/* Translation of CLAST (CLooG AST) to Gimple. Copyright (C) 2009 Free Software Foundation, Inc. Contributed by Sebastian Pop . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "ggc.h" #include "tree.h" #include "rtl.h" #include "basic-block.h" #include "diagnostic.h" #include "tree-flow.h" #include "toplev.h" #include "tree-dump.h" #include "timevar.h" #include "cfgloop.h" #include "tree-chrec.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "tree-pass.h" #include "domwalk.h" #include "value-prof.h" #include "pointer-set.h" #include "gimple.h" #include "sese.h" #ifdef HAVE_cloog #include "cloog/cloog.h" #include "ppl_c.h" #include "graphite-ppl.h" #include "graphite.h" #include "graphite-poly.h" #include "graphite-scop-detection.h" #include "graphite-clast-to-gimple.h" #include "graphite-dependences.h" /* Verifies properties that GRAPHITE should maintain during translation. */ static inline void graphite_verify (void) { #ifdef ENABLE_CHECKING verify_loop_structure (); verify_dominators (CDI_DOMINATORS); verify_dominators (CDI_POST_DOMINATORS); verify_ssa (false); verify_loop_closed_ssa (); #endif } /* Stores the INDEX in a vector for a given clast NAME. */ typedef struct clast_name_index { int index; const char *name; } *clast_name_index_p; /* Returns a pointer to a new element of type clast_name_index_p built from NAME and INDEX. */ static inline clast_name_index_p new_clast_name_index (const char *name, int index) { clast_name_index_p res = XNEW (struct clast_name_index); res->name = name; res->index = index; return res; } /* For a given clast NAME, returns -1 if it does not correspond to any parameter, or otherwise, returns the index in the PARAMS or SCATTERING_DIMENSIONS vector. */ static inline int clast_name_to_index (const char *name, htab_t index_table) { struct clast_name_index tmp; PTR *slot; tmp.name = name; slot = htab_find_slot (index_table, &tmp, NO_INSERT); if (slot && *slot) return ((struct clast_name_index *) *slot)->index; return -1; } /* Records in INDEX_TABLE the INDEX for NAME. */ static inline void save_clast_name_index (htab_t index_table, const char *name, int index) { struct clast_name_index tmp; PTR *slot; tmp.name = name; slot = htab_find_slot (index_table, &tmp, INSERT); if (slot) *slot = new_clast_name_index (name, index); } /* Print to stderr the element ELT. */ static inline void debug_clast_name_index (clast_name_index_p elt) { fprintf (stderr, "(index = %d, name = %s)\n", elt->index, elt->name); } /* Helper function for debug_rename_map. */ static inline int debug_clast_name_indexes_1 (void **slot, void *s ATTRIBUTE_UNUSED) { struct clast_name_index *entry = (struct clast_name_index *) *slot; debug_clast_name_index (entry); return 1; } /* Print to stderr all the elements of MAP. */ void debug_clast_name_indexes (htab_t map) { htab_traverse (map, debug_clast_name_indexes_1, NULL); } /* Computes a hash function for database element ELT. */ static inline hashval_t clast_name_index_elt_info (const void *elt) { return htab_hash_pointer (((const struct clast_name_index *) elt)->name); } /* Compares database elements E1 and E2. */ static inline int eq_clast_name_indexes (const void *e1, const void *e2) { const struct clast_name_index *elt1 = (const struct clast_name_index *) e1; const struct clast_name_index *elt2 = (const struct clast_name_index *) e2; return (elt1->name == elt2->name); } /* For a given loop DEPTH in the loop nest of the original black box PBB, return the old induction variable associated to that loop. */ static inline tree pbb_to_depth_to_oldiv (poly_bb_p pbb, int depth) { gimple_bb_p gbb = PBB_BLACK_BOX (pbb); sese region = SCOP_REGION (PBB_SCOP (pbb)); loop_p loop = gbb_loop_at_index (gbb, region, depth); return loop->single_iv; } /* For a given scattering dimension, return the new induction variable associated to it. */ static inline tree newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth) { return VEC_index (tree, newivs, depth); } /* Returns the tree variable from the name NAME that was given in Cloog representation. */ static tree clast_name_to_gcc (const char *name, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { int index; VEC (tree, heap) *params = SESE_PARAMS (region); if (params && params_index) { index = clast_name_to_index (name, params_index); if (index >= 0) return VEC_index (tree, params, index); } gcc_assert (newivs && newivs_index); index = clast_name_to_index (name, newivs_index); gcc_assert (index >= 0); return newivs_to_depth_to_newiv (newivs, index); } /* Returns the maximal precision type for expressions E1 and E2. */ static inline tree max_precision_type (tree e1, tree e2) { tree type1 = TREE_TYPE (e1); tree type2 = TREE_TYPE (e2); return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2; } static tree clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *, htab_t, htab_t); /* Converts a Cloog reduction expression R with reduction operation OP to a GCC expression tree of type TYPE. */ static tree clast_to_gcc_expression_red (tree type, enum tree_code op, struct clast_reduction *r, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { int i; tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs, newivs_index, params_index); tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type; for (i = 1; i < r->n; i++) { tree t = clast_to_gcc_expression (operand_type, r->elts[i], region, newivs, newivs_index, params_index); res = fold_build2 (op, type, res, t); } return res; } /* Converts a Cloog AST expression E back to a GCC expression tree of type TYPE. */ static tree clast_to_gcc_expression (tree type, struct clast_expr *e, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { switch (e->type) { case expr_term: { struct clast_term *t = (struct clast_term *) e; if (t->var) { if (value_one_p (t->val)) { tree name = clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index); return fold_convert (type, name); } else if (value_mone_p (t->val)) { tree name = clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index); name = fold_convert (type, name); return fold_build1 (NEGATE_EXPR, type, name); } else { tree name = clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index); tree cst = gmp_cst_to_tree (type, t->val); name = fold_convert (type, name); return fold_build2 (MULT_EXPR, type, cst, name); } } else return gmp_cst_to_tree (type, t->val); } case expr_red: { struct clast_reduction *r = (struct clast_reduction *) e; switch (r->type) { case clast_red_sum: return clast_to_gcc_expression_red (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR, r, region, newivs, newivs_index, params_index); case clast_red_min: return clast_to_gcc_expression_red (type, MIN_EXPR, r, region, newivs, newivs_index, params_index); case clast_red_max: return clast_to_gcc_expression_red (type, MAX_EXPR, r, region, newivs, newivs_index, params_index); default: gcc_unreachable (); } break; } case expr_bin: { struct clast_binary *b = (struct clast_binary *) e; struct clast_expr *lhs = (struct clast_expr *) b->LHS; tree tl = clast_to_gcc_expression (type, lhs, region, newivs, newivs_index, params_index); tree tr = gmp_cst_to_tree (type, b->RHS); switch (b->type) { case clast_bin_fdiv: return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr); case clast_bin_cdiv: return fold_build2 (CEIL_DIV_EXPR, type, tl, tr); case clast_bin_div: return fold_build2 (EXACT_DIV_EXPR, type, tl, tr); case clast_bin_mod: return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr); default: gcc_unreachable (); } } default: gcc_unreachable (); } return NULL_TREE; } /* Returns the type for the expression E. */ static tree gcc_type_for_clast_expr (struct clast_expr *e, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { switch (e->type) { case expr_term: { struct clast_term *t = (struct clast_term *) e; if (t->var) return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index)); else return NULL_TREE; } case expr_red: { struct clast_reduction *r = (struct clast_reduction *) e; if (r->n == 1) return gcc_type_for_clast_expr (r->elts[0], region, newivs, newivs_index, params_index); else { int i; for (i = 0; i < r->n; i++) { tree type = gcc_type_for_clast_expr (r->elts[i], region, newivs, newivs_index, params_index); if (type) return type; } return NULL_TREE; } } case expr_bin: { struct clast_binary *b = (struct clast_binary *) e; struct clast_expr *lhs = (struct clast_expr *) b->LHS; return gcc_type_for_clast_expr (lhs, region, newivs, newivs_index, params_index); } default: gcc_unreachable (); } return NULL_TREE; } /* Returns the type for the equation CLEQ. */ static tree gcc_type_for_clast_eq (struct clast_equation *cleq, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree type = gcc_type_for_clast_expr (cleq->LHS, region, newivs, newivs_index, params_index); if (type) return type; return gcc_type_for_clast_expr (cleq->RHS, region, newivs, newivs_index, params_index); } /* Translates a clast equation CLEQ to a tree. */ static tree graphite_translate_clast_equation (sese region, struct clast_equation *cleq, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { enum tree_code comp; tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index, params_index); tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs, newivs_index, params_index); tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs, newivs_index, params_index); if (cleq->sign == 0) comp = EQ_EXPR; else if (cleq->sign > 0) comp = GE_EXPR; else comp = LE_EXPR; return fold_build2 (comp, boolean_type_node, lhs, rhs); } /* Creates the test for the condition in STMT. */ static tree graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree cond = NULL; int i; for (i = 0; i < stmt->n; i++) { tree eq = graphite_translate_clast_equation (region, &stmt->eq[i], newivs, newivs_index, params_index); if (cond) cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq); else cond = eq; } return cond; } /* Creates a new if region corresponding to Cloog's guard. */ static edge graphite_create_new_guard (sese region, edge entry_edge, struct clast_guard *stmt, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs, newivs_index, params_index); edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); return exit_edge; } /* Walks a CLAST and returns the first statement in the body of a loop. */ static struct clast_user_stmt * clast_get_body_of_loop (struct clast_stmt *stmt) { if (!stmt || CLAST_STMT_IS_A (stmt, stmt_user)) return (struct clast_user_stmt *) stmt; if (CLAST_STMT_IS_A (stmt, stmt_for)) return clast_get_body_of_loop (((struct clast_for *) stmt)->body); if (CLAST_STMT_IS_A (stmt, stmt_guard)) return clast_get_body_of_loop (((struct clast_guard *) stmt)->then); if (CLAST_STMT_IS_A (stmt, stmt_block)) return clast_get_body_of_loop (((struct clast_block *) stmt)->body); gcc_unreachable (); } /* Given a CLOOG_IV, returns the type that it should have in GCC land. If the information is not available, i.e. in the case one of the transforms created the loop, just return integer_type_node. */ static tree gcc_type_for_cloog_iv (const char *cloog_iv, gimple_bb_p gbb) { struct ivtype_map_elt_s tmp; PTR *slot; tmp.cloog_iv = cloog_iv; slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, NO_INSERT); if (slot && *slot) return ((ivtype_map_elt) *slot)->type; return integer_type_node; } /* Returns the induction variable for the loop that gets translated to STMT. */ static tree gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for) { struct clast_stmt *stmt = (struct clast_stmt *) stmt_for; struct clast_user_stmt *body = clast_get_body_of_loop (stmt); const char *cloog_iv = stmt_for->iterator; CloogStatement *cs = body->statement; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); return gcc_type_for_cloog_iv (cloog_iv, PBB_BLACK_BOX (pbb)); } /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an induction variable for the new LOOP. New LOOP is attached to CFG starting at ENTRY_EDGE. LOOP is inserted into the loop tree and becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds CLooG's scattering name to the induction variable created for the loop of STMT. The new induction variable is inserted in the NEWIVS vector. */ static struct loop * graphite_create_new_loop (sese region, edge entry_edge, struct clast_for *stmt, loop_p outer, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t params_index) { tree type = gcc_type_for_iv_of_clast_loop (stmt); tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs, newivs_index, params_index); tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs, newivs_index, params_index); tree stride = gmp_cst_to_tree (type, stmt->stride); tree ivvar = create_tmp_var (type, "graphite_IV"); tree iv, iv_after_increment; loop_p loop = create_empty_loop_on_edge (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment, outer ? outer : entry_edge->src->loop_father); add_referenced_var (ivvar); save_clast_name_index (newivs_index, stmt->iterator, VEC_length (tree, *newivs)); VEC_safe_push (tree, heap, *newivs, iv); return loop; } /* Inserts in MAP a tuple (OLD_NAME, NEW_NAME) for the induction variables of the loops around GBB in SESE. */ static void build_iv_mapping (htab_t map, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, struct clast_user_stmt *user_stmt, htab_t params_index) { struct clast_stmt *t; int index = 0; CloogStatement *cs = user_stmt->statement; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); for (t = user_stmt->substitutions; t; t = t->next, index++) { struct clast_expr *expr = (struct clast_expr *) ((struct clast_assignment *)t)->RHS; tree type = gcc_type_for_clast_expr (expr, region, newivs, newivs_index, params_index); tree old_name = pbb_to_depth_to_oldiv (pbb, index); tree e = clast_to_gcc_expression (type, expr, region, newivs, newivs_index, params_index); set_rename (map, old_name, e); } } /* Helper function for htab_traverse. */ static int copy_renames (void **slot, void *s) { struct rename_map_elt_s *entry = (struct rename_map_elt_s *) *slot; htab_t res = (htab_t) s; tree old_name = entry->old_name; tree expr = entry->expr; struct rename_map_elt_s tmp; PTR *x; tmp.old_name = old_name; x = htab_find_slot (res, &tmp, INSERT); if (!*x) *x = new_rename_map_elt (old_name, expr); return 1; } /* Construct bb_pbb_def with BB and PBB. */ static bb_pbb_def * new_bb_pbb_def (basic_block bb, poly_bb_p pbb) { bb_pbb_def *bb_pbb_p; bb_pbb_p = XNEW (bb_pbb_def); bb_pbb_p->bb = bb; bb_pbb_p->pbb = pbb; return bb_pbb_p; } /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */ static void mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping) { bb_pbb_def tmp; PTR *x; tmp.bb = bb; x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT); if (!*x) *x = new_bb_pbb_def (bb, pbb); } /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */ static poly_bb_p find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb) { bb_pbb_def tmp; PTR *slot; tmp.bb = bb; slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT); if (slot && *slot) return ((bb_pbb_def *) *slot)->pbb; return NULL; } /* Check data dependency in LOOP at scattering level LEVEL. BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. */ static bool dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level) { unsigned i,j; basic_block *bbs = get_loop_body_in_dom_order (loop); for (i = 0; i < loop->num_nodes; i++) { poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]); if (pbb1 == NULL) continue; for (j = 0; j < loop->num_nodes; j++) { poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]); if (pbb2 == NULL) continue; if (dependency_between_pbbs_p (pbb1, pbb2, level)) { free (bbs); return true; } } } free (bbs); return false; } static edge translate_clast (sese, struct clast_stmt *, edge, htab_t, VEC (tree, heap) **, htab_t, htab_t, htab_t); /* Translates a clast user statement STMT to gimple. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - RENAME_MAP contains a set of tuples of new names associated to the original variables names. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e, htab_t rename_map, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, htab_t params_index) { poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement); gimple_bb_p gbb = PBB_BLACK_BOX (pbb); if (GBB_BB (gbb) == ENTRY_BLOCK_PTR) return next_e; build_iv_mapping (rename_map, region, *newivs, newivs_index, stmt, params_index); next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region, next_e, rename_map); mark_bb_with_pbb (pbb, next_e->src, bb_pbb_mapping); update_ssa (TODO_update_ssa); return next_e; } /* Mark a loop parallel, if the graphite dependency check cannot find any dependencies. This triggers parallel code generation in the autopar pass. */ static void try_mark_loop_parallel (sese region, loop_p loop, htab_t bb_pbb_mapping) { loop_p outermost_loop = SESE_ENTRY (region)->src->loop_father; int level = loop_depth (loop) - loop_depth (outermost_loop); if (flag_loop_parallelize_all && !dependency_in_loop_p (loop, bb_pbb_mapping, get_scattering_level (level))) loop->can_be_parallel = true; } static tree gcc_type_for_iv_of_clast_loop (struct clast_for *); /* Creates a new if region protecting the loop to be executed, if the execution count is zero (lb > ub). */ static edge graphite_create_new_loop_guard (sese region, edge entry_edge, struct clast_for *stmt, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree cond_expr; edge exit_edge; tree type = gcc_type_for_iv_of_clast_loop (stmt); tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs, newivs_index, params_index); tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs, newivs_index, params_index); /* XXX: Adding +1 and using LT_EXPR helps with loop latches that have a loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes 2^{32|64}, and the condition lb <= ub is true, even if we do not want this. However lb < ub + 1 is false, as expected. There might be a problem with cases where ub is 2^32. */ tree one; Value gmp_one; value_init (gmp_one); value_set_si (gmp_one, 1); one = gmp_cst_to_tree (type, gmp_one); value_clear (gmp_one); ub = fold_build2 (PLUS_EXPR, type, ub, one); cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub); exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); return exit_edge; } /* Create the loop for a clast for statement. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - RENAME_MAP contains a set of tuples of new names associated to the original variables names. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_for_loop (sese region, struct clast_for *stmt, edge next_e, htab_t rename_map, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, htab_t params_index) { loop_p context_loop = next_e->dest->loop_father; loop_p loop = graphite_create_new_loop (region, next_e, stmt, context_loop, newivs, newivs_index, params_index); edge last_e = single_exit (loop); edge body = single_succ_edge (loop->header); next_e = translate_clast (region, stmt->body, body, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); /* Create a basic block for loop close phi nodes. */ last_e = single_succ_edge (split_edge (last_e)); insert_loop_close_phis (rename_map, loop); try_mark_loop_parallel (region, loop, bb_pbb_mapping); return last_e; } /* Translates a clast for statement STMT to gimple. First a guard is created protecting the loop, if it is executed zero times. In this guard we create the real loop structure. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - RENAME_MAP contains a set of tuples of new names associated to the original variables names. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_for (sese region, struct clast_for *stmt, edge next_e, htab_t rename_map, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, htab_t params_index) { edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs, newivs_index, params_index); edge true_e = get_true_edge_from_guard_bb (next_e->dest); edge false_e = get_false_edge_from_guard_bb (next_e->dest); edge exit_true_e = single_succ_edge (true_e->dest); edge exit_false_e = single_succ_edge (false_e->dest); htab_t before_guard = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free); htab_traverse (rename_map, copy_renames, before_guard); next_e = translate_clast_for_loop (region, stmt, true_e, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); insert_guard_phis (last_e->src, exit_true_e, exit_false_e, before_guard, rename_map); htab_delete (before_guard); return last_e; } /* Translates a clast guard statement STMT to gimple. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - RENAME_MAP contains a set of tuples of new names associated to the original variables names. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_guard (sese region, struct clast_guard *stmt, edge next_e, htab_t rename_map, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, htab_t params_index) { edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs, newivs_index, params_index); edge true_e = get_true_edge_from_guard_bb (next_e->dest); edge false_e = get_false_edge_from_guard_bb (next_e->dest); edge exit_true_e = single_succ_edge (true_e->dest); edge exit_false_e = single_succ_edge (false_e->dest); htab_t before_guard = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free); htab_traverse (rename_map, copy_renames, before_guard); next_e = translate_clast (region, stmt->then, true_e, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); insert_guard_phis (last_e->src, exit_true_e, exit_false_e, before_guard, rename_map); htab_delete (before_guard); return last_e; } /* Translates a CLAST statement STMT to GCC representation in the context of a SESE. - NEXT_E is the edge where new generated code should be attached. - RENAME_MAP contains a set of tuples of new names associated to the original variables names. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ static edge translate_clast (sese region, struct clast_stmt *stmt, edge next_e, htab_t rename_map, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, htab_t params_index) { if (!stmt) return next_e; if (CLAST_STMT_IS_A (stmt, stmt_root)) ; /* Do nothing. */ else if (CLAST_STMT_IS_A (stmt, stmt_user)) next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt, next_e, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); else if (CLAST_STMT_IS_A (stmt, stmt_for)) next_e = translate_clast_for (region, (struct clast_for *) stmt, next_e, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); else if (CLAST_STMT_IS_A (stmt, stmt_guard)) next_e = translate_clast_guard (region, (struct clast_guard *) stmt, next_e, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); else if (CLAST_STMT_IS_A (stmt, stmt_block)) next_e = translate_clast (region, ((struct clast_block *) stmt)->body, next_e, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); else gcc_unreachable(); recompute_all_dominators (); graphite_verify (); return translate_clast (region, stmt->next, next_e, rename_map, newivs, newivs_index, bb_pbb_mapping, params_index); } /* Returns the first cloog name used in EXPR. */ static const char * find_cloog_iv_in_expr (struct clast_expr *expr) { struct clast_term *term = (struct clast_term *) expr; if (expr->type == expr_term && !term->var) return NULL; if (expr->type == expr_term) return term->var; if (expr->type == expr_red) { int i; struct clast_reduction *red = (struct clast_reduction *) expr; for (i = 0; i < red->n; i++) { const char *res = find_cloog_iv_in_expr ((red)->elts[i]); if (res) return res; } } return NULL; } /* Build for a clast_user_stmt USER_STMT a map between the CLAST induction variables and the corresponding GCC old induction variables. This information is stored on each GRAPHITE_BB. */ static void compute_cloog_iv_types_1 (poly_bb_p pbb, struct clast_user_stmt *user_stmt) { gimple_bb_p gbb = PBB_BLACK_BOX (pbb); struct clast_stmt *t; int index = 0; for (t = user_stmt->substitutions; t; t = t->next, index++) { PTR *slot; struct ivtype_map_elt_s tmp; struct clast_expr *expr = (struct clast_expr *) ((struct clast_assignment *)t)->RHS; /* Create an entry (clast_var, type). */ tmp.cloog_iv = find_cloog_iv_in_expr (expr); if (!tmp.cloog_iv) continue; slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, INSERT); if (!*slot) { tree oldiv = pbb_to_depth_to_oldiv (pbb, index); tree type = oldiv ? TREE_TYPE (oldiv) : integer_type_node; *slot = new_ivtype_map_elt (tmp.cloog_iv, type); } } } /* Walk the CLAST tree starting from STMT and build for each clast_user_stmt a map between the CLAST induction variables and the corresponding GCC old induction variables. This information is stored on each GRAPHITE_BB. */ static void compute_cloog_iv_types (struct clast_stmt *stmt) { if (!stmt) return; if (CLAST_STMT_IS_A (stmt, stmt_root)) goto next; if (CLAST_STMT_IS_A (stmt, stmt_user)) { CloogStatement *cs = ((struct clast_user_stmt *) stmt)->statement; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); gimple_bb_p gbb = PBB_BLACK_BOX (pbb); if (!GBB_CLOOG_IV_TYPES (gbb)) GBB_CLOOG_IV_TYPES (gbb) = htab_create (10, ivtype_map_elt_info, eq_ivtype_map_elts, free); compute_cloog_iv_types_1 (pbb, (struct clast_user_stmt *) stmt); goto next; } if (CLAST_STMT_IS_A (stmt, stmt_for)) { struct clast_stmt *s = ((struct clast_for *) stmt)->body; compute_cloog_iv_types (s); goto next; } if (CLAST_STMT_IS_A (stmt, stmt_guard)) { struct clast_stmt *s = ((struct clast_guard *) stmt)->then; compute_cloog_iv_types (s); goto next; } if (CLAST_STMT_IS_A (stmt, stmt_block)) { struct clast_stmt *s = ((struct clast_block *) stmt)->body; compute_cloog_iv_types (s); goto next; } gcc_unreachable (); next: compute_cloog_iv_types (stmt->next); } /* Free the SCATTERING domain list. */ static void free_scattering (CloogDomainList *scattering) { while (scattering) { CloogDomain *dom = cloog_domain (scattering); CloogDomainList *next = cloog_next_domain (scattering); cloog_domain_free (dom); free (scattering); scattering = next; } } /* Initialize Cloog's parameter names from the names used in GIMPLE. Initialize Cloog's iterator names, using 'graphite_iterator_%d' from 0 to scop_nb_loops (scop). */ static void initialize_cloog_names (scop_p scop, CloogProgram *prog) { sese region = SCOP_REGION (scop); int i; int nb_iterators = scop_max_loop_depth (scop); int nb_scattering = cloog_program_nb_scattdims (prog); int nb_parameters = VEC_length (tree, SESE_PARAMS (region)); char **iterators = XNEWVEC (char *, nb_iterators * 2); char **scattering = XNEWVEC (char *, nb_scattering); char **parameters= XNEWVEC (char *, nb_parameters); cloog_program_set_names (prog, cloog_names_malloc ()); for (i = 0; i < nb_parameters; i++) { tree param = VEC_index (tree, SESE_PARAMS(region), i); const char *name = get_name (param); int len; if (!name) name = "T"; len = strlen (name); len += 17; parameters[i] = XNEWVEC (char, len + 1); snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param)); } cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters); cloog_names_set_parameters (cloog_program_names (prog), parameters); for (i = 0; i < nb_iterators; i++) { int len = 4 + 16; iterators[i] = XNEWVEC (char, len); snprintf (iterators[i], len, "git_%d", i); } cloog_names_set_nb_iterators (cloog_program_names (prog), nb_iterators); cloog_names_set_iterators (cloog_program_names (prog), iterators); for (i = 0; i < nb_scattering; i++) { int len = 5 + 16; scattering[i] = XNEWVEC (char, len); snprintf (scattering[i], len, "scat_%d", i); } cloog_names_set_nb_scattering (cloog_program_names (prog), nb_scattering); cloog_names_set_scattering (cloog_program_names (prog), scattering); } /* Build cloog program for SCoP. */ static void build_cloog_prog (scop_p scop, CloogProgram *prog) { int i; int max_nb_loops = scop_max_loop_depth (scop); poly_bb_p pbb; CloogLoop *loop_list = NULL; CloogBlockList *block_list = NULL; CloogDomainList *scattering = NULL; int nbs = 2 * max_nb_loops + 1; int *scaldims; cloog_program_set_context (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop))); nbs = unify_scattering_dimensions (scop); scaldims = (int *) xmalloc (nbs * (sizeof (int))); cloog_program_set_nb_scattdims (prog, nbs); initialize_cloog_names (scop, prog); for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) { CloogStatement *stmt; CloogBlock *block; /* Dead code elimination: when the domain of a PBB is empty, don't generate code for the PBB. */ if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb))) continue; /* Build the new statement and its block. */ stmt = cloog_statement_alloc (pbb_index (pbb)); block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb)); cloog_statement_set_usr (stmt, pbb); /* Build loop list. */ { CloogLoop *new_loop_list = cloog_loop_malloc (); cloog_loop_set_next (new_loop_list, loop_list); cloog_loop_set_domain (new_loop_list, new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb))); cloog_loop_set_block (new_loop_list, block); loop_list = new_loop_list; } /* Build block list. */ { CloogBlockList *new_block_list = cloog_block_list_malloc (); cloog_block_list_set_next (new_block_list, block_list); cloog_block_list_set_block (new_block_list, block); block_list = new_block_list; } /* Build scattering list. */ { /* XXX: Replace with cloog_domain_list_alloc(), when available. */ CloogDomainList *new_scattering = (CloogDomainList *) xmalloc (sizeof (CloogDomainList)); ppl_Polyhedron_t scat; CloogDomain *dom; scat = PBB_TRANSFORMED_SCATTERING (pbb); dom = new_Cloog_Domain_from_ppl_Polyhedron (scat); cloog_set_next_domain (new_scattering, scattering); cloog_set_domain (new_scattering, dom); scattering = new_scattering; } } cloog_program_set_loop (prog, loop_list); cloog_program_set_blocklist (prog, block_list); for (i = 0; i < nbs; i++) scaldims[i] = 0 ; cloog_program_set_scaldims (prog, scaldims); /* Extract scalar dimensions to simplify the code generation problem. */ cloog_program_extract_scalars (prog, scattering); /* Apply scattering. */ cloog_program_scatter (prog, scattering); free_scattering (scattering); /* Iterators corresponding to scalar dimensions have to be extracted. */ cloog_names_scalarize (cloog_program_names (prog), nbs, cloog_program_scaldims (prog)); /* Free blocklist. */ { CloogBlockList *next = cloog_program_blocklist (prog); while (next) { CloogBlockList *toDelete = next; next = cloog_block_list_next (next); cloog_block_list_set_next (toDelete, NULL); cloog_block_list_set_block (toDelete, NULL); cloog_block_list_free (toDelete); } cloog_program_set_blocklist (prog, NULL); } } /* Return the options that will be used in GLOOG. */ static CloogOptions * set_cloog_options (void) { CloogOptions *options = cloog_options_malloc (); /* Change cloog output language to C. If we do use FORTRAN instead, cloog will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if we pass an incomplete program to cloog. */ options->language = LANGUAGE_C; /* Enable complex equality spreading: removes dummy statements (assignments) in the generated code which repeats the substitution equations for statements. This is useless for GLooG. */ options->esp = 1; /* Enable C pretty-printing mode: normalizes the substitution equations for statements. */ options->cpp = 1; /* Allow cloog to build strides with a stride width different to one. This example has stride = 4: for (i = 0; i < 20; i += 4) A */ options->strides = 1; /* Disable optimizations and make cloog generate source code closer to the input. This is useful for debugging, but later we want the optimized code. XXX: We can not disable optimizations, as loop blocking is not working without them. */ if (0) { options->f = -1; options->l = INT_MAX; } return options; } /* Prints STMT to STDERR. */ void print_clast_stmt (FILE *file, struct clast_stmt *stmt) { CloogOptions *options = set_cloog_options (); pprint (file, stmt, 0, options); cloog_options_free (options); } /* Prints STMT to STDERR. */ void debug_clast_stmt (struct clast_stmt *stmt) { print_clast_stmt (stderr, stmt); } /* Translate SCOP to a CLooG program and clast. These two representations should be freed together: a clast cannot be used without a program. */ cloog_prog_clast scop_to_clast (scop_p scop) { CloogOptions *options = set_cloog_options (); cloog_prog_clast pc; /* Connect new cloog prog generation to graphite. */ pc.prog = cloog_program_malloc (); build_cloog_prog (scop, pc.prog); pc.prog = cloog_program_generate (pc.prog, options); pc.stmt = cloog_clast_create (pc.prog, options); cloog_options_free (options); return pc; } /* Prints to FILE the code generated by CLooG for SCOP. */ void print_generated_program (FILE *file, scop_p scop) { CloogOptions *options = set_cloog_options (); cloog_prog_clast pc = scop_to_clast (scop); fprintf (file, " (prog: \n"); cloog_program_print (file, pc.prog); fprintf (file, " )\n"); fprintf (file, " (clast: \n"); pprint (file, pc.stmt, 0, options); fprintf (file, " )\n"); cloog_options_free (options); cloog_clast_free (pc.stmt); cloog_program_free (pc.prog); } /* Prints to STDERR the code generated by CLooG for SCOP. */ void debug_generated_program (scop_p scop) { print_generated_program (stderr, scop); } /* Add CLooG names to parameter index. The index is used to translate back from * CLooG names to GCC trees. */ static void create_params_index (htab_t index_table, CloogProgram *prog) { CloogNames* names = cloog_program_names (prog); int nb_parameters = cloog_names_nb_parameters (names); char **parameters = cloog_names_parameters (names); int i; for (i = 0; i < nb_parameters; i++) save_clast_name_index (index_table, parameters[i], i); } /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for the given SCOP. Return true if code generation succeeded. BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. */ bool gloog (scop_p scop, htab_t bb_pbb_mapping) { edge new_scop_exit_edge = NULL; VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10); sese region = SCOP_REGION (scop); ifsese if_region = NULL; htab_t rename_map, newivs_index, params_index; cloog_prog_clast pc; timevar_push (TV_GRAPHITE_CODE_GEN); pc = scop_to_clast (scop); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nCLAST generated by CLooG: \n"); print_clast_stmt (dump_file, pc.stmt); fprintf (dump_file, "\n"); } recompute_all_dominators (); graphite_verify (); if_region = move_sese_in_condition (region); sese_insert_phis_for_liveouts (region, if_region->region->exit->src, if_region->false_region->exit, if_region->true_region->exit); recompute_all_dominators (); graphite_verify (); compute_cloog_iv_types (pc.stmt); rename_map = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free); newivs_index = htab_create (10, clast_name_index_elt_info, eq_clast_name_indexes, free); params_index = htab_create (10, clast_name_index_elt_info, eq_clast_name_indexes, free); create_params_index (params_index, pc.prog); new_scop_exit_edge = translate_clast (region, pc.stmt, if_region->true_region->entry, rename_map, &newivs, newivs_index, bb_pbb_mapping, params_index); graphite_verify (); sese_adjust_liveout_phis (region, rename_map, if_region->region->exit->src, if_region->false_region->exit, if_region->true_region->exit); recompute_all_dominators (); graphite_verify (); free (if_region->true_region); free (if_region->region); free (if_region); htab_delete (rename_map); htab_delete (newivs_index); htab_delete (params_index); VEC_free (tree, heap, newivs); cloog_clast_free (pc.stmt); cloog_program_free (pc.prog); timevar_pop (TV_GRAPHITE_CODE_GEN); if (dump_file && (dump_flags & TDF_DETAILS)) { loop_p loop; loop_iterator li; int num_no_dependency = 0; FOR_EACH_LOOP (li, loop, 0) if (loop->can_be_parallel) num_no_dependency++; fprintf (dump_file, "\n%d loops carried no dependency.\n", num_no_dependency); } return true; } #endif