/* Procedure integration for GCC. Copyright (C) 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "regs.h" #include "flags.h" #include "debug.h" #include "insn-config.h" #include "expr.h" #include "output.h" #include "recog.h" #include "integrate.h" #include "real.h" #include "except.h" #include "function.h" #include "toplev.h" #include "intl.h" #include "params.h" #include "ggc.h" #include "target.h" #include "langhooks.h" /* Round to the next highest integer that meets the alignment. */ #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) /* Private type used by {get/has}_func_hard_reg_initial_val. */ typedef struct initial_value_pair GTY(()) { rtx hard_reg; rtx pseudo; } initial_value_pair; typedef struct initial_value_struct GTY(()) { int num_entries; int max_entries; initial_value_pair * GTY ((length ("%h.num_entries"))) entries; } initial_value_struct; static void subst_constants (rtx *, rtx, struct inline_remap *, int); static void set_block_origin_self (tree); static void set_block_abstract_flags (tree, int); static void mark_stores (rtx, rtx, void *); /* Returns the Ith entry in the label_map contained in MAP. If the Ith entry has not yet been set, return a fresh label. This function performs a lazy initialization of label_map, thereby avoiding huge memory explosions when the label_map gets very large. */ rtx get_label_from_map (struct inline_remap *map, int i) { rtx x = map->label_map[i]; if (x == NULL_RTX) x = map->label_map[i] = gen_label_rtx (); return x; } /* Return false if the function FNDECL cannot be inlined on account of its attributes, true otherwise. */ bool function_attribute_inlinable_p (tree fndecl) { if (targetm.attribute_table) { tree a; for (a = DECL_ATTRIBUTES (fndecl); a; a = TREE_CHAIN (a)) { tree name = TREE_PURPOSE (a); int i; for (i = 0; targetm.attribute_table[i].name != NULL; i++) if (is_attribute_p (targetm.attribute_table[i].name, name)) return targetm.function_attribute_inlinable_p (fndecl); } } return true; } /* Copy NODE (which must be a DECL, but not a PARM_DECL). The DECL originally was in the FROM_FN, but now it will be in the TO_FN. */ tree copy_decl_for_inlining (tree decl, tree from_fn, tree to_fn) { tree copy; /* Copy the declaration. */ if (TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL) { tree type; int invisiref = 0; /* See if the frontend wants to pass this by invisible reference. */ if (TREE_CODE (decl) == PARM_DECL && DECL_ARG_TYPE (decl) != TREE_TYPE (decl) && POINTER_TYPE_P (DECL_ARG_TYPE (decl)) && TREE_TYPE (DECL_ARG_TYPE (decl)) == TREE_TYPE (decl)) { invisiref = 1; type = DECL_ARG_TYPE (decl); } else type = TREE_TYPE (decl); /* For a parameter, we must make an equivalent VAR_DECL, not a new PARM_DECL. */ copy = build_decl (VAR_DECL, DECL_NAME (decl), type); if (!invisiref) { TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (decl); TREE_READONLY (copy) = TREE_READONLY (decl); TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (decl); } else { TREE_ADDRESSABLE (copy) = 0; TREE_READONLY (copy) = 1; TREE_THIS_VOLATILE (copy) = 0; } } else { copy = copy_node (decl); /* The COPY is not abstract; it will be generated in TO_FN. */ DECL_ABSTRACT (copy) = 0; lang_hooks.dup_lang_specific_decl (copy); /* TREE_ADDRESSABLE isn't used to indicate that a label's address has been taken; it's for internal bookkeeping in expand_goto_internal. */ if (TREE_CODE (copy) == LABEL_DECL) { TREE_ADDRESSABLE (copy) = 0; DECL_TOO_LATE (copy) = 0; } } /* Set the DECL_ABSTRACT_ORIGIN so the debugging routines know what declaration inspired this copy. */ DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (decl); /* The new variable/label has no RTL, yet. */ if (!TREE_STATIC (copy) && !DECL_EXTERNAL (copy)) SET_DECL_RTL (copy, NULL_RTX); /* These args would always appear unused, if not for this. */ TREE_USED (copy) = 1; /* Set the context for the new declaration. */ if (!DECL_CONTEXT (decl)) /* Globals stay global. */ ; else if (DECL_CONTEXT (decl) != from_fn) /* Things that weren't in the scope of the function we're inlining from aren't in the scope we're inlining to, either. */ ; else if (TREE_STATIC (decl)) /* Function-scoped static variables should stay in the original function. */ ; else /* Ordinary automatic local variables are now in the scope of the new function. */ DECL_CONTEXT (copy) = to_fn; return copy; } /* Unfortunately, we need a global copy of const_equiv map for communication with a function called from note_stores. Be *very* careful that this is used properly in the presence of recursion. */ varray_type global_const_equiv_varray; /* Create a new copy of an rtx. Recursively copies the operands of the rtx, except for those few rtx codes that are sharable. We always return an rtx that is similar to that incoming rtx, with the exception of possibly changing a REG to a SUBREG or vice versa. No rtl is ever emitted. If FOR_LHS is nonzero, if means we are processing something that will be the LHS of a SET. In that case, we copy RTX_UNCHANGING_P even if inlining since we need to be conservative in how it is set for such cases. Handle constants that need to be placed in the constant pool by calling `force_const_mem'. */ rtx copy_rtx_and_substitute (rtx orig, struct inline_remap *map, int for_lhs) { rtx copy, temp; int i, j; RTX_CODE code; enum machine_mode mode; const char *format_ptr; int regno; if (orig == 0) return 0; code = GET_CODE (orig); mode = GET_MODE (orig); switch (code) { case REG: /* If the stack pointer register shows up, it must be part of stack-adjustments (*not* because we eliminated the frame pointer!). Small hard registers are returned as-is. Pseudo-registers go through their `reg_map'. */ regno = REGNO (orig); if (regno <= LAST_VIRTUAL_REGISTER) { /* Some hard registers are also mapped, but others are not translated. */ if (map->reg_map[regno] != 0) return map->reg_map[regno]; /* If this is the virtual frame pointer, make space in current function's stack frame for the stack frame of the inline function. Copy the address of this area into a pseudo. Map virtual_stack_vars_rtx to this pseudo and set up a constant equivalence for it to be the address. This will substitute the address into insns where it can be substituted and use the new pseudo where it can't. */ else if (regno == VIRTUAL_STACK_VARS_REGNUM) { rtx loc, seq; int size = get_func_frame_size (DECL_STRUCT_FUNCTION (map->fndecl)); #ifdef FRAME_GROWS_DOWNWARD int alignment = (DECL_STRUCT_FUNCTION (map->fndecl)->stack_alignment_needed / BITS_PER_UNIT); /* In this case, virtual_stack_vars_rtx points to one byte higher than the top of the frame area. So make sure we allocate a big enough chunk to keep the frame pointer aligned like a real one. */ if (alignment) size = CEIL_ROUND (size, alignment); #endif start_sequence (); loc = assign_stack_temp (BLKmode, size, 1); loc = XEXP (loc, 0); #ifdef FRAME_GROWS_DOWNWARD /* In this case, virtual_stack_vars_rtx points to one byte higher than the top of the frame area. So compute the offset to one byte higher than our substitute frame. */ loc = plus_constant (loc, size); #endif map->reg_map[regno] = temp = force_reg (Pmode, force_operand (loc, NULL_RTX)); #ifdef STACK_BOUNDARY mark_reg_pointer (map->reg_map[regno], STACK_BOUNDARY); #endif SET_CONST_EQUIV_DATA (map, temp, loc, CONST_AGE_PARM); seq = get_insns (); end_sequence (); emit_insn_after (seq, map->insns_at_start); return temp; } else if (regno == VIRTUAL_INCOMING_ARGS_REGNUM) { /* Do the same for a block to contain any arguments referenced in memory. */ rtx loc, seq; int size = DECL_STRUCT_FUNCTION (map->fndecl)->args_size; start_sequence (); loc = assign_stack_temp (BLKmode, size, 1); loc = XEXP (loc, 0); /* When arguments grow downward, the virtual incoming args pointer points to the top of the argument block, so the remapped location better do the same. */ #ifdef ARGS_GROW_DOWNWARD loc = plus_constant (loc, size); #endif map->reg_map[regno] = temp = force_reg (Pmode, force_operand (loc, NULL_RTX)); #ifdef STACK_BOUNDARY mark_reg_pointer (map->reg_map[regno], STACK_BOUNDARY); #endif SET_CONST_EQUIV_DATA (map, temp, loc, CONST_AGE_PARM); seq = get_insns (); end_sequence (); emit_insn_after (seq, map->insns_at_start); return temp; } else if (REG_FUNCTION_VALUE_P (orig)) { if (rtx_equal_function_value_matters) /* This is an ignored return value. We must not leave it in with REG_FUNCTION_VALUE_P set, since that would confuse subsequent inlining of the current function into a later function. */ return gen_rtx_REG (GET_MODE (orig), regno); else /* Must be unrolling loops or replicating code if we reach here, so return the register unchanged. */ return orig; } else return orig; abort (); } if (map->reg_map[regno] == NULL) { map->reg_map[regno] = gen_reg_rtx (mode); REG_USERVAR_P (map->reg_map[regno]) = REG_USERVAR_P (orig); REG_LOOP_TEST_P (map->reg_map[regno]) = REG_LOOP_TEST_P (orig); RTX_UNCHANGING_P (map->reg_map[regno]) = RTX_UNCHANGING_P (orig); /* A reg with REG_FUNCTION_VALUE_P true will never reach here. */ if (REG_POINTER (map->x_regno_reg_rtx[regno])) mark_reg_pointer (map->reg_map[regno], map->regno_pointer_align[regno]); } return map->reg_map[regno]; case SUBREG: copy = copy_rtx_and_substitute (SUBREG_REG (orig), map, for_lhs); return simplify_gen_subreg (GET_MODE (orig), copy, GET_MODE (SUBREG_REG (orig)), SUBREG_BYTE (orig)); case ADDRESSOF: copy = gen_rtx_ADDRESSOF (mode, copy_rtx_and_substitute (XEXP (orig, 0), map, for_lhs), 0, ADDRESSOF_DECL (orig)); regno = ADDRESSOF_REGNO (orig); if (map->reg_map[regno]) regno = REGNO (map->reg_map[regno]); else if (regno > LAST_VIRTUAL_REGISTER) { temp = XEXP (orig, 0); map->reg_map[regno] = gen_reg_rtx (GET_MODE (temp)); REG_USERVAR_P (map->reg_map[regno]) = REG_USERVAR_P (temp); REG_LOOP_TEST_P (map->reg_map[regno]) = REG_LOOP_TEST_P (temp); RTX_UNCHANGING_P (map->reg_map[regno]) = RTX_UNCHANGING_P (temp); /* A reg with REG_FUNCTION_VALUE_P true will never reach here. */ /* Objects may initially be represented as registers, but but turned into a MEM if their address is taken by put_var_into_stack. Therefore, the register table may have entries which are MEMs. We briefly tried to clear such entries, but that ended up cascading into many changes due to the optimizers not being prepared for empty entries in the register table. So we've decided to allow the MEMs in the register table for now. */ if (REG_P (map->x_regno_reg_rtx[regno]) && REG_POINTER (map->x_regno_reg_rtx[regno])) mark_reg_pointer (map->reg_map[regno], map->regno_pointer_align[regno]); regno = REGNO (map->reg_map[regno]); } ADDRESSOF_REGNO (copy) = regno; return copy; case USE: case CLOBBER: /* USE and CLOBBER are ordinary, but we convert (use (subreg foo)) to (use foo) if the original insn didn't have a subreg. Removing the subreg distorts the VAX movstrhi pattern by changing the mode of an operand. */ copy = copy_rtx_and_substitute (XEXP (orig, 0), map, code == CLOBBER); if (GET_CODE (copy) == SUBREG && GET_CODE (XEXP (orig, 0)) != SUBREG) copy = SUBREG_REG (copy); return gen_rtx_fmt_e (code, VOIDmode, copy); /* We need to handle "deleted" labels that appear in the DECL_RTL of a LABEL_DECL. */ case NOTE: if (NOTE_LINE_NUMBER (orig) != NOTE_INSN_DELETED_LABEL) break; /* Fall through. */ case CODE_LABEL: LABEL_PRESERVE_P (get_label_from_map (map, CODE_LABEL_NUMBER (orig))) = LABEL_PRESERVE_P (orig); return get_label_from_map (map, CODE_LABEL_NUMBER (orig)); case LABEL_REF: copy = gen_rtx_LABEL_REF (mode, LABEL_REF_NONLOCAL_P (orig) ? XEXP (orig, 0) : get_label_from_map (map, CODE_LABEL_NUMBER (XEXP (orig, 0)))); LABEL_OUTSIDE_LOOP_P (copy) = LABEL_OUTSIDE_LOOP_P (orig); /* The fact that this label was previously nonlocal does not mean it still is, so we must check if it is within the range of this function's labels. */ LABEL_REF_NONLOCAL_P (copy) = (LABEL_REF_NONLOCAL_P (orig) && ! (CODE_LABEL_NUMBER (XEXP (copy, 0)) >= get_first_label_num () && CODE_LABEL_NUMBER (XEXP (copy, 0)) < max_label_num ())); return copy; case PC: case CC0: case CONST_INT: case CONST_VECTOR: return orig; case SYMBOL_REF: /* Symbols which represent the address of a label stored in the constant pool must be modified to point to a constant pool entry for the remapped label. Otherwise, symbols are returned unchanged. */ if (CONSTANT_POOL_ADDRESS_P (orig)) { struct function *f = cfun; rtx constant = get_pool_constant_for_function (f, orig); if (GET_CODE (constant) == LABEL_REF) return XEXP (force_const_mem (GET_MODE (orig), copy_rtx_and_substitute (constant, map, for_lhs)), 0); } return orig; case CONST_DOUBLE: /* We have to make a new copy of this CONST_DOUBLE because don't want to use the old value of CONST_DOUBLE_MEM. Also, this may be a duplicate of a CONST_DOUBLE we have already seen. */ if (GET_MODE_CLASS (GET_MODE (orig)) == MODE_FLOAT) { REAL_VALUE_TYPE d; REAL_VALUE_FROM_CONST_DOUBLE (d, orig); return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (orig)); } else return immed_double_const (CONST_DOUBLE_LOW (orig), CONST_DOUBLE_HIGH (orig), VOIDmode); case CONST: break; case ASM_OPERANDS: /* If a single asm insn contains multiple output operands then it contains multiple ASM_OPERANDS rtx's that share the input and constraint vecs. We must make sure that the copied insn continues to share it. */ if (map->orig_asm_operands_vector == ASM_OPERANDS_INPUT_VEC (orig)) { copy = rtx_alloc (ASM_OPERANDS); RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil); PUT_MODE (copy, GET_MODE (orig)); ASM_OPERANDS_TEMPLATE (copy) = ASM_OPERANDS_TEMPLATE (orig); ASM_OPERANDS_OUTPUT_CONSTRAINT (copy) = ASM_OPERANDS_OUTPUT_CONSTRAINT (orig); ASM_OPERANDS_OUTPUT_IDX (copy) = ASM_OPERANDS_OUTPUT_IDX (orig); ASM_OPERANDS_INPUT_VEC (copy) = map->copy_asm_operands_vector; ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy) = map->copy_asm_constraints_vector; #ifdef USE_MAPPED_LOCATION ASM_OPERANDS_SOURCE_LOCATION (copy) = ASM_OPERANDS_SOURCE_LOCATION (orig); #else ASM_OPERANDS_SOURCE_FILE (copy) = ASM_OPERANDS_SOURCE_FILE (orig); ASM_OPERANDS_SOURCE_LINE (copy) = ASM_OPERANDS_SOURCE_LINE (orig); #endif return copy; } break; case CALL: /* This is given special treatment because the first operand of a CALL is a (MEM ...) which may get forced into a register for cse. This is undesirable if function-address cse isn't wanted or if we won't do cse. */ #ifndef NO_FUNCTION_CSE if (! (optimize && ! flag_no_function_cse)) #endif { rtx copy = gen_rtx_MEM (GET_MODE (XEXP (orig, 0)), copy_rtx_and_substitute (XEXP (XEXP (orig, 0), 0), map, 0)); MEM_COPY_ATTRIBUTES (copy, XEXP (orig, 0)); return gen_rtx_CALL (GET_MODE (orig), copy, copy_rtx_and_substitute (XEXP (orig, 1), map, 0)); } break; #if 0 /* Must be ifdefed out for loop unrolling to work. */ /* ??? Is this for the old or the new unroller? */ case RETURN: abort (); #endif case SET: /* If this is setting fp or ap, it means that we have a nonlocal goto. Adjust the setting by the offset of the area we made. If the nonlocal goto is into the current function, this will result in unnecessarily bad code, but should work. */ if (SET_DEST (orig) == virtual_stack_vars_rtx || SET_DEST (orig) == virtual_incoming_args_rtx) { /* In case a translation hasn't occurred already, make one now. */ rtx equiv_reg; rtx equiv_loc; HOST_WIDE_INT loc_offset; copy_rtx_and_substitute (SET_DEST (orig), map, for_lhs); equiv_reg = map->reg_map[REGNO (SET_DEST (orig))]; equiv_loc = VARRAY_CONST_EQUIV (map->const_equiv_varray, REGNO (equiv_reg)).rtx; loc_offset = REG_P (equiv_loc) ? 0 : INTVAL (XEXP (equiv_loc, 1)); return gen_rtx_SET (VOIDmode, SET_DEST (orig), force_operand (plus_constant (copy_rtx_and_substitute (SET_SRC (orig), map, 0), - loc_offset), NULL_RTX)); } else return gen_rtx_SET (VOIDmode, copy_rtx_and_substitute (SET_DEST (orig), map, 1), copy_rtx_and_substitute (SET_SRC (orig), map, 0)); break; case MEM: copy = gen_rtx_MEM (mode, copy_rtx_and_substitute (XEXP (orig, 0), map, 0)); MEM_COPY_ATTRIBUTES (copy, orig); return copy; default: break; } copy = rtx_alloc (code); PUT_MODE (copy, mode); RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct); RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil); RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging); format_ptr = GET_RTX_FORMAT (GET_CODE (copy)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++) { switch (*format_ptr++) { case '0': X0ANY (copy, i) = X0ANY (orig, i); break; case 'e': XEXP (copy, i) = copy_rtx_and_substitute (XEXP (orig, i), map, for_lhs); break; case 'u': /* Change any references to old-insns to point to the corresponding copied insns. */ XEXP (copy, i) = map->insn_map[INSN_UID (XEXP (orig, i))]; break; case 'E': XVEC (copy, i) = XVEC (orig, i); if (XVEC (orig, i) != NULL && XVECLEN (orig, i) != 0) { XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i)); for (j = 0; j < XVECLEN (copy, i); j++) XVECEXP (copy, i, j) = copy_rtx_and_substitute (XVECEXP (orig, i, j), map, for_lhs); } break; case 'w': XWINT (copy, i) = XWINT (orig, i); break; case 'i': XINT (copy, i) = XINT (orig, i); break; case 's': XSTR (copy, i) = XSTR (orig, i); break; case 't': XTREE (copy, i) = XTREE (orig, i); break; default: abort (); } } if (code == ASM_OPERANDS && map->orig_asm_operands_vector == 0) { map->orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig); map->copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy); map->copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy); } return copy; } /* Substitute known constant values into INSN, if that is valid. */ void try_constants (rtx insn, struct inline_remap *map) { int i; map->num_sets = 0; /* First try just updating addresses, then other things. This is important when we have something like the store of a constant into memory and we can update the memory address but the machine does not support a constant source. */ subst_constants (&PATTERN (insn), insn, map, 1); apply_change_group (); subst_constants (&PATTERN (insn), insn, map, 0); apply_change_group (); /* Enforce consistency between the addresses in the regular insn flow and the ones in CALL_INSN_FUNCTION_USAGE lists, if any. */ if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn)) { subst_constants (&CALL_INSN_FUNCTION_USAGE (insn), insn, map, 1); apply_change_group (); } /* Show we don't know the value of anything stored or clobbered. */ note_stores (PATTERN (insn), mark_stores, NULL); map->last_pc_value = 0; #ifdef HAVE_cc0 map->last_cc0_value = 0; #endif /* Set up any constant equivalences made in this insn. */ for (i = 0; i < map->num_sets; i++) { if (REG_P (map->equiv_sets[i].dest)) { int regno = REGNO (map->equiv_sets[i].dest); MAYBE_EXTEND_CONST_EQUIV_VARRAY (map, regno); if (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).rtx == 0 /* Following clause is a hack to make case work where GNU C++ reassigns a variable to make cse work right. */ || ! rtx_equal_p (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).rtx, map->equiv_sets[i].equiv)) SET_CONST_EQUIV_DATA (map, map->equiv_sets[i].dest, map->equiv_sets[i].equiv, map->const_age); } else if (map->equiv_sets[i].dest == pc_rtx) map->last_pc_value = map->equiv_sets[i].equiv; #ifdef HAVE_cc0 else if (map->equiv_sets[i].dest == cc0_rtx) map->last_cc0_value = map->equiv_sets[i].equiv; #endif } } /* Substitute known constants for pseudo regs in the contents of LOC, which are part of INSN. If INSN is zero, the substitution should always be done (this is used to update DECL_RTL). These changes are taken out by try_constants if the result is not valid. Note that we are more concerned with determining when the result of a SET is a constant, for further propagation, than actually inserting constants into insns; cse will do the latter task better. This function is also used to adjust address of items previously addressed via the virtual stack variable or virtual incoming arguments registers. If MEMONLY is nonzero, only make changes inside a MEM. */ static void subst_constants (rtx *loc, rtx insn, struct inline_remap *map, int memonly) { rtx x = *loc; int i, j; enum rtx_code code; const char *format_ptr; int num_changes = num_validated_changes (); rtx new = 0; enum machine_mode op0_mode = MAX_MACHINE_MODE; code = GET_CODE (x); switch (code) { case PC: case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR: case SYMBOL_REF: case CONST: case LABEL_REF: case ADDRESS: return; #ifdef HAVE_cc0 case CC0: if (! memonly) validate_change (insn, loc, map->last_cc0_value, 1); return; #endif case USE: case CLOBBER: /* The only thing we can do with a USE or CLOBBER is possibly do some substitutions in a MEM within it. */ if (GET_CODE (XEXP (x, 0)) == MEM) subst_constants (&XEXP (XEXP (x, 0), 0), insn, map, 0); return; case REG: /* Substitute for parms and known constants. Don't replace hard regs used as user variables with constants. */ if (! memonly) { int regno = REGNO (x); struct const_equiv_data *p; if (! (regno < FIRST_PSEUDO_REGISTER && REG_USERVAR_P (x)) && (size_t) regno < VARRAY_SIZE (map->const_equiv_varray) && (p = &VARRAY_CONST_EQUIV (map->const_equiv_varray, regno), p->rtx != 0) && p->age >= map->const_age) validate_change (insn, loc, p->rtx, 1); } return; case SUBREG: /* SUBREG applied to something other than a reg should be treated as ordinary, since that must be a special hack and we don't know how to treat it specially. Consider for example mulsidi3 in m68k.md. Ordinary SUBREG of a REG needs this special treatment. */ if (! memonly && REG_P (SUBREG_REG (x))) { rtx inner = SUBREG_REG (x); rtx new = 0; /* We can't call subst_constants on &SUBREG_REG (x) because any constant or SUBREG wouldn't be valid inside our SUBEG. Instead, see what is inside, try to form the new SUBREG and see if that is valid. We handle two cases: extracting a full word in an integral mode and extracting the low part. */ subst_constants (&inner, NULL_RTX, map, 0); new = simplify_gen_subreg (GET_MODE (x), inner, GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x)); if (new) validate_change (insn, loc, new, 1); else cancel_changes (num_changes); return; } break; case MEM: subst_constants (&XEXP (x, 0), insn, map, 0); /* If a memory address got spoiled, change it back. */ if (! memonly && insn != 0 && num_validated_changes () != num_changes && ! memory_address_p (GET_MODE (x), XEXP (x, 0))) cancel_changes (num_changes); return; case SET: { /* Substitute constants in our source, and in any arguments to a complex (e..g, ZERO_EXTRACT) destination, but not in the destination itself. */ rtx *dest_loc = &SET_DEST (x); rtx dest = *dest_loc; rtx src, tem; enum machine_mode compare_mode = VOIDmode; /* If SET_SRC is a COMPARE which subst_constants would turn into COMPARE of 2 VOIDmode constants, note the mode in which comparison is to be done. */ if (GET_CODE (SET_SRC (x)) == COMPARE) { src = SET_SRC (x); if (GET_MODE_CLASS (GET_MODE (src)) == MODE_CC || CC0_P (dest)) { compare_mode = GET_MODE (XEXP (src, 0)); if (compare_mode == VOIDmode) compare_mode = GET_MODE (XEXP (src, 1)); } } subst_constants (&SET_SRC (x), insn, map, memonly); src = SET_SRC (x); while (GET_CODE (*dest_loc) == ZERO_EXTRACT || GET_CODE (*dest_loc) == SUBREG || GET_CODE (*dest_loc) == STRICT_LOW_PART) { if (GET_CODE (*dest_loc) == ZERO_EXTRACT) { subst_constants (&XEXP (*dest_loc, 1), insn, map, memonly); subst_constants (&XEXP (*dest_loc, 2), insn, map, memonly); } dest_loc = &XEXP (*dest_loc, 0); } /* Do substitute in the address of a destination in memory. */ if (GET_CODE (*dest_loc) == MEM) subst_constants (&XEXP (*dest_loc, 0), insn, map, 0); /* Check for the case of DEST a SUBREG, both it and the underlying register are less than one word, and the SUBREG has the wider mode. In the case, we are really setting the underlying register to the source converted to the mode of DEST. So indicate that. */ if (GET_CODE (dest) == SUBREG && GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD && GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) <= UNITS_PER_WORD && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) <= GET_MODE_SIZE (GET_MODE (dest))) && (tem = gen_lowpart_if_possible (GET_MODE (SUBREG_REG (dest)), src))) src = tem, dest = SUBREG_REG (dest); /* If storing a recognizable value save it for later recording. */ if ((map->num_sets < MAX_RECOG_OPERANDS) && (CONSTANT_P (src) || (REG_P (src) && (REGNO (src) == VIRTUAL_INCOMING_ARGS_REGNUM || REGNO (src) == VIRTUAL_STACK_VARS_REGNUM)) || (GET_CODE (src) == PLUS && REG_P (XEXP (src, 0)) && (REGNO (XEXP (src, 0)) == VIRTUAL_INCOMING_ARGS_REGNUM || REGNO (XEXP (src, 0)) == VIRTUAL_STACK_VARS_REGNUM) && CONSTANT_P (XEXP (src, 1))) || GET_CODE (src) == COMPARE || CC0_P (dest) || (dest == pc_rtx && (src == pc_rtx || GET_CODE (src) == RETURN || GET_CODE (src) == LABEL_REF)))) { /* Normally, this copy won't do anything. But, if SRC is a COMPARE it will cause us to save the COMPARE with any constants substituted, which is what we want for later. */ rtx src_copy = copy_rtx (src); map->equiv_sets[map->num_sets].equiv = src_copy; map->equiv_sets[map->num_sets++].dest = dest; if (compare_mode != VOIDmode && GET_CODE (src) == COMPARE && (GET_MODE_CLASS (GET_MODE (src)) == MODE_CC || CC0_P (dest)) && GET_MODE (XEXP (src, 0)) == VOIDmode && GET_MODE (XEXP (src, 1)) == VOIDmode) { map->compare_src = src_copy; map->compare_mode = compare_mode; } } } return; default: break; } format_ptr = GET_RTX_FORMAT (code); /* If the first operand is an expression, save its mode for later. */ if (*format_ptr == 'e') op0_mode = GET_MODE (XEXP (x, 0)); for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case '0': break; case 'e': if (XEXP (x, i)) subst_constants (&XEXP (x, i), insn, map, memonly); break; case 'u': case 'i': case 's': case 'w': case 'n': case 't': case 'B': break; case 'E': if (XVEC (x, i) != NULL && XVECLEN (x, i) != 0) for (j = 0; j < XVECLEN (x, i); j++) subst_constants (&XVECEXP (x, i, j), insn, map, memonly); break; default: abort (); } } /* If this is a commutative operation, move a constant to the second operand unless the second operand is already a CONST_INT. */ if (! memonly && (GET_RTX_CLASS (code) == RTX_COMM_ARITH || GET_RTX_CLASS (code) == RTX_COMM_COMPARE) && CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT) { rtx tem = XEXP (x, 0); validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1); validate_change (insn, &XEXP (x, 1), tem, 1); } /* Simplify the expression in case we put in some constants. */ if (! memonly) switch (GET_RTX_CLASS (code)) { case RTX_UNARY: if (op0_mode == MAX_MACHINE_MODE) abort (); new = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0), op0_mode); break; case RTX_COMPARE: case RTX_COMM_COMPARE: { enum machine_mode op_mode = GET_MODE (XEXP (x, 0)); if (op_mode == VOIDmode) op_mode = GET_MODE (XEXP (x, 1)); new = simplify_relational_operation (code, GET_MODE (x), op_mode, XEXP (x, 0), XEXP (x, 1)); break; } case RTX_BIN_ARITH: case RTX_COMM_ARITH: new = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)); break; case RTX_BITFIELD_OPS: case RTX_TERNARY: if (op0_mode == MAX_MACHINE_MODE) abort (); if (code == IF_THEN_ELSE) { rtx op0 = XEXP (x, 0); if (COMPARISON_P (op0) && GET_MODE (op0) == VOIDmode && ! side_effects_p (op0) && XEXP (op0, 0) == map->compare_src && GET_MODE (XEXP (op0, 1)) == VOIDmode) { /* We have compare of two VOIDmode constants for which we recorded the comparison mode. */ rtx tem = simplify_gen_relational (GET_CODE (op0), GET_MODE (op0), map->compare_mode, XEXP (op0, 0), XEXP (op0, 1)); if (GET_CODE (tem) != CONST_INT) new = simplify_ternary_operation (code, GET_MODE (x), op0_mode, tem, XEXP (x, 1), XEXP (x, 2)); else if (tem == const0_rtx) new = XEXP (x, 2); else new = XEXP (x, 1); } } if (!new) new = simplify_ternary_operation (code, GET_MODE (x), op0_mode, XEXP (x, 0), XEXP (x, 1), XEXP (x, 2)); break; default: break; } if (new) validate_change (insn, loc, new, 1); } /* Show that register modified no longer contain known constants. We are called from note_stores with parts of the new insn. */ static void mark_stores (rtx dest, rtx x ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { int regno = -1; enum machine_mode mode = VOIDmode; /* DEST is always the innermost thing set, except in the case of SUBREGs of hard registers. */ if (REG_P (dest)) regno = REGNO (dest), mode = GET_MODE (dest); else if (GET_CODE (dest) == SUBREG && REG_P (SUBREG_REG (dest))) { regno = REGNO (SUBREG_REG (dest)); if (regno < FIRST_PSEUDO_REGISTER) regno += subreg_regno_offset (REGNO (SUBREG_REG (dest)), GET_MODE (SUBREG_REG (dest)), SUBREG_BYTE (dest), GET_MODE (dest)); mode = GET_MODE (SUBREG_REG (dest)); } if (regno >= 0) { unsigned int uregno = regno; unsigned int last_reg = (uregno >= FIRST_PSEUDO_REGISTER ? uregno : uregno + hard_regno_nregs[uregno][mode] - 1); unsigned int i; /* Ignore virtual stack var or virtual arg register since those are handled separately. */ if (uregno != VIRTUAL_INCOMING_ARGS_REGNUM && uregno != VIRTUAL_STACK_VARS_REGNUM) for (i = uregno; i <= last_reg; i++) if ((size_t) i < VARRAY_SIZE (global_const_equiv_varray)) VARRAY_CONST_EQUIV (global_const_equiv_varray, i).rtx = 0; } } /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so that it points to the node itself, thus indicating that the node is its own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for the given node is NULL, recursively descend the decl/block tree which it is the root of, and for each other ..._DECL or BLOCK node contained therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to point to themselves. */ static void set_block_origin_self (tree stmt) { if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE) { BLOCK_ABSTRACT_ORIGIN (stmt) = stmt; { tree local_decl; for (local_decl = BLOCK_VARS (stmt); local_decl != NULL_TREE; local_decl = TREE_CHAIN (local_decl)) set_decl_origin_self (local_decl); /* Potential recursion. */ } { tree subblock; for (subblock = BLOCK_SUBBLOCKS (stmt); subblock != NULL_TREE; subblock = BLOCK_CHAIN (subblock)) set_block_origin_self (subblock); /* Recurse. */ } } } /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the node to so that it points to the node itself, thus indicating that the node represents its own (abstract) origin. Additionally, if the DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend the decl/block tree of which the given node is the root of, and for each other ..._DECL or BLOCK node contained therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to point to themselves. */ void set_decl_origin_self (tree decl) { if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE) { DECL_ABSTRACT_ORIGIN (decl) = decl; if (TREE_CODE (decl) == FUNCTION_DECL) { tree arg; for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg)) DECL_ABSTRACT_ORIGIN (arg) = arg; if (DECL_INITIAL (decl) != NULL_TREE && DECL_INITIAL (decl) != error_mark_node) set_block_origin_self (DECL_INITIAL (decl)); } } } /* Given a pointer to some BLOCK node, and a boolean value to set the "abstract" flags to, set that value into the BLOCK_ABSTRACT flag for the given block, and for all local decls and all local sub-blocks (recursively) which are contained therein. */ static void set_block_abstract_flags (tree stmt, int setting) { tree local_decl; tree subblock; BLOCK_ABSTRACT (stmt) = setting; for (local_decl = BLOCK_VARS (stmt); local_decl != NULL_TREE; local_decl = TREE_CHAIN (local_decl)) set_decl_abstract_flags (local_decl, setting); for (subblock = BLOCK_SUBBLOCKS (stmt); subblock != NULL_TREE; subblock = BLOCK_CHAIN (subblock)) set_block_abstract_flags (subblock, setting); } /* Given a pointer to some ..._DECL node, and a boolean value to set the "abstract" flags to, set that value into the DECL_ABSTRACT flag for the given decl, and (in the case where the decl is a FUNCTION_DECL) also set the abstract flags for all of the parameters, local vars, local blocks and sub-blocks (recursively) to the same setting. */ void set_decl_abstract_flags (tree decl, int setting) { DECL_ABSTRACT (decl) = setting; if (TREE_CODE (decl) == FUNCTION_DECL) { tree arg; for (arg = DECL_ARGUMENTS (decl); arg; arg = TREE_CHAIN (arg)) DECL_ABSTRACT (arg) = setting; if (DECL_INITIAL (decl) != NULL_TREE && DECL_INITIAL (decl) != error_mark_node) set_block_abstract_flags (DECL_INITIAL (decl), setting); } } /* Functions to keep track of the values hard regs had at the start of the function. */ rtx get_hard_reg_initial_reg (struct function *fun, rtx reg) { struct initial_value_struct *ivs = fun->hard_reg_initial_vals; int i; if (ivs == 0) return NULL_RTX; for (i = 0; i < ivs->num_entries; i++) if (rtx_equal_p (ivs->entries[i].pseudo, reg)) return ivs->entries[i].hard_reg; return NULL_RTX; } rtx has_func_hard_reg_initial_val (struct function *fun, rtx reg) { struct initial_value_struct *ivs = fun->hard_reg_initial_vals; int i; if (ivs == 0) return NULL_RTX; for (i = 0; i < ivs->num_entries; i++) if (rtx_equal_p (ivs->entries[i].hard_reg, reg)) return ivs->entries[i].pseudo; return NULL_RTX; } rtx get_func_hard_reg_initial_val (struct function *fun, rtx reg) { struct initial_value_struct *ivs = fun->hard_reg_initial_vals; rtx rv = has_func_hard_reg_initial_val (fun, reg); if (rv) return rv; if (ivs == 0) { fun->hard_reg_initial_vals = ggc_alloc (sizeof (initial_value_struct)); ivs = fun->hard_reg_initial_vals; ivs->num_entries = 0; ivs->max_entries = 5; ivs->entries = ggc_alloc (5 * sizeof (initial_value_pair)); } if (ivs->num_entries >= ivs->max_entries) { ivs->max_entries += 5; ivs->entries = ggc_realloc (ivs->entries, ivs->max_entries * sizeof (initial_value_pair)); } ivs->entries[ivs->num_entries].hard_reg = reg; ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (GET_MODE (reg)); return ivs->entries[ivs->num_entries++].pseudo; } rtx get_hard_reg_initial_val (enum machine_mode mode, int regno) { return get_func_hard_reg_initial_val (cfun, gen_rtx_REG (mode, regno)); } rtx has_hard_reg_initial_val (enum machine_mode mode, int regno) { return has_func_hard_reg_initial_val (cfun, gen_rtx_REG (mode, regno)); } void emit_initial_value_sets (void) { struct initial_value_struct *ivs = cfun->hard_reg_initial_vals; int i; rtx seq; if (ivs == 0) return; start_sequence (); for (i = 0; i < ivs->num_entries; i++) emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg); seq = get_insns (); end_sequence (); emit_insn_after (seq, entry_of_function ()); } /* If the backend knows where to allocate pseudos for hard register initial values, register these allocations now. */ void allocate_initial_values (rtx *reg_equiv_memory_loc ATTRIBUTE_UNUSED) { #ifdef ALLOCATE_INITIAL_VALUE struct initial_value_struct *ivs = cfun->hard_reg_initial_vals; int i; if (ivs == 0) return; for (i = 0; i < ivs->num_entries; i++) { int regno = REGNO (ivs->entries[i].pseudo); rtx x = ALLOCATE_INITIAL_VALUE (ivs->entries[i].hard_reg); if (x == NULL_RTX || REG_N_SETS (REGNO (ivs->entries[i].pseudo)) > 1) ; /* Do nothing. */ else if (GET_CODE (x) == MEM) reg_equiv_memory_loc[regno] = x; else if (REG_P (x)) { reg_renumber[regno] = REGNO (x); /* Poke the regno right into regno_reg_rtx so that even fixed regs are accepted. */ REGNO (ivs->entries[i].pseudo) = REGNO (x); } else abort (); } #endif } #include "gt-integrate.h"