/* Internal functions. Copyright (C) 2011-2020 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "predict.h" #include "stringpool.h" #include "tree-vrp.h" #include "tree-ssanames.h" #include "expmed.h" #include "memmodel.h" #include "optabs.h" #include "emit-rtl.h" #include "diagnostic-core.h" #include "fold-const.h" #include "internal-fn.h" #include "stor-layout.h" #include "dojump.h" #include "expr.h" #include "stringpool.h" #include "attribs.h" #include "asan.h" #include "ubsan.h" #include "recog.h" #include "builtins.h" #include "optabs-tree.h" #include "gimple-ssa.h" #include "tree-phinodes.h" #include "ssa-iterators.h" #include "explow.h" #include "rtl-iter.h" /* The names of each internal function, indexed by function number. */ const char *const internal_fn_name_array[] = { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE, #include "internal-fn.def" "" }; /* The ECF_* flags of each internal function, indexed by function number. */ const int internal_fn_flags_array[] = { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS, #include "internal-fn.def" 0 }; /* Return the internal function called NAME, or IFN_LAST if there's no such function. */ internal_fn lookup_internal_fn (const char *name) { typedef hash_map name_to_fn_map_type; static name_to_fn_map_type *name_to_fn_map; if (!name_to_fn_map) { name_to_fn_map = new name_to_fn_map_type (IFN_LAST); for (unsigned int i = 0; i < IFN_LAST; ++i) name_to_fn_map->put (internal_fn_name (internal_fn (i)), internal_fn (i)); } internal_fn *entry = name_to_fn_map->get (name); return entry ? *entry : IFN_LAST; } /* Fnspec of each internal function, indexed by function number. */ const_tree internal_fn_fnspec_array[IFN_LAST + 1]; void init_internal_fns () { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \ if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \ build_string ((int) sizeof (FNSPEC) - 1, FNSPEC ? FNSPEC : ""); #include "internal-fn.def" internal_fn_fnspec_array[IFN_LAST] = 0; } /* Create static initializers for the information returned by direct_internal_fn. */ #define not_direct { -2, -2, false } #define mask_load_direct { -1, 2, false } #define load_lanes_direct { -1, -1, false } #define mask_load_lanes_direct { -1, -1, false } #define gather_load_direct { 3, 1, false } #define len_load_direct { -1, -1, false } #define mask_store_direct { 3, 2, false } #define store_lanes_direct { 0, 0, false } #define mask_store_lanes_direct { 0, 0, false } #define vec_cond_mask_direct { 0, 0, false } #define vec_cond_direct { 0, 0, false } #define vec_condu_direct { 0, 0, false } #define vec_condeq_direct { 0, 0, false } #define scatter_store_direct { 3, 1, false } #define len_store_direct { 3, 3, false } #define vec_set_direct { 3, 3, false } #define unary_direct { 0, 0, true } #define binary_direct { 0, 0, true } #define ternary_direct { 0, 0, true } #define cond_unary_direct { 1, 1, true } #define cond_binary_direct { 1, 1, true } #define cond_ternary_direct { 1, 1, true } #define while_direct { 0, 2, false } #define fold_extract_direct { 2, 2, false } #define fold_left_direct { 1, 1, false } #define mask_fold_left_direct { 1, 1, false } #define check_ptrs_direct { 0, 0, false } const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct, #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct, #define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \ UNSIGNED_OPTAB, TYPE) TYPE##_direct, #include "internal-fn.def" not_direct }; /* ARRAY_TYPE is an array of vector modes. Return the associated insn for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none. */ static enum insn_code get_multi_vector_move (tree array_type, convert_optab optab) { machine_mode imode; machine_mode vmode; gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE); imode = TYPE_MODE (array_type); vmode = TYPE_MODE (TREE_TYPE (array_type)); return convert_optab_handler (optab, imode, vmode); } /* Expand LOAD_LANES call STMT using optab OPTAB. */ static void expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { class expand_operand ops[2]; tree type, lhs, rhs; rtx target, mem; lhs = gimple_call_lhs (stmt); rhs = gimple_call_arg (stmt, 0); type = TREE_TYPE (lhs); target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); mem = expand_normal (rhs); gcc_assert (MEM_P (mem)); PUT_MODE (mem, TYPE_MODE (type)); create_output_operand (&ops[0], target, TYPE_MODE (type)); create_fixed_operand (&ops[1], mem); expand_insn (get_multi_vector_move (type, optab), 2, ops); if (!rtx_equal_p (target, ops[0].value)) emit_move_insn (target, ops[0].value); } /* Expand STORE_LANES call STMT using optab OPTAB. */ static void expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { class expand_operand ops[2]; tree type, lhs, rhs; rtx target, reg; lhs = gimple_call_lhs (stmt); rhs = gimple_call_arg (stmt, 0); type = TREE_TYPE (rhs); target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); reg = expand_normal (rhs); gcc_assert (MEM_P (target)); PUT_MODE (target, TYPE_MODE (type)); create_fixed_operand (&ops[0], target); create_input_operand (&ops[1], reg, TYPE_MODE (type)); expand_insn (get_multi_vector_move (type, optab), 2, ops); } static void expand_ANNOTATE (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in omp_device_lower pass. */ static void expand_GOMP_USE_SIMT (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in omp_device_lower pass. */ static void expand_GOMP_SIMT_ENTER (internal_fn, gcall *) { gcc_unreachable (); } /* Allocate per-lane storage and begin non-uniform execution region. */ static void expand_GOMP_SIMT_ENTER_ALLOC (internal_fn, gcall *stmt) { rtx target; tree lhs = gimple_call_lhs (stmt); if (lhs) target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); else target = gen_reg_rtx (Pmode); rtx size = expand_normal (gimple_call_arg (stmt, 0)); rtx align = expand_normal (gimple_call_arg (stmt, 1)); class expand_operand ops[3]; create_output_operand (&ops[0], target, Pmode); create_input_operand (&ops[1], size, Pmode); create_input_operand (&ops[2], align, Pmode); gcc_assert (targetm.have_omp_simt_enter ()); expand_insn (targetm.code_for_omp_simt_enter, 3, ops); } /* Deallocate per-lane storage and leave non-uniform execution region. */ static void expand_GOMP_SIMT_EXIT (internal_fn, gcall *stmt) { gcc_checking_assert (!gimple_call_lhs (stmt)); rtx arg = expand_normal (gimple_call_arg (stmt, 0)); class expand_operand ops[1]; create_input_operand (&ops[0], arg, Pmode); gcc_assert (targetm.have_omp_simt_exit ()); expand_insn (targetm.code_for_omp_simt_exit, 1, ops); } /* Lane index on SIMT targets: thread index in the warp on NVPTX. On targets without SIMT execution this should be expanded in omp_device_lower pass. */ static void expand_GOMP_SIMT_LANE (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); gcc_assert (targetm.have_omp_simt_lane ()); emit_insn (targetm.gen_omp_simt_lane (target)); } /* This should get expanded in omp_device_lower pass. */ static void expand_GOMP_SIMT_VF (internal_fn, gcall *) { gcc_unreachable (); } /* Lane index of the first SIMT lane that supplies a non-zero argument. This is a SIMT counterpart to GOMP_SIMD_LAST_LANE, used to represent the lane that executed the last iteration for handling OpenMP lastprivate. */ static void expand_GOMP_SIMT_LAST_LANE (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx cond = expand_normal (gimple_call_arg (stmt, 0)); machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); class expand_operand ops[2]; create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], cond, mode); gcc_assert (targetm.have_omp_simt_last_lane ()); expand_insn (targetm.code_for_omp_simt_last_lane, 2, ops); } /* Non-transparent predicate used in SIMT lowering of OpenMP "ordered". */ static void expand_GOMP_SIMT_ORDERED_PRED (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx ctr = expand_normal (gimple_call_arg (stmt, 0)); machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); class expand_operand ops[2]; create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], ctr, mode); gcc_assert (targetm.have_omp_simt_ordered ()); expand_insn (targetm.code_for_omp_simt_ordered, 2, ops); } /* "Or" boolean reduction across SIMT lanes: return non-zero in all lanes if any lane supplies a non-zero argument. */ static void expand_GOMP_SIMT_VOTE_ANY (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx cond = expand_normal (gimple_call_arg (stmt, 0)); machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); class expand_operand ops[2]; create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], cond, mode); gcc_assert (targetm.have_omp_simt_vote_any ()); expand_insn (targetm.code_for_omp_simt_vote_any, 2, ops); } /* Exchange between SIMT lanes with a "butterfly" pattern: source lane index is destination lane index XOR given offset. */ static void expand_GOMP_SIMT_XCHG_BFLY (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx src = expand_normal (gimple_call_arg (stmt, 0)); rtx idx = expand_normal (gimple_call_arg (stmt, 1)); machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); class expand_operand ops[3]; create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], src, mode); create_input_operand (&ops[2], idx, SImode); gcc_assert (targetm.have_omp_simt_xchg_bfly ()); expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops); } /* Exchange between SIMT lanes according to given source lane index. */ static void expand_GOMP_SIMT_XCHG_IDX (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx src = expand_normal (gimple_call_arg (stmt, 0)); rtx idx = expand_normal (gimple_call_arg (stmt, 1)); machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); class expand_operand ops[3]; create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], src, mode); create_input_operand (&ops[2], idx, SImode); gcc_assert (targetm.have_omp_simt_xchg_idx ()); expand_insn (targetm.code_for_omp_simt_xchg_idx, 3, ops); } /* This should get expanded in adjust_simduid_builtins. */ static void expand_GOMP_SIMD_LANE (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in adjust_simduid_builtins. */ static void expand_GOMP_SIMD_VF (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in adjust_simduid_builtins. */ static void expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in adjust_simduid_builtins. */ static void expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in adjust_simduid_builtins. */ static void expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_UBSAN_NULL (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_UBSAN_BOUNDS (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_UBSAN_VPTR (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_UBSAN_PTR (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_HWASAN_CHECK (internal_fn, gcall *) { gcc_unreachable (); } /* For hwasan stack tagging: Clear tags on the dynamically allocated space. For use after an object dynamically allocated on the stack goes out of scope. */ static void expand_HWASAN_ALLOCA_UNPOISON (internal_fn, gcall *gc) { gcc_assert (Pmode == ptr_mode); tree restored_position = gimple_call_arg (gc, 0); rtx restored_rtx = expand_expr (restored_position, NULL_RTX, VOIDmode, EXPAND_NORMAL); rtx func = init_one_libfunc ("__hwasan_tag_memory"); rtx off = expand_simple_binop (Pmode, MINUS, restored_rtx, stack_pointer_rtx, NULL_RTX, 0, OPTAB_WIDEN); emit_library_call_value (func, NULL_RTX, LCT_NORMAL, VOIDmode, virtual_stack_dynamic_rtx, Pmode, HWASAN_STACK_BACKGROUND, QImode, off, Pmode); } /* For hwasan stack tagging: Return a tag to be used for a dynamic allocation. */ static void expand_HWASAN_CHOOSE_TAG (internal_fn, gcall *gc) { tree tag = gimple_call_lhs (gc); rtx target = expand_expr (tag, NULL_RTX, VOIDmode, EXPAND_NORMAL); machine_mode mode = GET_MODE (target); gcc_assert (mode == QImode); rtx base_tag = targetm.memtag.extract_tag (hwasan_frame_base (), NULL_RTX); gcc_assert (base_tag); rtx tag_offset = gen_int_mode (hwasan_current_frame_tag (), QImode); rtx chosen_tag = expand_simple_binop (QImode, PLUS, base_tag, tag_offset, target, /* unsignedp = */1, OPTAB_WIDEN); chosen_tag = hwasan_truncate_to_tag_size (chosen_tag, target); /* Really need to put the tag into the `target` RTX. */ if (chosen_tag != target) { rtx temp = chosen_tag; gcc_assert (GET_MODE (chosen_tag) == mode); emit_move_insn (target, temp); } hwasan_increment_frame_tag (); } /* For hwasan stack tagging: Tag a region of space in the shadow stack according to the base pointer of an object on the stack. N.b. the length provided in the internal call is required to be aligned to HWASAN_TAG_GRANULE_SIZE. */ static void expand_HWASAN_MARK (internal_fn, gcall *gc) { gcc_assert (ptr_mode == Pmode); HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (gc, 0)); bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON; tree base = gimple_call_arg (gc, 1); gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR); rtx base_rtx = expand_normal (base); rtx tag = is_poison ? HWASAN_STACK_BACKGROUND : targetm.memtag.extract_tag (base_rtx, NULL_RTX); rtx address = targetm.memtag.untagged_pointer (base_rtx, NULL_RTX); tree len = gimple_call_arg (gc, 2); rtx r_len = expand_normal (len); rtx func = init_one_libfunc ("__hwasan_tag_memory"); emit_library_call (func, LCT_NORMAL, VOIDmode, address, Pmode, tag, QImode, r_len, Pmode); } /* For hwasan stack tagging: Store a tag into a pointer. */ static void expand_HWASAN_SET_TAG (internal_fn, gcall *gc) { gcc_assert (ptr_mode == Pmode); tree g_target = gimple_call_lhs (gc); tree g_ptr = gimple_call_arg (gc, 0); tree g_tag = gimple_call_arg (gc, 1); rtx ptr = expand_normal (g_ptr); rtx tag = expand_expr (g_tag, NULL_RTX, QImode, EXPAND_NORMAL); rtx target = expand_normal (g_target); rtx untagged = targetm.memtag.untagged_pointer (ptr, target); rtx tagged_value = targetm.memtag.set_tag (untagged, tag, target); if (tagged_value != target) emit_move_insn (target, tagged_value); } /* This should get expanded in the sanopt pass. */ static void expand_ASAN_CHECK (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_ASAN_MARK (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_ASAN_POISON (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the sanopt pass. */ static void expand_ASAN_POISON_USE (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the tsan pass. */ static void expand_TSAN_FUNC_EXIT (internal_fn, gcall *) { gcc_unreachable (); } /* This should get expanded in the lower pass. */ static void expand_FALLTHROUGH (internal_fn, gcall *call) { error_at (gimple_location (call), "invalid use of attribute %"); } /* Return minimum precision needed to represent all values of ARG in SIGNed integral type. */ static int get_min_precision (tree arg, signop sign) { int prec = TYPE_PRECISION (TREE_TYPE (arg)); int cnt = 0; signop orig_sign = sign; if (TREE_CODE (arg) == INTEGER_CST) { int p; if (TYPE_SIGN (TREE_TYPE (arg)) != sign) { widest_int w = wi::to_widest (arg); w = wi::ext (w, prec, sign); p = wi::min_precision (w, sign); } else p = wi::min_precision (wi::to_wide (arg), sign); return MIN (p, prec); } while (CONVERT_EXPR_P (arg) && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0))) && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec) { arg = TREE_OPERAND (arg, 0); if (TYPE_PRECISION (TREE_TYPE (arg)) < prec) { if (TYPE_UNSIGNED (TREE_TYPE (arg))) sign = UNSIGNED; else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1) return prec + (orig_sign != sign); prec = TYPE_PRECISION (TREE_TYPE (arg)); } if (++cnt > 30) return prec + (orig_sign != sign); } if (CONVERT_EXPR_P (arg) && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0))) && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) > prec) { /* We have e.g. (unsigned short) y_2 where int y_2 = (int) x_1(D); If y_2's min precision is smaller than prec, return that. */ int oprec = get_min_precision (TREE_OPERAND (arg, 0), sign); if (oprec < prec) return oprec + (orig_sign != sign); } if (TREE_CODE (arg) != SSA_NAME) return prec + (orig_sign != sign); wide_int arg_min, arg_max; while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE) { gimple *g = SSA_NAME_DEF_STMT (arg); if (is_gimple_assign (g) && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g))) { tree t = gimple_assign_rhs1 (g); if (INTEGRAL_TYPE_P (TREE_TYPE (t)) && TYPE_PRECISION (TREE_TYPE (t)) <= prec) { arg = t; if (TYPE_PRECISION (TREE_TYPE (arg)) < prec) { if (TYPE_UNSIGNED (TREE_TYPE (arg))) sign = UNSIGNED; else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1) return prec + (orig_sign != sign); prec = TYPE_PRECISION (TREE_TYPE (arg)); } if (++cnt > 30) return prec + (orig_sign != sign); continue; } } return prec + (orig_sign != sign); } if (sign == TYPE_SIGN (TREE_TYPE (arg))) { int p1 = wi::min_precision (arg_min, sign); int p2 = wi::min_precision (arg_max, sign); p1 = MAX (p1, p2); prec = MIN (prec, p1); } else if (sign == UNSIGNED && !wi::neg_p (arg_min, SIGNED)) { int p = wi::min_precision (arg_max, UNSIGNED); prec = MIN (prec, p); } return prec + (orig_sign != sign); } /* Helper for expand_*_overflow. Set the __imag__ part to true (1 except for signed:1 type, in which case store -1). */ static void expand_arith_set_overflow (tree lhs, rtx target) { if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1 && !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)))) write_complex_part (target, constm1_rtx, true); else write_complex_part (target, const1_rtx, true); } /* Helper for expand_*_overflow. Store RES into the __real__ part of TARGET. If RES has larger MODE than __real__ part of TARGET, set the __imag__ part to 1 if RES doesn't fit into it. Similarly if LHS has smaller precision than its mode. */ static void expand_arith_overflow_result_store (tree lhs, rtx target, scalar_int_mode mode, rtx res) { scalar_int_mode tgtmode = as_a (GET_MODE_INNER (GET_MODE (target))); rtx lres = res; if (tgtmode != mode) { rtx_code_label *done_label = gen_label_rtx (); int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))); lres = convert_modes (tgtmode, mode, res, uns); gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode)); do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns), EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); expand_arith_set_overflow (lhs, target); emit_label (done_label); } int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))); int tgtprec = GET_MODE_PRECISION (tgtmode); if (prec < tgtprec) { rtx_code_label *done_label = gen_label_rtx (); int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))); res = lres; if (uns) { rtx mask = immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec), tgtmode); lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX, true, OPTAB_LIB_WIDEN); } else { lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec, NULL_RTX, 1); lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec, NULL_RTX, 0); } do_compare_rtx_and_jump (res, lres, EQ, true, tgtmode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); expand_arith_set_overflow (lhs, target); emit_label (done_label); } write_complex_part (target, lres, false); } /* Helper for expand_*_overflow. Store RES into TARGET. */ static void expand_ubsan_result_store (rtx target, rtx res) { if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target)) /* If this is a scalar in a register that is stored in a wider mode than the declared mode, compute the result into its declared mode and then convert to the wider mode. Our value is the computed expression. */ convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target)); else emit_move_insn (target, res); } /* Add sub/add overflow checking to the statement STMT. CODE says whether the operation is +, or -. */ void expand_addsub_overflow (location_t loc, tree_code code, tree lhs, tree arg0, tree arg1, bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan, tree *datap) { rtx res, target = NULL_RTX; tree fn; rtx_code_label *done_label = gen_label_rtx (); rtx_code_label *do_error = gen_label_rtx (); do_pending_stack_adjust (); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0)); int prec = GET_MODE_PRECISION (mode); rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode); bool do_xor = false; if (is_ubsan) gcc_assert (!unsr_p && !uns0_p && !uns1_p); if (lhs) { target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); if (!is_ubsan) write_complex_part (target, const0_rtx, true); } /* We assume both operands and result have the same precision here (GET_MODE_BITSIZE (mode)), S stands for signed type with that precision, U for unsigned type with that precision, sgn for unsigned most significant bit in that precision. s1 is signed first operand, u1 is unsigned first operand, s2 is signed second operand, u2 is unsigned second operand, sr is signed result, ur is unsigned result and the following rules say how to compute result (which is always result of the operands as if both were unsigned, cast to the right signedness) and how to compute whether operation overflowed. s1 + s2 -> sr res = (S) ((U) s1 + (U) s2) ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow) s1 - s2 -> sr res = (S) ((U) s1 - (U) s2) ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow) u1 + u2 -> ur res = u1 + u2 ovf = res < u1 (or jump on carry, but RTL opts will handle it) u1 - u2 -> ur res = u1 - u2 ovf = res > u1 (or jump on carry, but RTL opts will handle it) s1 + u2 -> sr res = (S) ((U) s1 + u2) ovf = ((U) res ^ sgn) < u2 s1 + u2 -> ur t1 = (S) (u2 ^ sgn) t2 = s1 + t1 res = (U) t2 ^ sgn ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow) s1 - u2 -> sr res = (S) ((U) s1 - u2) ovf = u2 > ((U) s1 ^ sgn) s1 - u2 -> ur res = (U) s1 - u2 ovf = s1 < 0 || u2 > (U) s1 u1 - s2 -> sr res = u1 - (U) s2 ovf = u1 >= ((U) s2 ^ sgn) u1 - s2 -> ur t1 = u1 ^ sgn t2 = t1 - (U) s2 res = t2 ^ sgn ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow) s1 + s2 -> ur res = (U) s1 + (U) s2 ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0) u1 + u2 -> sr res = (S) (u1 + u2) ovf = (U) res < u2 || res < 0 u1 - u2 -> sr res = (S) (u1 - u2) ovf = u1 >= u2 ? res < 0 : res >= 0 s1 - s2 -> ur res = (U) s1 - (U) s2 ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0) */ if (code == PLUS_EXPR && uns0_p && !uns1_p) { /* PLUS_EXPR is commutative, if operand signedness differs, canonicalize to the first operand being signed and second unsigned to simplify following code. */ std::swap (op0, op1); std::swap (arg0, arg1); uns0_p = false; uns1_p = true; } /* u1 +- u2 -> ur */ if (uns0_p && uns1_p && unsr_p) { insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab, mode); if (icode != CODE_FOR_nothing) { class expand_operand ops[4]; rtx_insn *last = get_last_insn (); res = gen_reg_rtx (mode); create_output_operand (&ops[0], res, mode); create_input_operand (&ops[1], op0, mode); create_input_operand (&ops[2], op1, mode); create_fixed_operand (&ops[3], do_error); if (maybe_expand_insn (icode, 4, ops)) { last = get_last_insn (); if (profile_status_for_fn (cfun) != PROFILE_ABSENT && JUMP_P (last) && any_condjump_p (last) && !find_reg_note (last, REG_BR_PROB, 0)) add_reg_br_prob_note (last, profile_probability::very_unlikely ()); emit_jump (done_label); goto do_error_label; } delete_insns_since (last); } /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); rtx tem = op0; /* For PLUS_EXPR, the operation is commutative, so we can pick operand to compare against. For prec <= BITS_PER_WORD, I think preferring REG operand is better over CONST_INT, because the CONST_INT might enlarge the instruction or CSE would need to figure out we'd already loaded it into a register before. For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial, as then the multi-word comparison can be perhaps simplified. */ if (code == PLUS_EXPR && (prec <= BITS_PER_WORD ? (CONST_SCALAR_INT_P (op0) && REG_P (op1)) : CONST_SCALAR_INT_P (op1))) tem = op1; do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } /* s1 +- u2 -> sr */ if (!uns0_p && uns1_p && !unsr_p) { /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); rtx tem = expand_binop (mode, add_optab, code == PLUS_EXPR ? res : op0, sgn, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } /* s1 + u2 -> ur */ if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p) { op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false, OPTAB_LIB_WIDEN); /* As we've changed op1, we have to avoid using the value range for the original argument. */ arg1 = error_mark_node; do_xor = true; goto do_signed; } /* u1 - s2 -> ur */ if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p) { op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false, OPTAB_LIB_WIDEN); /* As we've changed op0, we have to avoid using the value range for the original argument. */ arg0 = error_mark_node; do_xor = true; goto do_signed; } /* s1 - u2 -> ur */ if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p) { /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); int pos_neg = get_range_pos_neg (arg0); if (pos_neg == 2) /* If ARG0 is known to be always negative, this is always overflow. */ emit_jump (do_error); else if (pos_neg == 3) /* If ARG0 is not known to be always positive, check at runtime. */ do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX, NULL, do_error, profile_probability::very_unlikely ()); do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } /* u1 - s2 -> sr */ if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p) { /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } /* u1 + u2 -> sr */ if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p) { /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX, NULL, do_error, profile_probability::very_unlikely ()); rtx tem = op1; /* The operation is commutative, so we can pick operand to compare against. For prec <= BITS_PER_WORD, I think preferring REG operand is better over CONST_INT, because the CONST_INT might enlarge the instruction or CSE would need to figure out we'd already loaded it into a register before. For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial, as then the multi-word comparison can be perhaps simplified. */ if (prec <= BITS_PER_WORD ? (CONST_SCALAR_INT_P (op1) && REG_P (op0)) : CONST_SCALAR_INT_P (op0)) tem = op0; do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } /* s1 +- s2 -> ur */ if (!uns0_p && !uns1_p && unsr_p) { /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); int pos_neg = get_range_pos_neg (arg1); if (code == PLUS_EXPR) { int pos_neg0 = get_range_pos_neg (arg0); if (pos_neg0 != 3 && pos_neg == 3) { std::swap (op0, op1); pos_neg = pos_neg0; } } rtx tem; if (pos_neg != 3) { tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR)) ? and_optab : ior_optab, op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL, NULL, done_label, profile_probability::very_likely ()); } else { rtx_code_label *do_ior_label = gen_label_rtx (); do_compare_rtx_and_jump (op1, const0_rtx, code == MINUS_EXPR ? GE : LT, false, mode, NULL_RTX, NULL, do_ior_label, profile_probability::even ()); tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); emit_jump (do_error); emit_label (do_ior_label); tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); } goto do_error_label; } /* u1 - u2 -> sr */ if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p) { /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); rtx_code_label *op0_geu_op1 = gen_label_rtx (); do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL, op0_geu_op1, profile_probability::even ()); do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); emit_jump (do_error); emit_label (op0_geu_op1); do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } gcc_assert (!uns0_p && !uns1_p && !unsr_p); /* s1 +- s2 -> sr */ do_signed: { insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab : subv4_optab, mode); if (icode != CODE_FOR_nothing) { class expand_operand ops[4]; rtx_insn *last = get_last_insn (); res = gen_reg_rtx (mode); create_output_operand (&ops[0], res, mode); create_input_operand (&ops[1], op0, mode); create_input_operand (&ops[2], op1, mode); create_fixed_operand (&ops[3], do_error); if (maybe_expand_insn (icode, 4, ops)) { last = get_last_insn (); if (profile_status_for_fn (cfun) != PROFILE_ABSENT && JUMP_P (last) && any_condjump_p (last) && !find_reg_note (last, REG_BR_PROB, 0)) add_reg_br_prob_note (last, profile_probability::very_unlikely ()); emit_jump (done_label); goto do_error_label; } delete_insns_since (last); } /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); /* If we can prove that one of the arguments (for MINUS_EXPR only the second operand, as subtraction is not commutative) is always non-negative or always negative, we can do just one comparison and conditional jump. */ int pos_neg = get_range_pos_neg (arg1); if (code == PLUS_EXPR) { int pos_neg0 = get_range_pos_neg (arg0); if (pos_neg0 != 3 && pos_neg == 3) { std::swap (op0, op1); pos_neg = pos_neg0; } } /* Addition overflows if and only if the two operands have the same sign, and the result has the opposite sign. Subtraction overflows if and only if the two operands have opposite sign, and the subtrahend has the same sign as the result. Here 0 is counted as positive. */ if (pos_neg == 3) { /* Compute op0 ^ op1 (operands have opposite sign). */ rtx op_xor = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); /* Compute res ^ op1 (result and 2nd operand have opposite sign). */ rtx res_xor = expand_binop (mode, xor_optab, res, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); rtx tem; if (code == PLUS_EXPR) { /* Compute (res ^ op1) & ~(op0 ^ op1). */ tem = expand_unop (mode, one_cmpl_optab, op_xor, NULL_RTX, false); tem = expand_binop (mode, and_optab, res_xor, tem, NULL_RTX, false, OPTAB_LIB_WIDEN); } else { /* Compute (op0 ^ op1) & ~(res ^ op1). */ tem = expand_unop (mode, one_cmpl_optab, res_xor, NULL_RTX, false); tem = expand_binop (mode, and_optab, op_xor, tem, NULL_RTX, false, OPTAB_LIB_WIDEN); } /* No overflow if the result has bit sign cleared. */ do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); } /* Compare the result of the operation with the first operand. No overflow for addition if second operand is positive and result is larger or second operand is negative and result is smaller. Likewise for subtraction with sign of second operand flipped. */ else do_compare_rtx_and_jump (res, op0, (pos_neg == 1) ^ (code == MINUS_EXPR) ? GE : LE, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); } do_error_label: emit_label (do_error); if (is_ubsan) { /* Expand the ubsan builtin call. */ push_temp_slots (); fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0), arg0, arg1, datap); expand_normal (fn); pop_temp_slots (); do_pending_stack_adjust (); } else if (lhs) expand_arith_set_overflow (lhs, target); /* We're done. */ emit_label (done_label); if (lhs) { if (is_ubsan) expand_ubsan_result_store (target, res); else { if (do_xor) res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false, OPTAB_LIB_WIDEN); expand_arith_overflow_result_store (lhs, target, mode, res); } } } /* Add negate overflow checking to the statement STMT. */ static void expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan, tree *datap) { rtx res, op1; tree fn; rtx_code_label *done_label, *do_error; rtx target = NULL_RTX; done_label = gen_label_rtx (); do_error = gen_label_rtx (); do_pending_stack_adjust (); op1 = expand_normal (arg1); scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg1)); if (lhs) { target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); if (!is_ubsan) write_complex_part (target, const0_rtx, true); } enum insn_code icode = optab_handler (negv3_optab, mode); if (icode != CODE_FOR_nothing) { class expand_operand ops[3]; rtx_insn *last = get_last_insn (); res = gen_reg_rtx (mode); create_output_operand (&ops[0], res, mode); create_input_operand (&ops[1], op1, mode); create_fixed_operand (&ops[2], do_error); if (maybe_expand_insn (icode, 3, ops)) { last = get_last_insn (); if (profile_status_for_fn (cfun) != PROFILE_ABSENT && JUMP_P (last) && any_condjump_p (last) && !find_reg_note (last, REG_BR_PROB, 0)) add_reg_br_prob_note (last, profile_probability::very_unlikely ()); emit_jump (done_label); } else { delete_insns_since (last); icode = CODE_FOR_nothing; } } if (icode == CODE_FOR_nothing) { /* Compute the operation. On RTL level, the addition is always unsigned. */ res = expand_unop (mode, neg_optab, op1, NULL_RTX, false); /* Compare the operand with the most negative value. */ rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1))); do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); } emit_label (do_error); if (is_ubsan) { /* Expand the ubsan builtin call. */ push_temp_slots (); fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1), arg1, NULL_TREE, datap); expand_normal (fn); pop_temp_slots (); do_pending_stack_adjust (); } else if (lhs) expand_arith_set_overflow (lhs, target); /* We're done. */ emit_label (done_label); if (lhs) { if (is_ubsan) expand_ubsan_result_store (target, res); else expand_arith_overflow_result_store (lhs, target, mode, res); } } /* Return true if UNS WIDEN_MULT_EXPR with result mode WMODE and operand mode MODE can be expanded without using a libcall. */ static bool can_widen_mult_without_libcall (scalar_int_mode wmode, scalar_int_mode mode, rtx op0, rtx op1, bool uns) { if (find_widening_optab_handler (umul_widen_optab, wmode, mode) != CODE_FOR_nothing) return true; if (find_widening_optab_handler (smul_widen_optab, wmode, mode) != CODE_FOR_nothing) return true; rtx_insn *last = get_last_insn (); if (CONSTANT_P (op0)) op0 = convert_modes (wmode, mode, op0, uns); else op0 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 1); if (CONSTANT_P (op1)) op1 = convert_modes (wmode, mode, op1, uns); else op1 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 2); rtx ret = expand_mult (wmode, op0, op1, NULL_RTX, uns, true); delete_insns_since (last); return ret != NULL_RTX; } /* Add mul overflow checking to the statement STMT. */ static void expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1, bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan, tree *datap) { rtx res, op0, op1; tree fn, type; rtx_code_label *done_label, *do_error; rtx target = NULL_RTX; signop sign; enum insn_code icode; done_label = gen_label_rtx (); do_error = gen_label_rtx (); do_pending_stack_adjust (); op0 = expand_normal (arg0); op1 = expand_normal (arg1); scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0)); bool uns = unsr_p; if (lhs) { target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); if (!is_ubsan) write_complex_part (target, const0_rtx, true); } if (is_ubsan) gcc_assert (!unsr_p && !uns0_p && !uns1_p); /* We assume both operands and result have the same precision here (GET_MODE_BITSIZE (mode)), S stands for signed type with that precision, U for unsigned type with that precision, sgn for unsigned most significant bit in that precision. s1 is signed first operand, u1 is unsigned first operand, s2 is signed second operand, u2 is unsigned second operand, sr is signed result, ur is unsigned result and the following rules say how to compute result (which is always result of the operands as if both were unsigned, cast to the right signedness) and how to compute whether operation overflowed. main_ovf (false) stands for jump on signed multiplication overflow or the main algorithm with uns == false. main_ovf (true) stands for jump on unsigned multiplication overflow or the main algorithm with uns == true. s1 * s2 -> sr res = (S) ((U) s1 * (U) s2) ovf = main_ovf (false) u1 * u2 -> ur res = u1 * u2 ovf = main_ovf (true) s1 * u2 -> ur res = (U) s1 * u2 ovf = (s1 < 0 && u2) || main_ovf (true) u1 * u2 -> sr res = (S) (u1 * u2) ovf = res < 0 || main_ovf (true) s1 * u2 -> sr res = (S) ((U) s1 * u2) ovf = (S) u2 >= 0 ? main_ovf (false) : (s1 != 0 && (s1 != -1 || u2 != (U) res)) s1 * s2 -> ur t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1) t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2) res = t1 * t2 ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true) */ if (uns0_p && !uns1_p) { /* Multiplication is commutative, if operand signedness differs, canonicalize to the first operand being signed and second unsigned to simplify following code. */ std::swap (op0, op1); std::swap (arg0, arg1); uns0_p = false; uns1_p = true; } int pos_neg0 = get_range_pos_neg (arg0); int pos_neg1 = get_range_pos_neg (arg1); /* s1 * u2 -> ur */ if (!uns0_p && uns1_p && unsr_p) { switch (pos_neg0) { case 1: /* If s1 is non-negative, just perform normal u1 * u2 -> ur. */ goto do_main; case 2: /* If s1 is negative, avoid the main code, just multiply and signal overflow if op1 is not 0. */ struct separate_ops ops; ops.code = MULT_EXPR; ops.type = TREE_TYPE (arg1); ops.op0 = make_tree (ops.type, op0); ops.op1 = make_tree (ops.type, op1); ops.op2 = NULL_TREE; ops.location = loc; res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; case 3: if (get_min_precision (arg1, UNSIGNED) + get_min_precision (arg0, SIGNED) <= GET_MODE_PRECISION (mode)) { /* If the first operand is sign extended from narrower type, the second operand is zero extended from narrower type and the sum of the two precisions is smaller or equal to the result precision: if the first argument is at runtime non-negative, maximum result will be 0x7e81 or 0x7f..fe80..01 and there will be no overflow, if the first argument is negative and the second argument zero, the result will be 0 and there will be no overflow, if the first argument is negative and the second argument positive, the result when treated as signed will be negative (minimum -0x7f80 or -0x7f..f80..0) there there will be always overflow. So, do res = (U) (s1 * u2) ovf = (S) res < 0 */ struct separate_ops ops; ops.code = MULT_EXPR; ops.type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), 1); ops.op0 = make_tree (ops.type, op0); ops.op1 = make_tree (ops.type, op1); ops.op2 = NULL_TREE; ops.location = loc; res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } rtx_code_label *do_main_label; do_main_label = gen_label_rtx (); do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX, NULL, do_main_label, profile_probability::very_likely ()); do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX, NULL, do_main_label, profile_probability::very_likely ()); expand_arith_set_overflow (lhs, target); emit_label (do_main_label); goto do_main; default: gcc_unreachable (); } } /* u1 * u2 -> sr */ if (uns0_p && uns1_p && !unsr_p) { if ((pos_neg0 | pos_neg1) == 1) { /* If both arguments are zero extended from narrower types, the MSB will be clear on both and so we can pretend it is a normal s1 * s2 -> sr multiplication. */ uns0_p = false; uns1_p = false; } else uns = true; /* Rest of handling of this case after res is computed. */ goto do_main; } /* s1 * u2 -> sr */ if (!uns0_p && uns1_p && !unsr_p) { switch (pos_neg1) { case 1: goto do_main; case 2: /* If (S) u2 is negative (i.e. u2 is larger than maximum of S, avoid the main code, just multiply and signal overflow unless 0 * u2 or -1 * ((U) Smin). */ struct separate_ops ops; ops.code = MULT_EXPR; ops.type = TREE_TYPE (arg1); ops.op0 = make_tree (ops.type, op0); ops.op1 = make_tree (ops.type, op1); ops.op2 = NULL_TREE; ops.location = loc; res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX, NULL, do_error, profile_probability::very_unlikely ()); int prec; prec = GET_MODE_PRECISION (mode); rtx sgn; sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode); do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; case 3: /* Rest of handling of this case after res is computed. */ goto do_main; default: gcc_unreachable (); } } /* s1 * s2 -> ur */ if (!uns0_p && !uns1_p && unsr_p) { rtx tem; switch (pos_neg0 | pos_neg1) { case 1: /* Both operands known to be non-negative. */ goto do_main; case 2: /* Both operands known to be negative. */ op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false); op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false); /* Avoid looking at arg0/arg1 ranges, as we've changed the arguments. */ arg0 = error_mark_node; arg1 = error_mark_node; goto do_main; case 3: if ((pos_neg0 ^ pos_neg1) == 3) { /* If one operand is known to be negative and the other non-negative, this overflows always, unless the non-negative one is 0. Just do normal multiply and set overflow unless one of the operands is 0. */ struct separate_ops ops; ops.code = MULT_EXPR; ops.type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), 1); ops.op0 = make_tree (ops.type, op0); ops.op1 = make_tree (ops.type, op1); ops.op2 = NULL_TREE; ops.location = loc; res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); do_compare_rtx_and_jump (pos_neg0 == 1 ? op0 : op1, const0_rtx, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } if (get_min_precision (arg0, SIGNED) + get_min_precision (arg1, SIGNED) <= GET_MODE_PRECISION (mode)) { /* If both operands are sign extended from narrower types and the sum of the two precisions is smaller or equal to the result precision: if both arguments are at runtime non-negative, maximum result will be 0x3f01 or 0x3f..f0..01 and there will be no overflow, if both arguments are negative, maximum result will be 0x40..00 and there will be no overflow either, if one argument is positive and the other argument negative, the result when treated as signed will be negative and there will be always overflow, and if one argument is zero and the other negative the result will be zero and no overflow. So, do res = (U) (s1 * s2) ovf = (S) res < 0 */ struct separate_ops ops; ops.code = MULT_EXPR; ops.type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), 1); ops.op0 = make_tree (ops.type, op0); ops.op1 = make_tree (ops.type, op1); ops.op2 = NULL_TREE; ops.location = loc; res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } /* The general case, do all the needed comparisons at runtime. */ rtx_code_label *do_main_label, *after_negate_label; rtx rop0, rop1; rop0 = gen_reg_rtx (mode); rop1 = gen_reg_rtx (mode); emit_move_insn (rop0, op0); emit_move_insn (rop1, op1); op0 = rop0; op1 = rop1; do_main_label = gen_label_rtx (); after_negate_label = gen_label_rtx (); tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, NULL, after_negate_label, profile_probability::very_likely ()); /* Both arguments negative here, negate them and continue with normal unsigned overflow checking multiplication. */ emit_move_insn (op0, expand_unop (mode, neg_optab, op0, NULL_RTX, false)); emit_move_insn (op1, expand_unop (mode, neg_optab, op1, NULL_RTX, false)); /* Avoid looking at arg0/arg1 ranges, as we might have changed the arguments. */ arg0 = error_mark_node; arg1 = error_mark_node; emit_jump (do_main_label); emit_label (after_negate_label); tem = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN); do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX, NULL, do_main_label, profile_probability::very_likely ()); /* One argument is negative here, the other positive. This overflows always, unless one of the arguments is 0. But if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1 is, thus we can keep do_main code oring in overflow as is. */ if (pos_neg0 != 2) do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX, NULL, do_main_label, profile_probability::very_unlikely ()); if (pos_neg1 != 2) do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX, NULL, do_main_label, profile_probability::very_unlikely ()); expand_arith_set_overflow (lhs, target); emit_label (do_main_label); goto do_main; default: gcc_unreachable (); } } do_main: type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns); sign = uns ? UNSIGNED : SIGNED; icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode); if (uns && (integer_pow2p (arg0) || integer_pow2p (arg1)) && (optimize_insn_for_speed_p () || icode == CODE_FOR_nothing)) { /* Optimize unsigned multiplication by power of 2 constant using 2 shifts, one for result, one to extract the shifted out bits to see if they are all zero. Don't do this if optimizing for size and we have umulv4_optab, in that case assume multiplication will be shorter. This is heuristics based on the single target that provides umulv4 right now (i?86/x86_64), if further targets add it, this might need to be revisited. Cases where both operands are constant should be folded already during GIMPLE, and cases where one operand is constant but not power of 2 are questionable, either the WIDEN_MULT_EXPR case below can be done without multiplication, just by shifts and adds, or we'd need to divide the result (and hope it actually doesn't really divide nor multiply) and compare the result of the division with the original operand. */ rtx opn0 = op0; rtx opn1 = op1; tree argn0 = arg0; tree argn1 = arg1; if (integer_pow2p (arg0)) { std::swap (opn0, opn1); std::swap (argn0, argn1); } int cnt = tree_log2 (argn1); if (cnt >= 0 && cnt < GET_MODE_PRECISION (mode)) { rtx upper = const0_rtx; res = expand_shift (LSHIFT_EXPR, mode, opn0, cnt, NULL_RTX, uns); if (cnt != 0) upper = expand_shift (RSHIFT_EXPR, mode, opn0, GET_MODE_PRECISION (mode) - cnt, NULL_RTX, uns); do_compare_rtx_and_jump (upper, const0_rtx, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); goto do_error_label; } } if (icode != CODE_FOR_nothing) { class expand_operand ops[4]; rtx_insn *last = get_last_insn (); res = gen_reg_rtx (mode); create_output_operand (&ops[0], res, mode); create_input_operand (&ops[1], op0, mode); create_input_operand (&ops[2], op1, mode); create_fixed_operand (&ops[3], do_error); if (maybe_expand_insn (icode, 4, ops)) { last = get_last_insn (); if (profile_status_for_fn (cfun) != PROFILE_ABSENT && JUMP_P (last) && any_condjump_p (last) && !find_reg_note (last, REG_BR_PROB, 0)) add_reg_br_prob_note (last, profile_probability::very_unlikely ()); emit_jump (done_label); } else { delete_insns_since (last); icode = CODE_FOR_nothing; } } if (icode == CODE_FOR_nothing) { struct separate_ops ops; int prec = GET_MODE_PRECISION (mode); scalar_int_mode hmode, wmode; ops.op0 = make_tree (type, op0); ops.op1 = make_tree (type, op1); ops.op2 = NULL_TREE; ops.location = loc; /* Optimize unsigned overflow check where we don't use the multiplication result, just whether overflow happened. If we can do MULT_HIGHPART_EXPR, that followed by comparison of the result against zero is cheapest. We'll still compute res, but it should be DCEd later. */ use_operand_p use; gimple *use_stmt; if (!is_ubsan && lhs && uns && !(uns0_p && uns1_p && !unsr_p) && can_mult_highpart_p (mode, uns) == 1 && single_imm_use (lhs, &use, &use_stmt) && is_gimple_assign (use_stmt) && gimple_assign_rhs_code (use_stmt) == IMAGPART_EXPR) goto highpart; if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode) && targetm.scalar_mode_supported_p (wmode) && can_widen_mult_without_libcall (wmode, mode, op0, op1, uns)) { twoxwider: ops.code = WIDEN_MULT_EXPR; ops.type = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns); res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL); rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec, NULL_RTX, uns); hipart = convert_modes (mode, wmode, hipart, uns); res = convert_modes (mode, wmode, res, uns); if (uns) /* For the unsigned multiplication, there was overflow if HIPART is non-zero. */ do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); else { /* RES is used more than once, place it in a pseudo. */ res = force_reg (mode, res); rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1, NULL_RTX, 0); /* RES is low half of the double width result, HIPART the high half. There was overflow if HIPART is different from RES < 0 ? -1 : 0. */ do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); } } else if (can_mult_highpart_p (mode, uns) == 1) { highpart: ops.code = MULT_HIGHPART_EXPR; ops.type = type; rtx hipart = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); ops.code = MULT_EXPR; res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); if (uns) /* For the unsigned multiplication, there was overflow if HIPART is non-zero. */ do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); else { rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1, NULL_RTX, 0); /* RES is low half of the double width result, HIPART the high half. There was overflow if HIPART is different from RES < 0 ? -1 : 0. */ do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode, NULL_RTX, NULL, done_label, profile_probability::very_likely ()); } } else if (int_mode_for_size (prec / 2, 1).exists (&hmode) && 2 * GET_MODE_PRECISION (hmode) == prec) { rtx_code_label *large_op0 = gen_label_rtx (); rtx_code_label *small_op0_large_op1 = gen_label_rtx (); rtx_code_label *one_small_one_large = gen_label_rtx (); rtx_code_label *both_ops_large = gen_label_rtx (); rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx (); rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx (); rtx_code_label *do_overflow = gen_label_rtx (); rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx (); unsigned int hprec = GET_MODE_PRECISION (hmode); rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec, NULL_RTX, uns); hipart0 = convert_modes (hmode, mode, hipart0, uns); rtx lopart0 = convert_modes (hmode, mode, op0, uns); rtx signbit0 = const0_rtx; if (!uns) signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1, NULL_RTX, 0); rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec, NULL_RTX, uns); hipart1 = convert_modes (hmode, mode, hipart1, uns); rtx lopart1 = convert_modes (hmode, mode, op1, uns); rtx signbit1 = const0_rtx; if (!uns) signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1, NULL_RTX, 0); res = gen_reg_rtx (mode); /* True if op0 resp. op1 are known to be in the range of halfstype. */ bool op0_small_p = false; bool op1_small_p = false; /* True if op0 resp. op1 are known to have all zeros or all ones in the upper half of bits, but are not known to be op{0,1}_small_p. */ bool op0_medium_p = false; bool op1_medium_p = false; /* -1 if op{0,1} is known to be negative, 0 if it is known to be nonnegative, 1 if unknown. */ int op0_sign = 1; int op1_sign = 1; if (pos_neg0 == 1) op0_sign = 0; else if (pos_neg0 == 2) op0_sign = -1; if (pos_neg1 == 1) op1_sign = 0; else if (pos_neg1 == 2) op1_sign = -1; unsigned int mprec0 = prec; if (arg0 != error_mark_node) mprec0 = get_min_precision (arg0, sign); if (mprec0 <= hprec) op0_small_p = true; else if (!uns && mprec0 <= hprec + 1) op0_medium_p = true; unsigned int mprec1 = prec; if (arg1 != error_mark_node) mprec1 = get_min_precision (arg1, sign); if (mprec1 <= hprec) op1_small_p = true; else if (!uns && mprec1 <= hprec + 1) op1_medium_p = true; int smaller_sign = 1; int larger_sign = 1; if (op0_small_p) { smaller_sign = op0_sign; larger_sign = op1_sign; } else if (op1_small_p) { smaller_sign = op1_sign; larger_sign = op0_sign; } else if (op0_sign == op1_sign) { smaller_sign = op0_sign; larger_sign = op0_sign; } if (!op0_small_p) do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode, NULL_RTX, NULL, large_op0, profile_probability::unlikely ()); if (!op1_small_p) do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode, NULL_RTX, NULL, small_op0_large_op1, profile_probability::unlikely ()); /* If both op0 and op1 are sign (!uns) or zero (uns) extended from hmode to mode, the multiplication will never overflow. We can do just one hmode x hmode => mode widening multiplication. */ tree halfstype = build_nonstandard_integer_type (hprec, uns); ops.op0 = make_tree (halfstype, lopart0); ops.op1 = make_tree (halfstype, lopart1); ops.code = WIDEN_MULT_EXPR; ops.type = type; rtx thisres = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); emit_move_insn (res, thisres); emit_jump (done_label); emit_label (small_op0_large_op1); /* If op0 is sign (!uns) or zero (uns) extended from hmode to mode, but op1 is not, just swap the arguments and handle it as op1 sign/zero extended, op0 not. */ rtx larger = gen_reg_rtx (mode); rtx hipart = gen_reg_rtx (hmode); rtx lopart = gen_reg_rtx (hmode); emit_move_insn (larger, op1); emit_move_insn (hipart, hipart1); emit_move_insn (lopart, lopart0); emit_jump (one_small_one_large); emit_label (large_op0); if (!op1_small_p) do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode, NULL_RTX, NULL, both_ops_large, profile_probability::unlikely ()); /* If op1 is sign (!uns) or zero (uns) extended from hmode to mode, but op0 is not, prepare larger, hipart and lopart pseudos and handle it together with small_op0_large_op1. */ emit_move_insn (larger, op0); emit_move_insn (hipart, hipart0); emit_move_insn (lopart, lopart1); emit_label (one_small_one_large); /* lopart is the low part of the operand that is sign extended to mode, larger is the other operand, hipart is the high part of larger and lopart0 and lopart1 are the low parts of both operands. We perform lopart0 * lopart1 and lopart * hipart widening multiplications. */ tree halfutype = build_nonstandard_integer_type (hprec, 1); ops.op0 = make_tree (halfutype, lopart0); ops.op1 = make_tree (halfutype, lopart1); rtx lo0xlo1 = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); ops.op0 = make_tree (halfutype, lopart); ops.op1 = make_tree (halfutype, hipart); rtx loxhi = gen_reg_rtx (mode); rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); emit_move_insn (loxhi, tem); if (!uns) { /* if (hipart < 0) loxhi -= lopart << (bitsize / 2); */ if (larger_sign == 0) emit_jump (after_hipart_neg); else if (larger_sign != -1) do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode, NULL_RTX, NULL, after_hipart_neg, profile_probability::even ()); tem = convert_modes (mode, hmode, lopart, 1); tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1); tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX, 1, OPTAB_WIDEN); emit_move_insn (loxhi, tem); emit_label (after_hipart_neg); /* if (lopart < 0) loxhi -= larger; */ if (smaller_sign == 0) emit_jump (after_lopart_neg); else if (smaller_sign != -1) do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode, NULL_RTX, NULL, after_lopart_neg, profile_probability::even ()); tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX, 1, OPTAB_WIDEN); emit_move_insn (loxhi, tem); emit_label (after_lopart_neg); } /* loxhi += (uns) lo0xlo1 >> (bitsize / 2); */ tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1); tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX, 1, OPTAB_WIDEN); emit_move_insn (loxhi, tem); /* if (loxhi >> (bitsize / 2) == (hmode) loxhi >> (bitsize / 2 - 1)) (if !uns) if (loxhi >> (bitsize / 2) == 0 (if uns). */ rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec, NULL_RTX, 0); hipartloxhi = convert_modes (hmode, mode, hipartloxhi, 0); rtx signbitloxhi = const0_rtx; if (!uns) signbitloxhi = expand_shift (RSHIFT_EXPR, hmode, convert_modes (hmode, mode, loxhi, 0), hprec - 1, NULL_RTX, 0); do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode, NULL_RTX, NULL, do_overflow, profile_probability::very_unlikely ()); /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1; */ rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec, NULL_RTX, 1); tem = convert_modes (mode, hmode, convert_modes (hmode, mode, lo0xlo1, 1), 1); tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res, 1, OPTAB_WIDEN); if (tem != res) emit_move_insn (res, tem); emit_jump (done_label); emit_label (both_ops_large); /* If both operands are large (not sign (!uns) or zero (uns) extended from hmode), then perform the full multiplication which will be the result of the operation. The only cases which don't overflow are for signed multiplication some cases where both hipart0 and highpart1 are 0 or -1. For unsigned multiplication when high parts are both non-zero this overflows always. */ ops.code = MULT_EXPR; ops.op0 = make_tree (type, op0); ops.op1 = make_tree (type, op1); tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); emit_move_insn (res, tem); if (!uns) { if (!op0_medium_p) { tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx, NULL_RTX, 1, OPTAB_WIDEN); do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode, NULL_RTX, NULL, do_error, profile_probability::very_unlikely ()); } if (!op1_medium_p) { tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx, NULL_RTX, 1, OPTAB_WIDEN); do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode, NULL_RTX, NULL, do_error, profile_probability::very_unlikely ()); } /* At this point hipart{0,1} are both in [-1, 0]. If they are the same, overflow happened if res is non-positive, if they are different, overflow happened if res is positive. */ if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign) emit_jump (hipart_different); else if (op0_sign == 1 || op1_sign == 1) do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode, NULL_RTX, NULL, hipart_different, profile_probability::even ()); do_compare_rtx_and_jump (res, const0_rtx, LE, false, mode, NULL_RTX, NULL, do_error, profile_probability::very_unlikely ()); emit_jump (done_label); emit_label (hipart_different); do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX, NULL, do_error, profile_probability::very_unlikely ()); emit_jump (done_label); } emit_label (do_overflow); /* Overflow, do full multiplication and fallthru into do_error. */ ops.op0 = make_tree (type, op0); ops.op1 = make_tree (type, op1); tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); emit_move_insn (res, tem); } else if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode) && targetm.scalar_mode_supported_p (wmode)) /* Even emitting a libcall is better than not detecting overflow at all. */ goto twoxwider; else { gcc_assert (!is_ubsan); ops.code = MULT_EXPR; ops.type = type; res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); emit_jump (done_label); } } do_error_label: emit_label (do_error); if (is_ubsan) { /* Expand the ubsan builtin call. */ push_temp_slots (); fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0), arg0, arg1, datap); expand_normal (fn); pop_temp_slots (); do_pending_stack_adjust (); } else if (lhs) expand_arith_set_overflow (lhs, target); /* We're done. */ emit_label (done_label); /* u1 * u2 -> sr */ if (uns0_p && uns1_p && !unsr_p) { rtx_code_label *all_done_label = gen_label_rtx (); do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX, NULL, all_done_label, profile_probability::very_likely ()); expand_arith_set_overflow (lhs, target); emit_label (all_done_label); } /* s1 * u2 -> sr */ if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3) { rtx_code_label *all_done_label = gen_label_rtx (); rtx_code_label *set_noovf = gen_label_rtx (); do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX, NULL, all_done_label, profile_probability::very_likely ()); expand_arith_set_overflow (lhs, target); do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX, NULL, set_noovf, profile_probability::very_likely ()); do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX, NULL, all_done_label, profile_probability::very_unlikely ()); do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL, all_done_label, profile_probability::very_unlikely ()); emit_label (set_noovf); write_complex_part (target, const0_rtx, true); emit_label (all_done_label); } if (lhs) { if (is_ubsan) expand_ubsan_result_store (target, res); else expand_arith_overflow_result_store (lhs, target, mode, res); } } /* Expand UBSAN_CHECK_* internal function if it has vector operands. */ static void expand_vector_ubsan_overflow (location_t loc, enum tree_code code, tree lhs, tree arg0, tree arg1) { poly_uint64 cnt = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); rtx_code_label *loop_lab = NULL; rtx cntvar = NULL_RTX; tree cntv = NULL_TREE; tree eltype = TREE_TYPE (TREE_TYPE (arg0)); tree sz = TYPE_SIZE (eltype); tree data = NULL_TREE; tree resv = NULL_TREE; rtx lhsr = NULL_RTX; rtx resvr = NULL_RTX; unsigned HOST_WIDE_INT const_cnt = 0; bool use_loop_p = (!cnt.is_constant (&const_cnt) || const_cnt > 4); if (lhs) { optab op; lhsr = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); if (!VECTOR_MODE_P (GET_MODE (lhsr)) || (op = optab_for_tree_code (code, TREE_TYPE (arg0), optab_default)) == unknown_optab || (optab_handler (op, TYPE_MODE (TREE_TYPE (arg0))) == CODE_FOR_nothing)) { if (MEM_P (lhsr)) resv = make_tree (TREE_TYPE (lhs), lhsr); else { resvr = assign_temp (TREE_TYPE (lhs), 1, 1); resv = make_tree (TREE_TYPE (lhs), resvr); } } } if (use_loop_p) { do_pending_stack_adjust (); loop_lab = gen_label_rtx (); cntvar = gen_reg_rtx (TYPE_MODE (sizetype)); cntv = make_tree (sizetype, cntvar); emit_move_insn (cntvar, const0_rtx); emit_label (loop_lab); } if (TREE_CODE (arg0) != VECTOR_CST) { rtx arg0r = expand_normal (arg0); arg0 = make_tree (TREE_TYPE (arg0), arg0r); } if (TREE_CODE (arg1) != VECTOR_CST) { rtx arg1r = expand_normal (arg1); arg1 = make_tree (TREE_TYPE (arg1), arg1r); } for (unsigned int i = 0; i < (use_loop_p ? 1 : const_cnt); i++) { tree op0, op1, res = NULL_TREE; if (use_loop_p) { tree atype = build_array_type_nelts (eltype, cnt); op0 = uniform_vector_p (arg0); if (op0 == NULL_TREE) { op0 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg0); op0 = build4_loc (loc, ARRAY_REF, eltype, op0, cntv, NULL_TREE, NULL_TREE); } op1 = uniform_vector_p (arg1); if (op1 == NULL_TREE) { op1 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg1); op1 = build4_loc (loc, ARRAY_REF, eltype, op1, cntv, NULL_TREE, NULL_TREE); } if (resv) { res = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, resv); res = build4_loc (loc, ARRAY_REF, eltype, res, cntv, NULL_TREE, NULL_TREE); } } else { tree bitpos = bitsize_int (tree_to_uhwi (sz) * i); op0 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg0, sz, bitpos); op1 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg1, sz, bitpos); if (resv) res = fold_build3_loc (loc, BIT_FIELD_REF, eltype, resv, sz, bitpos); } switch (code) { case PLUS_EXPR: expand_addsub_overflow (loc, PLUS_EXPR, res, op0, op1, false, false, false, true, &data); break; case MINUS_EXPR: if (use_loop_p ? integer_zerop (arg0) : integer_zerop (op0)) expand_neg_overflow (loc, res, op1, true, &data); else expand_addsub_overflow (loc, MINUS_EXPR, res, op0, op1, false, false, false, true, &data); break; case MULT_EXPR: expand_mul_overflow (loc, res, op0, op1, false, false, false, true, &data); break; default: gcc_unreachable (); } } if (use_loop_p) { struct separate_ops ops; ops.code = PLUS_EXPR; ops.type = TREE_TYPE (cntv); ops.op0 = cntv; ops.op1 = build_int_cst (TREE_TYPE (cntv), 1); ops.op2 = NULL_TREE; ops.location = loc; rtx ret = expand_expr_real_2 (&ops, cntvar, TYPE_MODE (sizetype), EXPAND_NORMAL); if (ret != cntvar) emit_move_insn (cntvar, ret); rtx cntrtx = gen_int_mode (cnt, TYPE_MODE (sizetype)); do_compare_rtx_and_jump (cntvar, cntrtx, NE, false, TYPE_MODE (sizetype), NULL_RTX, NULL, loop_lab, profile_probability::very_likely ()); } if (lhs && resv == NULL_TREE) { struct separate_ops ops; ops.code = code; ops.type = TREE_TYPE (arg0); ops.op0 = arg0; ops.op1 = arg1; ops.op2 = NULL_TREE; ops.location = loc; rtx ret = expand_expr_real_2 (&ops, lhsr, TYPE_MODE (TREE_TYPE (arg0)), EXPAND_NORMAL); if (ret != lhsr) emit_move_insn (lhsr, ret); } else if (resvr) emit_move_insn (lhsr, resvr); } /* Expand UBSAN_CHECK_ADD call STMT. */ static void expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt) { location_t loc = gimple_location (stmt); tree lhs = gimple_call_lhs (stmt); tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); if (VECTOR_TYPE_P (TREE_TYPE (arg0))) expand_vector_ubsan_overflow (loc, PLUS_EXPR, lhs, arg0, arg1); else expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1, false, false, false, true, NULL); } /* Expand UBSAN_CHECK_SUB call STMT. */ static void expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt) { location_t loc = gimple_location (stmt); tree lhs = gimple_call_lhs (stmt); tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); if (VECTOR_TYPE_P (TREE_TYPE (arg0))) expand_vector_ubsan_overflow (loc, MINUS_EXPR, lhs, arg0, arg1); else if (integer_zerop (arg0)) expand_neg_overflow (loc, lhs, arg1, true, NULL); else expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1, false, false, false, true, NULL); } /* Expand UBSAN_CHECK_MUL call STMT. */ static void expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt) { location_t loc = gimple_location (stmt); tree lhs = gimple_call_lhs (stmt); tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); if (VECTOR_TYPE_P (TREE_TYPE (arg0))) expand_vector_ubsan_overflow (loc, MULT_EXPR, lhs, arg0, arg1); else expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true, NULL); } /* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion. */ static void expand_arith_overflow (enum tree_code code, gimple *stmt) { tree lhs = gimple_call_lhs (stmt); if (lhs == NULL_TREE) return; tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); tree type = TREE_TYPE (TREE_TYPE (lhs)); int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0)); int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1)); int unsr_p = TYPE_UNSIGNED (type); int prec0 = TYPE_PRECISION (TREE_TYPE (arg0)); int prec1 = TYPE_PRECISION (TREE_TYPE (arg1)); int precres = TYPE_PRECISION (type); location_t loc = gimple_location (stmt); if (!uns0_p && get_range_pos_neg (arg0) == 1) uns0_p = true; if (!uns1_p && get_range_pos_neg (arg1) == 1) uns1_p = true; int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED); prec0 = MIN (prec0, pr); pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED); prec1 = MIN (prec1, pr); /* If uns0_p && uns1_p, precop is minimum needed precision of unsigned type to hold the exact result, otherwise precop is minimum needed precision of signed type to hold the exact result. */ int precop; if (code == MULT_EXPR) precop = prec0 + prec1 + (uns0_p != uns1_p); else { if (uns0_p == uns1_p) precop = MAX (prec0, prec1) + 1; else if (uns0_p) precop = MAX (prec0 + 1, prec1) + 1; else precop = MAX (prec0, prec1 + 1) + 1; } int orig_precres = precres; do { if ((uns0_p && uns1_p) ? ((precop + !unsr_p) <= precres /* u1 - u2 -> ur can overflow, no matter what precision the result has. */ && (code != MINUS_EXPR || !unsr_p)) : (!unsr_p && precop <= precres)) { /* The infinity precision result will always fit into result. */ rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); write_complex_part (target, const0_rtx, true); scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type); struct separate_ops ops; ops.code = code; ops.type = type; ops.op0 = fold_convert_loc (loc, type, arg0); ops.op1 = fold_convert_loc (loc, type, arg1); ops.op2 = NULL_TREE; ops.location = loc; rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); expand_arith_overflow_result_store (lhs, target, mode, tem); return; } /* For operations with low precision, if target doesn't have them, start with precres widening right away, otherwise do it only if the most simple cases can't be used. */ const int min_precision = targetm.min_arithmetic_precision (); if (orig_precres == precres && precres < min_precision) ; else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres && prec1 <= precres) || ((!uns0_p || !uns1_p) && !unsr_p && prec0 + uns0_p <= precres && prec1 + uns1_p <= precres)) { arg0 = fold_convert_loc (loc, type, arg0); arg1 = fold_convert_loc (loc, type, arg1); switch (code) { case MINUS_EXPR: if (integer_zerop (arg0) && !unsr_p) { expand_neg_overflow (loc, lhs, arg1, false, NULL); return; } /* FALLTHRU */ case PLUS_EXPR: expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p, unsr_p, unsr_p, false, NULL); return; case MULT_EXPR: expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p, unsr_p, unsr_p, false, NULL); return; default: gcc_unreachable (); } } /* For sub-word operations, retry with a wider type first. */ if (orig_precres == precres && precop <= BITS_PER_WORD) { int p = MAX (min_precision, precop); scalar_int_mode m = smallest_int_mode_for_size (p); tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m), uns0_p && uns1_p && unsr_p); p = TYPE_PRECISION (optype); if (p > precres) { precres = p; unsr_p = TYPE_UNSIGNED (optype); type = optype; continue; } } if (prec0 <= precres && prec1 <= precres) { tree types[2]; if (unsr_p) { types[0] = build_nonstandard_integer_type (precres, 0); types[1] = type; } else { types[0] = type; types[1] = build_nonstandard_integer_type (precres, 1); } arg0 = fold_convert_loc (loc, types[uns0_p], arg0); arg1 = fold_convert_loc (loc, types[uns1_p], arg1); if (code != MULT_EXPR) expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p, uns0_p, uns1_p, false, NULL); else expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p, uns0_p, uns1_p, false, NULL); return; } /* Retry with a wider type. */ if (orig_precres == precres) { int p = MAX (prec0, prec1); scalar_int_mode m = smallest_int_mode_for_size (p); tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m), uns0_p && uns1_p && unsr_p); p = TYPE_PRECISION (optype); if (p > precres) { precres = p; unsr_p = TYPE_UNSIGNED (optype); type = optype; continue; } } gcc_unreachable (); } while (1); } /* Expand ADD_OVERFLOW STMT. */ static void expand_ADD_OVERFLOW (internal_fn, gcall *stmt) { expand_arith_overflow (PLUS_EXPR, stmt); } /* Expand SUB_OVERFLOW STMT. */ static void expand_SUB_OVERFLOW (internal_fn, gcall *stmt) { expand_arith_overflow (MINUS_EXPR, stmt); } /* Expand MUL_OVERFLOW STMT. */ static void expand_MUL_OVERFLOW (internal_fn, gcall *stmt) { expand_arith_overflow (MULT_EXPR, stmt); } /* This should get folded in tree-vectorizer.c. */ static void expand_LOOP_VECTORIZED (internal_fn, gcall *) { gcc_unreachable (); } /* This should get folded in tree-vectorizer.c. */ static void expand_LOOP_DIST_ALIAS (internal_fn, gcall *) { gcc_unreachable (); } /* Return a memory reference of type TYPE for argument INDEX of STMT. Use argument INDEX + 1 to derive the second (TBAA) operand. */ static tree expand_call_mem_ref (tree type, gcall *stmt, int index) { tree addr = gimple_call_arg (stmt, index); tree alias_ptr_type = TREE_TYPE (gimple_call_arg (stmt, index + 1)); unsigned int align = tree_to_shwi (gimple_call_arg (stmt, index + 1)); if (TYPE_ALIGN (type) != align) type = build_aligned_type (type, align); tree tmp = addr; if (TREE_CODE (tmp) == SSA_NAME) { gimple *def = SSA_NAME_DEF_STMT (tmp); if (gimple_assign_single_p (def)) tmp = gimple_assign_rhs1 (def); } if (TREE_CODE (tmp) == ADDR_EXPR) { tree mem = TREE_OPERAND (tmp, 0); if (TREE_CODE (mem) == TARGET_MEM_REF && types_compatible_p (TREE_TYPE (mem), type)) { tree offset = TMR_OFFSET (mem); if (type != TREE_TYPE (mem) || alias_ptr_type != TREE_TYPE (offset) || !integer_zerop (offset)) { mem = copy_node (mem); TMR_OFFSET (mem) = wide_int_to_tree (alias_ptr_type, wi::to_poly_wide (offset)); TREE_TYPE (mem) = type; } return mem; } } return fold_build2 (MEM_REF, type, addr, build_int_cst (alias_ptr_type, 0)); } /* Expand MASK_LOAD{,_LANES} or LEN_LOAD call STMT using optab OPTAB. */ static void expand_partial_load_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { class expand_operand ops[3]; tree type, lhs, rhs, maskt; rtx mem, target, mask; insn_code icode; maskt = gimple_call_arg (stmt, 2); lhs = gimple_call_lhs (stmt); if (lhs == NULL_TREE) return; type = TREE_TYPE (lhs); rhs = expand_call_mem_ref (type, stmt, 0); if (optab == vec_mask_load_lanes_optab) icode = get_multi_vector_move (type, optab); else if (optab == len_load_optab) icode = direct_optab_handler (optab, TYPE_MODE (type)); else icode = convert_optab_handler (optab, TYPE_MODE (type), TYPE_MODE (TREE_TYPE (maskt))); mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE); gcc_assert (MEM_P (mem)); mask = expand_normal (maskt); target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); create_output_operand (&ops[0], target, TYPE_MODE (type)); create_fixed_operand (&ops[1], mem); if (optab == len_load_optab) create_convert_operand_from (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)), TYPE_UNSIGNED (TREE_TYPE (maskt))); else create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt))); expand_insn (icode, 3, ops); if (!rtx_equal_p (target, ops[0].value)) emit_move_insn (target, ops[0].value); } #define expand_mask_load_optab_fn expand_partial_load_optab_fn #define expand_mask_load_lanes_optab_fn expand_mask_load_optab_fn #define expand_len_load_optab_fn expand_partial_load_optab_fn /* Expand MASK_STORE{,_LANES} or LEN_STORE call STMT using optab OPTAB. */ static void expand_partial_store_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { class expand_operand ops[3]; tree type, lhs, rhs, maskt; rtx mem, reg, mask; insn_code icode; maskt = gimple_call_arg (stmt, 2); rhs = gimple_call_arg (stmt, 3); type = TREE_TYPE (rhs); lhs = expand_call_mem_ref (type, stmt, 0); if (optab == vec_mask_store_lanes_optab) icode = get_multi_vector_move (type, optab); else if (optab == len_store_optab) icode = direct_optab_handler (optab, TYPE_MODE (type)); else icode = convert_optab_handler (optab, TYPE_MODE (type), TYPE_MODE (TREE_TYPE (maskt))); mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); gcc_assert (MEM_P (mem)); mask = expand_normal (maskt); reg = expand_normal (rhs); create_fixed_operand (&ops[0], mem); create_input_operand (&ops[1], reg, TYPE_MODE (type)); if (optab == len_store_optab) create_convert_operand_from (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)), TYPE_UNSIGNED (TREE_TYPE (maskt))); else create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt))); expand_insn (icode, 3, ops); } #define expand_mask_store_optab_fn expand_partial_store_optab_fn #define expand_mask_store_lanes_optab_fn expand_mask_store_optab_fn #define expand_len_store_optab_fn expand_partial_store_optab_fn /* Expand VCOND, VCONDU and VCONDEQ optab internal functions. The expansion of STMT happens based on OPTAB table associated. */ static void expand_vect_cond_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { class expand_operand ops[6]; insn_code icode; tree lhs = gimple_call_lhs (stmt); tree op0a = gimple_call_arg (stmt, 0); tree op0b = gimple_call_arg (stmt, 1); tree op1 = gimple_call_arg (stmt, 2); tree op2 = gimple_call_arg (stmt, 3); enum tree_code tcode = (tree_code) int_cst_value (gimple_call_arg (stmt, 4)); tree vec_cond_type = TREE_TYPE (lhs); tree op_mode = TREE_TYPE (op0a); bool unsignedp = TYPE_UNSIGNED (op_mode); machine_mode mode = TYPE_MODE (vec_cond_type); machine_mode cmp_op_mode = TYPE_MODE (op_mode); icode = convert_optab_handler (optab, mode, cmp_op_mode); rtx comparison = vector_compare_rtx (VOIDmode, tcode, op0a, op0b, unsignedp, icode, 4); rtx rtx_op1 = expand_normal (op1); rtx rtx_op2 = expand_normal (op2); rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], rtx_op1, mode); create_input_operand (&ops[2], rtx_op2, mode); create_fixed_operand (&ops[3], comparison); create_fixed_operand (&ops[4], XEXP (comparison, 0)); create_fixed_operand (&ops[5], XEXP (comparison, 1)); expand_insn (icode, 6, ops); if (!rtx_equal_p (ops[0].value, target)) emit_move_insn (target, ops[0].value); } #define expand_vec_cond_optab_fn expand_vect_cond_optab_fn #define expand_vec_condu_optab_fn expand_vect_cond_optab_fn #define expand_vec_condeq_optab_fn expand_vect_cond_optab_fn /* Expand VCOND_MASK optab internal function. The expansion of STMT happens based on OPTAB table associated. */ static void expand_vect_cond_mask_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { class expand_operand ops[4]; tree lhs = gimple_call_lhs (stmt); tree op0 = gimple_call_arg (stmt, 0); tree op1 = gimple_call_arg (stmt, 1); tree op2 = gimple_call_arg (stmt, 2); tree vec_cond_type = TREE_TYPE (lhs); machine_mode mode = TYPE_MODE (vec_cond_type); machine_mode mask_mode = TYPE_MODE (TREE_TYPE (op0)); enum insn_code icode = convert_optab_handler (optab, mode, mask_mode); rtx mask, rtx_op1, rtx_op2; gcc_assert (icode != CODE_FOR_nothing); mask = expand_normal (op0); rtx_op1 = expand_normal (op1); rtx_op2 = expand_normal (op2); mask = force_reg (mask_mode, mask); rtx_op1 = force_reg (mode, rtx_op1); rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); create_output_operand (&ops[0], target, mode); create_input_operand (&ops[1], rtx_op1, mode); create_input_operand (&ops[2], rtx_op2, mode); create_input_operand (&ops[3], mask, mask_mode); expand_insn (icode, 4, ops); if (!rtx_equal_p (ops[0].value, target)) emit_move_insn (target, ops[0].value); } #define expand_vec_cond_mask_optab_fn expand_vect_cond_mask_optab_fn /* Expand VEC_SET internal functions. */ static void expand_vec_set_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { tree lhs = gimple_call_lhs (stmt); tree op0 = gimple_call_arg (stmt, 0); tree op1 = gimple_call_arg (stmt, 1); tree op2 = gimple_call_arg (stmt, 2); rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx src = expand_normal (op0); machine_mode outermode = TYPE_MODE (TREE_TYPE (op0)); scalar_mode innermode = GET_MODE_INNER (outermode); rtx value = expand_normal (op1); rtx pos = expand_normal (op2); class expand_operand ops[3]; enum insn_code icode = optab_handler (optab, outermode); if (icode != CODE_FOR_nothing) { rtx temp = gen_reg_rtx (outermode); emit_move_insn (temp, src); create_fixed_operand (&ops[0], temp); create_input_operand (&ops[1], value, innermode); create_convert_operand_from (&ops[2], pos, TYPE_MODE (TREE_TYPE (op2)), true); if (maybe_expand_insn (icode, 3, ops)) { emit_move_insn (target, temp); return; } } gcc_unreachable (); } static void expand_ABNORMAL_DISPATCHER (internal_fn, gcall *) { } static void expand_BUILTIN_EXPECT (internal_fn, gcall *stmt) { /* When guessing was done, the hints should be already stripped away. */ gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ()); rtx target; tree lhs = gimple_call_lhs (stmt); if (lhs) target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); else target = const0_rtx; rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL); if (lhs && val != target) emit_move_insn (target, val); } /* IFN_VA_ARG is supposed to be expanded at pass_stdarg. So this dummy function should never be called. */ static void expand_VA_ARG (internal_fn, gcall *) { gcc_unreachable (); } /* IFN_VEC_CONVERT is supposed to be expanded at pass_lower_vector. So this dummy function should never be called. */ static void expand_VEC_CONVERT (internal_fn, gcall *) { gcc_unreachable (); } /* Expand the IFN_UNIQUE function according to its first argument. */ static void expand_UNIQUE (internal_fn, gcall *stmt) { rtx pattern = NULL_RTX; enum ifn_unique_kind kind = (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0)); switch (kind) { default: gcc_unreachable (); case IFN_UNIQUE_UNSPEC: if (targetm.have_unique ()) pattern = targetm.gen_unique (); break; case IFN_UNIQUE_OACC_FORK: case IFN_UNIQUE_OACC_JOIN: if (targetm.have_oacc_fork () && targetm.have_oacc_join ()) { tree lhs = gimple_call_lhs (stmt); rtx target = const0_rtx; if (lhs) target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx data_dep = expand_normal (gimple_call_arg (stmt, 1)); rtx axis = expand_normal (gimple_call_arg (stmt, 2)); if (kind == IFN_UNIQUE_OACC_FORK) pattern = targetm.gen_oacc_fork (target, data_dep, axis); else pattern = targetm.gen_oacc_join (target, data_dep, axis); } else gcc_unreachable (); break; } if (pattern) emit_insn (pattern); } /* The size of an OpenACC compute dimension. */ static void expand_GOACC_DIM_SIZE (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); if (targetm.have_oacc_dim_size ()) { rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX, VOIDmode, EXPAND_NORMAL); emit_insn (targetm.gen_oacc_dim_size (target, dim)); } else emit_move_insn (target, GEN_INT (1)); } /* The position of an OpenACC execution engine along one compute axis. */ static void expand_GOACC_DIM_POS (internal_fn, gcall *stmt) { tree lhs = gimple_call_lhs (stmt); if (!lhs) return; rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); if (targetm.have_oacc_dim_pos ()) { rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX, VOIDmode, EXPAND_NORMAL); emit_insn (targetm.gen_oacc_dim_pos (target, dim)); } else emit_move_insn (target, const0_rtx); } /* This is expanded by oacc_device_lower pass. */ static void expand_GOACC_LOOP (internal_fn, gcall *) { gcc_unreachable (); } /* This is expanded by oacc_device_lower pass. */ static void expand_GOACC_REDUCTION (internal_fn, gcall *) { gcc_unreachable (); } /* This is expanded by oacc_device_lower pass. */ static void expand_GOACC_TILE (internal_fn, gcall *) { gcc_unreachable (); } /* Set errno to EDOM. */ static void expand_SET_EDOM (internal_fn, gcall *) { #ifdef TARGET_EDOM #ifdef GEN_ERRNO_RTX rtx errno_rtx = GEN_ERRNO_RTX; #else rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno")); #endif emit_move_insn (errno_rtx, gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx))); #else gcc_unreachable (); #endif } /* Expand atomic bit test and set. */ static void expand_ATOMIC_BIT_TEST_AND_SET (internal_fn, gcall *call) { expand_ifn_atomic_bit_test_and (call); } /* Expand atomic bit test and complement. */ static void expand_ATOMIC_BIT_TEST_AND_COMPLEMENT (internal_fn, gcall *call) { expand_ifn_atomic_bit_test_and (call); } /* Expand atomic bit test and reset. */ static void expand_ATOMIC_BIT_TEST_AND_RESET (internal_fn, gcall *call) { expand_ifn_atomic_bit_test_and (call); } /* Expand atomic bit test and set. */ static void expand_ATOMIC_COMPARE_EXCHANGE (internal_fn, gcall *call) { expand_ifn_atomic_compare_exchange (call); } /* Expand LAUNDER to assignment, lhs = arg0. */ static void expand_LAUNDER (internal_fn, gcall *call) { tree lhs = gimple_call_lhs (call); if (!lhs) return; expand_assignment (lhs, gimple_call_arg (call, 0), false); } /* Expand {MASK_,}SCATTER_STORE{S,U} call CALL using optab OPTAB. */ static void expand_scatter_store_optab_fn (internal_fn, gcall *stmt, direct_optab optab) { internal_fn ifn = gimple_call_internal_fn (stmt); int rhs_index = internal_fn_stored_value_index (ifn); int mask_index = internal_fn_mask_index (ifn); tree base = gimple_call_arg (stmt, 0); tree offset = gimple_call_arg (stmt, 1); tree scale = gimple_call_arg (stmt, 2); tree rhs = gimple_call_arg (stmt, rhs_index); rtx base_rtx = expand_normal (base); rtx offset_rtx = expand_normal (offset); HOST_WIDE_INT scale_int = tree_to_shwi (scale); rtx rhs_rtx = expand_normal (rhs); class expand_operand ops[6]; int i = 0; create_address_operand (&ops[i++], base_rtx); create_input_operand (&ops[i++], offset_rtx, TYPE_MODE (TREE_TYPE (offset))); create_integer_operand (&ops[i++], TYPE_UNSIGNED (TREE_TYPE (offset))); create_integer_operand (&ops[i++], scale_int); create_input_operand (&ops[i++], rhs_rtx, TYPE_MODE (TREE_TYPE (rhs))); if (mask_index >= 0) { tree mask = gimple_call_arg (stmt, mask_index); rtx mask_rtx = expand_normal (mask); create_input_operand (&ops[i++], mask_rtx, TYPE_MODE (TREE_TYPE (mask))); } insn_code icode = convert_optab_handler (optab, TYPE_MODE (TREE_TYPE (rhs)), TYPE_MODE (TREE_TYPE (offset))); expand_insn (icode, i, ops); } /* Expand {MASK_,}GATHER_LOAD call CALL using optab OPTAB. */ static void expand_gather_load_optab_fn (internal_fn, gcall *stmt, direct_optab optab) { tree lhs = gimple_call_lhs (stmt); tree base = gimple_call_arg (stmt, 0); tree offset = gimple_call_arg (stmt, 1); tree scale = gimple_call_arg (stmt, 2); rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx base_rtx = expand_normal (base); rtx offset_rtx = expand_normal (offset); HOST_WIDE_INT scale_int = tree_to_shwi (scale); int i = 0; class expand_operand ops[6]; create_output_operand (&ops[i++], lhs_rtx, TYPE_MODE (TREE_TYPE (lhs))); create_address_operand (&ops[i++], base_rtx); create_input_operand (&ops[i++], offset_rtx, TYPE_MODE (TREE_TYPE (offset))); create_integer_operand (&ops[i++], TYPE_UNSIGNED (TREE_TYPE (offset))); create_integer_operand (&ops[i++], scale_int); if (optab == mask_gather_load_optab) { tree mask = gimple_call_arg (stmt, 4); rtx mask_rtx = expand_normal (mask); create_input_operand (&ops[i++], mask_rtx, TYPE_MODE (TREE_TYPE (mask))); } insn_code icode = convert_optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)), TYPE_MODE (TREE_TYPE (offset))); expand_insn (icode, i, ops); if (!rtx_equal_p (lhs_rtx, ops[0].value)) emit_move_insn (lhs_rtx, ops[0].value); } /* Helper for expand_DIVMOD. Return true if the sequence starting with INSN contains any call insns or insns with {,U}{DIV,MOD} rtxes. */ static bool contains_call_div_mod (rtx_insn *insn) { subrtx_iterator::array_type array; for (; insn; insn = NEXT_INSN (insn)) if (CALL_P (insn)) return true; else if (INSN_P (insn)) FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST) switch (GET_CODE (*iter)) { case CALL: case DIV: case UDIV: case MOD: case UMOD: return true; default: break; } return false; } /* Expand DIVMOD() using: a) optab handler for udivmod/sdivmod if it is available. b) If optab_handler doesn't exist, generate call to target-specific divmod libfunc. */ static void expand_DIVMOD (internal_fn, gcall *call_stmt) { tree lhs = gimple_call_lhs (call_stmt); tree arg0 = gimple_call_arg (call_stmt, 0); tree arg1 = gimple_call_arg (call_stmt, 1); gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); tree type = TREE_TYPE (TREE_TYPE (lhs)); machine_mode mode = TYPE_MODE (type); bool unsignedp = TYPE_UNSIGNED (type); optab tab = (unsignedp) ? udivmod_optab : sdivmod_optab; rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); rtx quotient = NULL_RTX, remainder = NULL_RTX; rtx_insn *insns = NULL; if (TREE_CODE (arg1) == INTEGER_CST) { /* For DIVMOD by integral constants, there could be efficient code expanded inline e.g. using shifts and plus/minus. Try to expand the division and modulo and if it emits any library calls or any {,U}{DIV,MOD} rtxes throw it away and use a divmod optab or divmod libcall. */ scalar_int_mode int_mode; if (remainder == NULL_RTX && optimize && CONST_INT_P (op1) && !pow2p_hwi (INTVAL (op1)) && is_int_mode (TYPE_MODE (type), &int_mode) && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD && optab_handler (and_optab, word_mode) != CODE_FOR_nothing && optab_handler (add_optab, word_mode) != CODE_FOR_nothing && optimize_insn_for_speed_p ()) { rtx_insn *last = get_last_insn (); remainder = NULL_RTX; quotient = expand_doubleword_divmod (int_mode, op0, op1, &remainder, TYPE_UNSIGNED (type)); if (quotient != NULL_RTX) { if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing) { rtx_insn *move = emit_move_insn (quotient, quotient); set_dst_reg_note (move, REG_EQUAL, gen_rtx_fmt_ee (TYPE_UNSIGNED (type) ? UDIV : DIV, int_mode, copy_rtx (op0), op1), quotient); move = emit_move_insn (remainder, remainder); set_dst_reg_note (move, REG_EQUAL, gen_rtx_fmt_ee (TYPE_UNSIGNED (type) ? UMOD : MOD, int_mode, copy_rtx (op0), op1), quotient); } } else delete_insns_since (last); } if (remainder == NULL_RTX) { struct separate_ops ops; ops.code = TRUNC_DIV_EXPR; ops.type = type; ops.op0 = make_tree (ops.type, op0); ops.op1 = arg1; ops.op2 = NULL_TREE; ops.location = gimple_location (call_stmt); start_sequence (); quotient = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); if (contains_call_div_mod (get_insns ())) quotient = NULL_RTX; else { ops.code = TRUNC_MOD_EXPR; remainder = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL); if (contains_call_div_mod (get_insns ())) remainder = NULL_RTX; } if (remainder) insns = get_insns (); end_sequence (); } } if (remainder) emit_insn (insns); /* Check if optab_handler exists for divmod_optab for given mode. */ else if (optab_handler (tab, mode) != CODE_FOR_nothing) { quotient = gen_reg_rtx (mode); remainder = gen_reg_rtx (mode); expand_twoval_binop (tab, op0, op1, quotient, remainder, unsignedp); } /* Generate call to divmod libfunc if it exists. */ else if (rtx libfunc = optab_libfunc (tab, mode)) targetm.expand_divmod_libfunc (libfunc, mode, op0, op1, "ient, &remainder); else gcc_unreachable (); /* Wrap the return value (quotient, remainder) within COMPLEX_EXPR. */ expand_expr (build2 (COMPLEX_EXPR, TREE_TYPE (lhs), make_tree (TREE_TYPE (arg0), quotient), make_tree (TREE_TYPE (arg1), remainder)), target, VOIDmode, EXPAND_NORMAL); } /* Expand a NOP. */ static void expand_NOP (internal_fn, gcall *) { /* Nothing. But it shouldn't really prevail. */ } /* Coroutines, all should have been processed at this stage. */ static void expand_CO_FRAME (internal_fn, gcall *) { gcc_unreachable (); } static void expand_CO_YIELD (internal_fn, gcall *) { gcc_unreachable (); } static void expand_CO_SUSPN (internal_fn, gcall *) { gcc_unreachable (); } static void expand_CO_ACTOR (internal_fn, gcall *) { gcc_unreachable (); } /* Expand a call to FN using the operands in STMT. FN has a single output operand and NARGS input operands. */ static void expand_direct_optab_fn (internal_fn fn, gcall *stmt, direct_optab optab, unsigned int nargs) { expand_operand *ops = XALLOCAVEC (expand_operand, nargs + 1); tree_pair types = direct_internal_fn_types (fn, stmt); insn_code icode = direct_optab_handler (optab, TYPE_MODE (types.first)); gcc_assert (icode != CODE_FOR_nothing); tree lhs = gimple_call_lhs (stmt); rtx lhs_rtx = NULL_RTX; if (lhs) lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); /* Do not assign directly to a promoted subreg, since there is no guarantee that the instruction will leave the upper bits of the register in the state required by SUBREG_PROMOTED_SIGN. */ rtx dest = lhs_rtx; if (dest && GET_CODE (dest) == SUBREG && SUBREG_PROMOTED_VAR_P (dest)) dest = NULL_RTX; create_output_operand (&ops[0], dest, insn_data[icode].operand[0].mode); for (unsigned int i = 0; i < nargs; ++i) { tree rhs = gimple_call_arg (stmt, i); tree rhs_type = TREE_TYPE (rhs); rtx rhs_rtx = expand_normal (rhs); if (INTEGRAL_TYPE_P (rhs_type)) create_convert_operand_from (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type), TYPE_UNSIGNED (rhs_type)); else create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type)); } expand_insn (icode, nargs + 1, ops); if (lhs_rtx && !rtx_equal_p (lhs_rtx, ops[0].value)) { /* If the return value has an integral type, convert the instruction result to that type. This is useful for things that return an int regardless of the size of the input. If the instruction result is smaller than required, assume that it is signed. If the return value has a nonintegral type, its mode must match the instruction result. */ if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx)) { /* If this is a scalar in a register that is stored in a wider mode than the declared mode, compute the result into its declared mode and then convert to the wider mode. */ gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs))); rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0); convert_move (SUBREG_REG (lhs_rtx), tmp, SUBREG_PROMOTED_SIGN (lhs_rtx)); } else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value)) emit_move_insn (lhs_rtx, ops[0].value); else { gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs))); convert_move (lhs_rtx, ops[0].value, 0); } } } /* Expand WHILE_ULT call STMT using optab OPTAB. */ static void expand_while_optab_fn (internal_fn, gcall *stmt, convert_optab optab) { expand_operand ops[3]; tree rhs_type[2]; tree lhs = gimple_call_lhs (stmt); tree lhs_type = TREE_TYPE (lhs); rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE); create_output_operand (&ops[0], lhs_rtx, TYPE_MODE (lhs_type)); for (unsigned int i = 0; i < 2; ++i) { tree rhs = gimple_call_arg (stmt, i); rhs_type[i] = TREE_TYPE (rhs); rtx rhs_rtx = expand_normal (rhs); create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type[i])); } insn_code icode = convert_optab_handler (optab, TYPE_MODE (rhs_type[0]), TYPE_MODE (lhs_type)); expand_insn (icode, 3, ops); if (!rtx_equal_p (lhs_rtx, ops[0].value)) emit_move_insn (lhs_rtx, ops[0].value); } /* Expanders for optabs that can use expand_direct_optab_fn. */ #define expand_unary_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 1) #define expand_binary_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 2) #define expand_ternary_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 3) #define expand_cond_unary_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 3) #define expand_cond_binary_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 4) #define expand_cond_ternary_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 5) #define expand_fold_extract_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 3) #define expand_fold_left_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 2) #define expand_mask_fold_left_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 3) #define expand_check_ptrs_optab_fn(FN, STMT, OPTAB) \ expand_direct_optab_fn (FN, STMT, OPTAB, 4) /* RETURN_TYPE and ARGS are a return type and argument list that are in principle compatible with FN (which satisfies direct_internal_fn_p). Return the types that should be used to determine whether the target supports FN. */ tree_pair direct_internal_fn_types (internal_fn fn, tree return_type, tree *args) { const direct_internal_fn_info &info = direct_internal_fn (fn); tree type0 = (info.type0 < 0 ? return_type : TREE_TYPE (args[info.type0])); tree type1 = (info.type1 < 0 ? return_type : TREE_TYPE (args[info.type1])); return tree_pair (type0, type1); } /* CALL is a call whose return type and arguments are in principle compatible with FN (which satisfies direct_internal_fn_p). Return the types that should be used to determine whether the target supports FN. */ tree_pair direct_internal_fn_types (internal_fn fn, gcall *call) { const direct_internal_fn_info &info = direct_internal_fn (fn); tree op0 = (info.type0 < 0 ? gimple_call_lhs (call) : gimple_call_arg (call, info.type0)); tree op1 = (info.type1 < 0 ? gimple_call_lhs (call) : gimple_call_arg (call, info.type1)); return tree_pair (TREE_TYPE (op0), TREE_TYPE (op1)); } /* Return true if OPTAB is supported for TYPES (whose modes should be the same) when the optimization type is OPT_TYPE. Used for simple direct optabs. */ static bool direct_optab_supported_p (direct_optab optab, tree_pair types, optimization_type opt_type) { machine_mode mode = TYPE_MODE (types.first); gcc_checking_assert (mode == TYPE_MODE (types.second)); return direct_optab_handler (optab, mode, opt_type) != CODE_FOR_nothing; } /* Return true if OPTAB is supported for TYPES, where the first type is the destination and the second type is the source. Used for convert optabs. */ static bool convert_optab_supported_p (convert_optab optab, tree_pair types, optimization_type opt_type) { return (convert_optab_handler (optab, TYPE_MODE (types.first), TYPE_MODE (types.second), opt_type) != CODE_FOR_nothing); } /* Return true if load/store lanes optab OPTAB is supported for array type TYPES.first when the optimization type is OPT_TYPE. */ static bool multi_vector_optab_supported_p (convert_optab optab, tree_pair types, optimization_type opt_type) { gcc_assert (TREE_CODE (types.first) == ARRAY_TYPE); machine_mode imode = TYPE_MODE (types.first); machine_mode vmode = TYPE_MODE (TREE_TYPE (types.first)); return (convert_optab_handler (optab, imode, vmode, opt_type) != CODE_FOR_nothing); } #define direct_unary_optab_supported_p direct_optab_supported_p #define direct_binary_optab_supported_p direct_optab_supported_p #define direct_ternary_optab_supported_p direct_optab_supported_p #define direct_cond_unary_optab_supported_p direct_optab_supported_p #define direct_cond_binary_optab_supported_p direct_optab_supported_p #define direct_cond_ternary_optab_supported_p direct_optab_supported_p #define direct_mask_load_optab_supported_p convert_optab_supported_p #define direct_load_lanes_optab_supported_p multi_vector_optab_supported_p #define direct_mask_load_lanes_optab_supported_p multi_vector_optab_supported_p #define direct_gather_load_optab_supported_p convert_optab_supported_p #define direct_len_load_optab_supported_p direct_optab_supported_p #define direct_mask_store_optab_supported_p convert_optab_supported_p #define direct_store_lanes_optab_supported_p multi_vector_optab_supported_p #define direct_mask_store_lanes_optab_supported_p multi_vector_optab_supported_p #define direct_vec_cond_mask_optab_supported_p multi_vector_optab_supported_p #define direct_vec_cond_optab_supported_p multi_vector_optab_supported_p #define direct_vec_condu_optab_supported_p multi_vector_optab_supported_p #define direct_vec_condeq_optab_supported_p multi_vector_optab_supported_p #define direct_scatter_store_optab_supported_p convert_optab_supported_p #define direct_len_store_optab_supported_p direct_optab_supported_p #define direct_while_optab_supported_p convert_optab_supported_p #define direct_fold_extract_optab_supported_p direct_optab_supported_p #define direct_fold_left_optab_supported_p direct_optab_supported_p #define direct_mask_fold_left_optab_supported_p direct_optab_supported_p #define direct_check_ptrs_optab_supported_p direct_optab_supported_p #define direct_vec_set_optab_supported_p direct_optab_supported_p /* Return the optab used by internal function FN. */ static optab direct_internal_fn_optab (internal_fn fn, tree_pair types) { switch (fn) { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \ case IFN_##CODE: break; #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \ case IFN_##CODE: return OPTAB##_optab; #define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \ UNSIGNED_OPTAB, TYPE) \ case IFN_##CODE: return (TYPE_UNSIGNED (types.SELECTOR) \ ? UNSIGNED_OPTAB ## _optab \ : SIGNED_OPTAB ## _optab); #include "internal-fn.def" case IFN_LAST: break; } gcc_unreachable (); } /* Return the optab used by internal function FN. */ static optab direct_internal_fn_optab (internal_fn fn) { switch (fn) { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \ case IFN_##CODE: break; #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \ case IFN_##CODE: return OPTAB##_optab; #include "internal-fn.def" case IFN_LAST: break; } gcc_unreachable (); } /* Return true if FN is supported for the types in TYPES when the optimization type is OPT_TYPE. The types are those associated with the "type0" and "type1" fields of FN's direct_internal_fn_info structure. */ bool direct_internal_fn_supported_p (internal_fn fn, tree_pair types, optimization_type opt_type) { switch (fn) { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \ case IFN_##CODE: break; #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \ case IFN_##CODE: \ return direct_##TYPE##_optab_supported_p (OPTAB##_optab, types, \ opt_type); #define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \ UNSIGNED_OPTAB, TYPE) \ case IFN_##CODE: \ { \ optab which_optab = (TYPE_UNSIGNED (types.SELECTOR) \ ? UNSIGNED_OPTAB ## _optab \ : SIGNED_OPTAB ## _optab); \ return direct_##TYPE##_optab_supported_p (which_optab, types, \ opt_type); \ } #include "internal-fn.def" case IFN_LAST: break; } gcc_unreachable (); } /* Return true if FN is supported for type TYPE when the optimization type is OPT_TYPE. The caller knows that the "type0" and "type1" fields of FN's direct_internal_fn_info structure are the same. */ bool direct_internal_fn_supported_p (internal_fn fn, tree type, optimization_type opt_type) { const direct_internal_fn_info &info = direct_internal_fn (fn); gcc_checking_assert (info.type0 == info.type1); return direct_internal_fn_supported_p (fn, tree_pair (type, type), opt_type); } /* Return true if the STMT is supported when the optimization type is OPT_TYPE, given that STMT is a call to a direct internal function. */ bool direct_internal_fn_supported_p (gcall *stmt, optimization_type opt_type) { internal_fn fn = gimple_call_internal_fn (stmt); tree_pair types = direct_internal_fn_types (fn, stmt); return direct_internal_fn_supported_p (fn, types, opt_type); } /* If FN is commutative in two consecutive arguments, return the index of the first, otherwise return -1. */ int first_commutative_argument (internal_fn fn) { switch (fn) { case IFN_FMA: case IFN_FMS: case IFN_FNMA: case IFN_FNMS: case IFN_AVG_FLOOR: case IFN_AVG_CEIL: case IFN_MULHS: case IFN_MULHRS: case IFN_FMIN: case IFN_FMAX: return 0; case IFN_COND_ADD: case IFN_COND_MUL: case IFN_COND_MIN: case IFN_COND_MAX: case IFN_COND_AND: case IFN_COND_IOR: case IFN_COND_XOR: case IFN_COND_FMA: case IFN_COND_FMS: case IFN_COND_FNMA: case IFN_COND_FNMS: return 1; default: return -1; } } /* Return true if IFN_SET_EDOM is supported. */ bool set_edom_supported_p (void) { #ifdef TARGET_EDOM return true; #else return false; #endif } #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \ static void \ expand_##CODE (internal_fn fn, gcall *stmt) \ { \ expand_##TYPE##_optab_fn (fn, stmt, OPTAB##_optab); \ } #define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \ UNSIGNED_OPTAB, TYPE) \ static void \ expand_##CODE (internal_fn fn, gcall *stmt) \ { \ tree_pair types = direct_internal_fn_types (fn, stmt); \ optab which_optab = direct_internal_fn_optab (fn, types); \ expand_##TYPE##_optab_fn (fn, stmt, which_optab); \ } #include "internal-fn.def" /* Routines to expand each internal function, indexed by function number. Each routine has the prototype: expand_ (gcall *stmt) where STMT is the statement that performs the call. */ static void (*const internal_fn_expanders[]) (internal_fn, gcall *) = { #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) expand_##CODE, #include "internal-fn.def" 0 }; /* Invoke T(CODE, IFN) for each conditional function IFN that maps to a tree code CODE. */ #define FOR_EACH_CODE_MAPPING(T) \ T (PLUS_EXPR, IFN_COND_ADD) \ T (MINUS_EXPR, IFN_COND_SUB) \ T (MULT_EXPR, IFN_COND_MUL) \ T (TRUNC_DIV_EXPR, IFN_COND_DIV) \ T (TRUNC_MOD_EXPR, IFN_COND_MOD) \ T (RDIV_EXPR, IFN_COND_RDIV) \ T (MIN_EXPR, IFN_COND_MIN) \ T (MAX_EXPR, IFN_COND_MAX) \ T (BIT_AND_EXPR, IFN_COND_AND) \ T (BIT_IOR_EXPR, IFN_COND_IOR) \ T (BIT_XOR_EXPR, IFN_COND_XOR) \ T (LSHIFT_EXPR, IFN_COND_SHL) \ T (RSHIFT_EXPR, IFN_COND_SHR) /* Return a function that only performs CODE when a certain condition is met and that uses a given fallback value otherwise. For example, if CODE is a binary operation associated with conditional function FN: LHS = FN (COND, A, B, ELSE) is equivalent to the C expression: LHS = COND ? A CODE B : ELSE; operating elementwise if the operands are vectors. Return IFN_LAST if no such function exists. */ internal_fn get_conditional_internal_fn (tree_code code) { switch (code) { #define CASE(CODE, IFN) case CODE: return IFN; FOR_EACH_CODE_MAPPING(CASE) #undef CASE default: return IFN_LAST; } } /* If IFN implements the conditional form of a tree code, return that tree code, otherwise return ERROR_MARK. */ tree_code conditional_internal_fn_code (internal_fn ifn) { switch (ifn) { #define CASE(CODE, IFN) case IFN: return CODE; FOR_EACH_CODE_MAPPING(CASE) #undef CASE default: return ERROR_MARK; } } /* Invoke T(IFN) for each internal function IFN that also has an IFN_COND_* form. */ #define FOR_EACH_COND_FN_PAIR(T) \ T (FMA) \ T (FMS) \ T (FNMA) \ T (FNMS) /* Return a function that only performs internal function FN when a certain condition is met and that uses a given fallback value otherwise. In other words, the returned function FN' is such that: LHS = FN' (COND, A1, ... An, ELSE) is equivalent to the C expression: LHS = COND ? FN (A1, ..., An) : ELSE; operating elementwise if the operands are vectors. Return IFN_LAST if no such function exists. */ internal_fn get_conditional_internal_fn (internal_fn fn) { switch (fn) { #define CASE(NAME) case IFN_##NAME: return IFN_COND_##NAME; FOR_EACH_COND_FN_PAIR(CASE) #undef CASE default: return IFN_LAST; } } /* If IFN implements the conditional form of an unconditional internal function, return that unconditional function, otherwise return IFN_LAST. */ internal_fn get_unconditional_internal_fn (internal_fn ifn) { switch (ifn) { #define CASE(NAME) case IFN_COND_##NAME: return IFN_##NAME; FOR_EACH_COND_FN_PAIR(CASE) #undef CASE default: return IFN_LAST; } } /* Return true if STMT can be interpreted as a conditional tree code operation of the form: LHS = COND ? OP (RHS1, ...) : ELSE; operating elementwise if the operands are vectors. This includes the case of an all-true COND, so that the operation always happens. When returning true, set: - *COND_OUT to the condition COND, or to NULL_TREE if the condition is known to be all-true - *CODE_OUT to the tree code - OPS[I] to operand I of *CODE_OUT - *ELSE_OUT to the fallback value ELSE, or to NULL_TREE if the condition is known to be all true. */ bool can_interpret_as_conditional_op_p (gimple *stmt, tree *cond_out, tree_code *code_out, tree (&ops)[3], tree *else_out) { if (gassign *assign = dyn_cast (stmt)) { *cond_out = NULL_TREE; *code_out = gimple_assign_rhs_code (assign); ops[0] = gimple_assign_rhs1 (assign); ops[1] = gimple_assign_rhs2 (assign); ops[2] = gimple_assign_rhs3 (assign); *else_out = NULL_TREE; return true; } if (gcall *call = dyn_cast (stmt)) if (gimple_call_internal_p (call)) { internal_fn ifn = gimple_call_internal_fn (call); tree_code code = conditional_internal_fn_code (ifn); if (code != ERROR_MARK) { *cond_out = gimple_call_arg (call, 0); *code_out = code; unsigned int nops = gimple_call_num_args (call) - 2; for (unsigned int i = 0; i < 3; ++i) ops[i] = i < nops ? gimple_call_arg (call, i + 1) : NULL_TREE; *else_out = gimple_call_arg (call, nops + 1); if (integer_truep (*cond_out)) { *cond_out = NULL_TREE; *else_out = NULL_TREE; } return true; } } return false; } /* Return true if IFN is some form of load from memory. */ bool internal_load_fn_p (internal_fn fn) { switch (fn) { case IFN_MASK_LOAD: case IFN_LOAD_LANES: case IFN_MASK_LOAD_LANES: case IFN_GATHER_LOAD: case IFN_MASK_GATHER_LOAD: case IFN_LEN_LOAD: return true; default: return false; } } /* Return true if IFN is some form of store to memory. */ bool internal_store_fn_p (internal_fn fn) { switch (fn) { case IFN_MASK_STORE: case IFN_STORE_LANES: case IFN_MASK_STORE_LANES: case IFN_SCATTER_STORE: case IFN_MASK_SCATTER_STORE: case IFN_LEN_STORE: return true; default: return false; } } /* Return true if IFN is some form of gather load or scatter store. */ bool internal_gather_scatter_fn_p (internal_fn fn) { switch (fn) { case IFN_GATHER_LOAD: case IFN_MASK_GATHER_LOAD: case IFN_SCATTER_STORE: case IFN_MASK_SCATTER_STORE: return true; default: return false; } } /* If FN takes a vector mask argument, return the index of that argument, otherwise return -1. */ int internal_fn_mask_index (internal_fn fn) { switch (fn) { case IFN_MASK_LOAD: case IFN_MASK_LOAD_LANES: case IFN_MASK_STORE: case IFN_MASK_STORE_LANES: return 2; case IFN_MASK_GATHER_LOAD: case IFN_MASK_SCATTER_STORE: return 4; default: return (conditional_internal_fn_code (fn) != ERROR_MARK || get_unconditional_internal_fn (fn) != IFN_LAST ? 0 : -1); } } /* If FN takes a value that should be stored to memory, return the index of that argument, otherwise return -1. */ int internal_fn_stored_value_index (internal_fn fn) { switch (fn) { case IFN_MASK_STORE: case IFN_MASK_STORE_LANES: case IFN_SCATTER_STORE: case IFN_MASK_SCATTER_STORE: case IFN_LEN_STORE: return 3; default: return -1; } } /* Return true if the target supports gather load or scatter store function IFN. For loads, VECTOR_TYPE is the vector type of the load result, while for stores it is the vector type of the stored data argument. MEMORY_ELEMENT_TYPE is the type of the memory elements being loaded or stored. OFFSET_VECTOR_TYPE is the vector type that holds the offset from the shared base address of each loaded or stored element. SCALE is the amount by which these offsets should be multiplied *after* they have been extended to address width. */ bool internal_gather_scatter_fn_supported_p (internal_fn ifn, tree vector_type, tree memory_element_type, tree offset_vector_type, int scale) { if (!tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (vector_type)), TYPE_SIZE (memory_element_type))) return false; if (maybe_ne (TYPE_VECTOR_SUBPARTS (vector_type), TYPE_VECTOR_SUBPARTS (offset_vector_type))) return false; optab optab = direct_internal_fn_optab (ifn); insn_code icode = convert_optab_handler (optab, TYPE_MODE (vector_type), TYPE_MODE (offset_vector_type)); int output_ops = internal_load_fn_p (ifn) ? 1 : 0; bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (offset_vector_type)); return (icode != CODE_FOR_nothing && insn_operand_matches (icode, 2 + output_ops, GEN_INT (unsigned_p)) && insn_operand_matches (icode, 3 + output_ops, GEN_INT (scale))); } /* Return true if the target supports IFN_CHECK_{RAW,WAR}_PTRS function IFN for pointers of type TYPE when the accesses have LENGTH bytes and their common byte alignment is ALIGN. */ bool internal_check_ptrs_fn_supported_p (internal_fn ifn, tree type, poly_uint64 length, unsigned int align) { machine_mode mode = TYPE_MODE (type); optab optab = direct_internal_fn_optab (ifn); insn_code icode = direct_optab_handler (optab, mode); if (icode == CODE_FOR_nothing) return false; rtx length_rtx = immed_wide_int_const (length, mode); return (insn_operand_matches (icode, 3, length_rtx) && insn_operand_matches (icode, 4, GEN_INT (align))); } /* Expand STMT as though it were a call to internal function FN. */ void expand_internal_call (internal_fn fn, gcall *stmt) { internal_fn_expanders[fn] (fn, stmt); } /* Expand STMT, which is a call to internal function FN. */ void expand_internal_call (gcall *stmt) { expand_internal_call (gimple_call_internal_fn (stmt), stmt); } /* If TYPE is a vector type, return true if IFN is a direct internal function that is supported for that type. If TYPE is a scalar type, return true if IFN is a direct internal function that is supported for the target's preferred vector version of TYPE. */ bool vectorized_internal_fn_supported_p (internal_fn ifn, tree type) { scalar_mode smode; if (!VECTOR_TYPE_P (type) && is_a (TYPE_MODE (type), &smode)) { machine_mode vmode = targetm.vectorize.preferred_simd_mode (smode); if (VECTOR_MODE_P (vmode)) type = build_vector_type_for_mode (type, vmode); } return (VECTOR_MODE_P (TYPE_MODE (type)) && direct_internal_fn_supported_p (ifn, type, OPTIMIZE_FOR_SPEED)); } void expand_PHI (internal_fn, gcall *) { gcc_unreachable (); }