/* Data dependence analysis for Graphite. Copyright (C) 2009 Free Software Foundation, Inc. Contributed by Sebastian Pop and Konrad Trifunovic . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "ggc.h" #include "tree.h" #include "rtl.h" #include "basic-block.h" #include "diagnostic.h" #include "tree-flow.h" #include "toplev.h" #include "tree-dump.h" #include "timevar.h" #include "cfgloop.h" #include "tree-chrec.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "tree-pass.h" #include "domwalk.h" #include "pointer-set.h" #include "gimple.h" #ifdef HAVE_cloog #include "cloog/cloog.h" #include "ppl_c.h" #include "sese.h" #include "graphite-ppl.h" #include "graphite.h" #include "graphite-poly.h" #include "graphite-dependences.h" /* Creates a new polyhedral data reference pair and returns it. Parameter SOURCE denotes a source data reference while parameter SINK denotes a sink data reference. Both SOURCE and SINK define a pair of references, thus they define an edge in DDG (Data Dependence Graph). */ static poly_dr_pair_p new_poly_dr_pair (poly_dr_p source, poly_dr_p sink, ppl_Pointset_Powerset_C_Polyhedron_t ddp) { poly_dr_pair_p pdrpp; pdrpp = XNEW (struct poly_dr_pair); pdrpp->source = source; pdrpp->sink = sink; pdrpp->ddp = ddp; return pdrpp; } /* Comparison function for poly_dr_pair hash table. */ int eq_poly_dr_pair_p (const void *pdrpp1, const void *pdrpp2) { const struct poly_dr_pair *p1 = (const struct poly_dr_pair *) pdrpp1; const struct poly_dr_pair *p2 = (const struct poly_dr_pair *) pdrpp2; return (p1->source == p2->source && p1->sink == p2->sink); } /* Hash function for poly_dr_pair hashtable. */ hashval_t hash_poly_dr_pair_p (const void *pdrpp) { const struct poly_dr_pair *p = (const struct poly_dr_pair *) pdrpp; return (hashval_t) ((long) p->source + (long) p->sink); } /* Returns a polyhedron of dimension DIM. Maps the dimensions [0, ..., cut - 1] of polyhedron P to OFFSET0 and the dimensions [cut, ..., nb_dim] to DIM - GDIM. */ static ppl_Pointset_Powerset_C_Polyhedron_t map_into_dep_poly (graphite_dim_t dim, graphite_dim_t gdim, ppl_Pointset_Powerset_C_Polyhedron_t p, graphite_dim_t cut, graphite_dim_t offset) { ppl_Pointset_Powerset_C_Polyhedron_t res; ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&res, p); ppl_insert_dimensions_pointset (res, 0, offset); ppl_insert_dimensions_pointset (res, offset + cut, dim - offset - cut - gdim); return res; } /* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is transformed into "a CUT0 c CUT1' b" Add NB0 zeros before "a": "00...0 a CUT0 c CUT1' b" Add NB1 zeros between "a" and "c": "00...0 a 00...0 c CUT1' b" Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b": "00...0 a 00...0 c 00...0 b". */ static ppl_Pointset_Powerset_C_Polyhedron_t map_dr_into_dep_poly (graphite_dim_t dim, ppl_Pointset_Powerset_C_Polyhedron_t dr, graphite_dim_t cut0, graphite_dim_t cut1, graphite_dim_t nb0, graphite_dim_t nb1) { ppl_dimension_type pdim; ppl_dimension_type *map; ppl_Pointset_Powerset_C_Polyhedron_t res; ppl_dimension_type i; ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&res, dr); ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim); map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim); /* First mapping: move 'g' vector to right position. */ for (i = 0; i < cut0; i++) map[i] = i; for (i = cut0; i < cut1; i++) map[i] = pdim - cut1 + i; for (i = cut1; i < pdim; i++) map[i] = cut0 + i - cut1; ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim); free (map); /* After swapping 's' and 'g' vectors, we have to update a new cut. */ cut1 = pdim - cut1 + cut0; ppl_insert_dimensions_pointset (res, 0, nb0); ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1); ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1, dim - nb0 - nb1 - pdim); return res; } /* Builds a constraints of the form "POS1 - POS2 CSTR_TYPE C" */ static ppl_Constraint_t build_pairwise_constraint (graphite_dim_t dim, graphite_dim_t pos1, graphite_dim_t pos2, int c, enum ppl_enum_Constraint_Type cstr_type) { ppl_Linear_Expression_t expr; ppl_Constraint_t cstr; ppl_Coefficient_t coef; Value v, v_op, v_c; value_init (v); value_init (v_op); value_init (v_c); value_set_si (v, 1); value_set_si (v_op, -1); value_set_si (v_c, c); ppl_new_Coefficient (&coef); ppl_new_Linear_Expression_with_dimension (&expr, dim); ppl_assign_Coefficient_from_mpz_t (coef, v); ppl_Linear_Expression_add_to_coefficient (expr, pos1, coef); ppl_assign_Coefficient_from_mpz_t (coef, v_op); ppl_Linear_Expression_add_to_coefficient (expr, pos2, coef); ppl_assign_Coefficient_from_mpz_t (coef, v_c); ppl_Linear_Expression_add_to_inhomogeneous (expr, coef); ppl_new_Constraint (&cstr, expr, cstr_type); ppl_delete_Linear_Expression (expr); ppl_delete_Coefficient (coef); value_clear (v); value_clear (v_op); value_clear (v_c); return cstr; } /* Builds subscript equality constraints. */ static ppl_Pointset_Powerset_C_Polyhedron_t dr_equality_constraints (graphite_dim_t dim, graphite_dim_t pos, graphite_dim_t nb_subscripts) { ppl_Polyhedron_t subscript_equalities; ppl_Pointset_Powerset_C_Polyhedron_t res; Value v, v_op; graphite_dim_t i; value_init (v); value_init (v_op); value_set_si (v, 1); value_set_si (v_op, -1); ppl_new_C_Polyhedron_from_space_dimension (&subscript_equalities, dim, 0); for (i = 0; i < nb_subscripts; i++) { ppl_Linear_Expression_t expr; ppl_Constraint_t cstr; ppl_Coefficient_t coef; ppl_new_Coefficient (&coef); ppl_new_Linear_Expression_with_dimension (&expr, dim); ppl_assign_Coefficient_from_mpz_t (coef, v); ppl_Linear_Expression_add_to_coefficient (expr, pos + i, coef); ppl_assign_Coefficient_from_mpz_t (coef, v_op); ppl_Linear_Expression_add_to_coefficient (expr, pos + i + nb_subscripts, coef); ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL); ppl_Polyhedron_add_constraint (subscript_equalities, cstr); ppl_delete_Linear_Expression (expr); ppl_delete_Constraint (cstr); ppl_delete_Coefficient (coef); } ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, subscript_equalities); value_clear (v); value_clear (v_op); ppl_delete_Polyhedron (subscript_equalities); return res; } /* Builds scheduling equality constraints. */ static ppl_Pointset_Powerset_C_Polyhedron_t build_pairwise_scheduling_equality (graphite_dim_t dim, graphite_dim_t pos, graphite_dim_t offset) { ppl_Pointset_Powerset_C_Polyhedron_t res; ppl_Polyhedron_t equalities; ppl_Constraint_t cstr; ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0); cstr = build_pairwise_constraint (dim, pos, pos + offset, 0, PPL_CONSTRAINT_TYPE_EQUAL); ppl_Polyhedron_add_constraint (equalities, cstr); ppl_delete_Constraint (cstr); ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities); ppl_delete_Polyhedron (equalities); return res; } /* Builds scheduling inequality constraints. */ static ppl_Pointset_Powerset_C_Polyhedron_t build_pairwise_scheduling_inequality (graphite_dim_t dim, graphite_dim_t pos, graphite_dim_t offset, bool direction) { ppl_Pointset_Powerset_C_Polyhedron_t res; ppl_Polyhedron_t equalities; ppl_Constraint_t cstr; ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0); if (direction) cstr = build_pairwise_constraint (dim, pos, pos + offset, -1, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL); else cstr = build_pairwise_constraint (dim, pos, pos + offset, 1, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL); ppl_Polyhedron_add_constraint (equalities, cstr); ppl_delete_Constraint (cstr); ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities); ppl_delete_Polyhedron (equalities); return res; } /* Returns true when adding the lexicographical constraints at level I to the RES dependence polyhedron returns an empty polyhedron. */ static bool lexicographically_gt_p (ppl_Pointset_Powerset_C_Polyhedron_t res, graphite_dim_t dim, graphite_dim_t offset, bool direction, graphite_dim_t i) { ppl_Pointset_Powerset_C_Polyhedron_t ineq; bool empty_p; ineq = build_pairwise_scheduling_inequality (dim, i, offset, direction); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (ineq, res); empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (ineq); if (!empty_p) ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, ineq); ppl_delete_Pointset_Powerset_C_Polyhedron (ineq); return !empty_p; } /* Build the precedence constraints for the lexicographical comparison of time vectors RES following the lexicographical order. */ static void build_lexicographically_gt_constraint (ppl_Pointset_Powerset_C_Polyhedron_t *res, graphite_dim_t dim, graphite_dim_t tdim1, graphite_dim_t offset, bool direction) { graphite_dim_t i; if (lexicographically_gt_p (*res, dim, offset, direction, 0)) return; for (i = 0; i < tdim1 - 1; i++) { ppl_Pointset_Powerset_C_Polyhedron_t sceq; sceq = build_pairwise_scheduling_equality (dim, i, offset); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, sceq); ppl_delete_Pointset_Powerset_C_Polyhedron (sceq); if (lexicographically_gt_p (*res, dim, offset, direction, i + 1)) return; } if (i == tdim1 - 1) { ppl_delete_Pointset_Powerset_C_Polyhedron (*res); ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (res, dim, 1); } } /* Build the dependence polyhedron for data references PDR1 and PDR2. */ static ppl_Pointset_Powerset_C_Polyhedron_t dependence_polyhedron_1 (poly_bb_p pbb1, poly_bb_p pbb2, ppl_Pointset_Powerset_C_Polyhedron_t d1, ppl_Pointset_Powerset_C_Polyhedron_t d2, poly_dr_p pdr1, poly_dr_p pdr2, ppl_Polyhedron_t s1, ppl_Polyhedron_t s2, bool direction, bool original_scattering_p) { scop_p scop = PBB_SCOP (pbb1); graphite_dim_t tdim1 = original_scattering_p ? pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1); graphite_dim_t tdim2 = original_scattering_p ? pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2); graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1); graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2); graphite_dim_t sdim1 = pdr_nb_subscripts (pdr1) + 1; graphite_dim_t gdim = scop_nb_params (scop); graphite_dim_t dim1 = pdr_dim (pdr1); graphite_dim_t dim2 = pdr_dim (pdr2); graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2; ppl_Pointset_Powerset_C_Polyhedron_t res; ppl_Pointset_Powerset_C_Polyhedron_t id1, id2, isc1, isc2, idr1, idr2; ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq; gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2)); ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&sc1, s1); ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&sc2, s2); id1 = map_into_dep_poly (dim, gdim, d1, ddim1, tdim1); id2 = map_into_dep_poly (dim, gdim, d2, ddim2, tdim1 + ddim1 + tdim2); isc1 = map_into_dep_poly (dim, gdim, sc1, ddim1 + tdim1, 0); isc2 = map_into_dep_poly (dim, gdim, sc2, ddim2 + tdim2, tdim1 + ddim1); idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim, tdim1, tdim2 + ddim2); idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim, tdim1 + ddim1 + tdim2, sdim1); /* Now add the subscript equalities. */ dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1); ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, id1); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, id2); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, isc1); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, isc2); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq); ppl_delete_Pointset_Powerset_C_Polyhedron (id1); ppl_delete_Pointset_Powerset_C_Polyhedron (id2); ppl_delete_Pointset_Powerset_C_Polyhedron (sc1); ppl_delete_Pointset_Powerset_C_Polyhedron (sc2); ppl_delete_Pointset_Powerset_C_Polyhedron (isc1); ppl_delete_Pointset_Powerset_C_Polyhedron (isc2); ppl_delete_Pointset_Powerset_C_Polyhedron (idr1); ppl_delete_Pointset_Powerset_C_Polyhedron (idr2); ppl_delete_Pointset_Powerset_C_Polyhedron (dreq); if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (res)) build_lexicographically_gt_constraint (&res, dim, MIN (tdim1, tdim2), tdim1 + ddim1, direction); return res; } /* Build the dependence polyhedron for data references PDR1 and PDR2. If possible use already cached information. */ static ppl_Pointset_Powerset_C_Polyhedron_t dependence_polyhedron (poly_bb_p pbb1, poly_bb_p pbb2, ppl_Pointset_Powerset_C_Polyhedron_t d1, ppl_Pointset_Powerset_C_Polyhedron_t d2, poly_dr_p pdr1, poly_dr_p pdr2, ppl_Polyhedron_t s1, ppl_Polyhedron_t s2, bool direction, bool original_scattering_p) { poly_dr_pair tmp; PTR *x = NULL; ppl_Pointset_Powerset_C_Polyhedron_t res; if (original_scattering_p) { tmp.source = pdr1; tmp.sink = pdr2; x = htab_find_slot (SCOP_ORIGINAL_PDR_PAIRS (PBB_SCOP (pbb1)), &tmp, INSERT); if (x && *x) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nddp cache: hit.\n"); return ((poly_dr_pair *)*x)->ddp; } else if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nddp cache: miss.\n"); } res = dependence_polyhedron_1 (pbb1, pbb2, d1, d2, pdr1, pdr2, s1, s2, direction, original_scattering_p); if (original_scattering_p) { gcc_assert (x && *x == NULL); *x = new_poly_dr_pair (pdr1, pdr2, res); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nddp cache: add element.\n"); } return res; } /* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1 and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING functions. */ static bool graphite_legal_transform_dr (poly_bb_p pbb1, poly_bb_p pbb2, poly_dr_p pdr1, poly_dr_p pdr2) { ppl_Pointset_Powerset_C_Polyhedron_t d1 = PBB_DOMAIN (pbb1); ppl_Pointset_Powerset_C_Polyhedron_t d2 = PBB_DOMAIN (pbb2); ppl_Polyhedron_t so1 = PBB_ORIGINAL_SCATTERING (pbb1); ppl_Polyhedron_t so2 = PBB_ORIGINAL_SCATTERING (pbb2); ppl_Pointset_Powerset_C_Polyhedron_t po; graphite_dim_t sdim1 = pdr_nb_subscripts (pdr1) + 1; graphite_dim_t sdim2 = pdr_nb_subscripts (pdr2) + 1; if (sdim1 != sdim2) return true; po = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, so1, so2, true, true); if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (po)) return true; else { ppl_Polyhedron_t st1 = PBB_TRANSFORMED_SCATTERING (pbb1); ppl_Polyhedron_t st2 = PBB_TRANSFORMED_SCATTERING (pbb2); ppl_Pointset_Powerset_C_Polyhedron_t pt; graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1); graphite_dim_t otdim1 = pbb_nb_scattering_orig (pbb1); graphite_dim_t otdim2 = pbb_nb_scattering_orig (pbb2); graphite_dim_t ttdim1 = pbb_nb_scattering_transform (pbb1); graphite_dim_t ttdim2 = pbb_nb_scattering_transform (pbb2); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nloop carries dependency.\n"); pt = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, st1, st2, false, false); /* Extend PO and PT to have the same dimensions. */ ppl_insert_dimensions_pointset (po, otdim1, ttdim1); ppl_insert_dimensions_pointset (po, otdim1 + ttdim1 + ddim1 + otdim2, ttdim2); ppl_insert_dimensions_pointset (pt, 0, otdim1); ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po, pt); return ppl_Pointset_Powerset_C_Polyhedron_is_empty (po); } } /* Iterates over the data references of PBB1 and PBB2 and detect whether the transformed schedule is correct. */ static bool graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2) { int i, j; poly_dr_p pdr1, pdr2; for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++) for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++) if (!graphite_legal_transform_dr (pbb1, pbb2, pdr1, pdr2)) return false; return true; } /* Iterates over the SCOP and detect whether the transformed schedule is correct. */ bool graphite_legal_transform (scop_p scop) { int i, j; poly_bb_p pbb1, pbb2; for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++) for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++) if (!graphite_legal_transform_bb (pbb1, pbb2)) return false; return true; } /* Remove all the dimensions except alias information at dimension ALIAS_DIM. */ static void build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset, ppl_dimension_type alias_dim) { ppl_dimension_type *ds; ppl_dimension_type access_dim; unsigned i, pos = 0; ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset, &access_dim); ds = XNEWVEC (ppl_dimension_type, access_dim-1); for (i = 0; i < access_dim; i++) { if (i == alias_dim) continue; ds[pos] = i; pos++; } ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset, ds, access_dim - 1); free (ds); } /* Return true when PDR1 and PDR2 may alias. */ static bool poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2) { ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2; ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1); ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2); ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1); ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2); int empty_p; ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&alias_powerset1, accesses1); ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&alias_powerset2, accesses2); build_alias_set_powerset (alias_powerset1, alias_dim1); build_alias_set_powerset (alias_powerset2, alias_dim2); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (alias_powerset1, alias_powerset2); empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1); ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1); ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2); return !empty_p; } /* Returns TRUE when the dependence polyhedron between PDR1 and PDR2 represents a loop carried dependence at level LEVEL. Otherwise return FALSE. */ static bool graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2, int level) { poly_bb_p pbb1 = PDR_PBB (pdr1); poly_bb_p pbb2 = PDR_PBB (pdr2); ppl_Pointset_Powerset_C_Polyhedron_t d1 = PBB_DOMAIN (pbb1); ppl_Pointset_Powerset_C_Polyhedron_t d2 = PBB_DOMAIN (pbb2); ppl_Polyhedron_t so1 = PBB_TRANSFORMED_SCATTERING (pbb1); ppl_Polyhedron_t so2 = PBB_TRANSFORMED_SCATTERING (pbb2); ppl_Pointset_Powerset_C_Polyhedron_t po; ppl_Pointset_Powerset_C_Polyhedron_t eqpp; graphite_dim_t sdim1 = pdr_nb_subscripts (pdr1) + 1; graphite_dim_t sdim2 = pdr_nb_subscripts (pdr2) + 1; graphite_dim_t tdim1 = pbb_nb_scattering_transform (pbb1); graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1); ppl_dimension_type dim; bool empty_p; if ((PDR_TYPE (pdr1) == PDR_READ && PDR_TYPE (pdr2) == PDR_READ) || !poly_drs_may_alias_p (pdr1, pdr2)) return false; if (sdim1 != sdim2) return true; po = dependence_polyhedron (pbb1, pbb2, d1, d2, pdr1, pdr2, so1, so2, true, false); if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (po)) { ppl_delete_Pointset_Powerset_C_Polyhedron (po); return false; } ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim); eqpp = build_pairwise_scheduling_inequality (dim, level, tdim1 + ddim1, 1); ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po); empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (eqpp); ppl_delete_Pointset_Powerset_C_Polyhedron (po); ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp); return !empty_p; } /* Check data dependency between PBB1 and PBB2 at level LEVEL. */ bool dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level) { int i, j; poly_dr_p pdr1, pdr2; for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++) for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++) if (graphite_carried_dependence_level_k (pdr1, pdr2, level)) return true; return false; } #endif