/* Statement simplification on GIMPLE. Copyright (C) 2010-2014 Free Software Foundation, Inc. Split out from tree-ssa-ccp.c. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "stringpool.h" #include "expr.h" #include "stmt.h" #include "stor-layout.h" #include "flags.h" #include "hashtab.h" #include "hash-set.h" #include "vec.h" #include "machmode.h" #include "hard-reg-set.h" #include "input.h" #include "function.h" #include "dumpfile.h" #include "bitmap.h" #include "predict.h" #include "dominance.h" #include "basic-block.h" #include "tree-ssa-alias.h" #include "internal-fn.h" #include "gimple-fold.h" #include "gimple-expr.h" #include "is-a.h" #include "gimple.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimple-ssa.h" #include "tree-ssanames.h" #include "tree-into-ssa.h" #include "tree-dfa.h" #include "tree-ssa.h" #include "tree-ssa-propagate.h" #include "target.h" #include "hash-map.h" #include "plugin-api.h" #include "ipa-ref.h" #include "cgraph.h" #include "ipa-utils.h" #include "gimple-pretty-print.h" #include "tree-ssa-address.h" #include "langhooks.h" #include "gimplify-me.h" #include "dbgcnt.h" #include "builtins.h" #include "output.h" #include "tree-eh.h" #include "gimple-match.h" #include "tree-phinodes.h" #include "ssa-iterators.h" /* Return true when DECL can be referenced from current unit. FROM_DECL (if non-null) specify constructor of variable DECL was taken from. We can get declarations that are not possible to reference for various reasons: 1) When analyzing C++ virtual tables. C++ virtual tables do have known constructors even when they are keyed to other compilation unit. Those tables can contain pointers to methods and vars in other units. Those methods have both STATIC and EXTERNAL set. 2) In WHOPR mode devirtualization might lead to reference to method that was partitioned elsehwere. In this case we have static VAR_DECL or FUNCTION_DECL that has no corresponding callgraph/varpool node declaring the body. 3) COMDAT functions referred by external vtables that we devirtualize only during final compilation stage. At this time we already decided that we will not output the function body and thus we can't reference the symbol directly. */ static bool can_refer_decl_in_current_unit_p (tree decl, tree from_decl) { varpool_node *vnode; struct cgraph_node *node; symtab_node *snode; if (DECL_ABSTRACT_P (decl)) return false; /* We are concerned only about static/external vars and functions. */ if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl)) || (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)) return true; /* Static objects can be referred only if they was not optimized out yet. */ if (!TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl)) { /* Before we start optimizing unreachable code we can be sure all static objects are defined. */ if (symtab->function_flags_ready) return true; snode = symtab_node::get (decl); if (!snode || !snode->definition) return false; node = dyn_cast (snode); return !node || !node->global.inlined_to; } /* We will later output the initializer, so we can refer to it. So we are concerned only when DECL comes from initializer of external var or var that has been optimized out. */ if (!from_decl || TREE_CODE (from_decl) != VAR_DECL || (!DECL_EXTERNAL (from_decl) && (vnode = varpool_node::get (from_decl)) != NULL && vnode->definition) || (flag_ltrans && (vnode = varpool_node::get (from_decl)) != NULL && vnode->in_other_partition)) return true; /* We are folding reference from external vtable. The vtable may reffer to a symbol keyed to other compilation unit. The other compilation unit may be in separate DSO and the symbol may be hidden. */ if (DECL_VISIBILITY_SPECIFIED (decl) && DECL_EXTERNAL (decl) && DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT && (!(snode = symtab_node::get (decl)) || !snode->in_other_partition)) return false; /* When function is public, we always can introduce new reference. Exception are the COMDAT functions where introducing a direct reference imply need to include function body in the curren tunit. */ if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl)) return true; /* We have COMDAT. We are going to check if we still have definition or if the definition is going to be output in other partition. Bypass this when gimplifying; all needed functions will be produced. As observed in PR20991 for already optimized out comdat virtual functions it may be tempting to not necessarily give up because the copy will be output elsewhere when corresponding vtable is output. This is however not possible - ABI specify that COMDATs are output in units where they are used and when the other unit was compiled with LTO it is possible that vtable was kept public while the function itself was privatized. */ if (!symtab->function_flags_ready) return true; snode = symtab_node::get (decl); if (!snode || ((!snode->definition || DECL_EXTERNAL (decl)) && (!snode->in_other_partition || (!snode->forced_by_abi && !snode->force_output)))) return false; node = dyn_cast (snode); return !node || !node->global.inlined_to; } /* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into acceptable form for is_gimple_min_invariant. FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL. */ tree canonicalize_constructor_val (tree cval, tree from_decl) { tree orig_cval = cval; STRIP_NOPS (cval); if (TREE_CODE (cval) == POINTER_PLUS_EXPR && TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST) { tree ptr = TREE_OPERAND (cval, 0); if (is_gimple_min_invariant (ptr)) cval = build1_loc (EXPR_LOCATION (cval), ADDR_EXPR, TREE_TYPE (ptr), fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)), ptr, fold_convert (ptr_type_node, TREE_OPERAND (cval, 1)))); } if (TREE_CODE (cval) == ADDR_EXPR) { tree base = NULL_TREE; if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR) { base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0)); if (base) TREE_OPERAND (cval, 0) = base; } else base = get_base_address (TREE_OPERAND (cval, 0)); if (!base) return NULL_TREE; if ((TREE_CODE (base) == VAR_DECL || TREE_CODE (base) == FUNCTION_DECL) && !can_refer_decl_in_current_unit_p (base, from_decl)) return NULL_TREE; if (TREE_CODE (base) == VAR_DECL) TREE_ADDRESSABLE (base) = 1; else if (TREE_CODE (base) == FUNCTION_DECL) { /* Make sure we create a cgraph node for functions we'll reference. They can be non-existent if the reference comes from an entry of an external vtable for example. */ cgraph_node::get_create (base); } /* Fixup types in global initializers. */ if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0))) cval = build_fold_addr_expr (TREE_OPERAND (cval, 0)); if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval))) cval = fold_convert (TREE_TYPE (orig_cval), cval); return cval; } if (TREE_OVERFLOW_P (cval)) return drop_tree_overflow (cval); return orig_cval; } /* If SYM is a constant variable with known value, return the value. NULL_TREE is returned otherwise. */ tree get_symbol_constant_value (tree sym) { tree val = ctor_for_folding (sym); if (val != error_mark_node) { if (val) { val = canonicalize_constructor_val (unshare_expr (val), sym); if (val && is_gimple_min_invariant (val)) return val; else return NULL_TREE; } /* Variables declared 'const' without an initializer have zero as the initializer if they may not be overridden at link or run time. */ if (!val && (INTEGRAL_TYPE_P (TREE_TYPE (sym)) || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym)))) return build_zero_cst (TREE_TYPE (sym)); } return NULL_TREE; } /* Subroutine of fold_stmt. We perform several simplifications of the memory reference tree EXPR and make sure to re-gimplify them properly after propagation of constant addresses. IS_LHS is true if the reference is supposed to be an lvalue. */ static tree maybe_fold_reference (tree expr, bool is_lhs) { tree result; if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR || TREE_CODE (expr) == REALPART_EXPR || TREE_CODE (expr) == IMAGPART_EXPR) && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0))) return fold_unary_loc (EXPR_LOCATION (expr), TREE_CODE (expr), TREE_TYPE (expr), TREE_OPERAND (expr, 0)); else if (TREE_CODE (expr) == BIT_FIELD_REF && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0))) return fold_ternary_loc (EXPR_LOCATION (expr), TREE_CODE (expr), TREE_TYPE (expr), TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1), TREE_OPERAND (expr, 2)); if (!is_lhs && (result = fold_const_aggregate_ref (expr)) && is_gimple_min_invariant (result)) return result; return NULL_TREE; } /* Attempt to fold an assignment statement pointed-to by SI. Returns a replacement rhs for the statement or NULL_TREE if no simplification could be made. It is assumed that the operands have been previously folded. */ static tree fold_gimple_assign (gimple_stmt_iterator *si) { gimple stmt = gsi_stmt (*si); enum tree_code subcode = gimple_assign_rhs_code (stmt); location_t loc = gimple_location (stmt); tree result = NULL_TREE; switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: { tree rhs = gimple_assign_rhs1 (stmt); if (REFERENCE_CLASS_P (rhs)) return maybe_fold_reference (rhs, false); else if (TREE_CODE (rhs) == OBJ_TYPE_REF) { tree val = OBJ_TYPE_REF_EXPR (rhs); if (is_gimple_min_invariant (val)) return val; else if (flag_devirtualize && virtual_method_call_p (rhs)) { bool final; vec targets = possible_polymorphic_call_targets (rhs, stmt, &final); if (final && targets.length () <= 1 && dbg_cnt (devirt)) { if (dump_enabled_p ()) { location_t loc = gimple_location_safe (stmt); dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc, "resolving virtual function address " "reference to function %s\n", targets.length () == 1 ? targets[0]->name () : "NULL"); } if (targets.length () == 1) { val = fold_convert (TREE_TYPE (val), build_fold_addr_expr_loc (loc, targets[0]->decl)); STRIP_USELESS_TYPE_CONVERSION (val); } else /* We can not use __builtin_unreachable here because it can not have address taken. */ val = build_int_cst (TREE_TYPE (val), 0); return val; } } } else if (TREE_CODE (rhs) == ADDR_EXPR) { tree ref = TREE_OPERAND (rhs, 0); tree tem = maybe_fold_reference (ref, true); if (tem && TREE_CODE (tem) == MEM_REF && integer_zerop (TREE_OPERAND (tem, 1))) result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0)); else if (tem) result = fold_convert (TREE_TYPE (rhs), build_fold_addr_expr_loc (loc, tem)); else if (TREE_CODE (ref) == MEM_REF && integer_zerop (TREE_OPERAND (ref, 1))) result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0)); } else if (TREE_CODE (rhs) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE && (CONSTRUCTOR_NELTS (rhs) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)))) { /* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */ unsigned i; tree val; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) if (TREE_CODE (val) != INTEGER_CST && TREE_CODE (val) != REAL_CST && TREE_CODE (val) != FIXED_CST) return NULL_TREE; return build_vector_from_ctor (TREE_TYPE (rhs), CONSTRUCTOR_ELTS (rhs)); } else if (DECL_P (rhs)) return get_symbol_constant_value (rhs); /* If we couldn't fold the RHS, hand over to the generic fold routines. */ if (result == NULL_TREE) result = fold (rhs); /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that may have been added by fold, and "useless" type conversions that might now be apparent due to propagation. */ STRIP_USELESS_TYPE_CONVERSION (result); if (result != rhs && valid_gimple_rhs_p (result)) return result; return NULL_TREE; } break; case GIMPLE_UNARY_RHS: { tree rhs = gimple_assign_rhs1 (stmt); result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs); if (result) { /* If the operation was a conversion do _not_ mark a resulting constant with TREE_OVERFLOW if the original constant was not. These conversions have implementation defined behavior and retaining the TREE_OVERFLOW flag here would confuse later passes such as VRP. */ if (CONVERT_EXPR_CODE_P (subcode) && TREE_CODE (result) == INTEGER_CST && TREE_CODE (rhs) == INTEGER_CST) TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs); STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; } } break; case GIMPLE_BINARY_RHS: /* Try to canonicalize for boolean-typed X the comparisons X == 0, X == 1, X != 0, and X != 1. */ if (gimple_assign_rhs_code (stmt) == EQ_EXPR || gimple_assign_rhs_code (stmt) == NE_EXPR) { tree lhs = gimple_assign_lhs (stmt); tree op1 = gimple_assign_rhs1 (stmt); tree op2 = gimple_assign_rhs2 (stmt); tree type = TREE_TYPE (op1); /* Check whether the comparison operands are of the same boolean type as the result type is. Check that second operand is an integer-constant with value one or zero. */ if (TREE_CODE (op2) == INTEGER_CST && (integer_zerop (op2) || integer_onep (op2)) && useless_type_conversion_p (TREE_TYPE (lhs), type)) { enum tree_code cmp_code = gimple_assign_rhs_code (stmt); bool is_logical_not = false; /* X == 0 and X != 1 is a logical-not.of X X == 1 and X != 0 is X */ if ((cmp_code == EQ_EXPR && integer_zerop (op2)) || (cmp_code == NE_EXPR && integer_onep (op2))) is_logical_not = true; if (is_logical_not == false) result = op1; /* Only for one-bit precision typed X the transformation !X -> ~X is valied. */ else if (TYPE_PRECISION (type) == 1) result = build1_loc (gimple_location (stmt), BIT_NOT_EXPR, type, op1); /* Otherwise we use !X -> X ^ 1. */ else result = build2_loc (gimple_location (stmt), BIT_XOR_EXPR, type, op1, build_int_cst (type, 1)); } } if (!result) result = fold_binary_loc (loc, subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; } break; case GIMPLE_TERNARY_RHS: /* Try to fold a conditional expression. */ if (gimple_assign_rhs_code (stmt) == COND_EXPR) { tree op0 = gimple_assign_rhs1 (stmt); tree tem; bool set = false; location_t cond_loc = gimple_location (stmt); if (COMPARISON_CLASS_P (op0)) { fold_defer_overflow_warnings (); tem = fold_binary_loc (cond_loc, TREE_CODE (op0), TREE_TYPE (op0), TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1)); /* This is actually a conditional expression, not a GIMPLE conditional statement, however, the valid_gimple_rhs_p test still applies. */ set = (tem && is_gimple_condexpr (tem) && valid_gimple_rhs_p (tem)); fold_undefer_overflow_warnings (set, stmt, 0); } else if (is_gimple_min_invariant (op0)) { tem = op0; set = true; } else return NULL_TREE; if (set) result = fold_build3_loc (cond_loc, COND_EXPR, TREE_TYPE (gimple_assign_lhs (stmt)), tem, gimple_assign_rhs2 (stmt), gimple_assign_rhs3 (stmt)); } if (!result) result = fold_ternary_loc (loc, subcode, TREE_TYPE (gimple_assign_lhs (stmt)), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), gimple_assign_rhs3 (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (valid_gimple_rhs_p (result)) return result; } break; case GIMPLE_INVALID_RHS: gcc_unreachable (); } return NULL_TREE; } /* Attempt to fold a conditional statement. Return true if any changes were made. We only attempt to fold the condition expression, and do not perform any transformation that would require alteration of the cfg. It is assumed that the operands have been previously folded. */ static bool fold_gimple_cond (gimple stmt) { tree result = fold_binary_loc (gimple_location (stmt), gimple_cond_code (stmt), boolean_type_node, gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); if (result) { STRIP_USELESS_TYPE_CONVERSION (result); if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result)) { gimple_cond_set_condition_from_tree (stmt, result); return true; } } return false; } /* Replace a statement at *SI_P with a sequence of statements in STMTS, adjusting the replacement stmts location and virtual operands. If the statement has a lhs the last stmt in the sequence is expected to assign to that lhs. */ static void gsi_replace_with_seq_vops (gimple_stmt_iterator *si_p, gimple_seq stmts) { gimple stmt = gsi_stmt (*si_p); if (gimple_has_location (stmt)) annotate_all_with_location (stmts, gimple_location (stmt)); /* First iterate over the replacement statements backward, assigning virtual operands to their defining statements. */ gimple laststore = NULL; for (gimple_stmt_iterator i = gsi_last (stmts); !gsi_end_p (i); gsi_prev (&i)) { gimple new_stmt = gsi_stmt (i); if ((gimple_assign_single_p (new_stmt) && !is_gimple_reg (gimple_assign_lhs (new_stmt))) || (is_gimple_call (new_stmt) && (gimple_call_flags (new_stmt) & (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0)) { tree vdef; if (!laststore) vdef = gimple_vdef (stmt); else vdef = make_ssa_name (gimple_vop (cfun), new_stmt); gimple_set_vdef (new_stmt, vdef); if (vdef && TREE_CODE (vdef) == SSA_NAME) SSA_NAME_DEF_STMT (vdef) = new_stmt; laststore = new_stmt; } } /* Second iterate over the statements forward, assigning virtual operands to their uses. */ tree reaching_vuse = gimple_vuse (stmt); for (gimple_stmt_iterator i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i)) { gimple new_stmt = gsi_stmt (i); /* If the new statement possibly has a VUSE, update it with exact SSA name we know will reach this one. */ if (gimple_has_mem_ops (new_stmt)) gimple_set_vuse (new_stmt, reaching_vuse); gimple_set_modified (new_stmt, true); if (gimple_vdef (new_stmt)) reaching_vuse = gimple_vdef (new_stmt); } /* If the new sequence does not do a store release the virtual definition of the original statement. */ if (reaching_vuse && reaching_vuse == gimple_vuse (stmt)) { tree vdef = gimple_vdef (stmt); if (vdef && TREE_CODE (vdef) == SSA_NAME) { unlink_stmt_vdef (stmt); release_ssa_name (vdef); } } /* Finally replace the original statement with the sequence. */ gsi_replace_with_seq (si_p, stmts, false); } /* Convert EXPR into a GIMPLE value suitable for substitution on the RHS of an assignment. Insert the necessary statements before iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL is replaced. If the call is expected to produces a result, then it is replaced by an assignment of the new RHS to the result variable. If the result is to be ignored, then the call is replaced by a GIMPLE_NOP. A proper VDEF chain is retained by making the first VUSE and the last VDEF of the whole sequence be the same as the replaced statement and using new SSA names for stores in between. */ void gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) { tree lhs; gimple stmt, new_stmt; gimple_stmt_iterator i; gimple_seq stmts = NULL; stmt = gsi_stmt (*si_p); gcc_assert (is_gimple_call (stmt)); push_gimplify_context (gimple_in_ssa_p (cfun)); lhs = gimple_call_lhs (stmt); if (lhs == NULL_TREE) { gimplify_and_add (expr, &stmts); /* We can end up with folding a memcpy of an empty class assignment which gets optimized away by C++ gimplification. */ if (gimple_seq_empty_p (stmts)) { pop_gimplify_context (NULL); if (gimple_in_ssa_p (cfun)) { unlink_stmt_vdef (stmt); release_defs (stmt); } gsi_replace (si_p, gimple_build_nop (), true); return; } } else { tree tmp = get_initialized_tmp_var (expr, &stmts, NULL); new_stmt = gimple_build_assign (lhs, tmp); i = gsi_last (stmts); gsi_insert_after_without_update (&i, new_stmt, GSI_CONTINUE_LINKING); } pop_gimplify_context (NULL); gsi_replace_with_seq_vops (si_p, stmts); } /* Replace the call at *GSI with the gimple value VAL. */ static void replace_call_with_value (gimple_stmt_iterator *gsi, tree val) { gimple stmt = gsi_stmt (*gsi); tree lhs = gimple_call_lhs (stmt); gimple repl; if (lhs) { if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (val))) val = fold_convert (TREE_TYPE (lhs), val); repl = gimple_build_assign (lhs, val); } else repl = gimple_build_nop (); tree vdef = gimple_vdef (stmt); if (vdef && TREE_CODE (vdef) == SSA_NAME) { unlink_stmt_vdef (stmt); release_ssa_name (vdef); } gsi_replace (gsi, repl, true); } /* Replace the call at *GSI with the new call REPL and fold that again. */ static void replace_call_with_call_and_fold (gimple_stmt_iterator *gsi, gimple repl) { gimple stmt = gsi_stmt (*gsi); gimple_call_set_lhs (repl, gimple_call_lhs (stmt)); gimple_set_location (repl, gimple_location (stmt)); if (gimple_vdef (stmt) && TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) { gimple_set_vdef (repl, gimple_vdef (stmt)); gimple_set_vuse (repl, gimple_vuse (stmt)); SSA_NAME_DEF_STMT (gimple_vdef (repl)) = repl; } gsi_replace (gsi, repl, true); fold_stmt (gsi); } /* Return true if VAR is a VAR_DECL or a component thereof. */ static bool var_decl_component_p (tree var) { tree inner = var; while (handled_component_p (inner)) inner = TREE_OPERAND (inner, 0); return SSA_VAR_P (inner); } /* Fold function call to builtin mem{{,p}cpy,move}. Return NULL_TREE if no simplification can be made. If ENDP is 0, return DEST (like memcpy). If ENDP is 1, return DEST+LEN (like mempcpy). If ENDP is 2, return DEST+LEN-1 (like stpcpy). If ENDP is 3, return DEST, additionally *SRC and *DEST may overlap (memmove). */ static bool gimple_fold_builtin_memory_op (gimple_stmt_iterator *gsi, tree dest, tree src, int endp) { gimple stmt = gsi_stmt (*gsi); tree lhs = gimple_call_lhs (stmt); tree len = gimple_call_arg (stmt, 2); tree destvar, srcvar; location_t loc = gimple_location (stmt); /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) { gimple repl; if (gimple_call_lhs (stmt)) repl = gimple_build_assign (gimple_call_lhs (stmt), dest); else repl = gimple_build_nop (); tree vdef = gimple_vdef (stmt); if (vdef && TREE_CODE (vdef) == SSA_NAME) { unlink_stmt_vdef (stmt); release_ssa_name (vdef); } gsi_replace (gsi, repl, true); return true; } /* If SRC and DEST are the same (and not volatile), return DEST{,+LEN,+LEN-1}. */ if (operand_equal_p (src, dest, 0)) { unlink_stmt_vdef (stmt); if (gimple_vdef (stmt) && TREE_CODE (gimple_vdef (stmt)) == SSA_NAME) release_ssa_name (gimple_vdef (stmt)); if (!lhs) { gsi_replace (gsi, gimple_build_nop (), true); return true; } goto done; } else { tree srctype, desttype; unsigned int src_align, dest_align; tree off0; /* Build accesses at offset zero with a ref-all character type. */ off0 = build_int_cst (build_pointer_type_for_mode (char_type_node, ptr_mode, true), 0); /* If we can perform the copy efficiently with first doing all loads and then all stores inline it that way. Currently efficiently means that we can load all the memory into a single integer register which is what MOVE_MAX gives us. */ src_align = get_pointer_alignment (src); dest_align = get_pointer_alignment (dest); if (tree_fits_uhwi_p (len) && compare_tree_int (len, MOVE_MAX) <= 0 /* ??? Don't transform copies from strings with known length this confuses the tree-ssa-strlen.c. This doesn't handle the case in gcc.dg/strlenopt-8.c which is XFAILed for that reason. */ && !c_strlen (src, 2)) { unsigned ilen = tree_to_uhwi (len); if (exact_log2 (ilen) != -1) { tree type = lang_hooks.types.type_for_size (ilen * 8, 1); if (type && TYPE_MODE (type) != BLKmode && (GET_MODE_SIZE (TYPE_MODE (type)) * BITS_PER_UNIT == ilen * 8) /* If the destination pointer is not aligned we must be able to emit an unaligned store. */ && (dest_align >= GET_MODE_ALIGNMENT (TYPE_MODE (type)) || !SLOW_UNALIGNED_ACCESS (TYPE_MODE (type), dest_align))) { tree srctype = type; tree desttype = type; if (src_align < GET_MODE_ALIGNMENT (TYPE_MODE (type))) srctype = build_aligned_type (type, src_align); tree srcmem = fold_build2 (MEM_REF, srctype, src, off0); tree tem = fold_const_aggregate_ref (srcmem); if (tem) srcmem = tem; else if (src_align < GET_MODE_ALIGNMENT (TYPE_MODE (type)) && SLOW_UNALIGNED_ACCESS (TYPE_MODE (type), src_align)) srcmem = NULL_TREE; if (srcmem) { gimple new_stmt; if (is_gimple_reg_type (TREE_TYPE (srcmem))) { new_stmt = gimple_build_assign (NULL_TREE, srcmem); if (gimple_in_ssa_p (cfun)) srcmem = make_ssa_name (TREE_TYPE (srcmem), new_stmt); else srcmem = create_tmp_reg (TREE_TYPE (srcmem), NULL); gimple_assign_set_lhs (new_stmt, srcmem); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); } if (dest_align < GET_MODE_ALIGNMENT (TYPE_MODE (type))) desttype = build_aligned_type (type, dest_align); new_stmt = gimple_build_assign (fold_build2 (MEM_REF, desttype, dest, off0), srcmem); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); if (gimple_vdef (new_stmt) && TREE_CODE (gimple_vdef (new_stmt)) == SSA_NAME) SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt; if (!lhs) { gsi_replace (gsi, new_stmt, true); return true; } gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); goto done; } } } } if (endp == 3) { /* Both DEST and SRC must be pointer types. ??? This is what old code did. Is the testing for pointer types really mandatory? If either SRC is readonly or length is 1, we can use memcpy. */ if (!dest_align || !src_align) return false; if (readonly_data_expr (src) || (tree_fits_uhwi_p (len) && (MIN (src_align, dest_align) / BITS_PER_UNIT >= tree_to_uhwi (len)))) { tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; gimple_call_set_fndecl (stmt, fn); gimple_call_set_arg (stmt, 0, dest); gimple_call_set_arg (stmt, 1, src); fold_stmt (gsi); return true; } /* If *src and *dest can't overlap, optimize into memcpy as well. */ if (TREE_CODE (src) == ADDR_EXPR && TREE_CODE (dest) == ADDR_EXPR) { tree src_base, dest_base, fn; HOST_WIDE_INT src_offset = 0, dest_offset = 0; HOST_WIDE_INT size = -1; HOST_WIDE_INT maxsize = -1; srcvar = TREE_OPERAND (src, 0); src_base = get_ref_base_and_extent (srcvar, &src_offset, &size, &maxsize); destvar = TREE_OPERAND (dest, 0); dest_base = get_ref_base_and_extent (destvar, &dest_offset, &size, &maxsize); if (tree_fits_uhwi_p (len)) maxsize = tree_to_uhwi (len); else maxsize = -1; src_offset /= BITS_PER_UNIT; dest_offset /= BITS_PER_UNIT; if (SSA_VAR_P (src_base) && SSA_VAR_P (dest_base)) { if (operand_equal_p (src_base, dest_base, 0) && ranges_overlap_p (src_offset, maxsize, dest_offset, maxsize)) return false; } else if (TREE_CODE (src_base) == MEM_REF && TREE_CODE (dest_base) == MEM_REF) { if (! operand_equal_p (TREE_OPERAND (src_base, 0), TREE_OPERAND (dest_base, 0), 0)) return false; offset_int off = mem_ref_offset (src_base) + src_offset; if (!wi::fits_shwi_p (off)) return false; src_offset = off.to_shwi (); off = mem_ref_offset (dest_base) + dest_offset; if (!wi::fits_shwi_p (off)) return false; dest_offset = off.to_shwi (); if (ranges_overlap_p (src_offset, maxsize, dest_offset, maxsize)) return false; } else return false; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; gimple_call_set_fndecl (stmt, fn); gimple_call_set_arg (stmt, 0, dest); gimple_call_set_arg (stmt, 1, src); fold_stmt (gsi); return true; } /* If the destination and source do not alias optimize into memcpy as well. */ if ((is_gimple_min_invariant (dest) || TREE_CODE (dest) == SSA_NAME) && (is_gimple_min_invariant (src) || TREE_CODE (src) == SSA_NAME)) { ao_ref destr, srcr; ao_ref_init_from_ptr_and_size (&destr, dest, len); ao_ref_init_from_ptr_and_size (&srcr, src, len); if (!refs_may_alias_p_1 (&destr, &srcr, false)) { tree fn; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; gimple_call_set_fndecl (stmt, fn); gimple_call_set_arg (stmt, 0, dest); gimple_call_set_arg (stmt, 1, src); fold_stmt (gsi); return true; } } return false; } if (!tree_fits_shwi_p (len)) return false; /* FIXME: This logic lose for arguments like (type *)malloc (sizeof (type)), since we strip the casts of up to VOID return value from malloc. Perhaps we ought to inherit type from non-VOID argument here? */ STRIP_NOPS (src); STRIP_NOPS (dest); if (!POINTER_TYPE_P (TREE_TYPE (src)) || !POINTER_TYPE_P (TREE_TYPE (dest))) return false; /* In the following try to find a type that is most natural to be used for the memcpy source and destination and that allows the most optimization when memcpy is turned into a plain assignment using that type. In theory we could always use a char[len] type but that only gains us that the destination and source possibly no longer will have their address taken. */ /* As we fold (void *)(p + CST) to (void *)p + CST undo this here. */ if (TREE_CODE (src) == POINTER_PLUS_EXPR) { tree tem = TREE_OPERAND (src, 0); STRIP_NOPS (tem); if (tem != TREE_OPERAND (src, 0)) src = build1 (NOP_EXPR, TREE_TYPE (tem), src); } if (TREE_CODE (dest) == POINTER_PLUS_EXPR) { tree tem = TREE_OPERAND (dest, 0); STRIP_NOPS (tem); if (tem != TREE_OPERAND (dest, 0)) dest = build1 (NOP_EXPR, TREE_TYPE (tem), dest); } srctype = TREE_TYPE (TREE_TYPE (src)); if (TREE_CODE (srctype) == ARRAY_TYPE && !tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len)) { srctype = TREE_TYPE (srctype); STRIP_NOPS (src); src = build1 (NOP_EXPR, build_pointer_type (srctype), src); } desttype = TREE_TYPE (TREE_TYPE (dest)); if (TREE_CODE (desttype) == ARRAY_TYPE && !tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len)) { desttype = TREE_TYPE (desttype); STRIP_NOPS (dest); dest = build1 (NOP_EXPR, build_pointer_type (desttype), dest); } if (TREE_ADDRESSABLE (srctype) || TREE_ADDRESSABLE (desttype)) return false; /* Make sure we are not copying using a floating-point mode or a type whose size possibly does not match its precision. */ if (FLOAT_MODE_P (TYPE_MODE (desttype)) || TREE_CODE (desttype) == BOOLEAN_TYPE || TREE_CODE (desttype) == ENUMERAL_TYPE) desttype = bitwise_type_for_mode (TYPE_MODE (desttype)); if (FLOAT_MODE_P (TYPE_MODE (srctype)) || TREE_CODE (srctype) == BOOLEAN_TYPE || TREE_CODE (srctype) == ENUMERAL_TYPE) srctype = bitwise_type_for_mode (TYPE_MODE (srctype)); if (!srctype) srctype = desttype; if (!desttype) desttype = srctype; if (!srctype) return false; src_align = get_pointer_alignment (src); dest_align = get_pointer_alignment (dest); if (dest_align < TYPE_ALIGN (desttype) || src_align < TYPE_ALIGN (srctype)) return false; destvar = dest; STRIP_NOPS (destvar); if (TREE_CODE (destvar) == ADDR_EXPR && var_decl_component_p (TREE_OPERAND (destvar, 0)) && tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len)) destvar = fold_build2 (MEM_REF, desttype, destvar, off0); else destvar = NULL_TREE; srcvar = src; STRIP_NOPS (srcvar); if (TREE_CODE (srcvar) == ADDR_EXPR && var_decl_component_p (TREE_OPERAND (srcvar, 0)) && tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len)) { if (!destvar || src_align >= TYPE_ALIGN (desttype)) srcvar = fold_build2 (MEM_REF, destvar ? desttype : srctype, srcvar, off0); else if (!STRICT_ALIGNMENT) { srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype), src_align); srcvar = fold_build2 (MEM_REF, srctype, srcvar, off0); } else srcvar = NULL_TREE; } else srcvar = NULL_TREE; if (srcvar == NULL_TREE && destvar == NULL_TREE) return false; if (srcvar == NULL_TREE) { STRIP_NOPS (src); if (src_align >= TYPE_ALIGN (desttype)) srcvar = fold_build2 (MEM_REF, desttype, src, off0); else { if (STRICT_ALIGNMENT) return false; srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype), src_align); srcvar = fold_build2 (MEM_REF, srctype, src, off0); } } else if (destvar == NULL_TREE) { STRIP_NOPS (dest); if (dest_align >= TYPE_ALIGN (srctype)) destvar = fold_build2 (MEM_REF, srctype, dest, off0); else { if (STRICT_ALIGNMENT) return false; desttype = build_aligned_type (TYPE_MAIN_VARIANT (srctype), dest_align); destvar = fold_build2 (MEM_REF, desttype, dest, off0); } } gimple new_stmt; if (is_gimple_reg_type (TREE_TYPE (srcvar))) { new_stmt = gimple_build_assign (NULL_TREE, srcvar); if (gimple_in_ssa_p (cfun)) srcvar = make_ssa_name (TREE_TYPE (srcvar), new_stmt); else srcvar = create_tmp_reg (TREE_TYPE (srcvar), NULL); gimple_assign_set_lhs (new_stmt, srcvar); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); } new_stmt = gimple_build_assign (destvar, srcvar); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); if (gimple_vdef (new_stmt) && TREE_CODE (gimple_vdef (new_stmt)) == SSA_NAME) SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt; if (!lhs) { gsi_replace (gsi, new_stmt, true); return true; } gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); } done: if (endp == 0 || endp == 3) len = NULL_TREE; else if (endp == 2) len = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (len), len, ssize_int (1)); if (endp == 2 || endp == 1) dest = fold_build_pointer_plus_loc (loc, dest, len); dest = force_gimple_operand_gsi (gsi, dest, false, NULL_TREE, true, GSI_SAME_STMT); gimple repl = gimple_build_assign (lhs, dest); gsi_replace (gsi, repl, true); return true; } /* Fold function call to builtin memset or bzero at *GSI setting the memory of size LEN to VAL. Return whether a simplification was made. */ static bool gimple_fold_builtin_memset (gimple_stmt_iterator *gsi, tree c, tree len) { gimple stmt = gsi_stmt (*gsi); tree etype; unsigned HOST_WIDE_INT length, cval; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) { replace_call_with_value (gsi, gimple_call_arg (stmt, 0)); return true; } if (! tree_fits_uhwi_p (len)) return false; if (TREE_CODE (c) != INTEGER_CST) return false; tree dest = gimple_call_arg (stmt, 0); tree var = dest; if (TREE_CODE (var) != ADDR_EXPR) return false; var = TREE_OPERAND (var, 0); if (TREE_THIS_VOLATILE (var)) return false; etype = TREE_TYPE (var); if (TREE_CODE (etype) == ARRAY_TYPE) etype = TREE_TYPE (etype); if (!INTEGRAL_TYPE_P (etype) && !POINTER_TYPE_P (etype)) return NULL_TREE; if (! var_decl_component_p (var)) return NULL_TREE; length = tree_to_uhwi (len); if (GET_MODE_SIZE (TYPE_MODE (etype)) != length || get_pointer_alignment (dest) / BITS_PER_UNIT < length) return NULL_TREE; if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) return NULL_TREE; if (integer_zerop (c)) cval = 0; else { if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64) return NULL_TREE; cval = TREE_INT_CST_LOW (c); cval &= 0xff; cval |= cval << 8; cval |= cval << 16; cval |= (cval << 31) << 1; } var = fold_build2 (MEM_REF, etype, dest, build_int_cst (ptr_type_node, 0)); gimple store = gimple_build_assign (var, build_int_cst_type (etype, cval)); gimple_set_vuse (store, gimple_vuse (stmt)); tree vdef = gimple_vdef (stmt); if (vdef && TREE_CODE (vdef) == SSA_NAME) { gimple_set_vdef (store, gimple_vdef (stmt)); SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = store; } gsi_insert_before (gsi, store, GSI_SAME_STMT); if (gimple_call_lhs (stmt)) { gimple asgn = gimple_build_assign (gimple_call_lhs (stmt), dest); gsi_replace (gsi, asgn, true); } else { gimple_stmt_iterator gsi2 = *gsi; gsi_prev (gsi); gsi_remove (&gsi2, true); } return true; } /* Return the string length, maximum string length or maximum value of ARG in LENGTH. If ARG is an SSA name variable, follow its use-def chains. If LENGTH is not NULL and, for TYPE == 0, its value is not equal to the length we determine or if we are unable to determine the length or value, return false. VISITED is a bitmap of visited variables. TYPE is 0 if string length should be returned, 1 for maximum string length and 2 for maximum value ARG can have. */ static bool get_maxval_strlen (tree arg, tree *length, bitmap *visited, int type) { tree var, val; gimple def_stmt; if (TREE_CODE (arg) != SSA_NAME) { /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */ if (TREE_CODE (arg) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1))) { tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); if (TREE_CODE (aop0) == INDIRECT_REF && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME) return get_maxval_strlen (TREE_OPERAND (aop0, 0), length, visited, type); } if (type == 2) { val = arg; if (TREE_CODE (val) != INTEGER_CST || tree_int_cst_sgn (val) < 0) return false; } else val = c_strlen (arg, 1); if (!val) return false; if (*length) { if (type > 0) { if (TREE_CODE (*length) != INTEGER_CST || TREE_CODE (val) != INTEGER_CST) return false; if (tree_int_cst_lt (*length, val)) *length = val; return true; } else if (simple_cst_equal (val, *length) != 1) return false; } *length = val; return true; } /* If ARG is registered for SSA update we cannot look at its defining statement. */ if (name_registered_for_update_p (arg)) return false; /* If we were already here, break the infinite cycle. */ if (!*visited) *visited = BITMAP_ALLOC (NULL); if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (arg))) return true; var = arg; def_stmt = SSA_NAME_DEF_STMT (var); switch (gimple_code (def_stmt)) { case GIMPLE_ASSIGN: /* The RHS of the statement defining VAR must either have a constant length or come from another SSA_NAME with a constant length. */ if (gimple_assign_single_p (def_stmt) || gimple_assign_unary_nop_p (def_stmt)) { tree rhs = gimple_assign_rhs1 (def_stmt); return get_maxval_strlen (rhs, length, visited, type); } else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR) { tree op2 = gimple_assign_rhs2 (def_stmt); tree op3 = gimple_assign_rhs3 (def_stmt); return get_maxval_strlen (op2, length, visited, type) && get_maxval_strlen (op3, length, visited, type); } return false; case GIMPLE_PHI: { /* All the arguments of the PHI node must have the same constant length. */ unsigned i; for (i = 0; i < gimple_phi_num_args (def_stmt); i++) { tree arg = gimple_phi_arg (def_stmt, i)->def; /* If this PHI has itself as an argument, we cannot determine the string length of this argument. However, if we can find a constant string length for the other PHI args then we can still be sure that this is a constant string length. So be optimistic and just continue with the next argument. */ if (arg == gimple_phi_result (def_stmt)) continue; if (!get_maxval_strlen (arg, length, visited, type)) return false; } } return true; default: return false; } } tree get_maxval_strlen (tree arg, int type) { bitmap visited = NULL; tree len = NULL_TREE; if (!get_maxval_strlen (arg, &len, &visited, type)) len = NULL_TREE; if (visited) BITMAP_FREE (visited); return len; } /* Fold function call to builtin strcpy with arguments DEST and SRC. If LEN is not NULL, it represents the length of the string to be copied. Return NULL_TREE if no simplification can be made. */ static bool gimple_fold_builtin_strcpy (gimple_stmt_iterator *gsi, tree dest, tree src) { location_t loc = gimple_location (gsi_stmt (*gsi)); tree fn; /* If SRC and DEST are the same (and not volatile), return DEST. */ if (operand_equal_p (src, dest, 0)) { replace_call_with_value (gsi, dest); return true; } if (optimize_function_for_size_p (cfun)) return false; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; tree len = get_maxval_strlen (src, 0); if (!len) return false; len = fold_convert_loc (loc, size_type_node, len); len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1)); len = force_gimple_operand_gsi (gsi, len, true, NULL_TREE, true, GSI_SAME_STMT); gimple repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN. If SLEN is not NULL, it represents the length of the source string. Return NULL_TREE if no simplification can be made. */ static bool gimple_fold_builtin_strncpy (gimple_stmt_iterator *gsi, tree dest, tree src, tree len) { location_t loc = gimple_location (gsi_stmt (*gsi)); tree fn; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) { replace_call_with_value (gsi, dest); return true; } /* We can't compare slen with len as constants below if len is not a constant. */ if (TREE_CODE (len) != INTEGER_CST) return false; /* Now, we must be passed a constant src ptr parameter. */ tree slen = get_maxval_strlen (src, 0); if (!slen || TREE_CODE (slen) != INTEGER_CST) return false; slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1)); /* We do not support simplification of this case, though we do support it when expanding trees into RTL. */ /* FIXME: generate a call to __builtin_memset. */ if (tree_int_cst_lt (slen, len)) return false; /* OK transform into builtin memcpy. */ fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; len = fold_convert_loc (loc, size_type_node, len); len = force_gimple_operand_gsi (gsi, len, true, NULL_TREE, true, GSI_SAME_STMT); gimple repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Simplify a call to the strcat builtin. DST and SRC are the arguments to the call. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static bool gimple_fold_builtin_strcat (gimple_stmt_iterator *gsi, tree dst, tree src) { gimple stmt = gsi_stmt (*gsi); location_t loc = gimple_location (stmt); const char *p = c_getstr (src); /* If the string length is zero, return the dst parameter. */ if (p && *p == '\0') { replace_call_with_value (gsi, dst); return true; } if (!optimize_bb_for_speed_p (gimple_bb (stmt))) return false; /* See if we can store by pieces into (dst + strlen(dst)). */ tree newdst; tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN); tree memcpy_fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!strlen_fn || !memcpy_fn) return false; /* If the length of the source string isn't computable don't split strcat into strlen and memcpy. */ tree len = get_maxval_strlen (src, 0); if (! len) return false; /* Create strlen (dst). */ gimple_seq stmts = NULL, stmts2; gimple repl = gimple_build_call (strlen_fn, 1, dst); gimple_set_location (repl, loc); if (gimple_in_ssa_p (cfun)) newdst = make_ssa_name (size_type_node, NULL); else newdst = create_tmp_reg (size_type_node, NULL); gimple_call_set_lhs (repl, newdst); gimple_seq_add_stmt_without_update (&stmts, repl); /* Create (dst p+ strlen (dst)). */ newdst = fold_build_pointer_plus_loc (loc, dst, newdst); newdst = force_gimple_operand (newdst, &stmts2, true, NULL_TREE); gimple_seq_add_seq_without_update (&stmts, stmts2); len = fold_convert_loc (loc, size_type_node, len); len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1)); len = force_gimple_operand (len, &stmts2, true, NULL_TREE); gimple_seq_add_seq_without_update (&stmts, stmts2); repl = gimple_build_call (memcpy_fn, 3, newdst, src, len); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { repl = gimple_build_assign (gimple_call_lhs (stmt), dst); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } /* Fold a call to the __strcat_chk builtin FNDECL. DEST, SRC, and SIZE are the arguments to the call. */ static bool gimple_fold_builtin_strcat_chk (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree dest = gimple_call_arg (stmt, 0); tree src = gimple_call_arg (stmt, 1); tree size = gimple_call_arg (stmt, 2); tree fn; const char *p; p = c_getstr (src); /* If the SRC parameter is "", return DEST. */ if (p && *p == '\0') { replace_call_with_value (gsi, dest); return true; } if (! tree_fits_uhwi_p (size) || ! integer_all_onesp (size)) return false; /* If __builtin_strcat_chk is used, assume strcat is available. */ fn = builtin_decl_explicit (BUILT_IN_STRCAT); if (!fn) return false; gimple repl = gimple_build_call (fn, 2, dest, src); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold a call to the __strncat_chk builtin with arguments DEST, SRC, LEN, and SIZE. */ static bool gimple_fold_builtin_strncat_chk (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree dest = gimple_call_arg (stmt, 0); tree src = gimple_call_arg (stmt, 1); tree len = gimple_call_arg (stmt, 2); tree size = gimple_call_arg (stmt, 3); tree fn; const char *p; p = c_getstr (src); /* If the SRC parameter is "" or if LEN is 0, return DEST. */ if ((p && *p == '\0') || integer_zerop (len)) { replace_call_with_value (gsi, dest); return true; } if (! tree_fits_uhwi_p (size)) return false; if (! integer_all_onesp (size)) { tree src_len = c_strlen (src, 1); if (src_len && tree_fits_uhwi_p (src_len) && tree_fits_uhwi_p (len) && ! tree_int_cst_lt (len, src_len)) { /* If LEN >= strlen (SRC), optimize into __strcat_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRCAT_CHK); if (!fn) return false; gimple repl = gimple_build_call (fn, 3, dest, src, size); replace_call_with_call_and_fold (gsi, repl); return true; } return false; } /* If __builtin_strncat_chk is used, assume strncat is available. */ fn = builtin_decl_explicit (BUILT_IN_STRNCAT); if (!fn) return false; gimple repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold a call to the fputs builtin. ARG0 and ARG1 are the arguments to the call. IGNORE is true if the value returned by the builtin will be ignored. UNLOCKED is true is true if this actually a call to fputs_unlocked. If LEN in non-NULL, it represents the known length of the string. Return NULL_TREE if no simplification was possible. */ static bool gimple_fold_builtin_fputs (gimple_stmt_iterator *gsi, tree arg0, tree arg1, bool unlocked) { gimple stmt = gsi_stmt (*gsi); /* If we're using an unlocked function, assume the other unlocked functions exist explicitly. */ tree const fn_fputc = (unlocked ? builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED) : builtin_decl_implicit (BUILT_IN_FPUTC)); tree const fn_fwrite = (unlocked ? builtin_decl_explicit (BUILT_IN_FWRITE_UNLOCKED) : builtin_decl_implicit (BUILT_IN_FWRITE)); /* If the return value is used, don't do the transformation. */ if (gimple_call_lhs (stmt)) return false; /* Get the length of the string passed to fputs. If the length can't be determined, punt. */ tree len = get_maxval_strlen (arg0, 0); if (!len || TREE_CODE (len) != INTEGER_CST) return false; switch (compare_tree_int (len, 1)) { case -1: /* length is 0, delete the call entirely . */ replace_call_with_value (gsi, integer_zero_node); return true; case 0: /* length is 1, call fputc. */ { const char *p = c_getstr (arg0); if (p != NULL) { if (!fn_fputc) return false; gimple repl = gimple_build_call (fn_fputc, 2, build_int_cst (integer_type_node, p[0]), arg1); replace_call_with_call_and_fold (gsi, repl); return true; } } /* FALLTHROUGH */ case 1: /* length is greater than 1, call fwrite. */ { /* If optimizing for size keep fputs. */ if (optimize_function_for_size_p (cfun)) return false; /* New argument list transforming fputs(string, stream) to fwrite(string, 1, len, stream). */ if (!fn_fwrite) return false; gimple repl = gimple_build_call (fn_fwrite, 4, arg0, size_one_node, len, arg1); replace_call_with_call_and_fold (gsi, repl); return true; } default: gcc_unreachable (); } return false; } /* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin. DEST, SRC, LEN, and SIZE are the arguments to the call. IGNORE is true, if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. If MAXLEN is not NULL, it is maximum length passed as third argument. */ static bool gimple_fold_builtin_memory_chk (gimple_stmt_iterator *gsi, tree dest, tree src, tree len, tree size, enum built_in_function fcode) { gimple stmt = gsi_stmt (*gsi); location_t loc = gimple_location (stmt); bool ignore = gimple_call_lhs (stmt) == NULL_TREE; tree fn; /* If SRC and DEST are the same (and not volatile), return DEST (resp. DEST+LEN for __mempcpy_chk). */ if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0)) { if (fcode != BUILT_IN_MEMPCPY_CHK) { replace_call_with_value (gsi, dest); return true; } else { tree temp = fold_build_pointer_plus_loc (loc, dest, len); temp = force_gimple_operand_gsi (gsi, temp, false, NULL_TREE, true, GSI_SAME_STMT); replace_call_with_value (gsi, temp); return true; } } if (! tree_fits_uhwi_p (size)) return false; tree maxlen = get_maxval_strlen (len, 2); if (! integer_all_onesp (size)) { if (! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) { if (fcode == BUILT_IN_MEMPCPY_CHK && ignore) { /* (void) __mempcpy_chk () can be optimized into (void) __memcpy_chk (). */ fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK); if (!fn) return false; gimple repl = gimple_build_call (fn, 4, dest, src, len, size); replace_call_with_call_and_fold (gsi, repl); return true; } return false; } } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return false; } fn = NULL_TREE; /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume mem{cpy,pcpy,move,set} is available. */ switch (fcode) { case BUILT_IN_MEMCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMCPY); break; case BUILT_IN_MEMPCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMPCPY); break; case BUILT_IN_MEMMOVE_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMMOVE); break; case BUILT_IN_MEMSET_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMSET); break; default: break; } if (!fn) return false; gimple repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold a call to the __st[rp]cpy_chk builtin. DEST, SRC, and SIZE are the arguments to the call. IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. If MAXLEN is not NULL, it is maximum length of strings passed as second argument. */ static bool gimple_fold_builtin_stxcpy_chk (gimple_stmt_iterator *gsi, tree dest, tree src, tree size, enum built_in_function fcode) { gimple stmt = gsi_stmt (*gsi); location_t loc = gimple_location (stmt); bool ignore = gimple_call_lhs (stmt) == NULL_TREE; tree len, fn; /* If SRC and DEST are the same (and not volatile), return DEST. */ if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0)) { replace_call_with_value (gsi, dest); return true; } if (! tree_fits_uhwi_p (size)) return false; tree maxlen = get_maxval_strlen (src, 1); if (! integer_all_onesp (size)) { len = c_strlen (src, 1); if (! len || ! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) { if (fcode == BUILT_IN_STPCPY_CHK) { if (! ignore) return false; /* If return value of __stpcpy_chk is ignored, optimize into __strcpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRCPY_CHK); if (!fn) return false; gimple repl = gimple_build_call (fn, 3, dest, src, size); replace_call_with_call_and_fold (gsi, repl); return true; } if (! len || TREE_SIDE_EFFECTS (len)) return false; /* If c_strlen returned something, but not a constant, transform __strcpy_chk into __memcpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK); if (!fn) return false; len = fold_convert_loc (loc, size_type_node, len); len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1)); len = force_gimple_operand_gsi (gsi, len, true, NULL_TREE, true, GSI_SAME_STMT); gimple repl = gimple_build_call (fn, 4, dest, src, len, size); replace_call_with_call_and_fold (gsi, repl); return true; } } else maxlen = len; if (! tree_int_cst_lt (maxlen, size)) return false; } /* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_STPCPY_CHK ? BUILT_IN_STPCPY : BUILT_IN_STRCPY); if (!fn) return false; gimple repl = gimple_build_call (fn, 2, dest, src); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold a call to the __st{r,p}ncpy_chk builtin. DEST, SRC, LEN, and SIZE are the arguments to the call. If MAXLEN is not NULL, it is maximum length passed as third argument. IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. */ static bool gimple_fold_builtin_stxncpy_chk (gimple_stmt_iterator *gsi, tree dest, tree src, tree len, tree size, enum built_in_function fcode) { gimple stmt = gsi_stmt (*gsi); bool ignore = gimple_call_lhs (stmt) == NULL_TREE; tree fn; if (fcode == BUILT_IN_STPNCPY_CHK && ignore) { /* If return value of __stpncpy_chk is ignored, optimize into __strncpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRNCPY_CHK); if (fn) { gimple repl = gimple_build_call (fn, 4, dest, src, len, size); replace_call_with_call_and_fold (gsi, repl); return true; } } if (! tree_fits_uhwi_p (size)) return false; tree maxlen = get_maxval_strlen (len, 2); if (! integer_all_onesp (size)) { if (! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) return false; } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return false; } /* If __builtin_st{r,p}ncpy_chk is used, assume st{r,p}ncpy is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_STPNCPY_CHK ? BUILT_IN_STPNCPY : BUILT_IN_STRNCPY); if (!fn) return false; gimple repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold a call EXP to {,v}snprintf having NARGS passed as ARGS. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length passed as second argument. */ static bool gimple_fold_builtin_snprintf_chk (gimple_stmt_iterator *gsi, enum built_in_function fcode) { gimple stmt = gsi_stmt (*gsi); tree dest, size, len, fn, fmt, flag; const char *fmt_str; /* Verify the required arguments in the original call. */ if (gimple_call_num_args (stmt) < 5) return false; dest = gimple_call_arg (stmt, 0); len = gimple_call_arg (stmt, 1); flag = gimple_call_arg (stmt, 2); size = gimple_call_arg (stmt, 3); fmt = gimple_call_arg (stmt, 4); if (! tree_fits_uhwi_p (size)) return false; if (! integer_all_onesp (size)) { tree maxlen = get_maxval_strlen (len, 2); if (! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) return false; } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return false; } if (!init_target_chars ()) return false; /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0 or if format doesn't contain % chars or is "%s". */ if (! integer_zerop (flag)) { fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s)) return false; } /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_VSNPRINTF_CHK ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF); if (!fn) return false; /* Replace the called function and the first 5 argument by 3 retaining trailing varargs. */ gimple_call_set_fndecl (stmt, fn); gimple_call_set_fntype (stmt, TREE_TYPE (fn)); gimple_call_set_arg (stmt, 0, dest); gimple_call_set_arg (stmt, 1, len); gimple_call_set_arg (stmt, 2, fmt); for (unsigned i = 3; i < gimple_call_num_args (stmt) - 2; ++i) gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2)); gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2); fold_stmt (gsi); return true; } /* Fold a call EXP to __{,v}sprintf_chk having NARGS passed as ARGS. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK. */ static bool gimple_fold_builtin_sprintf_chk (gimple_stmt_iterator *gsi, enum built_in_function fcode) { gimple stmt = gsi_stmt (*gsi); tree dest, size, len, fn, fmt, flag; const char *fmt_str; unsigned nargs = gimple_call_num_args (stmt); /* Verify the required arguments in the original call. */ if (nargs < 4) return false; dest = gimple_call_arg (stmt, 0); flag = gimple_call_arg (stmt, 1); size = gimple_call_arg (stmt, 2); fmt = gimple_call_arg (stmt, 3); if (! tree_fits_uhwi_p (size)) return false; len = NULL_TREE; if (!init_target_chars ()) return false; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str != NULL) { /* If the format doesn't contain % args or %%, we know the size. */ if (strchr (fmt_str, target_percent) == 0) { if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4) len = build_int_cstu (size_type_node, strlen (fmt_str)); } /* If the format is "%s" and first ... argument is a string literal, we know the size too. */ else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0) { tree arg; if (nargs == 5) { arg = gimple_call_arg (stmt, 4); if (POINTER_TYPE_P (TREE_TYPE (arg))) { len = c_strlen (arg, 1); if (! len || ! tree_fits_uhwi_p (len)) len = NULL_TREE; } } } } if (! integer_all_onesp (size)) { if (! len || ! tree_int_cst_lt (len, size)) return false; } /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0 or if format doesn't contain % chars or is "%s". */ if (! integer_zerop (flag)) { if (fmt_str == NULL) return false; if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s)) return false; } /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_VSPRINTF_CHK ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF); if (!fn) return false; /* Replace the called function and the first 4 argument by 2 retaining trailing varargs. */ gimple_call_set_fndecl (stmt, fn); gimple_call_set_fntype (stmt, TREE_TYPE (fn)); gimple_call_set_arg (stmt, 0, dest); gimple_call_set_arg (stmt, 1, fmt); for (unsigned i = 2; i < gimple_call_num_args (stmt) - 2; ++i) gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2)); gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2); fold_stmt (gsi); return true; } /* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG. ORIG may be null if this is a 2-argument call. We don't attempt to simplify calls with more than 3 arguments. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. If IGNORED is true, it means that the caller does not use the returned value of the function. */ static bool gimple_fold_builtin_sprintf (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree dest = gimple_call_arg (stmt, 0); tree fmt = gimple_call_arg (stmt, 1); tree orig = NULL_TREE; const char *fmt_str = NULL; /* Verify the required arguments in the original call. We deal with two types of sprintf() calls: 'sprintf (str, fmt)' and 'sprintf (dest, "%s", orig)'. */ if (gimple_call_num_args (stmt) > 3) return false; if (gimple_call_num_args (stmt) == 3) orig = gimple_call_arg (stmt, 2); /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (!init_target_chars ()) return false; /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't optimize sprintf (buf, "abc", ptr++). */ if (orig) return false; /* Convert sprintf (str, fmt) into strcpy (str, fmt) when 'format' is known to contain no % formats. */ gimple_seq stmts = NULL; gimple repl = gimple_build_call (fn, 2, dest, fmt); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { repl = gimple_build_assign (gimple_call_lhs (stmt), build_int_cst (integer_type_node, strlen (fmt_str))); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } /* If the format is "%s", use strcpy if the result isn't used. */ else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0) { tree fn; fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't crash on sprintf (str1, "%s"). */ if (!orig) return false; tree orig_len = NULL_TREE; if (gimple_call_lhs (stmt)) { orig_len = get_maxval_strlen (orig, 0); if (!orig_len) return false; } /* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2). */ gimple_seq stmts = NULL; gimple repl = gimple_build_call (fn, 2, dest, orig); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (orig_len))) orig_len = fold_convert (integer_type_node, orig_len); repl = gimple_build_assign (gimple_call_lhs (stmt), orig_len); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } return false; } /* Simplify a call to the snprintf builtin with arguments DEST, DESTSIZE, FMT, and ORIG. ORIG may be null if this is a 3-argument call. We don't attempt to simplify calls with more than 4 arguments. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. If IGNORED is true, it means that the caller does not use the returned value of the function. */ static bool gimple_fold_builtin_snprintf (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree dest = gimple_call_arg (stmt, 0); tree destsize = gimple_call_arg (stmt, 1); tree fmt = gimple_call_arg (stmt, 2); tree orig = NULL_TREE; const char *fmt_str = NULL; if (gimple_call_num_args (stmt) > 4) return false; if (gimple_call_num_args (stmt) == 4) orig = gimple_call_arg (stmt, 3); if (!tree_fits_uhwi_p (destsize)) return false; unsigned HOST_WIDE_INT destlen = tree_to_uhwi (destsize); /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (!init_target_chars ()) return false; /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't optimize snprintf (buf, 4, "abc", ptr++). */ if (orig) return false; /* We could expand this as memcpy (str, fmt, cst - 1); str[cst - 1] = '\0'; or to memcpy (str, fmt_with_nul_at_cstm1, cst); but in the former case that might increase code size and in the latter case grow .rodata section too much. So punt for now. */ size_t len = strlen (fmt_str); if (len >= destlen) return false; gimple_seq stmts = NULL; gimple repl = gimple_build_call (fn, 2, dest, fmt); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { repl = gimple_build_assign (gimple_call_lhs (stmt), build_int_cst (integer_type_node, len)); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } /* If the format is "%s", use strcpy if the result isn't used. */ else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't crash on snprintf (str1, cst, "%s"). */ if (!orig) return false; tree orig_len = get_maxval_strlen (orig, 0); if (!orig_len) return false; /* We could expand this as memcpy (str1, str2, cst - 1); str1[cst - 1] = '\0'; or to memcpy (str1, str2_with_nul_at_cstm1, cst); but in the former case that might increase code size and in the latter case grow .rodata section too much. So punt for now. */ if (compare_tree_int (orig_len, destlen) >= 0) return false; /* Convert snprintf (str1, cst, "%s", str2) into strcpy (str1, str2) if strlen (str2) < cst. */ gimple_seq stmts = NULL; gimple repl = gimple_build_call (fn, 2, dest, orig); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (orig_len))) orig_len = fold_convert (integer_type_node, orig_len); repl = gimple_build_assign (gimple_call_lhs (stmt), orig_len); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } return false; } /* Fold a call to __builtin_strlen with known length LEN. */ static bool gimple_fold_builtin_strlen (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree len = get_maxval_strlen (gimple_call_arg (stmt, 0), 0); if (!len) return false; len = force_gimple_operand_gsi (gsi, len, true, NULL, true, GSI_SAME_STMT); replace_call_with_value (gsi, len); return true; } /* Fold the non-target builtin at *GSI and return whether any simplification was made. */ static bool gimple_fold_builtin (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); tree callee = gimple_call_fndecl (stmt); /* Give up for always_inline inline builtins until they are inlined. */ if (avoid_folding_inline_builtin (callee)) return false; switch (DECL_FUNCTION_CODE (callee)) { case BUILT_IN_BZERO: return gimple_fold_builtin_memset (gsi, integer_zero_node, gimple_call_arg (stmt, 1)); case BUILT_IN_MEMSET: return gimple_fold_builtin_memset (gsi, gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)); case BUILT_IN_BCOPY: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 0), 3); case BUILT_IN_MEMCPY: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), 0); case BUILT_IN_MEMPCPY: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), 1); case BUILT_IN_MEMMOVE: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), 3); case BUILT_IN_SPRINTF_CHK: case BUILT_IN_VSPRINTF_CHK: return gimple_fold_builtin_sprintf_chk (gsi, DECL_FUNCTION_CODE (callee)); case BUILT_IN_STRCAT_CHK: return gimple_fold_builtin_strcat_chk (gsi); case BUILT_IN_STRNCAT_CHK: return gimple_fold_builtin_strncat_chk (gsi); case BUILT_IN_STRLEN: return gimple_fold_builtin_strlen (gsi); case BUILT_IN_STRCPY: return gimple_fold_builtin_strcpy (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1)); case BUILT_IN_STRNCPY: return gimple_fold_builtin_strncpy (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)); case BUILT_IN_STRCAT: return gimple_fold_builtin_strcat (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1)); case BUILT_IN_FPUTS: return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), false); case BUILT_IN_FPUTS_UNLOCKED: return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), true); case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: return gimple_fold_builtin_memory_chk (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), DECL_FUNCTION_CODE (callee)); case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: return gimple_fold_builtin_stxcpy_chk (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), DECL_FUNCTION_CODE (callee)); case BUILT_IN_STRNCPY_CHK: case BUILT_IN_STPNCPY_CHK: return gimple_fold_builtin_stxncpy_chk (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), DECL_FUNCTION_CODE (callee)); case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: return gimple_fold_builtin_snprintf_chk (gsi, DECL_FUNCTION_CODE (callee)); case BUILT_IN_SNPRINTF: return gimple_fold_builtin_snprintf (gsi); case BUILT_IN_SPRINTF: return gimple_fold_builtin_sprintf (gsi); default:; } /* Try the generic builtin folder. */ bool ignore = (gimple_call_lhs (stmt) == NULL); tree result = fold_call_stmt (stmt, ignore); if (result) { if (ignore) STRIP_NOPS (result); else result = fold_convert (gimple_call_return_type (stmt), result); if (!update_call_from_tree (gsi, result)) gimplify_and_update_call_from_tree (gsi, result); return true; } return false; } /* Attempt to fold a call statement referenced by the statement iterator GSI. The statement may be replaced by another statement, e.g., if the call simplifies to a constant value. Return true if any changes were made. It is assumed that the operands have been previously folded. */ static bool gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace) { gimple stmt = gsi_stmt (*gsi); tree callee; bool changed = false; unsigned i; /* Fold *& in call arguments. */ for (i = 0; i < gimple_call_num_args (stmt); ++i) if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i))) { tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false); if (tmp) { gimple_call_set_arg (stmt, i, tmp); changed = true; } } /* Check for virtual calls that became direct calls. */ callee = gimple_call_fn (stmt); if (callee && TREE_CODE (callee) == OBJ_TYPE_REF) { if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE) { if (dump_file && virtual_method_call_p (callee) && !possible_polymorphic_call_target_p (callee, stmt, cgraph_node::get (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee))))) { fprintf (dump_file, "Type inheritance inconsistent devirtualization of "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); fprintf (dump_file, " to "); print_generic_expr (dump_file, callee, TDF_SLIM); fprintf (dump_file, "\n"); } gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee)); changed = true; } else if (flag_devirtualize && !inplace && virtual_method_call_p (callee)) { bool final; vec targets = possible_polymorphic_call_targets (callee, stmt, &final); if (final && targets.length () <= 1 && dbg_cnt (devirt)) { tree lhs = gimple_call_lhs (stmt); if (dump_enabled_p ()) { location_t loc = gimple_location_safe (stmt); dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc, "folding virtual function call to %s\n", targets.length () == 1 ? targets[0]->name () : "__builtin_unreachable"); } if (targets.length () == 1) { gimple_call_set_fndecl (stmt, targets[0]->decl); changed = true; /* If the call becomes noreturn, remove the lhs. */ if (lhs && (gimple_call_flags (stmt) & ECF_NORETURN)) { if (TREE_CODE (lhs) == SSA_NAME) { tree var = create_tmp_var (TREE_TYPE (lhs), NULL); tree def = get_or_create_ssa_default_def (cfun, var); gimple new_stmt = gimple_build_assign (lhs, def); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); } gimple_call_set_lhs (stmt, NULL_TREE); } } else { tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE); gimple new_stmt = gimple_build_call (fndecl, 0); gimple_set_location (new_stmt, gimple_location (stmt)); if (lhs && TREE_CODE (lhs) == SSA_NAME) { tree var = create_tmp_var (TREE_TYPE (lhs), NULL); tree def = get_or_create_ssa_default_def (cfun, var); /* To satisfy condition for cgraph_update_edges_for_call_stmt_node, we need to preserve GIMPLE_CALL statement at position of GSI iterator. */ update_call_from_tree (gsi, def); gsi_insert_before (gsi, new_stmt, GSI_NEW_STMT); } else { gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); gsi_replace (gsi, new_stmt, false); } return true; } } } } if (inplace) return changed; /* Check for builtins that CCP can handle using information not available in the generic fold routines. */ if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) { if (gimple_fold_builtin (gsi)) changed = true; } else if (gimple_call_builtin_p (stmt, BUILT_IN_MD)) { changed |= targetm.gimple_fold_builtin (gsi); } else if (gimple_call_internal_p (stmt)) { enum tree_code subcode = ERROR_MARK; tree result = NULL_TREE; switch (gimple_call_internal_fn (stmt)) { case IFN_BUILTIN_EXPECT: result = fold_builtin_expect (gimple_location (stmt), gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)); break; case IFN_UBSAN_OBJECT_SIZE: if (integer_all_onesp (gimple_call_arg (stmt, 2)) || (TREE_CODE (gimple_call_arg (stmt, 1)) == INTEGER_CST && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST && tree_int_cst_le (gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)))) { gsi_replace (gsi, gimple_build_nop (), true); unlink_stmt_vdef (stmt); release_defs (stmt); return true; } break; case IFN_UBSAN_CHECK_ADD: subcode = PLUS_EXPR; break; case IFN_UBSAN_CHECK_SUB: subcode = MINUS_EXPR; break; case IFN_UBSAN_CHECK_MUL: subcode = MULT_EXPR; break; default: break; } if (subcode != ERROR_MARK) { tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); /* x = y + 0; x = y - 0; x = y * 0; */ if (integer_zerop (arg1)) result = subcode == MULT_EXPR ? build_zero_cst (TREE_TYPE (arg0)) : arg0; /* x = 0 + y; x = 0 * y; */ else if (subcode != MINUS_EXPR && integer_zerop (arg0)) result = subcode == MULT_EXPR ? build_zero_cst (TREE_TYPE (arg0)) : arg1; /* x = y - y; */ else if (subcode == MINUS_EXPR && operand_equal_p (arg0, arg1, 0)) result = build_zero_cst (TREE_TYPE (arg0)); /* x = y * 1; x = 1 * y; */ else if (subcode == MULT_EXPR) { if (integer_onep (arg1)) result = arg0; else if (integer_onep (arg0)) result = arg1; } } if (result) { if (!update_call_from_tree (gsi, result)) gimplify_and_update_call_from_tree (gsi, result); changed = true; } } return changed; } /* Worker for fold_stmt_1 dispatch to pattern based folding with gimple_simplify. Replaces *GSI with the simplification result in RCODE and OPS and the associated statements in *SEQ. Does the replacement according to INPLACE and returns true if the operation succeeded. */ static bool replace_stmt_with_simplification (gimple_stmt_iterator *gsi, code_helper rcode, tree *ops, gimple_seq *seq, bool inplace) { gimple stmt = gsi_stmt (*gsi); /* Play safe and do not allow abnormals to be mentioned in newly created statements. See also maybe_push_res_to_seq. */ if ((TREE_CODE (ops[0]) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[0])) || (ops[1] && TREE_CODE (ops[1]) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[1])) || (ops[2] && TREE_CODE (ops[2]) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[2]))) return false; if (gimple_code (stmt) == GIMPLE_COND) { gcc_assert (rcode.is_tree_code ()); if (TREE_CODE_CLASS ((enum tree_code)rcode) == tcc_comparison /* GIMPLE_CONDs condition may not throw. */ && (!flag_exceptions || !cfun->can_throw_non_call_exceptions || !operation_could_trap_p (rcode, FLOAT_TYPE_P (TREE_TYPE (ops[0])), false, NULL_TREE))) gimple_cond_set_condition (stmt, rcode, ops[0], ops[1]); else if (rcode == SSA_NAME) gimple_cond_set_condition (stmt, NE_EXPR, ops[0], build_zero_cst (TREE_TYPE (ops[0]))); else if (rcode == INTEGER_CST) { if (integer_zerop (ops[0])) gimple_cond_make_false (stmt); else gimple_cond_make_true (stmt); } else if (!inplace) { tree res = maybe_push_res_to_seq (rcode, boolean_type_node, ops, seq); if (!res) return false; gimple_cond_set_condition (stmt, NE_EXPR, res, build_zero_cst (TREE_TYPE (res))); } else return false; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "gimple_simplified to "); if (!gimple_seq_empty_p (*seq)) print_gimple_seq (dump_file, *seq, 0, TDF_SLIM); print_gimple_stmt (dump_file, gsi_stmt (*gsi), 0, TDF_SLIM); } gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT); return true; } else if (is_gimple_assign (stmt) && rcode.is_tree_code ()) { if (!inplace || gimple_num_ops (stmt) <= get_gimple_rhs_num_ops (rcode)) { maybe_build_generic_op (rcode, TREE_TYPE (gimple_assign_lhs (stmt)), &ops[0], ops[1], ops[2]); gimple_assign_set_rhs_with_ops_1 (gsi, rcode, ops[0], ops[1], ops[2]); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "gimple_simplified to "); if (!gimple_seq_empty_p (*seq)) print_gimple_seq (dump_file, *seq, 0, TDF_SLIM); print_gimple_stmt (dump_file, gsi_stmt (*gsi), 0, TDF_SLIM); } gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT); return true; } } else if (!inplace) { if (gimple_has_lhs (stmt)) { tree lhs = gimple_get_lhs (stmt); maybe_push_res_to_seq (rcode, TREE_TYPE (lhs), ops, seq, lhs); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "gimple_simplified to "); print_gimple_seq (dump_file, *seq, 0, TDF_SLIM); } gsi_replace_with_seq_vops (gsi, *seq); return true; } else gcc_unreachable (); } return false; } /* Canonicalize MEM_REFs invariant address operand after propagation. */ static bool maybe_canonicalize_mem_ref_addr (tree *t) { bool res = false; if (TREE_CODE (*t) == ADDR_EXPR) t = &TREE_OPERAND (*t, 0); while (handled_component_p (*t)) t = &TREE_OPERAND (*t, 0); /* Canonicalize MEM [&foo.bar, 0] which appears after propagating of invariant addresses into a SSA name MEM_REF address. */ if (TREE_CODE (*t) == MEM_REF || TREE_CODE (*t) == TARGET_MEM_REF) { tree addr = TREE_OPERAND (*t, 0); if (TREE_CODE (addr) == ADDR_EXPR && (TREE_CODE (TREE_OPERAND (addr, 0)) == MEM_REF || handled_component_p (TREE_OPERAND (addr, 0)))) { tree base; HOST_WIDE_INT coffset; base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0), &coffset); if (!base) gcc_unreachable (); TREE_OPERAND (*t, 0) = build_fold_addr_expr (base); TREE_OPERAND (*t, 1) = int_const_binop (PLUS_EXPR, TREE_OPERAND (*t, 1), size_int (coffset)); res = true; } gcc_checking_assert (TREE_CODE (TREE_OPERAND (*t, 0)) == DEBUG_EXPR_DECL || is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0))); } /* Canonicalize back MEM_REFs to plain reference trees if the object accessed is a decl that has the same access semantics as the MEM_REF. */ if (TREE_CODE (*t) == MEM_REF && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR && integer_zerop (TREE_OPERAND (*t, 1))) { tree decl = TREE_OPERAND (TREE_OPERAND (*t, 0), 0); tree alias_type = TREE_TYPE (TREE_OPERAND (*t, 1)); if (/* Same volatile qualification. */ TREE_THIS_VOLATILE (*t) == TREE_THIS_VOLATILE (decl) /* Same TBAA behavior with -fstrict-aliasing. */ && !TYPE_REF_CAN_ALIAS_ALL (alias_type) && (TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TYPE_MAIN_VARIANT (TREE_TYPE (alias_type))) /* Same alignment. */ && TYPE_ALIGN (TREE_TYPE (decl)) == TYPE_ALIGN (TREE_TYPE (*t)) /* We have to look out here to not drop a required conversion from the rhs to the lhs if *t appears on the lhs or vice-versa if it appears on the rhs. Thus require strict type compatibility. */ && types_compatible_p (TREE_TYPE (*t), TREE_TYPE (decl))) { *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0); res = true; } } /* Canonicalize TARGET_MEM_REF in particular with respect to the indexes becoming constant. */ else if (TREE_CODE (*t) == TARGET_MEM_REF) { tree tem = maybe_fold_tmr (*t); if (tem) { *t = tem; res = true; } } return res; } /* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument distinguishes both cases. */ static bool fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace, tree (*valueize) (tree)) { bool changed = false; gimple stmt = gsi_stmt (*gsi); unsigned i; /* First do required canonicalization of [TARGET_]MEM_REF addresses after propagation. ??? This shouldn't be done in generic folding but in the propagation helpers which also know whether an address was propagated. */ switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: if (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS) { tree *rhs = gimple_assign_rhs1_ptr (stmt); if ((REFERENCE_CLASS_P (*rhs) || TREE_CODE (*rhs) == ADDR_EXPR) && maybe_canonicalize_mem_ref_addr (rhs)) changed = true; tree *lhs = gimple_assign_lhs_ptr (stmt); if (REFERENCE_CLASS_P (*lhs) && maybe_canonicalize_mem_ref_addr (lhs)) changed = true; } break; case GIMPLE_CALL: { for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree *arg = gimple_call_arg_ptr (stmt, i); if (REFERENCE_CLASS_P (*arg) && maybe_canonicalize_mem_ref_addr (arg)) changed = true; } tree *lhs = gimple_call_lhs_ptr (stmt); if (*lhs && REFERENCE_CLASS_P (*lhs) && maybe_canonicalize_mem_ref_addr (lhs)) changed = true; break; } case GIMPLE_ASM: { for (i = 0; i < gimple_asm_noutputs (stmt); ++i) { tree link = gimple_asm_output_op (stmt, i); tree op = TREE_VALUE (link); if (REFERENCE_CLASS_P (op) && maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link))) changed = true; } for (i = 0; i < gimple_asm_ninputs (stmt); ++i) { tree link = gimple_asm_input_op (stmt, i); tree op = TREE_VALUE (link); if ((REFERENCE_CLASS_P (op) || TREE_CODE (op) == ADDR_EXPR) && maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link))) changed = true; } } break; case GIMPLE_DEBUG: if (gimple_debug_bind_p (stmt)) { tree *val = gimple_debug_bind_get_value_ptr (stmt); if (*val && (REFERENCE_CLASS_P (*val) || TREE_CODE (*val) == ADDR_EXPR) && maybe_canonicalize_mem_ref_addr (val)) changed = true; } break; default:; } /* Dispatch to pattern-based folding. */ if (!inplace || is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND) { gimple_seq seq = NULL; code_helper rcode; tree ops[3] = {}; if (gimple_simplify (stmt, &rcode, ops, inplace ? NULL : &seq, valueize)) { if (replace_stmt_with_simplification (gsi, rcode, ops, &seq, inplace)) changed = true; else gimple_seq_discard (seq); } } stmt = gsi_stmt (*gsi); /* Fold the main computation performed by the statement. */ switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { unsigned old_num_ops = gimple_num_ops (stmt); enum tree_code subcode = gimple_assign_rhs_code (stmt); tree lhs = gimple_assign_lhs (stmt); tree new_rhs; /* First canonicalize operand order. This avoids building new trees if this is the only thing fold would later do. */ if ((commutative_tree_code (subcode) || commutative_ternary_tree_code (subcode)) && tree_swap_operands_p (gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), false)) { tree tem = gimple_assign_rhs1 (stmt); gimple_assign_set_rhs1 (stmt, gimple_assign_rhs2 (stmt)); gimple_assign_set_rhs2 (stmt, tem); changed = true; } new_rhs = fold_gimple_assign (gsi); if (new_rhs && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs))) new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs); if (new_rhs && (!inplace || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops)) { gimple_assign_set_rhs_from_tree (gsi, new_rhs); changed = true; } break; } case GIMPLE_COND: changed |= fold_gimple_cond (stmt); break; case GIMPLE_CALL: changed |= gimple_fold_call (gsi, inplace); break; case GIMPLE_ASM: /* Fold *& in asm operands. */ { size_t noutputs; const char **oconstraints; const char *constraint; bool allows_mem, allows_reg; noutputs = gimple_asm_noutputs (stmt); oconstraints = XALLOCAVEC (const char *, noutputs); for (i = 0; i < gimple_asm_noutputs (stmt); ++i) { tree link = gimple_asm_output_op (stmt, i); tree op = TREE_VALUE (link); oconstraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, true)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } for (i = 0; i < gimple_asm_ninputs (stmt); ++i) { tree link = gimple_asm_input_op (stmt, i); tree op = TREE_VALUE (link); constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints, &allows_mem, &allows_reg); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, !allows_reg && allows_mem)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } } break; case GIMPLE_DEBUG: if (gimple_debug_bind_p (stmt)) { tree val = gimple_debug_bind_get_value (stmt); if (val && REFERENCE_CLASS_P (val)) { tree tem = maybe_fold_reference (val, false); if (tem) { gimple_debug_bind_set_value (stmt, tem); changed = true; } } else if (val && TREE_CODE (val) == ADDR_EXPR) { tree ref = TREE_OPERAND (val, 0); tree tem = maybe_fold_reference (ref, false); if (tem) { tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val)); gimple_debug_bind_set_value (stmt, tem); changed = true; } } } break; default:; } stmt = gsi_stmt (*gsi); /* Fold *& on the lhs. */ if (gimple_has_lhs (stmt)) { tree lhs = gimple_get_lhs (stmt); if (lhs && REFERENCE_CLASS_P (lhs)) { tree new_lhs = maybe_fold_reference (lhs, true); if (new_lhs) { gimple_set_lhs (stmt, new_lhs); changed = true; } } } return changed; } /* Valueziation callback that ends up not following SSA edges. */ tree no_follow_ssa_edges (tree) { return NULL_TREE; } /* Valueization callback that ends up following single-use SSA edges only. */ tree follow_single_use_edges (tree val) { if (TREE_CODE (val) == SSA_NAME && !has_single_use (val)) return NULL_TREE; return val; } /* Fold the statement pointed to by GSI. In some cases, this function may replace the whole statement with a new one. Returns true iff folding makes any changes. The statement pointed to by GSI should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt (gimple_stmt_iterator *gsi) { return fold_stmt_1 (gsi, false, no_follow_ssa_edges); } bool fold_stmt (gimple_stmt_iterator *gsi, tree (*valueize) (tree)) { return fold_stmt_1 (gsi, false, valueize); } /* Perform the minimal folding on statement *GSI. Only operations like *&x created by constant propagation are handled. The statement cannot be replaced with a new one. Return true if the statement was changed, false otherwise. The statement *GSI should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt_inplace (gimple_stmt_iterator *gsi) { gimple stmt = gsi_stmt (*gsi); bool changed = fold_stmt_1 (gsi, true, no_follow_ssa_edges); gcc_assert (gsi_stmt (*gsi) == stmt); return changed; } /* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE if EXPR is null or we don't know how. If non-null, the result always has boolean type. */ static tree canonicalize_bool (tree expr, bool invert) { if (!expr) return NULL_TREE; else if (invert) { if (integer_nonzerop (expr)) return boolean_false_node; else if (integer_zerop (expr)) return boolean_true_node; else if (TREE_CODE (expr) == SSA_NAME) return fold_build2 (EQ_EXPR, boolean_type_node, expr, build_int_cst (TREE_TYPE (expr), 0)); else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false), boolean_type_node, TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1)); else return NULL_TREE; } else { if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) return expr; if (integer_nonzerop (expr)) return boolean_true_node; else if (integer_zerop (expr)) return boolean_false_node; else if (TREE_CODE (expr) == SSA_NAME) return fold_build2 (NE_EXPR, boolean_type_node, expr, build_int_cst (TREE_TYPE (expr), 0)); else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison) return fold_build2 (TREE_CODE (expr), boolean_type_node, TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1)); else return NULL_TREE; } } /* Check to see if a boolean expression EXPR is logically equivalent to the comparison (OP1 CODE OP2). Check for various identities involving SSA_NAMEs. */ static bool same_bool_comparison_p (const_tree expr, enum tree_code code, const_tree op1, const_tree op2) { gimple s; /* The obvious case. */ if (TREE_CODE (expr) == code && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0) && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0)) return true; /* Check for comparing (name, name != 0) and the case where expr is an SSA_NAME with a definition matching the comparison. */ if (TREE_CODE (expr) == SSA_NAME && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) { if (operand_equal_p (expr, op1, 0)) return ((code == NE_EXPR && integer_zerop (op2)) || (code == EQ_EXPR && integer_nonzerop (op2))); s = SSA_NAME_DEF_STMT (expr); if (is_gimple_assign (s) && gimple_assign_rhs_code (s) == code && operand_equal_p (gimple_assign_rhs1 (s), op1, 0) && operand_equal_p (gimple_assign_rhs2 (s), op2, 0)) return true; } /* If op1 is of the form (name != 0) or (name == 0), and the definition of name is a comparison, recurse. */ if (TREE_CODE (op1) == SSA_NAME && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE) { s = SSA_NAME_DEF_STMT (op1); if (is_gimple_assign (s) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) { enum tree_code c = gimple_assign_rhs_code (s); if ((c == NE_EXPR && integer_zerop (op2)) || (c == EQ_EXPR && integer_nonzerop (op2))) return same_bool_comparison_p (expr, c, gimple_assign_rhs1 (s), gimple_assign_rhs2 (s)); if ((c == EQ_EXPR && integer_zerop (op2)) || (c == NE_EXPR && integer_nonzerop (op2))) return same_bool_comparison_p (expr, invert_tree_comparison (c, false), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s)); } } return false; } /* Check to see if two boolean expressions OP1 and OP2 are logically equivalent. */ static bool same_bool_result_p (const_tree op1, const_tree op2) { /* Simple cases first. */ if (operand_equal_p (op1, op2, 0)) return true; /* Check the cases where at least one of the operands is a comparison. These are a bit smarter than operand_equal_p in that they apply some identifies on SSA_NAMEs. */ if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison && same_bool_comparison_p (op1, TREE_CODE (op2), TREE_OPERAND (op2, 0), TREE_OPERAND (op2, 1))) return true; if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison && same_bool_comparison_p (op2, TREE_CODE (op1), TREE_OPERAND (op1, 0), TREE_OPERAND (op1, 1))) return true; /* Default case. */ return false; } /* Forward declarations for some mutually recursive functions. */ static tree and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b); static tree and_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b); static tree and_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b); static tree or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b); static tree or_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b); static tree or_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b); /* Helper function for and_comparisons_1: try to simplify the AND of the ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). If INVERT is true, invert the value of the VAR before doing the AND. Return NULL_EXPR if we can't simplify this to a single expression. */ static tree and_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b) { tree t; gimple stmt = SSA_NAME_DEF_STMT (var); /* We can only deal with variables whose definitions are assignments. */ if (!is_gimple_assign (stmt)) return NULL_TREE; /* If we have an inverted comparison, apply DeMorgan's law and rewrite !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b)) Then we only have to consider the simpler non-inverted cases. */ if (invert) t = or_var_with_comparison_1 (stmt, invert_tree_comparison (code2, false), op2a, op2b); else t = and_var_with_comparison_1 (stmt, code2, op2a, op2b); return canonicalize_bool (t, invert); } /* Try to simplify the AND of the ssa variable defined by the assignment STMT with the comparison specified by (OP2A CODE2 OP2B). Return NULL_EXPR if we can't simplify this to a single expression. */ static tree and_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b) { tree var = gimple_assign_lhs (stmt); tree true_test_var = NULL_TREE; tree false_test_var = NULL_TREE; enum tree_code innercode = gimple_assign_rhs_code (stmt); /* Check for identities like (var AND (var == 0)) => false. */ if (TREE_CODE (op2a) == SSA_NAME && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) { if ((code2 == NE_EXPR && integer_zerop (op2b)) || (code2 == EQ_EXPR && integer_nonzerop (op2b))) { true_test_var = op2a; if (var == true_test_var) return var; } else if ((code2 == EQ_EXPR && integer_zerop (op2b)) || (code2 == NE_EXPR && integer_nonzerop (op2b))) { false_test_var = op2a; if (var == false_test_var) return boolean_false_node; } } /* If the definition is a comparison, recurse on it. */ if (TREE_CODE_CLASS (innercode) == tcc_comparison) { tree t = and_comparisons_1 (innercode, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), code2, op2a, op2b); if (t) return t; } /* If the definition is an AND or OR expression, we may be able to simplify by reassociating. */ if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)) { tree inner1 = gimple_assign_rhs1 (stmt); tree inner2 = gimple_assign_rhs2 (stmt); gimple s; tree t; tree partial = NULL_TREE; bool is_and = (innercode == BIT_AND_EXPR); /* Check for boolean identities that don't require recursive examination of inner1/inner2: inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var inner1 AND (inner1 OR inner2) => inner1 !inner1 AND (inner1 AND inner2) => false !inner1 AND (inner1 OR inner2) => !inner1 AND inner2 Likewise for similar cases involving inner2. */ if (inner1 == true_test_var) return (is_and ? var : inner1); else if (inner2 == true_test_var) return (is_and ? var : inner2); else if (inner1 == false_test_var) return (is_and ? boolean_false_node : and_var_with_comparison (inner2, false, code2, op2a, op2b)); else if (inner2 == false_test_var) return (is_and ? boolean_false_node : and_var_with_comparison (inner1, false, code2, op2a, op2b)); /* Next, redistribute/reassociate the AND across the inner tests. Compute the first partial result, (inner1 AND (op2a code op2b)) */ if (TREE_CODE (inner1) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the AND case, where we are reassociating: (inner1 AND inner2) AND (op2a code2 op2b) => (t AND inner2) If the partial result t is a constant, we win. Otherwise continue on to try reassociating with the other inner test. */ if (is_and) { if (integer_onep (t)) return inner2; else if (integer_zerop (t)) return boolean_false_node; } /* Handle the OR case, where we are redistributing: (inner1 OR inner2) AND (op2a code2 op2b) => (t OR (inner2 AND (op2a code2 op2b))) */ else if (integer_onep (t)) return boolean_true_node; /* Save partial result for later. */ partial = t; } /* Compute the second partial result, (inner2 AND (op2a code op2b)) */ if (TREE_CODE (inner2) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the AND case, where we are reassociating: (inner1 AND inner2) AND (op2a code2 op2b) => (inner1 AND t) */ if (is_and) { if (integer_onep (t)) return inner1; else if (integer_zerop (t)) return boolean_false_node; /* If both are the same, we can apply the identity (x AND x) == x. */ else if (partial && same_bool_result_p (t, partial)) return t; } /* Handle the OR case. where we are redistributing: (inner1 OR inner2) AND (op2a code2 op2b) => (t OR (inner1 AND (op2a code2 op2b))) => (t OR partial) */ else { if (integer_onep (t)) return boolean_true_node; else if (partial) { /* We already got a simplification for the other operand to the redistributed OR expression. The interesting case is when at least one is false. Or, if both are the same, we can apply the identity (x OR x) == x. */ if (integer_zerop (partial)) return t; else if (integer_zerop (t)) return partial; else if (same_bool_result_p (t, partial)) return t; } } } } return NULL_TREE; } /* Try to simplify the AND of two comparisons defined by (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. If this can be done without constructing an intermediate value, return the resulting tree; otherwise NULL_TREE is returned. This function is deliberately asymmetric as it recurses on SSA_DEFs in the first comparison but not the second. */ static tree and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree truth_type = truth_type_for (TREE_TYPE (op1a)); /* First check for ((x CODE1 y) AND (x CODE2 y)). */ if (operand_equal_p (op1a, op2a, 0) && operand_equal_p (op1b, op2b, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ANDIF_EXPR, code1, code2, truth_type, op1a, op1b); if (t) return t; } /* Likewise the swapped case of the above. */ if (operand_equal_p (op1a, op2b, 0) && operand_equal_p (op1b, op2a, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ANDIF_EXPR, code1, swap_tree_comparison (code2), truth_type, op1a, op1b); if (t) return t; } /* If both comparisons are of the same value against constants, we might be able to merge them. */ if (operand_equal_p (op1a, op2a, 0) && TREE_CODE (op1b) == INTEGER_CST && TREE_CODE (op2b) == INTEGER_CST) { int cmp = tree_int_cst_compare (op1b, op2b); /* If we have (op1a == op1b), we should either be able to return that or FALSE, depending on whether the constant op1b also satisfies the other comparison against op2b. */ if (code1 == EQ_EXPR) { bool done = true; bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: done = false; } if (done) { if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return boolean_false_node; } } /* Likewise if the second comparison is an == comparison. */ else if (code2 == EQ_EXPR) { bool done = true; bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: done = false; } if (done) { if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return boolean_false_node; } } /* Same business with inequality tests. */ else if (code1 == NE_EXPR) { bool val; switch (code2) { case EQ_EXPR: val = (cmp != 0); break; case NE_EXPR: val = (cmp == 0); break; case LT_EXPR: val = (cmp >= 0); break; case GT_EXPR: val = (cmp <= 0); break; case LE_EXPR: val = (cmp > 0); break; case GE_EXPR: val = (cmp < 0); break; default: val = false; } if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); } else if (code2 == NE_EXPR) { bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp <= 0); break; case GT_EXPR: val = (cmp >= 0); break; case LE_EXPR: val = (cmp < 0); break; case GE_EXPR: val = (cmp > 0); break; default: val = false; } if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Chose the more restrictive of two < or <= comparisons. */ else if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return fold_build2 (code2, boolean_type_node, op2a, op2b); } /* Likewise chose the more restrictive of two > or >= comparisons. */ else if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return fold_build2 (code2, boolean_type_node, op2a, op2b); } /* Check for singleton ranges. */ else if (cmp == 0 && ((code1 == LE_EXPR && code2 == GE_EXPR) || (code1 == GE_EXPR && code2 == LE_EXPR))) return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b); /* Check for disjoint ranges. */ else if (cmp <= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) return boolean_false_node; else if (cmp >= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) return boolean_false_node; } /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where NAME's definition is a truth value. See if there are any simplifications that can be done against the NAME's definition. */ if (TREE_CODE (op1a) == SSA_NAME && (code1 == NE_EXPR || code1 == EQ_EXPR) && (integer_zerop (op1b) || integer_onep (op1b))) { bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) || (code1 == NE_EXPR && integer_onep (op1b))); gimple stmt = SSA_NAME_DEF_STMT (op1a); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: /* Try to simplify by copy-propagating the definition. */ return and_var_with_comparison (op1a, invert, code2, op2a, op2b); case GIMPLE_PHI: /* If every argument to the PHI produces the same result when ANDed with the second comparison, we win. Do not do this unless the type is bool since we need a bool result here anyway. */ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) { tree result = NULL_TREE; unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree arg = gimple_phi_arg_def (stmt, i); /* If this PHI has itself as an argument, ignore it. If all the other args produce the same result, we're still OK. */ if (arg == gimple_phi_result (stmt)) continue; else if (TREE_CODE (arg) == INTEGER_CST) { if (invert ? integer_nonzerop (arg) : integer_zerop (arg)) { if (!result) result = boolean_false_node; else if (!integer_zerop (result)) return NULL_TREE; } else if (!result) result = fold_build2 (code2, boolean_type_node, op2a, op2b); else if (!same_bool_comparison_p (result, code2, op2a, op2b)) return NULL_TREE; } else if (TREE_CODE (arg) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg)) { tree temp; gimple def_stmt = SSA_NAME_DEF_STMT (arg); /* In simple cases we can look through PHI nodes, but we have to be careful with loops. See PR49073. */ if (! dom_info_available_p (CDI_DOMINATORS) || gimple_bb (def_stmt) == gimple_bb (stmt) || dominated_by_p (CDI_DOMINATORS, gimple_bb (def_stmt), gimple_bb (stmt))) return NULL_TREE; temp = and_var_with_comparison (arg, invert, code2, op2a, op2b); if (!temp) return NULL_TREE; else if (!result) result = temp; else if (!same_bool_result_p (result, temp)) return NULL_TREE; } else return NULL_TREE; } return result; } default: break; } } return NULL_TREE; } /* Try to simplify the AND of two comparisons, specified by (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. If this can be simplified to a single expression (without requiring introducing more SSA variables to hold intermediate values), return the resulting tree. Otherwise return NULL_TREE. If the result expression is non-null, it has boolean type. */ tree maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); if (t) return t; else return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); } /* Helper function for or_comparisons_1: try to simplify the OR of the ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). If INVERT is true, invert the value of VAR before doing the OR. Return NULL_EXPR if we can't simplify this to a single expression. */ static tree or_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b) { tree t; gimple stmt = SSA_NAME_DEF_STMT (var); /* We can only deal with variables whose definitions are assignments. */ if (!is_gimple_assign (stmt)) return NULL_TREE; /* If we have an inverted comparison, apply DeMorgan's law and rewrite !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b)) Then we only have to consider the simpler non-inverted cases. */ if (invert) t = and_var_with_comparison_1 (stmt, invert_tree_comparison (code2, false), op2a, op2b); else t = or_var_with_comparison_1 (stmt, code2, op2a, op2b); return canonicalize_bool (t, invert); } /* Try to simplify the OR of the ssa variable defined by the assignment STMT with the comparison specified by (OP2A CODE2 OP2B). Return NULL_EXPR if we can't simplify this to a single expression. */ static tree or_var_with_comparison_1 (gimple stmt, enum tree_code code2, tree op2a, tree op2b) { tree var = gimple_assign_lhs (stmt); tree true_test_var = NULL_TREE; tree false_test_var = NULL_TREE; enum tree_code innercode = gimple_assign_rhs_code (stmt); /* Check for identities like (var OR (var != 0)) => true . */ if (TREE_CODE (op2a) == SSA_NAME && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) { if ((code2 == NE_EXPR && integer_zerop (op2b)) || (code2 == EQ_EXPR && integer_nonzerop (op2b))) { true_test_var = op2a; if (var == true_test_var) return var; } else if ((code2 == EQ_EXPR && integer_zerop (op2b)) || (code2 == NE_EXPR && integer_nonzerop (op2b))) { false_test_var = op2a; if (var == false_test_var) return boolean_true_node; } } /* If the definition is a comparison, recurse on it. */ if (TREE_CODE_CLASS (innercode) == tcc_comparison) { tree t = or_comparisons_1 (innercode, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), code2, op2a, op2b); if (t) return t; } /* If the definition is an AND or OR expression, we may be able to simplify by reassociating. */ if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)) { tree inner1 = gimple_assign_rhs1 (stmt); tree inner2 = gimple_assign_rhs2 (stmt); gimple s; tree t; tree partial = NULL_TREE; bool is_or = (innercode == BIT_IOR_EXPR); /* Check for boolean identities that don't require recursive examination of inner1/inner2: inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var inner1 OR (inner1 AND inner2) => inner1 !inner1 OR (inner1 OR inner2) => true !inner1 OR (inner1 AND inner2) => !inner1 OR inner2 */ if (inner1 == true_test_var) return (is_or ? var : inner1); else if (inner2 == true_test_var) return (is_or ? var : inner2); else if (inner1 == false_test_var) return (is_or ? boolean_true_node : or_var_with_comparison (inner2, false, code2, op2a, op2b)); else if (inner2 == false_test_var) return (is_or ? boolean_true_node : or_var_with_comparison (inner1, false, code2, op2a, op2b)); /* Next, redistribute/reassociate the OR across the inner tests. Compute the first partial result, (inner1 OR (op2a code op2b)) */ if (TREE_CODE (inner1) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the OR case, where we are reassociating: (inner1 OR inner2) OR (op2a code2 op2b) => (t OR inner2) If the partial result t is a constant, we win. Otherwise continue on to try reassociating with the other inner test. */ if (is_or) { if (integer_onep (t)) return boolean_true_node; else if (integer_zerop (t)) return inner2; } /* Handle the AND case, where we are redistributing: (inner1 AND inner2) OR (op2a code2 op2b) => (t AND (inner2 OR (op2a code op2b))) */ else if (integer_zerop (t)) return boolean_false_node; /* Save partial result for later. */ partial = t; } /* Compute the second partial result, (inner2 OR (op2a code op2b)) */ if (TREE_CODE (inner2) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the OR case, where we are reassociating: (inner1 OR inner2) OR (op2a code2 op2b) => (inner1 OR t) => (t OR partial) */ if (is_or) { if (integer_zerop (t)) return inner1; else if (integer_onep (t)) return boolean_true_node; /* If both are the same, we can apply the identity (x OR x) == x. */ else if (partial && same_bool_result_p (t, partial)) return t; } /* Handle the AND case, where we are redistributing: (inner1 AND inner2) OR (op2a code2 op2b) => (t AND (inner1 OR (op2a code2 op2b))) => (t AND partial) */ else { if (integer_zerop (t)) return boolean_false_node; else if (partial) { /* We already got a simplification for the other operand to the redistributed AND expression. The interesting case is when at least one is true. Or, if both are the same, we can apply the identity (x AND x) == x. */ if (integer_onep (partial)) return t; else if (integer_onep (t)) return partial; else if (same_bool_result_p (t, partial)) return t; } } } } return NULL_TREE; } /* Try to simplify the OR of two comparisons defined by (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. If this can be done without constructing an intermediate value, return the resulting tree; otherwise NULL_TREE is returned. This function is deliberately asymmetric as it recurses on SSA_DEFs in the first comparison but not the second. */ static tree or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree truth_type = truth_type_for (TREE_TYPE (op1a)); /* First check for ((x CODE1 y) OR (x CODE2 y)). */ if (operand_equal_p (op1a, op2a, 0) && operand_equal_p (op1b, op2b, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ORIF_EXPR, code1, code2, truth_type, op1a, op1b); if (t) return t; } /* Likewise the swapped case of the above. */ if (operand_equal_p (op1a, op2b, 0) && operand_equal_p (op1b, op2a, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ORIF_EXPR, code1, swap_tree_comparison (code2), truth_type, op1a, op1b); if (t) return t; } /* If both comparisons are of the same value against constants, we might be able to merge them. */ if (operand_equal_p (op1a, op2a, 0) && TREE_CODE (op1b) == INTEGER_CST && TREE_CODE (op2b) == INTEGER_CST) { int cmp = tree_int_cst_compare (op1b, op2b); /* If we have (op1a != op1b), we should either be able to return that or TRUE, depending on whether the constant op1b also satisfies the other comparison against op2b. */ if (code1 == NE_EXPR) { bool done = true; bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: done = false; } if (done) { if (val) return boolean_true_node; else return fold_build2 (code1, boolean_type_node, op1a, op1b); } } /* Likewise if the second comparison is a != comparison. */ else if (code2 == NE_EXPR) { bool done = true; bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: done = false; } if (done) { if (val) return boolean_true_node; else return fold_build2 (code2, boolean_type_node, op2a, op2b); } } /* See if an equality test is redundant with the other comparison. */ else if (code1 == EQ_EXPR) { bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: val = false; } if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); } else if (code2 == EQ_EXPR) { bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: val = false; } if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Chose the less restrictive of two < or <= comparisons. */ else if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Likewise chose the less restrictive of two > or >= comparisons. */ else if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Check for singleton ranges. */ else if (cmp == 0 && ((code1 == LT_EXPR && code2 == GT_EXPR) || (code1 == GT_EXPR && code2 == LT_EXPR))) return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b); /* Check for less/greater pairs that don't restrict the range at all. */ else if (cmp >= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) return boolean_true_node; else if (cmp <= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) return boolean_true_node; } /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where NAME's definition is a truth value. See if there are any simplifications that can be done against the NAME's definition. */ if (TREE_CODE (op1a) == SSA_NAME && (code1 == NE_EXPR || code1 == EQ_EXPR) && (integer_zerop (op1b) || integer_onep (op1b))) { bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) || (code1 == NE_EXPR && integer_onep (op1b))); gimple stmt = SSA_NAME_DEF_STMT (op1a); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: /* Try to simplify by copy-propagating the definition. */ return or_var_with_comparison (op1a, invert, code2, op2a, op2b); case GIMPLE_PHI: /* If every argument to the PHI produces the same result when ORed with the second comparison, we win. Do not do this unless the type is bool since we need a bool result here anyway. */ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) { tree result = NULL_TREE; unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree arg = gimple_phi_arg_def (stmt, i); /* If this PHI has itself as an argument, ignore it. If all the other args produce the same result, we're still OK. */ if (arg == gimple_phi_result (stmt)) continue; else if (TREE_CODE (arg) == INTEGER_CST) { if (invert ? integer_zerop (arg) : integer_nonzerop (arg)) { if (!result) result = boolean_true_node; else if (!integer_onep (result)) return NULL_TREE; } else if (!result) result = fold_build2 (code2, boolean_type_node, op2a, op2b); else if (!same_bool_comparison_p (result, code2, op2a, op2b)) return NULL_TREE; } else if (TREE_CODE (arg) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg)) { tree temp; gimple def_stmt = SSA_NAME_DEF_STMT (arg); /* In simple cases we can look through PHI nodes, but we have to be careful with loops. See PR49073. */ if (! dom_info_available_p (CDI_DOMINATORS) || gimple_bb (def_stmt) == gimple_bb (stmt) || dominated_by_p (CDI_DOMINATORS, gimple_bb (def_stmt), gimple_bb (stmt))) return NULL_TREE; temp = or_var_with_comparison (arg, invert, code2, op2a, op2b); if (!temp) return NULL_TREE; else if (!result) result = temp; else if (!same_bool_result_p (result, temp)) return NULL_TREE; } else return NULL_TREE; } return result; } default: break; } } return NULL_TREE; } /* Try to simplify the OR of two comparisons, specified by (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. If this can be simplified to a single expression (without requiring introducing more SSA variables to hold intermediate values), return the resulting tree. Otherwise return NULL_TREE. If the result expression is non-null, it has boolean type. */ tree maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); if (t) return t; else return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); } /* Fold STMT to a constant using VALUEIZE to valueize SSA names. Either NULL_TREE, a simplified but non-constant or a constant is returned. ??? This should go into a gimple-fold-inline.h file to be eventually privatized with the single valueize function used in the various TUs to avoid the indirect function call overhead. */ tree gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree)) { code_helper rcode; tree ops[3] = {}; /* ??? The SSA propagators do not correctly deal with following SSA use-def edges if there are intermediate VARYING defs. For this reason do not follow SSA edges here even though SCCVN can technically just deal fine with that. */ if (gimple_simplify (stmt, &rcode, ops, NULL, no_follow_ssa_edges) && rcode.is_tree_code () && (TREE_CODE_LENGTH ((tree_code) rcode) == 0 || ((tree_code) rcode) == ADDR_EXPR) && is_gimple_val (ops[0])) { tree res = ops[0]; if (dump_file && dump_flags & TDF_DETAILS) { fprintf (dump_file, "Match-and-simplified "); print_gimple_expr (dump_file, stmt, 0, TDF_SLIM); fprintf (dump_file, " to "); print_generic_expr (dump_file, res, 0); fprintf (dump_file, "\n"); } return res; } location_t loc = gimple_location (stmt); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { enum tree_code subcode = gimple_assign_rhs_code (stmt); switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: { tree rhs = gimple_assign_rhs1 (stmt); enum tree_code_class kind = TREE_CODE_CLASS (subcode); if (TREE_CODE (rhs) == SSA_NAME) { /* If the RHS is an SSA_NAME, return its known constant value, if any. */ return (*valueize) (rhs); } /* Handle propagating invariant addresses into address operations. */ else if (TREE_CODE (rhs) == ADDR_EXPR && !is_gimple_min_invariant (rhs)) { HOST_WIDE_INT offset = 0; tree base; base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0), &offset, valueize); if (base && (CONSTANT_CLASS_P (base) || decl_address_invariant_p (base))) return build_invariant_address (TREE_TYPE (rhs), base, offset); } else if (TREE_CODE (rhs) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE && (CONSTRUCTOR_NELTS (rhs) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)))) { unsigned i; tree val, *vec; vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))); FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) { val = (*valueize) (val); if (TREE_CODE (val) == INTEGER_CST || TREE_CODE (val) == REAL_CST || TREE_CODE (val) == FIXED_CST) vec[i] = val; else return NULL_TREE; } return build_vector (TREE_TYPE (rhs), vec); } if (subcode == OBJ_TYPE_REF) { tree val = (*valueize) (OBJ_TYPE_REF_EXPR (rhs)); /* If callee is constant, we can fold away the wrapper. */ if (is_gimple_min_invariant (val)) return val; } if (kind == tcc_reference) { if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR || TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR) && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); return fold_unary_loc (EXPR_LOCATION (rhs), TREE_CODE (rhs), TREE_TYPE (rhs), val); } else if (TREE_CODE (rhs) == BIT_FIELD_REF && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); return fold_ternary_loc (EXPR_LOCATION (rhs), TREE_CODE (rhs), TREE_TYPE (rhs), val, TREE_OPERAND (rhs, 1), TREE_OPERAND (rhs, 2)); } else if (TREE_CODE (rhs) == MEM_REF && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); if (TREE_CODE (val) == ADDR_EXPR && is_gimple_min_invariant (val)) { tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs), unshare_expr (val), TREE_OPERAND (rhs, 1)); if (tem) rhs = tem; } } return fold_const_aggregate_ref_1 (rhs, valueize); } else if (kind == tcc_declaration) return get_symbol_constant_value (rhs); return rhs; } case GIMPLE_UNARY_RHS: { /* Handle unary operators that can appear in GIMPLE form. Note that we know the single operand must be a constant, so this should almost always return a simplified RHS. */ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); return fold_unary_ignore_overflow_loc (loc, subcode, gimple_expr_type (stmt), op0); } case GIMPLE_BINARY_RHS: { /* Handle binary operators that can appear in GIMPLE form. */ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); tree op1 = (*valueize) (gimple_assign_rhs2 (stmt)); /* Translate &x + CST into an invariant form suitable for further propagation. */ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR && TREE_CODE (op0) == ADDR_EXPR && TREE_CODE (op1) == INTEGER_CST) { tree off = fold_convert (ptr_type_node, op1); return build_fold_addr_expr_loc (loc, fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)), unshare_expr (op0), off)); } return fold_binary_loc (loc, subcode, gimple_expr_type (stmt), op0, op1); } case GIMPLE_TERNARY_RHS: { /* Handle ternary operators that can appear in GIMPLE form. */ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); tree op1 = (*valueize) (gimple_assign_rhs2 (stmt)); tree op2 = (*valueize) (gimple_assign_rhs3 (stmt)); /* Fold embedded expressions in ternary codes. */ if ((subcode == COND_EXPR || subcode == VEC_COND_EXPR) && COMPARISON_CLASS_P (op0)) { tree op00 = (*valueize) (TREE_OPERAND (op0, 0)); tree op01 = (*valueize) (TREE_OPERAND (op0, 1)); tree tem = fold_binary_loc (loc, TREE_CODE (op0), TREE_TYPE (op0), op00, op01); if (tem) op0 = tem; } return fold_ternary_loc (loc, subcode, gimple_expr_type (stmt), op0, op1, op2); } default: gcc_unreachable (); } } case GIMPLE_CALL: { tree fn; if (gimple_call_internal_p (stmt)) { enum tree_code subcode = ERROR_MARK; switch (gimple_call_internal_fn (stmt)) { case IFN_UBSAN_CHECK_ADD: subcode = PLUS_EXPR; break; case IFN_UBSAN_CHECK_SUB: subcode = MINUS_EXPR; break; case IFN_UBSAN_CHECK_MUL: subcode = MULT_EXPR; break; default: return NULL_TREE; } tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); tree op0 = (*valueize) (arg0); tree op1 = (*valueize) (arg1); if (TREE_CODE (op0) != INTEGER_CST || TREE_CODE (op1) != INTEGER_CST) { switch (subcode) { case MULT_EXPR: /* x * 0 = 0 * x = 0 without overflow. */ if (integer_zerop (op0) || integer_zerop (op1)) return build_zero_cst (TREE_TYPE (arg0)); break; case MINUS_EXPR: /* y - y = 0 without overflow. */ if (operand_equal_p (op0, op1, 0)) return build_zero_cst (TREE_TYPE (arg0)); break; default: break; } } tree res = fold_binary_loc (loc, subcode, TREE_TYPE (arg0), op0, op1); if (res && TREE_CODE (res) == INTEGER_CST && !TREE_OVERFLOW (res)) return res; return NULL_TREE; } fn = (*valueize) (gimple_call_fn (stmt)); if (TREE_CODE (fn) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL && DECL_BUILT_IN (TREE_OPERAND (fn, 0)) && gimple_builtin_call_types_compatible_p (stmt, TREE_OPERAND (fn, 0))) { tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt)); tree call, retval; unsigned i; for (i = 0; i < gimple_call_num_args (stmt); ++i) args[i] = (*valueize) (gimple_call_arg (stmt, i)); call = build_call_array_loc (loc, gimple_call_return_type (stmt), fn, gimple_call_num_args (stmt), args); retval = fold_call_expr (EXPR_LOCATION (call), call, false); if (retval) { /* fold_call_expr wraps the result inside a NOP_EXPR. */ STRIP_NOPS (retval); retval = fold_convert (gimple_call_return_type (stmt), retval); } return retval; } return NULL_TREE; } default: return NULL_TREE; } } /* Fold STMT to a constant using VALUEIZE to valueize SSA names. Returns NULL_TREE if folding to a constant is not possible, otherwise returns a constant according to is_gimple_min_invariant. */ tree gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree)) { tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize); if (res && is_gimple_min_invariant (res)) return res; return NULL_TREE; } /* The following set of functions are supposed to fold references using their constant initializers. */ static tree fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, tree); /* See if we can find constructor defining value of BASE. When we know the consructor with constant offset (such as base is array[40] and we do know constructor of array), then BIT_OFFSET is adjusted accordingly. As a special case, return error_mark_node when constructor is not explicitly available, but it is known to be zero such as 'static const int a;'. */ static tree get_base_constructor (tree base, HOST_WIDE_INT *bit_offset, tree (*valueize)(tree)) { HOST_WIDE_INT bit_offset2, size, max_size; if (TREE_CODE (base) == MEM_REF) { if (!integer_zerop (TREE_OPERAND (base, 1))) { if (!tree_fits_shwi_p (TREE_OPERAND (base, 1))) return NULL_TREE; *bit_offset += (mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT); } if (valueize && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) base = valueize (TREE_OPERAND (base, 0)); if (!base || TREE_CODE (base) != ADDR_EXPR) return NULL_TREE; base = TREE_OPERAND (base, 0); } /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its DECL_INITIAL. If BASE is a nested reference into another ARRAY_REF or COMPONENT_REF, make a recursive call to resolve the inner reference. */ switch (TREE_CODE (base)) { case VAR_DECL: case CONST_DECL: { tree init = ctor_for_folding (base); /* Our semantic is exact opposite of ctor_for_folding; NULL means unknown, while error_mark_node is 0. */ if (init == error_mark_node) return NULL_TREE; if (!init) return error_mark_node; return init; } case ARRAY_REF: case COMPONENT_REF: base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size); if (max_size == -1 || size != max_size) return NULL_TREE; *bit_offset += bit_offset2; return get_base_constructor (base, bit_offset, valueize); case STRING_CST: case CONSTRUCTOR: return base; default: return NULL_TREE; } } /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_array_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, tree from_decl) { unsigned HOST_WIDE_INT cnt; tree cfield, cval; offset_int low_bound; offset_int elt_size; offset_int index, max_index; offset_int access_index; tree domain_type = NULL_TREE, index_type = NULL_TREE; HOST_WIDE_INT inner_offset; /* Compute low bound and elt size. */ if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); if (domain_type && TYPE_MIN_VALUE (domain_type)) { /* Static constructors for variably sized objects makes no sense. */ gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST); index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type)); low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type)); } else low_bound = 0; /* Static constructors for variably sized objects makes no sense. */ gcc_assert (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))) == INTEGER_CST); elt_size = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))); /* We can handle only constantly sized accesses that are known to not be larger than size of array element. */ if (!TYPE_SIZE_UNIT (type) || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST || wi::lts_p (elt_size, wi::to_offset (TYPE_SIZE_UNIT (type))) || elt_size == 0) return NULL_TREE; /* Compute the array index we look for. */ access_index = wi::udiv_trunc (offset_int (offset / BITS_PER_UNIT), elt_size); access_index += low_bound; if (index_type) access_index = wi::ext (access_index, TYPE_PRECISION (index_type), TYPE_SIGN (index_type)); /* And offset within the access. */ inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT); /* See if the array field is large enough to span whole access. We do not care to fold accesses spanning multiple array indexes. */ if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT) return NULL_TREE; index = low_bound - 1; if (index_type) index = wi::ext (index, TYPE_PRECISION (index_type), TYPE_SIGN (index_type)); FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) { /* Array constructor might explicitely set index, or specify range or leave index NULL meaning that it is next index after previous one. */ if (cfield) { if (TREE_CODE (cfield) == INTEGER_CST) max_index = index = wi::to_offset (cfield); else { gcc_assert (TREE_CODE (cfield) == RANGE_EXPR); index = wi::to_offset (TREE_OPERAND (cfield, 0)); max_index = wi::to_offset (TREE_OPERAND (cfield, 1)); } } else { index += 1; if (index_type) index = wi::ext (index, TYPE_PRECISION (index_type), TYPE_SIGN (index_type)); max_index = index; } /* Do we have match? */ if (wi::cmpu (access_index, index) >= 0 && wi::cmpu (access_index, max_index) <= 0) return fold_ctor_reference (type, cval, inner_offset, size, from_decl); } /* When memory is not explicitely mentioned in constructor, it is 0 (or out of range). */ return build_zero_cst (type); } /* CTOR is CONSTRUCTOR of an aggregate or vector. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_nonarray_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, tree from_decl) { unsigned HOST_WIDE_INT cnt; tree cfield, cval; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) { tree byte_offset = DECL_FIELD_OFFSET (cfield); tree field_offset = DECL_FIELD_BIT_OFFSET (cfield); tree field_size = DECL_SIZE (cfield); offset_int bitoffset; offset_int bitoffset_end, access_end; /* Variable sized objects in static constructors makes no sense, but field_size can be NULL for flexible array members. */ gcc_assert (TREE_CODE (field_offset) == INTEGER_CST && TREE_CODE (byte_offset) == INTEGER_CST && (field_size != NULL_TREE ? TREE_CODE (field_size) == INTEGER_CST : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE)); /* Compute bit offset of the field. */ bitoffset = (wi::to_offset (field_offset) + wi::lshift (wi::to_offset (byte_offset), LOG2_BITS_PER_UNIT)); /* Compute bit offset where the field ends. */ if (field_size != NULL_TREE) bitoffset_end = bitoffset + wi::to_offset (field_size); else bitoffset_end = 0; access_end = offset_int (offset) + size; /* Is there any overlap between [OFFSET, OFFSET+SIZE) and [BITOFFSET, BITOFFSET_END)? */ if (wi::cmps (access_end, bitoffset) > 0 && (field_size == NULL_TREE || wi::lts_p (offset, bitoffset_end))) { offset_int inner_offset = offset_int (offset) - bitoffset; /* We do have overlap. Now see if field is large enough to cover the access. Give up for accesses spanning multiple fields. */ if (wi::cmps (access_end, bitoffset_end) > 0) return NULL_TREE; if (wi::lts_p (offset, bitoffset)) return NULL_TREE; return fold_ctor_reference (type, cval, inner_offset.to_uhwi (), size, from_decl); } } /* When memory is not explicitely mentioned in constructor, it is 0. */ return build_zero_cst (type); } /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, tree from_decl) { tree ret; /* We found the field with exact match. */ if (useless_type_conversion_p (type, TREE_TYPE (ctor)) && !offset) return canonicalize_constructor_val (unshare_expr (ctor), from_decl); /* We are at the end of walk, see if we can view convert the result. */ if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset /* VIEW_CONVERT_EXPR is defined only for matching sizes. */ && !compare_tree_int (TYPE_SIZE (type), size) && !compare_tree_int (TYPE_SIZE (TREE_TYPE (ctor)), size)) { ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl); ret = fold_unary (VIEW_CONVERT_EXPR, type, ret); if (ret) STRIP_NOPS (ret); return ret; } /* For constants and byte-aligned/sized reads try to go through native_encode/interpret. */ if (CONSTANT_CLASS_P (ctor) && BITS_PER_UNIT == 8 && offset % BITS_PER_UNIT == 0 && size % BITS_PER_UNIT == 0 && size <= MAX_BITSIZE_MODE_ANY_MODE) { unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT]; if (native_encode_expr (ctor, buf, size / BITS_PER_UNIT, offset / BITS_PER_UNIT) > 0) return native_interpret_expr (type, buf, size / BITS_PER_UNIT); } if (TREE_CODE (ctor) == CONSTRUCTOR) { if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE) return fold_array_ctor_reference (type, ctor, offset, size, from_decl); else return fold_nonarray_ctor_reference (type, ctor, offset, size, from_decl); } return NULL_TREE; } /* Return the tree representing the element referenced by T if T is an ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA names using VALUEIZE. Return NULL_TREE otherwise. */ tree fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree)) { tree ctor, idx, base; HOST_WIDE_INT offset, size, max_size; tree tem; if (TREE_THIS_VOLATILE (t)) return NULL_TREE; if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration) return get_symbol_constant_value (t); tem = fold_read_from_constant_string (t); if (tem) return tem; switch (TREE_CODE (t)) { case ARRAY_REF: case ARRAY_RANGE_REF: /* Constant indexes are handled well by get_base_constructor. Only special case variable offsets. FIXME: This code can't handle nested references with variable indexes (they will be handled only by iteration of ccp). Perhaps we can bring get_ref_base_and_extent here and make it use a valueize callback. */ if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME && valueize && (idx = (*valueize) (TREE_OPERAND (t, 1))) && TREE_CODE (idx) == INTEGER_CST) { tree low_bound, unit_size; /* If the resulting bit-offset is constant, track it. */ if ((low_bound = array_ref_low_bound (t), TREE_CODE (low_bound) == INTEGER_CST) && (unit_size = array_ref_element_size (t), tree_fits_uhwi_p (unit_size))) { offset_int woffset = wi::sext (wi::to_offset (idx) - wi::to_offset (low_bound), TYPE_PRECISION (TREE_TYPE (idx))); if (wi::fits_shwi_p (woffset)) { offset = woffset.to_shwi (); /* TODO: This code seems wrong, multiply then check to see if it fits. */ offset *= tree_to_uhwi (unit_size); offset *= BITS_PER_UNIT; base = TREE_OPERAND (t, 0); ctor = get_base_constructor (base, &offset, valueize); /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, tree_to_uhwi (unit_size) * BITS_PER_UNIT, base); } } } /* Fallthru. */ case COMPONENT_REF: case BIT_FIELD_REF: case TARGET_MEM_REF: case MEM_REF: base = get_ref_base_and_extent (t, &offset, &size, &max_size); ctor = get_base_constructor (base, &offset, valueize); /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* We do not know precise address. */ if (max_size == -1 || max_size != size) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size, base); case REALPART_EXPR: case IMAGPART_EXPR: { tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize); if (c && TREE_CODE (c) == COMPLEX_CST) return fold_build1_loc (EXPR_LOCATION (t), TREE_CODE (t), TREE_TYPE (t), c); break; } default: break; } return NULL_TREE; } tree fold_const_aggregate_ref (tree t) { return fold_const_aggregate_ref_1 (t, NULL); } /* Lookup virtual method with index TOKEN in a virtual table V at OFFSET. Set CAN_REFER if non-NULL to false if method is not referable or if the virtual table is ill-formed (such as rewriten by non-C++ produced symbol). Otherwise just return NULL in that calse. */ tree gimple_get_virt_method_for_vtable (HOST_WIDE_INT token, tree v, unsigned HOST_WIDE_INT offset, bool *can_refer) { tree vtable = v, init, fn; unsigned HOST_WIDE_INT size; unsigned HOST_WIDE_INT elt_size, access_index; tree domain_type; if (can_refer) *can_refer = true; /* First of all double check we have virtual table. */ if (TREE_CODE (v) != VAR_DECL || !DECL_VIRTUAL_P (v)) { gcc_assert (in_lto_p); /* Pass down that we lost track of the target. */ if (can_refer) *can_refer = false; return NULL_TREE; } init = ctor_for_folding (v); /* The virtual tables should always be born with constructors and we always should assume that they are avaialble for folding. At the moment we do not stream them in all cases, but it should never happen that ctor seem unreachable. */ gcc_assert (init); if (init == error_mark_node) { gcc_assert (in_lto_p); /* Pass down that we lost track of the target. */ if (can_refer) *can_refer = false; return NULL_TREE; } gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE); size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v)))); offset *= BITS_PER_UNIT; offset += token * size; /* Lookup the value in the constructor that is assumed to be array. This is equivalent to fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), init, offset, size, NULL); but in a constant time. We expect that frontend produced a simple array without indexed initializers. */ gcc_checking_assert (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE); domain_type = TYPE_DOMAIN (TREE_TYPE (init)); gcc_checking_assert (integer_zerop (TYPE_MIN_VALUE (domain_type))); elt_size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (init)))); access_index = offset / BITS_PER_UNIT / elt_size; gcc_checking_assert (offset % (elt_size * BITS_PER_UNIT) == 0); /* This code makes an assumption that there are no indexed fileds produced by C++ FE, so we can directly index the array. */ if (access_index < CONSTRUCTOR_NELTS (init)) { fn = CONSTRUCTOR_ELT (init, access_index)->value; gcc_checking_assert (!CONSTRUCTOR_ELT (init, access_index)->index); STRIP_NOPS (fn); } else fn = NULL; /* For type inconsistent program we may end up looking up virtual method in virtual table that does not contain TOKEN entries. We may overrun the virtual table and pick up a constant or RTTI info pointer. In any case the call is undefined. */ if (!fn || (TREE_CODE (fn) != ADDR_EXPR && TREE_CODE (fn) != FDESC_EXPR) || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL) fn = builtin_decl_implicit (BUILT_IN_UNREACHABLE); else { fn = TREE_OPERAND (fn, 0); /* When cgraph node is missing and function is not public, we cannot devirtualize. This can happen in WHOPR when the actual method ends up in other partition, because we found devirtualization possibility too late. */ if (!can_refer_decl_in_current_unit_p (fn, vtable)) { if (can_refer) { *can_refer = false; return fn; } return NULL_TREE; } } /* Make sure we create a cgraph node for functions we'll reference. They can be non-existent if the reference comes from an entry of an external vtable for example. */ cgraph_node::get_create (fn); return fn; } /* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN is integer form of OBJ_TYPE_REF_TOKEN of the reference expression. KNOWN_BINFO carries the binfo describing the true type of OBJ_TYPE_REF_OBJECT(REF). Set CAN_REFER if non-NULL to false if method is not referable or if the virtual table is ill-formed (such as rewriten by non-C++ produced symbol). Otherwise just return NULL in that calse. */ tree gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo, bool *can_refer) { unsigned HOST_WIDE_INT offset; tree v; v = BINFO_VTABLE (known_binfo); /* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */ if (!v) return NULL_TREE; if (!vtable_pointer_value_to_vtable (v, &v, &offset)) { if (can_refer) *can_refer = false; return NULL_TREE; } return gimple_get_virt_method_for_vtable (token, v, offset, can_refer); } /* Return true iff VAL is a gimple expression that is known to be non-negative. Restricted to floating-point inputs. */ bool gimple_val_nonnegative_real_p (tree val) { gimple def_stmt; gcc_assert (val && SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))); /* Use existing logic for non-gimple trees. */ if (tree_expr_nonnegative_p (val)) return true; if (TREE_CODE (val) != SSA_NAME) return false; /* Currently we look only at the immediately defining statement to make this determination, since recursion on defining statements of operands can lead to quadratic behavior in the worst case. This is expected to catch almost all occurrences in practice. It would be possible to implement limited-depth recursion if important cases are lost. Alternatively, passes that need this information (such as the pow/powi lowering code in the cse_sincos pass) could be revised to provide it through dataflow propagation. */ def_stmt = SSA_NAME_DEF_STMT (val); if (is_gimple_assign (def_stmt)) { tree op0, op1; /* See fold-const.c:tree_expr_nonnegative_p for additional cases that could be handled with recursion. */ switch (gimple_assign_rhs_code (def_stmt)) { case ABS_EXPR: /* Always true for floating-point operands. */ return true; case MULT_EXPR: /* True if the two operands are identical (since we are restricted to floating-point inputs). */ op0 = gimple_assign_rhs1 (def_stmt); op1 = gimple_assign_rhs2 (def_stmt); if (op0 == op1 || operand_equal_p (op0, op1, 0)) return true; default: return false; } } else if (is_gimple_call (def_stmt)) { tree fndecl = gimple_call_fndecl (def_stmt); if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) { tree arg1; switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_ACOS): CASE_FLT_FN (BUILT_IN_ACOSH): CASE_FLT_FN (BUILT_IN_CABS): CASE_FLT_FN (BUILT_IN_COSH): CASE_FLT_FN (BUILT_IN_ERFC): CASE_FLT_FN (BUILT_IN_EXP): CASE_FLT_FN (BUILT_IN_EXP10): CASE_FLT_FN (BUILT_IN_EXP2): CASE_FLT_FN (BUILT_IN_FABS): CASE_FLT_FN (BUILT_IN_FDIM): CASE_FLT_FN (BUILT_IN_HYPOT): CASE_FLT_FN (BUILT_IN_POW10): return true; CASE_FLT_FN (BUILT_IN_SQRT): /* sqrt(-0.0) is -0.0, and sqrt is not defined over other nonnegative inputs. */ if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (val)))) return true; break; CASE_FLT_FN (BUILT_IN_POWI): /* True if the second argument is an even integer. */ arg1 = gimple_call_arg (def_stmt, 1); if (TREE_CODE (arg1) == INTEGER_CST && (TREE_INT_CST_LOW (arg1) & 1) == 0) return true; break; CASE_FLT_FN (BUILT_IN_POW): /* True if the second argument is an even integer-valued real. */ arg1 = gimple_call_arg (def_stmt, 1); if (TREE_CODE (arg1) == REAL_CST) { REAL_VALUE_TYPE c; HOST_WIDE_INT n; c = TREE_REAL_CST (arg1); n = real_to_integer (&c); if ((n & 1) == 0) { REAL_VALUE_TYPE cint; real_from_integer (&cint, VOIDmode, n, SIGNED); if (real_identical (&c, &cint)) return true; } } break; default: return false; } } } return false; } /* Given a pointer value OP0, return a simplified version of an indirection through OP0, or NULL_TREE if no simplification is possible. Note that the resulting type may be different from the type pointed to in the sense that it is still compatible from the langhooks point of view. */ tree gimple_fold_indirect_ref (tree t) { tree ptype = TREE_TYPE (t), type = TREE_TYPE (ptype); tree sub = t; tree subtype; STRIP_NOPS (sub); subtype = TREE_TYPE (sub); if (!POINTER_TYPE_P (subtype)) return NULL_TREE; if (TREE_CODE (sub) == ADDR_EXPR) { tree op = TREE_OPERAND (sub, 0); tree optype = TREE_TYPE (op); /* *&p => p */ if (useless_type_conversion_p (type, optype)) return op; /* *(foo *)&fooarray => fooarray[0] */ if (TREE_CODE (optype) == ARRAY_TYPE && TREE_CODE (TYPE_SIZE (TREE_TYPE (optype))) == INTEGER_CST && useless_type_conversion_p (type, TREE_TYPE (optype))) { tree type_domain = TYPE_DOMAIN (optype); tree min_val = size_zero_node; if (type_domain && TYPE_MIN_VALUE (type_domain)) min_val = TYPE_MIN_VALUE (type_domain); if (TREE_CODE (min_val) == INTEGER_CST) return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE); } /* *(foo *)&complexfoo => __real__ complexfoo */ else if (TREE_CODE (optype) == COMPLEX_TYPE && useless_type_conversion_p (type, TREE_TYPE (optype))) return fold_build1 (REALPART_EXPR, type, op); /* *(foo *)&vectorfoo => BIT_FIELD_REF */ else if (TREE_CODE (optype) == VECTOR_TYPE && useless_type_conversion_p (type, TREE_TYPE (optype))) { tree part_width = TYPE_SIZE (type); tree index = bitsize_int (0); return fold_build3 (BIT_FIELD_REF, type, op, part_width, index); } } /* *(p + CST) -> ... */ if (TREE_CODE (sub) == POINTER_PLUS_EXPR && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST) { tree addr = TREE_OPERAND (sub, 0); tree off = TREE_OPERAND (sub, 1); tree addrtype; STRIP_NOPS (addr); addrtype = TREE_TYPE (addr); /* ((foo*)&vectorfoo)[1] -> BIT_FIELD_REF */ if (TREE_CODE (addr) == ADDR_EXPR && TREE_CODE (TREE_TYPE (addrtype)) == VECTOR_TYPE && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype))) && tree_fits_uhwi_p (off)) { unsigned HOST_WIDE_INT offset = tree_to_uhwi (off); tree part_width = TYPE_SIZE (type); unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width) / BITS_PER_UNIT; unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT; tree index = bitsize_int (indexi); if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (TREE_TYPE (addrtype))) return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (addr, 0), part_width, index); } /* ((foo*)&complexfoo)[1] -> __imag__ complexfoo */ if (TREE_CODE (addr) == ADDR_EXPR && TREE_CODE (TREE_TYPE (addrtype)) == COMPLEX_TYPE && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype)))) { tree size = TYPE_SIZE_UNIT (type); if (tree_int_cst_equal (size, off)) return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (addr, 0)); } /* *(p + CST) -> MEM_REF . */ if (TREE_CODE (addr) != ADDR_EXPR || DECL_P (TREE_OPERAND (addr, 0))) return fold_build2 (MEM_REF, type, addr, wide_int_to_tree (ptype, off)); } /* *(foo *)fooarrptr => (*fooarrptr)[0] */ if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (subtype)))) == INTEGER_CST && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (subtype)))) { tree type_domain; tree min_val = size_zero_node; tree osub = sub; sub = gimple_fold_indirect_ref (sub); if (! sub) sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub); type_domain = TYPE_DOMAIN (TREE_TYPE (sub)); if (type_domain && TYPE_MIN_VALUE (type_domain)) min_val = TYPE_MIN_VALUE (type_domain); if (TREE_CODE (min_val) == INTEGER_CST) return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE); } return NULL_TREE; } /* Return true if CODE is an operation that when operating on signed integer types involves undefined behavior on overflow and the operation can be expressed with unsigned arithmetic. */ bool arith_code_with_undefined_signed_overflow (tree_code code) { switch (code) { case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case NEGATE_EXPR: case POINTER_PLUS_EXPR: return true; default: return false; } } /* Rewrite STMT, an assignment with a signed integer or pointer arithmetic operation that can be transformed to unsigned arithmetic by converting its operand, carrying out the operation in the corresponding unsigned type and converting the result back to the original type. Returns a sequence of statements that replace STMT and also contain a modified form of STMT itself. */ gimple_seq rewrite_to_defined_overflow (gimple stmt) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "rewriting stmt with undefined signed " "overflow "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } tree lhs = gimple_assign_lhs (stmt); tree type = unsigned_type_for (TREE_TYPE (lhs)); gimple_seq stmts = NULL; for (unsigned i = 1; i < gimple_num_ops (stmt); ++i) { gimple_seq stmts2 = NULL; gimple_set_op (stmt, i, force_gimple_operand (fold_convert (type, gimple_op (stmt, i)), &stmts2, true, NULL_TREE)); gimple_seq_add_seq (&stmts, stmts2); } gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt)); if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) gimple_assign_set_rhs_code (stmt, PLUS_EXPR); gimple_seq_add_stmt (&stmts, stmt); gimple cvt = gimple_build_assign_with_ops (NOP_EXPR, lhs, gimple_assign_lhs (stmt), NULL_TREE); gimple_seq_add_stmt (&stmts, cvt); return stmts; } /* Build the expression CODE OP0 of type TYPE with location LOC, simplifying it first if possible using VALUEIZE if not NULL. OP0 is expected to be valueized already. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum tree_code code, tree type, tree op0, tree (*valueize)(tree)) { tree res = gimple_simplify (code, type, op0, seq, valueize); if (!res) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (type, NULL); else res = create_tmp_reg (type, NULL); gimple stmt; if (code == REALPART_EXPR || code == IMAGPART_EXPR || code == VIEW_CONVERT_EXPR) stmt = gimple_build_assign_with_ops (code, res, build1 (code, type, op0), NULL_TREE); else stmt = gimple_build_assign_with_ops (code, res, op0, NULL_TREE); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the expression OP0 CODE OP1 of type TYPE with location LOC, simplifying it first if possible using VALUEIZE if not NULL. OP0 and OP1 are expected to be valueized already. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum tree_code code, tree type, tree op0, tree op1, tree (*valueize)(tree)) { tree res = gimple_simplify (code, type, op0, op1, seq, valueize); if (!res) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (type, NULL); else res = create_tmp_reg (type, NULL); gimple stmt = gimple_build_assign_with_ops (code, res, op0, op1); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the expression (CODE OP0 OP1 OP2) of type TYPE with location LOC, simplifying it first if possible using VALUEIZE if not NULL. OP0, OP1 and OP2 are expected to be valueized already. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum tree_code code, tree type, tree op0, tree op1, tree op2, tree (*valueize)(tree)) { tree res = gimple_simplify (code, type, op0, op1, op2, seq, valueize); if (!res) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (type, NULL); else res = create_tmp_reg (type, NULL); gimple stmt; if (code == BIT_FIELD_REF) stmt = gimple_build_assign_with_ops (code, res, build3 (BIT_FIELD_REF, type, op0, op1, op2), NULL_TREE); else stmt = gimple_build_assign_with_ops (code, res, op0, op1, op2); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the call FN (ARG0) with a result of type TYPE (or no result if TYPE is void) with location LOC, simplifying it first if possible using VALUEIZE if not NULL. ARG0 is expected to be valueized already. Returns the built expression value (or NULL_TREE if TYPE is void) and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum built_in_function fn, tree type, tree arg0, tree (*valueize)(tree)) { tree res = gimple_simplify (fn, type, arg0, seq, valueize); if (!res) { tree decl = builtin_decl_implicit (fn); gimple stmt = gimple_build_call (decl, 1, arg0); if (!VOID_TYPE_P (type)) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (type, NULL); else res = create_tmp_reg (type, NULL); gimple_call_set_lhs (stmt, res); } gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the call FN (ARG0, ARG1) with a result of type TYPE (or no result if TYPE is void) with location LOC, simplifying it first if possible using VALUEIZE if not NULL. ARG0 is expected to be valueized already. Returns the built expression value (or NULL_TREE if TYPE is void) and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum built_in_function fn, tree type, tree arg0, tree arg1, tree (*valueize)(tree)) { tree res = gimple_simplify (fn, type, arg0, arg1, seq, valueize); if (!res) { tree decl = builtin_decl_implicit (fn); gimple stmt = gimple_build_call (decl, 2, arg0, arg1); if (!VOID_TYPE_P (type)) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (type, NULL); else res = create_tmp_reg (type, NULL); gimple_call_set_lhs (stmt, res); } gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the call FN (ARG0, ARG1, ARG2) with a result of type TYPE (or no result if TYPE is void) with location LOC, simplifying it first if possible using VALUEIZE if not NULL. ARG0 is expected to be valueized already. Returns the built expression value (or NULL_TREE if TYPE is void) and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum built_in_function fn, tree type, tree arg0, tree arg1, tree arg2, tree (*valueize)(tree)) { tree res = gimple_simplify (fn, type, arg0, arg1, arg2, seq, valueize); if (!res) { tree decl = builtin_decl_implicit (fn); gimple stmt = gimple_build_call (decl, 3, arg0, arg1, arg2); if (!VOID_TYPE_P (type)) { if (gimple_in_ssa_p (cfun)) res = make_ssa_name (type, NULL); else res = create_tmp_reg (type, NULL); gimple_call_set_lhs (stmt, res); } gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the conversion (TYPE) OP with a result of type TYPE with location LOC if such conversion is neccesary in GIMPLE, simplifying it first. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_convert (gimple_seq *seq, location_t loc, tree type, tree op) { if (useless_type_conversion_p (type, TREE_TYPE (op))) return op; return gimple_build (seq, loc, NOP_EXPR, type, op); }