (gsi); tree lhs = gimple_assign_lhs (stmt); if (new_rhs && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs))) new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs); if (new_rhs && (!inplace || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops)) { gimple_assign_set_rhs_from_tree (gsi, new_rhs); changed = true; } break; } case GIMPLE_COND: changed |= fold_gimple_cond (stmt); break; case GIMPLE_CALL: /* Fold *& in call arguments. */ for (i = 0; i < gimple_call_num_args (stmt); ++i) if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i))) { tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false); if (tmp) { gimple_call_set_arg (stmt, i, tmp); changed = true; } } /* The entire statement may be replaced in this case. */ if (!inplace) changed |= fold_gimple_call (gsi); break; case GIMPLE_ASM: /* Fold *& in asm operands. */ for (i = 0; i < gimple_asm_noutputs (stmt); ++i) { tree link = gimple_asm_output_op (stmt, i); tree op = TREE_VALUE (link); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, true)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } for (i = 0; i < gimple_asm_ninputs (stmt); ++i) { tree link = gimple_asm_input_op (stmt, i); tree op = TREE_VALUE (link); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, false)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } break; default:; } stmt = gsi_stmt (*gsi); /* Fold *& on the lhs. */ if (gimple_has_lhs (stmt)) { tree lhs = gimple_get_lhs (stmt); if (lhs && REFERENCE_CLASS_P (lhs)) { tree new_lhs = maybe_fold_reference (lhs, true); if (new_lhs) { gimple_set_lhs (stmt, new_lhs); changed = true; } } } return changed; } /* Fold the statement pointed to by GSI. In some cases, this function may replace the whole statement with a new one. Returns true iff folding makes any changes. The statement pointed to by GSI should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt (gimple_stmt_iterator *gsi) { return fold_stmt_1 (gsi, false); } /* Perform the minimal folding on statement STMT. Only operations like *&x created by constant propagation are handled. The statement cannot be replaced with a new one. Return true if the statement was changed, false otherwise. The statement STMT should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt_inplace (gimple stmt) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); bool changed = fold_stmt_1 (&gsi, true); gcc_assert (gsi_stmt (gsi) == stmt); return changed; }