/* Integrated Register Allocator (IRA) entry point. Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc. Contributed by Vladimir Makarov . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* The integrated register allocator (IRA) is a regional register allocator performing graph coloring on a top-down traversal of nested regions. Graph coloring in a region is based on Chaitin-Briggs algorithm. It is called integrated because register coalescing, register live range splitting, and choosing a better hard register are done on-the-fly during coloring. Register coalescing and choosing a cheaper hard register is done by hard register preferencing during hard register assigning. The live range splitting is a byproduct of the regional register allocation. Major IRA notions are: o *Region* is a part of CFG where graph coloring based on Chaitin-Briggs algorithm is done. IRA can work on any set of nested CFG regions forming a tree. Currently the regions are the entire function for the root region and natural loops for the other regions. Therefore data structure representing a region is called loop_tree_node. o *Allocno class* is a register class used for allocation of given allocno. It means that only hard register of given register class can be assigned to given allocno. In reality, even smaller subset of (*profitable*) hard registers can be assigned. In rare cases, the subset can be even smaller because our modification of Chaitin-Briggs algorithm requires that sets of hard registers can be assigned to allocnos forms a forest, i.e. the sets can be ordered in a way where any previous set is not intersected with given set or is a superset of given set. o *Pressure class* is a register class belonging to a set of register classes containing all of the hard-registers available for register allocation. The set of all pressure classes for a target is defined in the corresponding machine-description file according some criteria. Register pressure is calculated only for pressure classes and it affects some IRA decisions as forming allocation regions. o *Allocno* represents the live range of a pseudo-register in a region. Besides the obvious attributes like the corresponding pseudo-register number, allocno class, conflicting allocnos and conflicting hard-registers, there are a few allocno attributes which are important for understanding the allocation algorithm: - *Live ranges*. This is a list of ranges of *program points* where the allocno lives. Program points represent places where a pseudo can be born or become dead (there are approximately two times more program points than the insns) and they are represented by integers starting with 0. The live ranges are used to find conflicts between allocnos. They also play very important role for the transformation of the IRA internal representation of several regions into a one region representation. The later is used during the reload pass work because each allocno represents all of the corresponding pseudo-registers. - *Hard-register costs*. This is a vector of size equal to the number of available hard-registers of the allocno class. The cost of a callee-clobbered hard-register for an allocno is increased by the cost of save/restore code around the calls through the given allocno's life. If the allocno is a move instruction operand and another operand is a hard-register of the allocno class, the cost of the hard-register is decreased by the move cost. When an allocno is assigned, the hard-register with minimal full cost is used. Initially, a hard-register's full cost is the corresponding value from the hard-register's cost vector. If the allocno is connected by a *copy* (see below) to another allocno which has just received a hard-register, the cost of the hard-register is decreased. Before choosing a hard-register for an allocno, the allocno's current costs of the hard-registers are modified by the conflict hard-register costs of all of the conflicting allocnos which are not assigned yet. - *Conflict hard-register costs*. This is a vector of the same size as the hard-register costs vector. To permit an unassigned allocno to get a better hard-register, IRA uses this vector to calculate the final full cost of the available hard-registers. Conflict hard-register costs of an unassigned allocno are also changed with a change of the hard-register cost of the allocno when a copy involving the allocno is processed as described above. This is done to show other unassigned allocnos that a given allocno prefers some hard-registers in order to remove the move instruction corresponding to the copy. o *Cap*. If a pseudo-register does not live in a region but lives in a nested region, IRA creates a special allocno called a cap in the outer region. A region cap is also created for a subregion cap. o *Copy*. Allocnos can be connected by copies. Copies are used to modify hard-register costs for allocnos during coloring. Such modifications reflects a preference to use the same hard-register for the allocnos connected by copies. Usually copies are created for move insns (in this case it results in register coalescing). But IRA also creates copies for operands of an insn which should be assigned to the same hard-register due to constraints in the machine description (it usually results in removing a move generated in reload to satisfy the constraints) and copies referring to the allocno which is the output operand of an instruction and the allocno which is an input operand dying in the instruction (creation of such copies results in less register shuffling). IRA *does not* create copies between the same register allocnos from different regions because we use another technique for propagating hard-register preference on the borders of regions. Allocnos (including caps) for the upper region in the region tree *accumulate* information important for coloring from allocnos with the same pseudo-register from nested regions. This includes hard-register and memory costs, conflicts with hard-registers, allocno conflicts, allocno copies and more. *Thus, attributes for allocnos in a region have the same values as if the region had no subregions*. It means that attributes for allocnos in the outermost region corresponding to the function have the same values as though the allocation used only one region which is the entire function. It also means that we can look at IRA work as if the first IRA did allocation for all function then it improved the allocation for loops then their subloops and so on. IRA major passes are: o Building IRA internal representation which consists of the following subpasses: * First, IRA builds regions and creates allocnos (file ira-build.c) and initializes most of their attributes. * Then IRA finds an allocno class for each allocno and calculates its initial (non-accumulated) cost of memory and each hard-register of its allocno class (file ira-cost.c). * IRA creates live ranges of each allocno, calulates register pressure for each pressure class in each region, sets up conflict hard registers for each allocno and info about calls the allocno lives through (file ira-lives.c). * IRA removes low register pressure loops from the regions mostly to speed IRA up (file ira-build.c). * IRA propagates accumulated allocno info from lower region allocnos to corresponding upper region allocnos (file ira-build.c). * IRA creates all caps (file ira-build.c). * Having live-ranges of allocnos and their classes, IRA creates conflicting allocnos for each allocno. Conflicting allocnos are stored as a bit vector or array of pointers to the conflicting allocnos whatever is more profitable (file ira-conflicts.c). At this point IRA creates allocno copies. o Coloring. Now IRA has all necessary info to start graph coloring process. It is done in each region on top-down traverse of the region tree (file ira-color.c). There are following subpasses: * Finding profitable hard registers of corresponding allocno class for each allocno. For example, only callee-saved hard registers are frequently profitable for allocnos living through colors. If the profitable hard register set of allocno does not form a tree based on subset relation, we use some approximation to form the tree. This approximation is used to figure out trivial colorability of allocnos. The approximation is a pretty rare case. * Putting allocnos onto the coloring stack. IRA uses Briggs optimistic coloring which is a major improvement over Chaitin's coloring. Therefore IRA does not spill allocnos at this point. There is some freedom in the order of putting allocnos on the stack which can affect the final result of the allocation. IRA uses some heuristics to improve the order. We also use a modification of Chaitin-Briggs algorithm which works for intersected register classes of allocnos. To figure out trivial colorability of allocnos, the mentioned above tree of hard register sets is used. To get an idea how the algorithm works in i386 example, let us consider an allocno to which any general hard register can be assigned. If the allocno conflicts with eight allocnos to which only EAX register can be assigned, given allocno is still trivially colorable because all conflicting allocnos might be assigned only to EAX and all other general hard registers are still free. To get an idea of the used trivial colorability criterion, it is also useful to read article "Graph-Coloring Register Allocation for Irregular Architectures" by Michael D. Smith and Glen Holloway. Major difference between the article approach and approach used in IRA is that Smith's approach takes register classes only from machine description and IRA calculate register classes from intermediate code too (e.g. an explicit usage of hard registers in RTL code for parameter passing can result in creation of additional register classes which contain or exclude the hard registers). That makes IRA approach useful for improving coloring even for architectures with regular register files and in fact some benchmarking shows the improvement for regular class architectures is even bigger than for irregular ones. Another difference is that Smith's approach chooses intersection of classes of all insn operands in which a given pseudo occurs. IRA can use bigger classes if it is still more profitable than memory usage. * Popping the allocnos from the stack and assigning them hard registers. If IRA can not assign a hard register to an allocno and the allocno is coalesced, IRA undoes the coalescing and puts the uncoalesced allocnos onto the stack in the hope that some such allocnos will get a hard register separately. If IRA fails to assign hard register or memory is more profitable for it, IRA spills the allocno. IRA assigns the allocno the hard-register with minimal full allocation cost which reflects the cost of usage of the hard-register for the allocno and cost of usage of the hard-register for allocnos conflicting with given allocno. * Chaitin-Briggs coloring assigns as many pseudos as possible to hard registers. After coloringh we try to improve allocation with cost point of view. We improve the allocation by spilling some allocnos and assigning the freed hard registers to other allocnos if it decreases the overall allocation cost. * After allono assigning in the region, IRA modifies the hard register and memory costs for the corresponding allocnos in the subregions to reflect the cost of possible loads, stores, or moves on the border of the region and its subregions. When default regional allocation algorithm is used (-fira-algorithm=mixed), IRA just propagates the assignment for allocnos if the register pressure in the region for the corresponding pressure class is less than number of available hard registers for given pressure class. o Spill/restore code moving. When IRA performs an allocation by traversing regions in top-down order, it does not know what happens below in the region tree. Therefore, sometimes IRA misses opportunities to perform a better allocation. A simple optimization tries to improve allocation in a region having subregions and containing in another region. If the corresponding allocnos in the subregion are spilled, it spills the region allocno if it is profitable. The optimization implements a simple iterative algorithm performing profitable transformations while they are still possible. It is fast in practice, so there is no real need for a better time complexity algorithm. o Code change. After coloring, two allocnos representing the same pseudo-register outside and inside a region respectively may be assigned to different locations (hard-registers or memory). In this case IRA creates and uses a new pseudo-register inside the region and adds code to move allocno values on the region's borders. This is done during top-down traversal of the regions (file ira-emit.c). In some complicated cases IRA can create a new allocno to move allocno values (e.g. when a swap of values stored in two hard-registers is needed). At this stage, the new allocno is marked as spilled. IRA still creates the pseudo-register and the moves on the region borders even when both allocnos were assigned to the same hard-register. If the reload pass spills a pseudo-register for some reason, the effect will be smaller because another allocno will still be in the hard-register. In most cases, this is better then spilling both allocnos. If reload does not change the allocation for the two pseudo-registers, the trivial move will be removed by post-reload optimizations. IRA does not generate moves for allocnos assigned to the same hard register when the default regional allocation algorithm is used and the register pressure in the region for the corresponding pressure class is less than number of available hard registers for given pressure class. IRA also does some optimizations to remove redundant stores and to reduce code duplication on the region borders. o Flattening internal representation. After changing code, IRA transforms its internal representation for several regions into one region representation (file ira-build.c). This process is called IR flattening. Such process is more complicated than IR rebuilding would be, but is much faster. o After IR flattening, IRA tries to assign hard registers to all spilled allocnos. This is impelemented by a simple and fast priority coloring algorithm (see function ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos created during the code change pass can be assigned to hard registers. o At the end IRA calls the reload pass. The reload pass communicates with IRA through several functions in file ira-color.c to improve its decisions in * sharing stack slots for the spilled pseudos based on IRA info about pseudo-register conflicts. * reassigning hard-registers to all spilled pseudos at the end of each reload iteration. * choosing a better hard-register to spill based on IRA info about pseudo-register live ranges and the register pressure in places where the pseudo-register lives. IRA uses a lot of data representing the target processors. These data are initilized in file ira.c. If function has no loops (or the loops are ignored when -fira-algorithm=CB is used), we have classic Chaitin-Briggs coloring (only instead of separate pass of coalescing, we use hard register preferencing). In such case, IRA works much faster because many things are not made (like IR flattening, the spill/restore optimization, and the code change). Literature is worth to read for better understanding the code: o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to Graph Coloring Register Allocation. o David Callahan, Brian Koblenz. Register allocation via hierarchical graph coloring. o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph Coloring Register Allocation: A Study of the Chaitin-Briggs and Callahan-Koblenz Algorithms. o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global Register Allocation Based on Graph Fusion. o Michael D. Smith and Glenn Holloway. Graph-Coloring Register Allocation for Irregular Architectures o Vladimir Makarov. The Integrated Register Allocator for GCC. o Vladimir Makarov. The top-down register allocator for irregular register file architectures. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "regs.h" #include "rtl.h" #include "tm_p.h" #include "target.h" #include "flags.h" #include "obstack.h" #include "bitmap.h" #include "hard-reg-set.h" #include "basic-block.h" #include "df.h" #include "expr.h" #include "recog.h" #include "params.h" #include "timevar.h" #include "tree-pass.h" #include "output.h" #include "except.h" #include "reload.h" #include "diagnostic-core.h" #include "integrate.h" #include "ggc.h" #include "ira-int.h" #include "dce.h" #include "dbgcnt.h" struct target_ira default_target_ira; struct target_ira_int default_target_ira_int; #if SWITCHABLE_TARGET struct target_ira *this_target_ira = &default_target_ira; struct target_ira_int *this_target_ira_int = &default_target_ira_int; #endif /* A modified value of flag `-fira-verbose' used internally. */ int internal_flag_ira_verbose; /* Dump file of the allocator if it is not NULL. */ FILE *ira_dump_file; /* The number of elements in the following array. */ int ira_spilled_reg_stack_slots_num; /* The following array contains info about spilled pseudo-registers stack slots used in current function so far. */ struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots; /* Correspondingly overall cost of the allocation, overall cost before reload, cost of the allocnos assigned to hard-registers, cost of the allocnos assigned to memory, cost of loads, stores and register move insns generated for pseudo-register live range splitting (see ira-emit.c). */ int ira_overall_cost, overall_cost_before; int ira_reg_cost, ira_mem_cost; int ira_load_cost, ira_store_cost, ira_shuffle_cost; int ira_move_loops_num, ira_additional_jumps_num; /* All registers that can be eliminated. */ HARD_REG_SET eliminable_regset; /* Temporary hard reg set used for a different calculation. */ static HARD_REG_SET temp_hard_regset; /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */ static void setup_reg_mode_hard_regset (void) { int i, m, hard_regno; for (m = 0; m < NUM_MACHINE_MODES; m++) for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++) { CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]); for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--) if (hard_regno + i < FIRST_PSEUDO_REGISTER) SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m], hard_regno + i); } } #define no_unit_alloc_regs \ (this_target_ira_int->x_no_unit_alloc_regs) /* The function sets up the three arrays declared above. */ static void setup_class_hard_regs (void) { int cl, i, hard_regno, n; HARD_REG_SET processed_hard_reg_set; ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER); for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); CLEAR_HARD_REG_SET (processed_hard_reg_set); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { ira_non_ordered_class_hard_regs[cl][i] = -1; ira_class_hard_reg_index[cl][i] = -1; } for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++) { #ifdef REG_ALLOC_ORDER hard_regno = reg_alloc_order[i]; #else hard_regno = i; #endif if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno)) continue; SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno); if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno)) ira_class_hard_reg_index[cl][hard_regno] = -1; else { ira_class_hard_reg_index[cl][hard_regno] = n; ira_class_hard_regs[cl][n++] = hard_regno; } } ira_class_hard_regs_num[cl] = n; for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (temp_hard_regset, i)) ira_non_ordered_class_hard_regs[cl][n++] = i; ira_assert (ira_class_hard_regs_num[cl] == n); } } /* Set up IRA_AVAILABLE_CLASS_REGS. */ static void setup_available_class_regs (void) { int i, j; memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs)); for (i = 0; i < N_REG_CLASSES; i++) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) if (TEST_HARD_REG_BIT (temp_hard_regset, j)) ira_available_class_regs[i]++; } } /* Set up global variables defining info about hard registers for the allocation. These depend on USE_HARD_FRAME_P whose TRUE value means that we can use the hard frame pointer for the allocation. */ static void setup_alloc_regs (bool use_hard_frame_p) { #ifdef ADJUST_REG_ALLOC_ORDER ADJUST_REG_ALLOC_ORDER; #endif COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set); if (! use_hard_frame_p) SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM); setup_class_hard_regs (); setup_available_class_regs (); } #define alloc_reg_class_subclasses \ (this_target_ira_int->x_alloc_reg_class_subclasses) /* Initialize the table of subclasses of each reg class. */ static void setup_reg_subclasses (void) { int i, j; HARD_REG_SET temp_hard_regset2; for (i = 0; i < N_REG_CLASSES; i++) for (j = 0; j < N_REG_CLASSES; j++) alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES; for (i = 0; i < N_REG_CLASSES; i++) { if (i == (int) NO_REGS) continue; COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); if (hard_reg_set_empty_p (temp_hard_regset)) continue; for (j = 0; j < N_REG_CLASSES; j++) if (i != j) { enum reg_class *p; COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]); AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs); if (! hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)) continue; p = &alloc_reg_class_subclasses[j][0]; while (*p != LIM_REG_CLASSES) p++; *p = (enum reg_class) i; } } } /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */ static void setup_class_subset_and_memory_move_costs (void) { int cl, cl2, mode, cost; HARD_REG_SET temp_hard_regset2; for (mode = 0; mode < MAX_MACHINE_MODE; mode++) ira_memory_move_cost[mode][NO_REGS][0] = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX; for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--) { if (cl != (int) NO_REGS) for (mode = 0; mode < MAX_MACHINE_MODE; mode++) { ira_max_memory_move_cost[mode][cl][0] = ira_memory_move_cost[mode][cl][0] = memory_move_cost ((enum machine_mode) mode, (reg_class_t) cl, false); ira_max_memory_move_cost[mode][cl][1] = ira_memory_move_cost[mode][cl][1] = memory_move_cost ((enum machine_mode) mode, (reg_class_t) cl, true); /* Costs for NO_REGS are used in cost calculation on the 1st pass when the preferred register classes are not known yet. In this case we take the best scenario. */ if (ira_memory_move_cost[mode][NO_REGS][0] > ira_memory_move_cost[mode][cl][0]) ira_max_memory_move_cost[mode][NO_REGS][0] = ira_memory_move_cost[mode][NO_REGS][0] = ira_memory_move_cost[mode][cl][0]; if (ira_memory_move_cost[mode][NO_REGS][1] > ira_memory_move_cost[mode][cl][1]) ira_max_memory_move_cost[mode][NO_REGS][1] = ira_memory_move_cost[mode][NO_REGS][1] = ira_memory_move_cost[mode][cl][1]; } } for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--) for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]); AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs); ira_class_subset_p[cl][cl2] = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2); if (! hard_reg_set_empty_p (temp_hard_regset2) && hard_reg_set_subset_p (reg_class_contents[cl2], reg_class_contents[cl])) for (mode = 0; mode < MAX_MACHINE_MODE; mode++) { cost = ira_memory_move_cost[mode][cl2][0]; if (cost > ira_max_memory_move_cost[mode][cl][0]) ira_max_memory_move_cost[mode][cl][0] = cost; cost = ira_memory_move_cost[mode][cl2][1]; if (cost > ira_max_memory_move_cost[mode][cl][1]) ira_max_memory_move_cost[mode][cl][1] = cost; } } for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--) for (mode = 0; mode < MAX_MACHINE_MODE; mode++) { ira_memory_move_cost[mode][cl][0] = ira_max_memory_move_cost[mode][cl][0]; ira_memory_move_cost[mode][cl][1] = ira_max_memory_move_cost[mode][cl][1]; } setup_reg_subclasses (); } /* Define the following macro if allocation through malloc if preferable. */ #define IRA_NO_OBSTACK #ifndef IRA_NO_OBSTACK /* Obstack used for storing all dynamic data (except bitmaps) of the IRA. */ static struct obstack ira_obstack; #endif /* Obstack used for storing all bitmaps of the IRA. */ static struct bitmap_obstack ira_bitmap_obstack; /* Allocate memory of size LEN for IRA data. */ void * ira_allocate (size_t len) { void *res; #ifndef IRA_NO_OBSTACK res = obstack_alloc (&ira_obstack, len); #else res = xmalloc (len); #endif return res; } /* Free memory ADDR allocated for IRA data. */ void ira_free (void *addr ATTRIBUTE_UNUSED) { #ifndef IRA_NO_OBSTACK /* do nothing */ #else free (addr); #endif } /* Allocate and returns bitmap for IRA. */ bitmap ira_allocate_bitmap (void) { return BITMAP_ALLOC (&ira_bitmap_obstack); } /* Free bitmap B allocated for IRA. */ void ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED) { /* do nothing */ } /* Output information about allocation of all allocnos (except for caps) into file F. */ void ira_print_disposition (FILE *f) { int i, n, max_regno; ira_allocno_t a; basic_block bb; fprintf (f, "Disposition:"); max_regno = max_reg_num (); for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) for (a = ira_regno_allocno_map[i]; a != NULL; a = ALLOCNO_NEXT_REGNO_ALLOCNO (a)) { if (n % 4 == 0) fprintf (f, "\n"); n++; fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a)); if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL) fprintf (f, "b%-3d", bb->index); else fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num); if (ALLOCNO_HARD_REGNO (a) >= 0) fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a)); else fprintf (f, " mem"); } fprintf (f, "\n"); } /* Outputs information about allocation of all allocnos into stderr. */ void ira_debug_disposition (void) { ira_print_disposition (stderr); } /* Set up ira_stack_reg_pressure_class which is the biggest pressure register class containing stack registers or NO_REGS if there are no stack registers. To find this class, we iterate through all register pressure classes and choose the first register pressure class containing all the stack registers and having the biggest size. */ static void setup_stack_reg_pressure_class (void) { ira_stack_reg_pressure_class = NO_REGS; #ifdef STACK_REGS { int i, best, size; enum reg_class cl; HARD_REG_SET temp_hard_regset2; CLEAR_HARD_REG_SET (temp_hard_regset); for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) SET_HARD_REG_BIT (temp_hard_regset, i); best = 0; for (i = 0; i < ira_pressure_classes_num; i++) { cl = ira_pressure_classes[i]; COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset); AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]); size = hard_reg_set_size (temp_hard_regset2); if (best < size) { best = size; ira_stack_reg_pressure_class = cl; } } } #endif } /* Find pressure classes which are register classes for which we calculate register pressure in IRA, register pressure sensitive insn scheduling, and register pressure sensitive loop invariant motion. To make register pressure calculation easy, we always use non-intersected register pressure classes. A move of hard registers from one register pressure class is not more expensive than load and store of the hard registers. Most likely an allocno class will be a subset of a register pressure class and in many cases a register pressure class. That makes usage of register pressure classes a good approximation to find a high register pressure. */ static void setup_pressure_classes (void) { int cost, i, n, curr; int cl, cl2; enum reg_class pressure_classes[N_REG_CLASSES]; int m; HARD_REG_SET temp_hard_regset2; bool insert_p; n = 0; for (cl = 0; cl < N_REG_CLASSES; cl++) { if (ira_available_class_regs[cl] == 0) continue; if (ira_available_class_regs[cl] != 1 /* A register class without subclasses may contain a few hard registers and movement between them is costly (e.g. SPARC FPCC registers). We still should consider it as a candidate for a pressure class. */ && alloc_reg_class_subclasses[cl][0] != LIM_REG_CLASSES) { /* Check that the moves between any hard registers of the current class are not more expensive for a legal mode than load/store of the hard registers of the current class. Such class is a potential candidate to be a register pressure class. */ for (m = 0; m < NUM_MACHINE_MODES; m++) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); AND_COMPL_HARD_REG_SET (temp_hard_regset, ira_prohibited_class_mode_regs[cl][m]); if (hard_reg_set_empty_p (temp_hard_regset)) continue; ira_init_register_move_cost_if_necessary ((enum machine_mode) m); cost = ira_register_move_cost[m][cl][cl]; if (cost <= ira_max_memory_move_cost[m][cl][1] || cost <= ira_max_memory_move_cost[m][cl][0]) break; } if (m >= NUM_MACHINE_MODES) continue; } curr = 0; insert_p = true; COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); /* Remove so far added pressure classes which are subset of the current candidate class. Prefer GENERAL_REGS as a pressure register class to another class containing the same allocatable hard registers. We do this because machine dependent cost hooks might give wrong costs for the latter class but always give the right cost for the former class (GENERAL_REGS). */ for (i = 0; i < n; i++) { cl2 = pressure_classes[i]; COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]); AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs); if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2) && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2) || cl2 == (int) GENERAL_REGS)) { pressure_classes[curr++] = (enum reg_class) cl2; insert_p = false; continue; } if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset) && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset) || cl == (int) GENERAL_REGS)) continue; if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)) insert_p = false; pressure_classes[curr++] = (enum reg_class) cl2; } /* If the current candidate is a subset of a so far added pressure class, don't add it to the list of the pressure classes. */ if (insert_p) pressure_classes[curr++] = (enum reg_class) cl; n = curr; } #ifdef ENABLE_IRA_CHECKING { HARD_REG_SET ignore_hard_regs; /* Check pressure classes correctness: here we check that hard registers from all register pressure classes contains all hard registers available for the allocation. */ CLEAR_HARD_REG_SET (temp_hard_regset); CLEAR_HARD_REG_SET (temp_hard_regset2); COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs); for (cl = 0; cl < LIM_REG_CLASSES; cl++) { /* For some targets (like MIPS with MD_REGS), there are some classes with hard registers available for allocation but not able to hold value of any mode. */ for (m = 0; m < NUM_MACHINE_MODES; m++) if (contains_reg_of_mode[cl][m]) break; if (m >= NUM_MACHINE_MODES) { IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]); continue; } for (i = 0; i < n; i++) if ((int) pressure_classes[i] == cl) break; IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]); if (i < n) IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) /* Some targets (like SPARC with ICC reg) have alocatable regs for which no reg class is defined. */ if (REGNO_REG_CLASS (i) == NO_REGS) SET_HARD_REG_BIT (ignore_hard_regs, i); AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs); AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs); ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)); } #endif ira_pressure_classes_num = 0; for (i = 0; i < n; i++) { cl = (int) pressure_classes[i]; ira_reg_pressure_class_p[cl] = true; ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl; } setup_stack_reg_pressure_class (); } /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM, IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM. Target may have many subtargets and not all target hard regiters can be used for allocation, e.g. x86 port in 32-bit mode can not use hard registers introduced in x86-64 like r8-r15). Some classes might have the same allocatable hard registers, e.g. INDEX_REGS and GENERAL_REGS in x86 port in 32-bit mode. To decrease different calculations efforts we introduce allocno classes which contain unique non-empty sets of allocatable hard-registers. Pseudo class cost calculation in ira-costs.c is very expensive. Therefore we are trying to decrease number of classes involved in such calculation. Register classes used in the cost calculation are called important classes. They are allocno classes and other non-empty classes whose allocatable hard register sets are inside of an allocno class hard register set. From the first sight, it looks like that they are just allocno classes. It is not true. In example of x86-port in 32-bit mode, allocno classes will contain GENERAL_REGS but not LEGACY_REGS (because allocatable hard registers are the same for the both classes). The important classes will contain GENERAL_REGS and LEGACY_REGS. It is done because a machine description insn constraint may refers for LEGACY_REGS and code in ira-costs.c is mostly base on investigation of the insn constraints. */ static void setup_allocno_and_important_classes (void) { int i, j, n, cl; bool set_p; HARD_REG_SET temp_hard_regset2; static enum reg_class classes[LIM_REG_CLASSES + 1]; n = 0; /* Collect classes which contain unique sets of allocatable hard registers. Prefer GENERAL_REGS to other classes containing the same set of hard registers. */ for (i = 0; i < LIM_REG_CLASSES; i++) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); for (j = 0; j < n; j++) { cl = classes[j]; COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs); if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)) break; } if (j >= n) classes[n++] = (enum reg_class) i; else if (i == GENERAL_REGS) /* Prefer general regs. For i386 example, it means that we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS (all of them consists of the same available hard registers). */ classes[j] = (enum reg_class) i; } classes[n] = LIM_REG_CLASSES; /* Set up classes which can be used for allocnos as classes conatining non-empty unique sets of allocatable hard registers. */ ira_allocno_classes_num = 0; for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); if (hard_reg_set_empty_p (temp_hard_regset)) continue; ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl; } ira_important_classes_num = 0; /* Add non-allocno classes containing to non-empty set of allocatable hard regs. */ for (cl = 0; cl < N_REG_CLASSES; cl++) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); if (! hard_reg_set_empty_p (temp_hard_regset)) { set_p = false; for (j = 0; j < ira_allocno_classes_num; j++) { COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[ira_allocno_classes[j]]); AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs); if ((enum reg_class) cl == ira_allocno_classes[j]) break; else if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)) set_p = true; } if (set_p && j >= ira_allocno_classes_num) ira_important_classes[ira_important_classes_num++] = (enum reg_class) cl; } } /* Now add allocno classes to the important classes. */ for (j = 0; j < ira_allocno_classes_num; j++) ira_important_classes[ira_important_classes_num++] = ira_allocno_classes[j]; for (cl = 0; cl < N_REG_CLASSES; cl++) { ira_reg_allocno_class_p[cl] = false; ira_reg_pressure_class_p[cl] = false; } for (j = 0; j < ira_allocno_classes_num; j++) ira_reg_allocno_class_p[ira_allocno_classes[j]] = true; setup_pressure_classes (); } /* Setup translation in CLASS_TRANSLATE of all classes into a class given by array CLASSES of length CLASSES_NUM. The function is used make translation any reg class to an allocno class or to an pressure class. This translation is necessary for some calculations when we can use only allocno or pressure classes and such translation represents an approximate representation of all classes. The translation in case when allocatable hard register set of a given class is subset of allocatable hard register set of a class in CLASSES is pretty simple. We use smallest classes from CLASSES containing a given class. If allocatable hard register set of a given class is not a subset of any corresponding set of a class from CLASSES, we use the cheapest (with load/store point of view) class from CLASSES whose set intersects with given class set */ static void setup_class_translate_array (enum reg_class *class_translate, int classes_num, enum reg_class *classes) { int cl, mode; enum reg_class aclass, best_class, *cl_ptr; int i, cost, min_cost, best_cost; for (cl = 0; cl < N_REG_CLASSES; cl++) class_translate[cl] = NO_REGS; for (i = 0; i < classes_num; i++) { aclass = classes[i]; for (cl_ptr = &alloc_reg_class_subclasses[aclass][0]; (cl = *cl_ptr) != LIM_REG_CLASSES; cl_ptr++) if (class_translate[cl] == NO_REGS) class_translate[cl] = aclass; class_translate[aclass] = aclass; } /* For classes which are not fully covered by one of given classes (in other words covered by more one given class), use the cheapest class. */ for (cl = 0; cl < N_REG_CLASSES; cl++) { if (cl == NO_REGS || class_translate[cl] != NO_REGS) continue; best_class = NO_REGS; best_cost = INT_MAX; for (i = 0; i < classes_num; i++) { aclass = classes[i]; COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[aclass]); AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); if (! hard_reg_set_empty_p (temp_hard_regset)) { min_cost = INT_MAX; for (mode = 0; mode < MAX_MACHINE_MODE; mode++) { cost = (ira_memory_move_cost[mode][cl][0] + ira_memory_move_cost[mode][cl][1]); if (min_cost > cost) min_cost = cost; } if (best_class == NO_REGS || best_cost > min_cost) { best_class = aclass; best_cost = min_cost; } } } class_translate[cl] = best_class; } } /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and IRA_PRESSURE_CLASS_TRANSLATE. */ static void setup_class_translate (void) { setup_class_translate_array (ira_allocno_class_translate, ira_allocno_classes_num, ira_allocno_classes); setup_class_translate_array (ira_pressure_class_translate, ira_pressure_classes_num, ira_pressure_classes); } /* Order numbers of allocno classes in original target allocno class array, -1 for non-allocno classes. */ static int allocno_class_order[N_REG_CLASSES]; /* The function used to sort the important classes. */ static int comp_reg_classes_func (const void *v1p, const void *v2p) { enum reg_class cl1 = *(const enum reg_class *) v1p; enum reg_class cl2 = *(const enum reg_class *) v2p; enum reg_class tcl1, tcl2; int diff; tcl1 = ira_allocno_class_translate[cl1]; tcl2 = ira_allocno_class_translate[cl2]; if (tcl1 != NO_REGS && tcl2 != NO_REGS && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0) return diff; return (int) cl1 - (int) cl2; } /* For correct work of function setup_reg_class_relation we need to reorder important classes according to the order of their allocno classes. It places important classes containing the same allocatable hard register set adjacent to each other and allocno class with the allocatable hard register set right after the other important classes with the same set. In example from comments of function setup_allocno_and_important_classes, it places LEGACY_REGS and GENERAL_REGS close to each other and GENERAL_REGS is after LEGACY_REGS. */ static void reorder_important_classes (void) { int i; for (i = 0; i < N_REG_CLASSES; i++) allocno_class_order[i] = -1; for (i = 0; i < ira_allocno_classes_num; i++) allocno_class_order[ira_allocno_classes[i]] = i; qsort (ira_important_classes, ira_important_classes_num, sizeof (enum reg_class), comp_reg_classes_func); for (i = 0; i < ira_important_classes_num; i++) ira_important_class_nums[ira_important_classes[i]] = i; } /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION, IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations, please see corresponding comments in ira-int.h. */ static void setup_reg_class_relations (void) { int i, cl1, cl2, cl3; HARD_REG_SET intersection_set, union_set, temp_set2; bool important_class_p[N_REG_CLASSES]; memset (important_class_p, 0, sizeof (important_class_p)); for (i = 0; i < ira_important_classes_num; i++) important_class_p[ira_important_classes[i]] = true; for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++) { ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES; for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++) { ira_reg_classes_intersect_p[cl1][cl2] = false; ira_reg_class_intersect[cl1][cl2] = NO_REGS; COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]); AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs); if (hard_reg_set_empty_p (temp_hard_regset) && hard_reg_set_empty_p (temp_set2)) { /* The both classes have no allocatable hard registers -- take all class hard registers into account and use reg_class_subunion and reg_class_superunion. */ for (i = 0;; i++) { cl3 = reg_class_subclasses[cl1][i]; if (cl3 == LIM_REG_CLASSES) break; if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2], (enum reg_class) cl3)) ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3; } ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2]; ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2]; continue; } ira_reg_classes_intersect_p[cl1][cl2] = hard_reg_set_intersect_p (temp_hard_regset, temp_set2); if (important_class_p[cl1] && important_class_p[cl2] && hard_reg_set_subset_p (temp_hard_regset, temp_set2)) { /* CL1 and CL2 are important classes and CL1 allocatable hard register set is inside of CL2 allocatable hard registers -- make CL1 a superset of CL2. */ enum reg_class *p; p = &ira_reg_class_super_classes[cl1][0]; while (*p != LIM_REG_CLASSES) p++; *p++ = (enum reg_class) cl2; *p = LIM_REG_CLASSES; } ira_reg_class_subunion[cl1][cl2] = NO_REGS; ira_reg_class_superunion[cl1][cl2] = NO_REGS; COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]); AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]); AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs); COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]); IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]); AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs); for (i = 0; i < ira_important_classes_num; i++) { cl3 = ira_important_classes[i]; COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); if (hard_reg_set_subset_p (temp_hard_regset, intersection_set)) { /* CL3 allocatable hard register set is inside of intersection of allocatable hard register sets of CL1 and CL2. */ COPY_HARD_REG_SET (temp_set2, reg_class_contents[(int) ira_reg_class_intersect[cl1][cl2]]); AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs); if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2) /* If the allocatable hard register sets are the same, prefer GENERAL_REGS or the smallest class for debugging purposes. */ || (hard_reg_set_equal_p (temp_hard_regset, temp_set2) && (cl3 == GENERAL_REGS || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS && hard_reg_set_subset_p (reg_class_contents[cl3], reg_class_contents [(int) ira_reg_class_intersect[cl1][cl2]]))))) ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3; } if (hard_reg_set_subset_p (temp_hard_regset, union_set)) { /* CL3 allocatbale hard register set is inside of union of allocatable hard register sets of CL1 and CL2. */ COPY_HARD_REG_SET (temp_set2, reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]); AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs); if (ira_reg_class_subunion[cl1][cl2] == NO_REGS || (hard_reg_set_subset_p (temp_set2, temp_hard_regset) && (! hard_reg_set_equal_p (temp_set2, temp_hard_regset) || cl3 == GENERAL_REGS /* If the allocatable hard register sets are the same, prefer GENERAL_REGS or the smallest class for debugging purposes. */ || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS && hard_reg_set_subset_p (reg_class_contents[cl3], reg_class_contents [(int) ira_reg_class_subunion[cl1][cl2]]))))) ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3; } if (hard_reg_set_subset_p (union_set, temp_hard_regset)) { /* CL3 allocatable hard register set contains union of allocatable hard register sets of CL1 and CL2. */ COPY_HARD_REG_SET (temp_set2, reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]); AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs); if (ira_reg_class_superunion[cl1][cl2] == NO_REGS || (hard_reg_set_subset_p (temp_hard_regset, temp_set2) && (! hard_reg_set_equal_p (temp_set2, temp_hard_regset) || cl3 == GENERAL_REGS /* If the allocatable hard register sets are the same, prefer GENERAL_REGS or the smallest class for debugging purposes. */ || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS && hard_reg_set_subset_p (reg_class_contents[cl3], reg_class_contents [(int) ira_reg_class_superunion[cl1][cl2]]))))) ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3; } } } } } /* Output all possible allocno classes and the translation map into file F. */ static void print_classes (FILE *f, bool pressure_p) { int classes_num = (pressure_p ? ira_pressure_classes_num : ira_allocno_classes_num); enum reg_class *classes = (pressure_p ? ira_pressure_classes : ira_allocno_classes); enum reg_class *class_translate = (pressure_p ? ira_pressure_class_translate : ira_allocno_class_translate); static const char *const reg_class_names[] = REG_CLASS_NAMES; int i; fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno"); for (i = 0; i < classes_num; i++) fprintf (f, " %s", reg_class_names[classes[i]]); fprintf (f, "\nClass translation:\n"); for (i = 0; i < N_REG_CLASSES; i++) fprintf (f, " %s -> %s\n", reg_class_names[i], reg_class_names[class_translate[i]]); } /* Output all possible allocno and translation classes and the translation maps into stderr. */ void ira_debug_allocno_classes (void) { print_classes (stderr, false); print_classes (stderr, true); } /* Set up different arrays concerning class subsets, allocno and important classes. */ static void find_reg_classes (void) { setup_allocno_and_important_classes (); setup_class_translate (); reorder_important_classes (); setup_reg_class_relations (); } /* Set up the array above. */ static void setup_hard_regno_aclass (void) { int i; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { #if 1 ira_hard_regno_allocno_class[i] = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i) ? NO_REGS : ira_allocno_class_translate[REGNO_REG_CLASS (i)]); #else int j; enum reg_class cl; ira_hard_regno_allocno_class[i] = NO_REGS; for (j = 0; j < ira_allocno_classes_num; j++) { cl = ira_allocno_classes[j]; if (ira_class_hard_reg_index[cl][i] >= 0) { ira_hard_regno_allocno_class[i] = cl; break; } } #endif } } /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */ static void setup_reg_class_nregs (void) { int i, cl, cl2, m; for (m = 0; m < MAX_MACHINE_MODE; m++) { for (cl = 0; cl < N_REG_CLASSES; cl++) ira_reg_class_max_nregs[cl][m] = ira_reg_class_min_nregs[cl][m] = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m); for (cl = 0; cl < N_REG_CLASSES; cl++) for (i = 0; (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++) if (ira_reg_class_min_nregs[cl2][m] < ira_reg_class_min_nregs[cl][m]) ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m]; } } /* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */ static void setup_prohibited_class_mode_regs (void) { int j, k, hard_regno, cl; for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--) { for (j = 0; j < NUM_MACHINE_MODES; j++) { CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]); for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--) { hard_regno = ira_class_hard_regs[cl][k]; if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j)) SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno); } } } } /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers spanning from one register pressure class to another one. It is called after defining the pressure classes. */ static void clarify_prohibited_class_mode_regs (void) { int j, k, hard_regno, cl, pclass, nregs; for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--) for (j = 0; j < NUM_MACHINE_MODES; j++) for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--) { hard_regno = ira_class_hard_regs[cl][k]; if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno)) continue; nregs = hard_regno_nregs[hard_regno][j]; if (hard_regno + nregs > FIRST_PSEUDO_REGISTER) { SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno); continue; } pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)]; for (nregs-- ;nregs >= 0; nregs--) if (((enum reg_class) pclass != ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno + nregs)])) { SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno); break; } } } /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST, IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet. */ void ira_init_register_move_cost (enum machine_mode mode) { int cl1, cl2, cl3; ira_assert (ira_register_move_cost[mode] == NULL && ira_max_register_move_cost[mode] == NULL && ira_may_move_in_cost[mode] == NULL && ira_may_move_out_cost[mode] == NULL && ira_max_may_move_in_cost[mode] == NULL && ira_max_may_move_out_cost[mode] == NULL); if (move_cost[mode] == NULL) init_move_cost (mode); ira_register_move_cost[mode] = move_cost[mode]; /* Don't use ira_allocate because the tables exist out of scope of a IRA call. */ ira_max_register_move_cost[mode] = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES); memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode], sizeof (move_table) * N_REG_CLASSES); for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++) { /* Some subclasses are to small to have enough registers to hold a value of MODE. Just ignore them. */ if (ira_reg_class_max_nregs[cl1][mode] > ira_available_class_regs[cl1]) continue; COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); if (hard_reg_set_empty_p (temp_hard_regset)) continue; for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++) if (hard_reg_set_subset_p (reg_class_contents[cl1], reg_class_contents[cl2])) for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++) { if (ira_max_register_move_cost[mode][cl2][cl3] < ira_register_move_cost[mode][cl1][cl3]) ira_max_register_move_cost[mode][cl2][cl3] = ira_register_move_cost[mode][cl1][cl3]; if (ira_max_register_move_cost[mode][cl3][cl2] < ira_register_move_cost[mode][cl3][cl1]) ira_max_register_move_cost[mode][cl3][cl2] = ira_register_move_cost[mode][cl3][cl1]; } } ira_may_move_in_cost[mode] = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES); memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode], sizeof (move_table) * N_REG_CLASSES); ira_may_move_out_cost[mode] = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES); memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode], sizeof (move_table) * N_REG_CLASSES); ira_max_may_move_in_cost[mode] = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES); memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode], sizeof (move_table) * N_REG_CLASSES); ira_max_may_move_out_cost[mode] = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES); memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode], sizeof (move_table) * N_REG_CLASSES); for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++) { for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++) { COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]); AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs); if (hard_reg_set_empty_p (temp_hard_regset)) continue; if (ira_class_subset_p[cl1][cl2]) ira_may_move_in_cost[mode][cl1][cl2] = 0; if (ira_class_subset_p[cl2][cl1]) ira_may_move_out_cost[mode][cl1][cl2] = 0; if (ira_class_subset_p[cl1][cl2]) ira_max_may_move_in_cost[mode][cl1][cl2] = 0; if (ira_class_subset_p[cl2][cl1]) ira_max_may_move_out_cost[mode][cl1][cl2] = 0; ira_register_move_cost[mode][cl1][cl2] = ira_max_register_move_cost[mode][cl1][cl2]; ira_may_move_in_cost[mode][cl1][cl2] = ira_max_may_move_in_cost[mode][cl1][cl2]; ira_may_move_out_cost[mode][cl1][cl2] = ira_max_may_move_out_cost[mode][cl1][cl2]; } } } /* This is called once during compiler work. It sets up different arrays whose values don't depend on the compiled function. */ void ira_init_once (void) { int mode; for (mode = 0; mode < MAX_MACHINE_MODE; mode++) { ira_register_move_cost[mode] = NULL; ira_max_register_move_cost[mode] = NULL; ira_may_move_in_cost[mode] = NULL; ira_may_move_out_cost[mode] = NULL; ira_max_may_move_in_cost[mode] = NULL; ira_max_may_move_out_cost[mode] = NULL; } ira_init_costs_once (); } /* Free ira_max_register_move_cost, ira_may_move_in_cost, ira_may_move_out_cost, ira_max_may_move_in_cost, and ira_max_may_move_out_cost for each mode. */ static void free_register_move_costs (void) { int mode; for (mode = 0; mode < MAX_MACHINE_MODE; mode++) { free (ira_max_register_move_cost[mode]); free (ira_may_move_in_cost[mode]); free (ira_may_move_out_cost[mode]); free (ira_max_may_move_in_cost[mode]); free (ira_max_may_move_out_cost[mode]); ira_register_move_cost[mode] = NULL; ira_max_register_move_cost[mode] = NULL; ira_may_move_in_cost[mode] = NULL; ira_may_move_out_cost[mode] = NULL; ira_max_may_move_in_cost[mode] = NULL; ira_max_may_move_out_cost[mode] = NULL; } } /* This is called every time when register related information is changed. */ void ira_init (void) { free_register_move_costs (); setup_reg_mode_hard_regset (); setup_alloc_regs (flag_omit_frame_pointer != 0); setup_class_subset_and_memory_move_costs (); setup_reg_class_nregs (); setup_prohibited_class_mode_regs (); find_reg_classes (); clarify_prohibited_class_mode_regs (); setup_hard_regno_aclass (); ira_init_costs (); } /* Function called once at the end of compiler work. */ void ira_finish_once (void) { ira_finish_costs_once (); free_register_move_costs (); } #define ira_prohibited_mode_move_regs_initialized_p \ (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p) /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */ static void setup_prohibited_mode_move_regs (void) { int i, j; rtx test_reg1, test_reg2, move_pat, move_insn; if (ira_prohibited_mode_move_regs_initialized_p) return; ira_prohibited_mode_move_regs_initialized_p = true; test_reg1 = gen_rtx_REG (VOIDmode, 0); test_reg2 = gen_rtx_REG (VOIDmode, 0); move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2); move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0); for (i = 0; i < NUM_MACHINE_MODES; i++) { SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]); for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) { if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i)) continue; SET_REGNO_RAW (test_reg1, j); PUT_MODE (test_reg1, (enum machine_mode) i); SET_REGNO_RAW (test_reg2, j); PUT_MODE (test_reg2, (enum machine_mode) i); INSN_CODE (move_insn) = -1; recog_memoized (move_insn); if (INSN_CODE (move_insn) < 0) continue; extract_insn (move_insn); if (! constrain_operands (1)) continue; CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j); } } } /* Return nonzero if REGNO is a particularly bad choice for reloading X. */ static bool ira_bad_reload_regno_1 (int regno, rtx x) { int x_regno, n, i; ira_allocno_t a; enum reg_class pref; /* We only deal with pseudo regs. */ if (! x || GET_CODE (x) != REG) return false; x_regno = REGNO (x); if (x_regno < FIRST_PSEUDO_REGISTER) return false; /* If the pseudo prefers REGNO explicitly, then do not consider REGNO a bad spill choice. */ pref = reg_preferred_class (x_regno); if (reg_class_size[pref] == 1) return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno); /* If the pseudo conflicts with REGNO, then we consider REGNO a poor choice for a reload regno. */ a = ira_regno_allocno_map[x_regno]; n = ALLOCNO_NUM_OBJECTS (a); for (i = 0; i < n; i++) { ira_object_t obj = ALLOCNO_OBJECT (a, i); if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno)) return true; } return false; } /* Return nonzero if REGNO is a particularly bad choice for reloading IN or OUT. */ bool ira_bad_reload_regno (int regno, rtx in, rtx out) { return (ira_bad_reload_regno_1 (regno, in) || ira_bad_reload_regno_1 (regno, out)); } /* Return TRUE if *LOC contains an asm. */ static int insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED) { if ( !*loc) return FALSE; if (GET_CODE (*loc) == ASM_OPERANDS) return TRUE; return FALSE; } /* Return TRUE if INSN contains an ASM. */ static bool insn_contains_asm (rtx insn) { return for_each_rtx (&insn, insn_contains_asm_1, NULL); } /* Add register clobbers from asm statements. */ static void compute_regs_asm_clobbered (void) { basic_block bb; FOR_EACH_BB (bb) { rtx insn; FOR_BB_INSNS_REVERSE (bb, insn) { df_ref *def_rec; if (insn_contains_asm (insn)) for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++) { df_ref def = *def_rec; unsigned int dregno = DF_REF_REGNO (def); if (HARD_REGISTER_NUM_P (dregno)) add_to_hard_reg_set (&crtl->asm_clobbers, GET_MODE (DF_REF_REAL_REG (def)), dregno); } } } } /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */ void ira_setup_eliminable_regset (void) { #ifdef ELIMINABLE_REGS int i; static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS; #endif /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore sp for alloca. So we can't eliminate the frame pointer in that case. At some point, we should improve this by emitting the sp-adjusting insns for this case. */ int need_fp = (! flag_omit_frame_pointer || (cfun->calls_alloca && EXIT_IGNORE_STACK) /* We need the frame pointer to catch stack overflow exceptions if the stack pointer is moving. */ || (flag_stack_check && STACK_CHECK_MOVING_SP) || crtl->accesses_prior_frames || crtl->stack_realign_needed || targetm.frame_pointer_required ()); frame_pointer_needed = need_fp; COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs); CLEAR_HARD_REG_SET (eliminable_regset); compute_regs_asm_clobbered (); /* Build the regset of all eliminable registers and show we can't use those that we already know won't be eliminated. */ #ifdef ELIMINABLE_REGS for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++) { bool cannot_elim = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to) || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp)); if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from)) { SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from); if (cannot_elim) SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from); } else if (cannot_elim) error ("%s cannot be used in asm here", reg_names[eliminables[i].from]); else df_set_regs_ever_live (eliminables[i].from, true); } #if !HARD_FRAME_POINTER_IS_FRAME_POINTER if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM)) { SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM); if (need_fp) SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM); } else if (need_fp) error ("%s cannot be used in asm here", reg_names[HARD_FRAME_POINTER_REGNUM]); else df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true); #endif #else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM)) { SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM); if (need_fp) SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM); } else if (need_fp) error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]); else df_set_regs_ever_live (FRAME_POINTER_REGNUM, true); #endif } /* The length of the following two arrays. */ int ira_reg_equiv_len; /* The element value is TRUE if the corresponding regno value is invariant. */ bool *ira_reg_equiv_invariant_p; /* The element value is equiv constant of given pseudo-register or NULL_RTX. */ rtx *ira_reg_equiv_const; /* Set up the two arrays declared above. */ static void find_reg_equiv_invariant_const (void) { unsigned int i; bool invariant_p; rtx list, insn, note, constant, x; for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++) { constant = NULL_RTX; invariant_p = false; for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1)) { insn = XEXP (list, 0); note = find_reg_note (insn, REG_EQUIV, NULL_RTX); if (note == NULL_RTX) continue; x = XEXP (note, 0); if (! CONSTANT_P (x) || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x)) { /* It can happen that a REG_EQUIV note contains a MEM that is not a legitimate memory operand. As later stages of the reload assume that all addresses found in the reg_equiv_* arrays were originally legitimate, we ignore such REG_EQUIV notes. */ if (memory_operand (x, VOIDmode)) invariant_p = MEM_READONLY_P (x); else if (function_invariant_p (x)) { if (GET_CODE (x) == PLUS || x == frame_pointer_rtx || x == arg_pointer_rtx) invariant_p = true; else constant = x; } } } ira_reg_equiv_invariant_p[i] = invariant_p; ira_reg_equiv_const[i] = constant; } } /* Vector of substitutions of register numbers, used to map pseudo regs into hardware regs. This is set up as a result of register allocation. Element N is the hard reg assigned to pseudo reg N, or is -1 if no hard reg was assigned. If N is a hard reg number, element N is N. */ short *reg_renumber; /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from the allocation found by IRA. */ static void setup_reg_renumber (void) { int regno, hard_regno; ira_allocno_t a; ira_allocno_iterator ai; caller_save_needed = 0; FOR_EACH_ALLOCNO (a, ai) { /* There are no caps at this point. */ ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL); if (! ALLOCNO_ASSIGNED_P (a)) /* It can happen if A is not referenced but partially anticipated somewhere in a region. */ ALLOCNO_ASSIGNED_P (a) = true; ira_free_allocno_updated_costs (a); hard_regno = ALLOCNO_HARD_REGNO (a); regno = ALLOCNO_REGNO (a); reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno); if (hard_regno >= 0) { int i, nwords; enum reg_class pclass; ira_object_t obj; pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)]; nwords = ALLOCNO_NUM_OBJECTS (a); for (i = 0; i < nwords; i++) { obj = ALLOCNO_OBJECT (a, i); IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), reg_class_contents[pclass]); } if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a), call_used_reg_set)) { ira_assert (!optimize || flag_caller_saves || regno >= ira_reg_equiv_len || ira_reg_equiv_const[regno] || ira_reg_equiv_invariant_p[regno]); caller_save_needed = 1; } } } } /* Set up allocno assignment flags for further allocation improvements. */ static void setup_allocno_assignment_flags (void) { int hard_regno; ira_allocno_t a; ira_allocno_iterator ai; FOR_EACH_ALLOCNO (a, ai) { if (! ALLOCNO_ASSIGNED_P (a)) /* It can happen if A is not referenced but partially anticipated somewhere in a region. */ ira_free_allocno_updated_costs (a); hard_regno = ALLOCNO_HARD_REGNO (a); /* Don't assign hard registers to allocnos which are destination of removed store at the end of loop. It has no sense to keep the same value in different hard registers. It is also impossible to assign hard registers correctly to such allocnos because the cost info and info about intersected calls are incorrect for them. */ ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p || (ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a)) < 0); ira_assert (hard_regno < 0 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a), reg_class_contents[ALLOCNO_CLASS (a)])); } } /* Evaluate overall allocation cost and the costs for using hard registers and memory for allocnos. */ static void calculate_allocation_cost (void) { int hard_regno, cost; ira_allocno_t a; ira_allocno_iterator ai; ira_overall_cost = ira_reg_cost = ira_mem_cost = 0; FOR_EACH_ALLOCNO (a, ai) { hard_regno = ALLOCNO_HARD_REGNO (a); ira_assert (hard_regno < 0 || (ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a), reg_class_contents[ALLOCNO_CLASS (a)]))); if (hard_regno < 0) { cost = ALLOCNO_MEMORY_COST (a); ira_mem_cost += cost; } else if (ALLOCNO_HARD_REG_COSTS (a) != NULL) { cost = (ALLOCNO_HARD_REG_COSTS (a) [ira_class_hard_reg_index [ALLOCNO_CLASS (a)][hard_regno]]); ira_reg_cost += cost; } else { cost = ALLOCNO_CLASS_COST (a); ira_reg_cost += cost; } ira_overall_cost += cost; } if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL) { fprintf (ira_dump_file, "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n", ira_overall_cost, ira_reg_cost, ira_mem_cost, ira_load_cost, ira_store_cost, ira_shuffle_cost); fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n", ira_move_loops_num, ira_additional_jumps_num); } } #ifdef ENABLE_IRA_CHECKING /* Check the correctness of the allocation. We do need this because of complicated code to transform more one region internal representation into one region representation. */ static void check_allocation (void) { ira_allocno_t a; int hard_regno, nregs, conflict_nregs; ira_allocno_iterator ai; FOR_EACH_ALLOCNO (a, ai) { int n = ALLOCNO_NUM_OBJECTS (a); int i; if (ALLOCNO_CAP_MEMBER (a) != NULL || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0) continue; nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)]; if (nregs == 1) /* We allocated a single hard register. */ n = 1; else if (n > 1) /* We allocated multiple hard registers, and we will test conflicts in a granularity of single hard regs. */ nregs = 1; for (i = 0; i < n; i++) { ira_object_t obj = ALLOCNO_OBJECT (a, i); ira_object_t conflict_obj; ira_object_conflict_iterator oci; int this_regno = hard_regno; if (n > 1) { if (REG_WORDS_BIG_ENDIAN) this_regno += n - i - 1; else this_regno += i; } FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci) { ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj); int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a); if (conflict_hard_regno < 0) continue; conflict_nregs = (hard_regno_nregs [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]); if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a)) { if (REG_WORDS_BIG_ENDIAN) conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a) - OBJECT_SUBWORD (conflict_obj) - 1); else conflict_hard_regno += OBJECT_SUBWORD (conflict_obj); conflict_nregs = 1; } if ((conflict_hard_regno <= this_regno && this_regno < conflict_hard_regno + conflict_nregs) || (this_regno <= conflict_hard_regno && conflict_hard_regno < this_regno + nregs)) { fprintf (stderr, "bad allocation for %d and %d\n", ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a)); gcc_unreachable (); } } } } } #endif /* Fix values of array REG_EQUIV_INIT after live range splitting done by IRA. */ static void fix_reg_equiv_init (void) { unsigned int max_regno = max_reg_num (); int i, new_regno, max; rtx x, prev, next, insn, set; if (VEC_length (reg_equivs_t, reg_equivs) < max_regno) { max = VEC_length (reg_equivs_t, reg_equivs); grow_reg_equivs (); for (i = FIRST_PSEUDO_REGISTER; i < max; i++) for (prev = NULL_RTX, x = reg_equiv_init (i); x != NULL_RTX; x = next) { next = XEXP (x, 1); insn = XEXP (x, 0); set = single_set (insn); ira_assert (set != NULL_RTX && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set)))); if (REG_P (SET_DEST (set)) && ((int) REGNO (SET_DEST (set)) == i || (int) ORIGINAL_REGNO (SET_DEST (set)) == i)) new_regno = REGNO (SET_DEST (set)); else if (REG_P (SET_SRC (set)) && ((int) REGNO (SET_SRC (set)) == i || (int) ORIGINAL_REGNO (SET_SRC (set)) == i)) new_regno = REGNO (SET_SRC (set)); else gcc_unreachable (); if (new_regno == i) prev = x; else { if (prev == NULL_RTX) reg_equiv_init (i) = next; else XEXP (prev, 1) = next; XEXP (x, 1) = reg_equiv_init (new_regno); reg_equiv_init (new_regno) = x; } } } } #ifdef ENABLE_IRA_CHECKING /* Print redundant memory-memory copies. */ static void print_redundant_copies (void) { int hard_regno; ira_allocno_t a; ira_copy_t cp, next_cp; ira_allocno_iterator ai; FOR_EACH_ALLOCNO (a, ai) { if (ALLOCNO_CAP_MEMBER (a) != NULL) /* It is a cap. */ continue; hard_regno = ALLOCNO_HARD_REGNO (a); if (hard_regno >= 0) continue; for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp) if (cp->first == a) next_cp = cp->next_first_allocno_copy; else { next_cp = cp->next_second_allocno_copy; if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL && cp->insn != NULL_RTX && ALLOCNO_HARD_REGNO (cp->first) == hard_regno) fprintf (ira_dump_file, " Redundant move from %d(freq %d):%d\n", INSN_UID (cp->insn), cp->freq, hard_regno); } } } #endif /* Setup preferred and alternative classes for new pseudo-registers created by IRA starting with START. */ static void setup_preferred_alternate_classes_for_new_pseudos (int start) { int i, old_regno; int max_regno = max_reg_num (); for (i = start; i < max_regno; i++) { old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]); ira_assert (i != old_regno); setup_reg_classes (i, reg_preferred_class (old_regno), reg_alternate_class (old_regno), reg_allocno_class (old_regno)); if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL) fprintf (ira_dump_file, " New r%d: setting preferred %s, alternative %s\n", i, reg_class_names[reg_preferred_class (old_regno)], reg_class_names[reg_alternate_class (old_regno)]); } } /* Regional allocation can create new pseudo-registers. This function expands some arrays for pseudo-registers. */ static void expand_reg_info (int old_size) { int i; int size = max_reg_num (); resize_reg_info (); for (i = old_size; i < size; i++) setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS); } /* Return TRUE if there is too high register pressure in the function. It is used to decide when stack slot sharing is worth to do. */ static bool too_high_register_pressure_p (void) { int i; enum reg_class pclass; for (i = 0; i < ira_pressure_classes_num; i++) { pclass = ira_pressure_classes[i]; if (ira_loop_tree_root->reg_pressure[pclass] > 10000) return true; } return false; } /* Indicate that hard register number FROM was eliminated and replaced with an offset from hard register number TO. The status of hard registers live at the start of a basic block is updated by replacing a use of FROM with a use of TO. */ void mark_elimination (int from, int to) { basic_block bb; FOR_EACH_BB (bb) { /* We don't use LIVE info in IRA. */ bitmap r = DF_LR_IN (bb); if (REGNO_REG_SET_P (r, from)) { CLEAR_REGNO_REG_SET (r, from); SET_REGNO_REG_SET (r, to); } } } struct equivalence { /* Set when a REG_EQUIV note is found or created. Use to keep track of what memory accesses might be created later, e.g. by reload. */ rtx replacement; rtx *src_p; /* The list of each instruction which initializes this register. */ rtx init_insns; /* Loop depth is used to recognize equivalences which appear to be present within the same loop (or in an inner loop). */ int loop_depth; /* Nonzero if this had a preexisting REG_EQUIV note. */ int is_arg_equivalence; /* Set when an attempt should be made to replace a register with the associated src_p entry. */ char replace; }; /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence structure for that register. */ static struct equivalence *reg_equiv; /* Used for communication between the following two functions: contains a MEM that we wish to ensure remains unchanged. */ static rtx equiv_mem; /* Set nonzero if EQUIV_MEM is modified. */ static int equiv_mem_modified; /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified. Called via note_stores. */ static void validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { if ((REG_P (dest) && reg_overlap_mentioned_p (dest, equiv_mem)) || (MEM_P (dest) && true_dependence (dest, VOIDmode, equiv_mem))) equiv_mem_modified = 1; } /* Verify that no store between START and the death of REG invalidates MEMREF. MEMREF is invalidated by modifying a register used in MEMREF, by storing into an overlapping memory location, or with a non-const CALL_INSN. Return 1 if MEMREF remains valid. */ static int validate_equiv_mem (rtx start, rtx reg, rtx memref) { rtx insn; rtx note; equiv_mem = memref; equiv_mem_modified = 0; /* If the memory reference has side effects or is volatile, it isn't a valid equivalence. */ if (side_effects_p (memref)) return 0; for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn)) { if (! INSN_P (insn)) continue; if (find_reg_note (insn, REG_DEAD, reg)) return 1; /* This used to ignore readonly memory and const/pure calls. The problem is the equivalent form may reference a pseudo which gets assigned a call clobbered hard reg. When we later replace REG with its equivalent form, the value in the call-clobbered reg has been changed and all hell breaks loose. */ if (CALL_P (insn)) return 0; note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL); /* If a register mentioned in MEMREF is modified via an auto-increment, we lose the equivalence. Do the same if one dies; although we could extend the life, it doesn't seem worth the trouble. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if ((REG_NOTE_KIND (note) == REG_INC || REG_NOTE_KIND (note) == REG_DEAD) && REG_P (XEXP (note, 0)) && reg_overlap_mentioned_p (XEXP (note, 0), memref)) return 0; } return 0; } /* Returns zero if X is known to be invariant. */ static int equiv_init_varies_p (rtx x) { RTX_CODE code = GET_CODE (x); int i; const char *fmt; switch (code) { case MEM: return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0)); case CONST: case CONST_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: case SYMBOL_REF: case LABEL_REF: return 0; case REG: return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0); case ASM_OPERANDS: if (MEM_VOLATILE_P (x)) return 1; /* Fall through. */ default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) if (fmt[i] == 'e') { if (equiv_init_varies_p (XEXP (x, i))) return 1; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (x, i); j++) if (equiv_init_varies_p (XVECEXP (x, i, j))) return 1; } return 0; } /* Returns nonzero if X (used to initialize register REGNO) is movable. X is only movable if the registers it uses have equivalent initializations which appear to be within the same loop (or in an inner loop) and movable or if they are not candidates for local_alloc and don't vary. */ static int equiv_init_movable_p (rtx x, int regno) { int i, j; const char *fmt; enum rtx_code code = GET_CODE (x); switch (code) { case SET: return equiv_init_movable_p (SET_SRC (x), regno); case CC0: case CLOBBER: return 0; case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: case PRE_MODIFY: case POST_MODIFY: return 0; case REG: return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth && reg_equiv[REGNO (x)].replace) || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0))); case UNSPEC_VOLATILE: return 0; case ASM_OPERANDS: if (MEM_VOLATILE_P (x)) return 0; /* Fall through. */ default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) switch (fmt[i]) { case 'e': if (! equiv_init_movable_p (XEXP (x, i), regno)) return 0; break; case 'E': for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (! equiv_init_movable_p (XVECEXP (x, i, j), regno)) return 0; break; } return 1; } /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */ static int contains_replace_regs (rtx x) { int i, j; const char *fmt; enum rtx_code code = GET_CODE (x); switch (code) { case CONST_INT: case CONST: case LABEL_REF: case SYMBOL_REF: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: case PC: case CC0: case HIGH: return 0; case REG: return reg_equiv[REGNO (x)].replace; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) switch (fmt[i]) { case 'e': if (contains_replace_regs (XEXP (x, i))) return 1; break; case 'E': for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (contains_replace_regs (XVECEXP (x, i, j))) return 1; break; } return 0; } /* TRUE if X references a memory location that would be affected by a store to MEMREF. */ static int memref_referenced_p (rtx memref, rtx x) { int i, j; const char *fmt; enum rtx_code code = GET_CODE (x); switch (code) { case CONST_INT: case CONST: case LABEL_REF: case SYMBOL_REF: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: case PC: case CC0: case HIGH: case LO_SUM: return 0; case REG: return (reg_equiv[REGNO (x)].replacement && memref_referenced_p (memref, reg_equiv[REGNO (x)].replacement)); case MEM: if (true_dependence (memref, VOIDmode, x)) return 1; break; case SET: /* If we are setting a MEM, it doesn't count (its address does), but any other SET_DEST that has a MEM in it is referencing the MEM. */ if (MEM_P (SET_DEST (x))) { if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0))) return 1; } else if (memref_referenced_p (memref, SET_DEST (x))) return 1; return memref_referenced_p (memref, SET_SRC (x)); default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) switch (fmt[i]) { case 'e': if (memref_referenced_p (memref, XEXP (x, i))) return 1; break; case 'E': for (j = XVECLEN (x, i) - 1; j >= 0; j--) if (memref_referenced_p (memref, XVECEXP (x, i, j))) return 1; break; } return 0; } /* TRUE if some insn in the range (START, END] references a memory location that would be affected by a store to MEMREF. */ static int memref_used_between_p (rtx memref, rtx start, rtx end) { rtx insn; for (insn = NEXT_INSN (start); insn != NEXT_INSN (end); insn = NEXT_INSN (insn)) { if (!NONDEBUG_INSN_P (insn)) continue; if (memref_referenced_p (memref, PATTERN (insn))) return 1; /* Nonconst functions may access memory. */ if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn))) return 1; } return 0; } /* Mark REG as having no known equivalence. Some instructions might have been processed before and furnished with REG_EQUIV notes for this register; these notes will have to be removed. STORE is the piece of RTL that does the non-constant / conflicting assignment - a SET, CLOBBER or REG_INC note. It is currently not used, but needs to be there because this function is called from note_stores. */ static void no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { int regno; rtx list; if (!REG_P (reg)) return; regno = REGNO (reg); list = reg_equiv[regno].init_insns; if (list == const0_rtx) return; reg_equiv[regno].init_insns = const0_rtx; reg_equiv[regno].replacement = NULL_RTX; /* This doesn't matter for equivalences made for argument registers, we should keep their initialization insns. */ if (reg_equiv[regno].is_arg_equivalence) return; reg_equiv_init (regno) = NULL_RTX; for (; list; list = XEXP (list, 1)) { rtx insn = XEXP (list, 0); remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX)); } } /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the equivalent replacement. */ static rtx adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data) { if (REG_P (loc)) { bitmap cleared_regs = (bitmap) data; if (bitmap_bit_p (cleared_regs, REGNO (loc))) return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p, NULL_RTX, adjust_cleared_regs, data); } return NULL_RTX; } /* Nonzero if we recorded an equivalence for a LABEL_REF. */ static int recorded_label_ref; /* Find registers that are equivalent to a single value throughout the compilation (either because they can be referenced in memory or are set once from a single constant). Lower their priority for a register. If such a register is only referenced once, try substituting its value into the using insn. If it succeeds, we can eliminate the register completely. Initialize the REG_EQUIV_INIT array of initializing insns. Return non-zero if jump label rebuilding should be done. */ static int update_equiv_regs (void) { rtx insn; basic_block bb; int loop_depth; bitmap cleared_regs; /* We need to keep track of whether or not we recorded a LABEL_REF so that we know if the jump optimizer needs to be rerun. */ recorded_label_ref = 0; reg_equiv = XCNEWVEC (struct equivalence, max_regno); grow_reg_equivs (); init_alias_analysis (); /* Scan the insns and find which registers have equivalences. Do this in a separate scan of the insns because (due to -fcse-follow-jumps) a register can be set below its use. */ FOR_EACH_BB (bb) { loop_depth = bb->loop_depth; for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn)) { rtx note; rtx set; rtx dest, src; int regno; if (! INSN_P (insn)) continue; for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_INC) no_equiv (XEXP (note, 0), note, NULL); set = single_set (insn); /* If this insn contains more (or less) than a single SET, only mark all destinations as having no known equivalence. */ if (set == 0) { note_stores (PATTERN (insn), no_equiv, NULL); continue; } else if (GET_CODE (PATTERN (insn)) == PARALLEL) { int i; for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) { rtx part = XVECEXP (PATTERN (insn), 0, i); if (part != set) note_stores (part, no_equiv, NULL); } } dest = SET_DEST (set); src = SET_SRC (set); /* See if this is setting up the equivalence between an argument register and its stack slot. */ note = find_reg_note (insn, REG_EQUIV, NULL_RTX); if (note) { gcc_assert (REG_P (dest)); regno = REGNO (dest); /* Note that we don't want to clear reg_equiv_init even if there are multiple sets of this register. */ reg_equiv[regno].is_arg_equivalence = 1; /* Record for reload that this is an equivalencing insn. */ if (rtx_equal_p (src, XEXP (note, 0))) reg_equiv_init (regno) = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno)); /* Continue normally in case this is a candidate for replacements. */ } if (!optimize) continue; /* We only handle the case of a pseudo register being set once, or always to the same value. */ /* ??? The mn10200 port breaks if we add equivalences for values that need an ADDRESS_REGS register and set them equivalent to a MEM of a pseudo. The actual problem is in the over-conservative handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in calculate_needs, but we traditionally work around this problem here by rejecting equivalences when the destination is in a register that's likely spilled. This is fragile, of course, since the preferred class of a pseudo depends on all instructions that set or use it. */ if (!REG_P (dest) || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER || reg_equiv[regno].init_insns == const0_rtx || (targetm.class_likely_spilled_p (reg_preferred_class (regno)) && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence)) { /* This might be setting a SUBREG of a pseudo, a pseudo that is also set somewhere else to a constant. */ note_stores (set, no_equiv, NULL); continue; } note = find_reg_note (insn, REG_EQUAL, NULL_RTX); /* cse sometimes generates function invariants, but doesn't put a REG_EQUAL note on the insn. Since this note would be redundant, there's no point creating it earlier than here. */ if (! note && ! rtx_varies_p (src, 0)) note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src)); /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST since it represents a function call */ if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST) note = NULL_RTX; if (DF_REG_DEF_COUNT (regno) != 1 && (! note || rtx_varies_p (XEXP (note, 0), 0) || (reg_equiv[regno].replacement && ! rtx_equal_p (XEXP (note, 0), reg_equiv[regno].replacement)))) { no_equiv (dest, set, NULL); continue; } /* Record this insn as initializing this register. */ reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns); /* If this register is known to be equal to a constant, record that it is always equivalent to the constant. */ if (DF_REG_DEF_COUNT (regno) == 1 && note && ! rtx_varies_p (XEXP (note, 0), 0)) { rtx note_value = XEXP (note, 0); remove_note (insn, note); set_unique_reg_note (insn, REG_EQUIV, note_value); } /* If this insn introduces a "constant" register, decrease the priority of that register. Record this insn if the register is only used once more and the equivalence value is the same as our source. The latter condition is checked for two reasons: First, it is an indication that it may be more efficient to actually emit the insn as written (if no registers are available, reload will substitute the equivalence). Secondly, it avoids problems with any registers dying in this insn whose death notes would be missed. If we don't have a REG_EQUIV note, see if this insn is loading a register used only in one basic block from a MEM. If so, and the MEM remains unchanged for the life of the register, add a REG_EQUIV note. */ note = find_reg_note (insn, REG_EQUIV, NULL_RTX); if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS && MEM_P (SET_SRC (set)) && validate_equiv_mem (insn, dest, SET_SRC (set))) note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set))); if (note) { int regno = REGNO (dest); rtx x = XEXP (note, 0); /* If we haven't done so, record for reload that this is an equivalencing insn. */ if (!reg_equiv[regno].is_arg_equivalence) reg_equiv_init (regno) = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno)); /* Record whether or not we created a REG_EQUIV note for a LABEL_REF. We might end up substituting the LABEL_REF for uses of the pseudo here or later. That kind of transformation may turn an indirect jump into a direct jump, in which case we must rerun the jump optimizer to ensure that the JUMP_LABEL fields are valid. */ if (GET_CODE (x) == LABEL_REF || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))) recorded_label_ref = 1; reg_equiv[regno].replacement = x; reg_equiv[regno].src_p = &SET_SRC (set); reg_equiv[regno].loop_depth = loop_depth; /* Don't mess with things live during setjmp. */ if (REG_LIVE_LENGTH (regno) >= 0 && optimize) { /* Note that the statement below does not affect the priority in local-alloc! */ REG_LIVE_LENGTH (regno) *= 2; /* If the register is referenced exactly twice, meaning it is set once and used once, indicate that the reference may be replaced by the equivalence we computed above. Do this even if the register is only used in one block so that dependencies can be handled where the last register is used in a different block (i.e. HIGH / LO_SUM sequences) and to reduce the number of registers alive across calls. */ if (REG_N_REFS (regno) == 2 && (rtx_equal_p (x, src) || ! equiv_init_varies_p (src)) && NONJUMP_INSN_P (insn) && equiv_init_movable_p (PATTERN (insn), regno)) reg_equiv[regno].replace = 1; } } } } if (!optimize) goto out; /* A second pass, to gather additional equivalences with memory. This needs to be done after we know which registers we are going to replace. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { rtx set, src, dest; unsigned regno; if (! INSN_P (insn)) continue; set = single_set (insn); if (! set) continue; dest = SET_DEST (set); src = SET_SRC (set); /* If this sets a MEM to the contents of a REG that is only used in a single basic block, see if the register is always equivalent to that memory location and if moving the store from INSN to the insn that set REG is safe. If so, put a REG_EQUIV note on the initializing insn. Don't add a REG_EQUIV note if the insn already has one. The existing REG_EQUIV is likely more useful than the one we are adding. If one of the regs in the address has reg_equiv[REGNO].replace set, then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace optimization may move the set of this register immediately before insn, which puts it after reg_equiv[REGNO].init_insns, and hence the mention in the REG_EQUIV note would be to an uninitialized pseudo. */ if (MEM_P (dest) && REG_P (src) && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS && DF_REG_DEF_COUNT (regno) == 1 && reg_equiv[regno].init_insns != 0 && reg_equiv[regno].init_insns != const0_rtx && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0), REG_EQUIV, NULL_RTX) && ! contains_replace_regs (XEXP (dest, 0))) { rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0); if (validate_equiv_mem (init_insn, src, dest) && ! memref_used_between_p (dest, init_insn, insn) /* Attaching a REG_EQUIV note will fail if INIT_INSN has multiple sets. */ && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest))) { /* This insn makes the equivalence, not the one initializing the register. */ reg_equiv_init (regno) = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX); df_notes_rescan (init_insn); } } } cleared_regs = BITMAP_ALLOC (NULL); /* Now scan all regs killed in an insn to see if any of them are registers only used that once. If so, see if we can replace the reference with the equivalent form. If we can, delete the initializing reference and this register will go away. If we can't replace the reference, and the initializing reference is within the same loop (or in an inner loop), then move the register initialization just before the use, so that they are in the same basic block. */ FOR_EACH_BB_REVERSE (bb) { loop_depth = bb->loop_depth; for (insn = BB_END (bb); insn != PREV_INSN (BB_HEAD (bb)); insn = PREV_INSN (insn)) { rtx link; if (! INSN_P (insn)) continue; /* Don't substitute into a non-local goto, this confuses CFG. */ if (JUMP_P (insn) && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) continue; for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) { if (REG_NOTE_KIND (link) == REG_DEAD /* Make sure this insn still refers to the register. */ && reg_mentioned_p (XEXP (link, 0), PATTERN (insn))) { int regno = REGNO (XEXP (link, 0)); rtx equiv_insn; if (! reg_equiv[regno].replace || reg_equiv[regno].loop_depth < loop_depth /* There is no sense to move insns if we did register pressure-sensitive scheduling was done because it will not improve allocation but worsen insn schedule with a big probability. */ || (flag_sched_pressure && flag_schedule_insns)) continue; /* reg_equiv[REGNO].replace gets set only when REG_N_REFS[REGNO] is 2, i.e. the register is set once and used once. (If it were only set, but not used, flow would have deleted the setting insns.) Hence there can only be one insn in reg_equiv[REGNO].init_insns. */ gcc_assert (reg_equiv[regno].init_insns && !XEXP (reg_equiv[regno].init_insns, 1)); equiv_insn = XEXP (reg_equiv[regno].init_insns, 0); /* We may not move instructions that can throw, since that changes basic block boundaries and we are not prepared to adjust the CFG to match. */ if (can_throw_internal (equiv_insn)) continue; if (asm_noperands (PATTERN (equiv_insn)) < 0 && validate_replace_rtx (regno_reg_rtx[regno], *(reg_equiv[regno].src_p), insn)) { rtx equiv_link; rtx last_link; rtx note; /* Find the last note. */ for (last_link = link; XEXP (last_link, 1); last_link = XEXP (last_link, 1)) ; /* Append the REG_DEAD notes from equiv_insn. */ equiv_link = REG_NOTES (equiv_insn); while (equiv_link) { note = equiv_link; equiv_link = XEXP (equiv_link, 1); if (REG_NOTE_KIND (note) == REG_DEAD) { remove_note (equiv_insn, note); XEXP (last_link, 1) = note; XEXP (note, 1) = NULL_RTX; last_link = note; } } remove_death (regno, insn); SET_REG_N_REFS (regno, 0); REG_FREQ (regno) = 0; delete_insn (equiv_insn); reg_equiv[regno].init_insns = XEXP (reg_equiv[regno].init_insns, 1); reg_equiv_init (regno) = NULL_RTX; bitmap_set_bit (cleared_regs, regno); } /* Move the initialization of the register to just before INSN. Update the flow information. */ else if (prev_nondebug_insn (insn) != equiv_insn) { rtx new_insn; new_insn = emit_insn_before (PATTERN (equiv_insn), insn); REG_NOTES (new_insn) = REG_NOTES (equiv_insn); REG_NOTES (equiv_insn) = 0; /* Rescan it to process the notes. */ df_insn_rescan (new_insn); /* Make sure this insn is recognized before reload begins, otherwise eliminate_regs_in_insn will die. */ INSN_CODE (new_insn) = INSN_CODE (equiv_insn); delete_insn (equiv_insn); XEXP (reg_equiv[regno].init_insns, 0) = new_insn; REG_BASIC_BLOCK (regno) = bb->index; REG_N_CALLS_CROSSED (regno) = 0; REG_FREQ_CALLS_CROSSED (regno) = 0; REG_N_THROWING_CALLS_CROSSED (regno) = 0; REG_LIVE_LENGTH (regno) = 2; if (insn == BB_HEAD (bb)) BB_HEAD (bb) = PREV_INSN (insn); reg_equiv_init (regno) = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX); bitmap_set_bit (cleared_regs, regno); } } } } } if (!bitmap_empty_p (cleared_regs)) { FOR_EACH_BB (bb) { bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs); bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs); bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs); bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs); } /* Last pass - adjust debug insns referencing cleared regs. */ if (MAY_HAVE_DEBUG_INSNS) for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (DEBUG_INSN_P (insn)) { rtx old_loc = INSN_VAR_LOCATION_LOC (insn); INSN_VAR_LOCATION_LOC (insn) = simplify_replace_fn_rtx (old_loc, NULL_RTX, adjust_cleared_regs, (void *) cleared_regs); if (old_loc != INSN_VAR_LOCATION_LOC (insn)) df_insn_rescan (insn); } } BITMAP_FREE (cleared_regs); out: /* Clean up. */ end_alias_analysis (); free (reg_equiv); return recorded_label_ref; } /* Print chain C to FILE. */ static void print_insn_chain (FILE *file, struct insn_chain *c) { fprintf (file, "insn=%d, ", INSN_UID(c->insn)); bitmap_print (file, &c->live_throughout, "live_throughout: ", ", "); bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n"); } /* Print all reload_insn_chains to FILE. */ static void print_insn_chains (FILE *file) { struct insn_chain *c; for (c = reload_insn_chain; c ; c = c->next) print_insn_chain (file, c); } /* Return true if pseudo REGNO should be added to set live_throughout or dead_or_set of the insn chains for reload consideration. */ static bool pseudo_for_reload_consideration_p (int regno) { /* Consider spilled pseudos too for IRA because they still have a chance to get hard-registers in the reload when IRA is used. */ return (reg_renumber[regno] >= 0 || ira_conflicts_p); } /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using REG to the number of nregs, and INIT_VALUE to get the initialization. ALLOCNUM need not be the regno of REG. */ static void init_live_subregs (bool init_value, sbitmap *live_subregs, int *live_subregs_used, int allocnum, rtx reg) { unsigned int regno = REGNO (SUBREG_REG (reg)); int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno])); gcc_assert (size > 0); /* Been there, done that. */ if (live_subregs_used[allocnum]) return; /* Create a new one with zeros. */ if (live_subregs[allocnum] == NULL) live_subregs[allocnum] = sbitmap_alloc (size); /* If the entire reg was live before blasting into subregs, we need to init all of the subregs to ones else init to 0. */ if (init_value) sbitmap_ones (live_subregs[allocnum]); else sbitmap_zero (live_subregs[allocnum]); /* Set the number of bits that we really want. */ live_subregs_used[allocnum] = size; } /* Walk the insns of the current function and build reload_insn_chain, and record register life information. */ static void build_insn_chain (void) { unsigned int i; struct insn_chain **p = &reload_insn_chain; basic_block bb; struct insn_chain *c = NULL; struct insn_chain *next = NULL; bitmap live_relevant_regs = BITMAP_ALLOC (NULL); bitmap elim_regset = BITMAP_ALLOC (NULL); /* live_subregs is a vector used to keep accurate information about which hardregs are live in multiword pseudos. live_subregs and live_subregs_used are indexed by pseudo number. The live_subreg entry for a particular pseudo is only used if the corresponding element is non zero in live_subregs_used. The value in live_subregs_used is number of bytes that the pseudo can occupy. */ sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno); int *live_subregs_used = XNEWVEC (int, max_regno); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (eliminable_regset, i)) bitmap_set_bit (elim_regset, i); FOR_EACH_BB_REVERSE (bb) { bitmap_iterator bi; rtx insn; CLEAR_REG_SET (live_relevant_regs); memset (live_subregs_used, 0, max_regno * sizeof (int)); EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi) { if (i >= FIRST_PSEUDO_REGISTER) break; bitmap_set_bit (live_relevant_regs, i); } EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), FIRST_PSEUDO_REGISTER, i, bi) { if (pseudo_for_reload_consideration_p (i)) bitmap_set_bit (live_relevant_regs, i); } FOR_BB_INSNS_REVERSE (bb, insn) { if (!NOTE_P (insn) && !BARRIER_P (insn)) { unsigned int uid = INSN_UID (insn); df_ref *def_rec; df_ref *use_rec; c = new_insn_chain (); c->next = next; next = c; *p = c; p = &c->prev; c->insn = insn; c->block = bb->index; if (INSN_P (insn)) for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++) { df_ref def = *def_rec; unsigned int regno = DF_REF_REGNO (def); /* Ignore may clobbers because these are generated from calls. However, every other kind of def is added to dead_or_set. */ if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER)) { if (regno < FIRST_PSEUDO_REGISTER) { if (!fixed_regs[regno]) bitmap_set_bit (&c->dead_or_set, regno); } else if (pseudo_for_reload_consideration_p (regno)) bitmap_set_bit (&c->dead_or_set, regno); } if ((regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0 || ira_conflicts_p) && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))) { rtx reg = DF_REF_REG (def); /* We can model subregs, but not if they are wrapped in ZERO_EXTRACTS. */ if (GET_CODE (reg) == SUBREG && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)) { unsigned int start = SUBREG_BYTE (reg); unsigned int last = start + GET_MODE_SIZE (GET_MODE (reg)); init_live_subregs (bitmap_bit_p (live_relevant_regs, regno), live_subregs, live_subregs_used, regno, reg); if (!DF_REF_FLAGS_IS_SET (def, DF_REF_STRICT_LOW_PART)) { /* Expand the range to cover entire words. Bytes added here are "don't care". */ start = start / UNITS_PER_WORD * UNITS_PER_WORD; last = ((last + UNITS_PER_WORD - 1) / UNITS_PER_WORD * UNITS_PER_WORD); } /* Ignore the paradoxical bits. */ if ((int)last > live_subregs_used[regno]) last = live_subregs_used[regno]; while (start < last) { RESET_BIT (live_subregs[regno], start); start++; } if (sbitmap_empty_p (live_subregs[regno])) { live_subregs_used[regno] = 0; bitmap_clear_bit (live_relevant_regs, regno); } else /* Set live_relevant_regs here because that bit has to be true to get us to look at the live_subregs fields. */ bitmap_set_bit (live_relevant_regs, regno); } else { /* DF_REF_PARTIAL is generated for subregs, STRICT_LOW_PART, and ZERO_EXTRACT. We handle the subreg case above so here we have to keep from modeling the def as a killing def. */ if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)) { bitmap_clear_bit (live_relevant_regs, regno); live_subregs_used[regno] = 0; } } } } bitmap_and_compl_into (live_relevant_regs, elim_regset); bitmap_copy (&c->live_throughout, live_relevant_regs); if (INSN_P (insn)) for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++) { df_ref use = *use_rec; unsigned int regno = DF_REF_REGNO (use); rtx reg = DF_REF_REG (use); /* DF_REF_READ_WRITE on a use means that this use is fabricated from a def that is a partial set to a multiword reg. Here, we only model the subreg case that is not wrapped in ZERO_EXTRACT precisely so we do not need to look at the fabricated use. */ if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE) && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT) && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG)) continue; /* Add the last use of each var to dead_or_set. */ if (!bitmap_bit_p (live_relevant_regs, regno)) { if (regno < FIRST_PSEUDO_REGISTER) { if (!fixed_regs[regno]) bitmap_set_bit (&c->dead_or_set, regno); } else if (pseudo_for_reload_consideration_p (regno)) bitmap_set_bit (&c->dead_or_set, regno); } if (regno < FIRST_PSEUDO_REGISTER || pseudo_for_reload_consideration_p (regno)) { if (GET_CODE (reg) == SUBREG && !DF_REF_FLAGS_IS_SET (use, DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT)) { unsigned int start = SUBREG_BYTE (reg); unsigned int last = start + GET_MODE_SIZE (GET_MODE (reg)); init_live_subregs (bitmap_bit_p (live_relevant_regs, regno), live_subregs, live_subregs_used, regno, reg); /* Ignore the paradoxical bits. */ if ((int)last > live_subregs_used[regno]) last = live_subregs_used[regno]; while (start < last) { SET_BIT (live_subregs[regno], start); start++; } } else /* Resetting the live_subregs_used is effectively saying do not use the subregs because we are reading the whole pseudo. */ live_subregs_used[regno] = 0; bitmap_set_bit (live_relevant_regs, regno); } } } } /* FIXME!! The following code is a disaster. Reload needs to see the labels and jump tables that are just hanging out in between the basic blocks. See pr33676. */ insn = BB_HEAD (bb); /* Skip over the barriers and cruft. */ while (insn && (BARRIER_P (insn) || NOTE_P (insn) || BLOCK_FOR_INSN (insn) == bb)) insn = PREV_INSN (insn); /* While we add anything except barriers and notes, the focus is to get the labels and jump tables into the reload_insn_chain. */ while (insn) { if (!NOTE_P (insn) && !BARRIER_P (insn)) { if (BLOCK_FOR_INSN (insn)) break; c = new_insn_chain (); c->next = next; next = c; *p = c; p = &c->prev; /* The block makes no sense here, but it is what the old code did. */ c->block = bb->index; c->insn = insn; bitmap_copy (&c->live_throughout, live_relevant_regs); } insn = PREV_INSN (insn); } } for (i = 0; i < (unsigned int) max_regno; i++) free (live_subregs[i]); reload_insn_chain = c; *p = NULL; free (live_subregs); free (live_subregs_used); BITMAP_FREE (live_relevant_regs); BITMAP_FREE (elim_regset); if (dump_file) print_insn_chains (dump_file); } /* Examine the rtx found in *LOC, which is read or written to as determined by TYPE. Return false if we find a reason why an insn containing this rtx should not be moved (such as accesses to non-constant memory), true otherwise. */ static bool rtx_moveable_p (rtx *loc, enum op_type type) { const char *fmt; rtx x = *loc; enum rtx_code code = GET_CODE (x); int i, j; code = GET_CODE (x); switch (code) { case CONST: case CONST_INT: case CONST_DOUBLE: case CONST_FIXED: case CONST_VECTOR: case SYMBOL_REF: case LABEL_REF: return true; case PC: return type == OP_IN; case CC0: return false; case REG: if (x == frame_pointer_rtx) return true; if (HARD_REGISTER_P (x)) return false; return true; case MEM: if (type == OP_IN && MEM_READONLY_P (x)) return rtx_moveable_p (&XEXP (x, 0), OP_IN); return false; case SET: return (rtx_moveable_p (&SET_SRC (x), OP_IN) && rtx_moveable_p (&SET_DEST (x), OP_OUT)); case STRICT_LOW_PART: return rtx_moveable_p (&XEXP (x, 0), OP_OUT); case ZERO_EXTRACT: case SIGN_EXTRACT: return (rtx_moveable_p (&XEXP (x, 0), type) && rtx_moveable_p (&XEXP (x, 1), OP_IN) && rtx_moveable_p (&XEXP (x, 2), OP_IN)); case CLOBBER: return rtx_moveable_p (&SET_DEST (x), OP_OUT); default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (!rtx_moveable_p (&XEXP (x, i), type)) return false; } else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) { if (!rtx_moveable_p (&XVECEXP (x, i, j), type)) return false; } } return true; } /* A wrapper around dominated_by_p, which uses the information in UID_LUID to give dominance relationships between two insns I1 and I2. */ static bool insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid) { basic_block bb1 = BLOCK_FOR_INSN (i1); basic_block bb2 = BLOCK_FOR_INSN (i2); if (bb1 == bb2) return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)]; return dominated_by_p (CDI_DOMINATORS, bb1, bb2); } /* Record the range of register numbers added by find_moveable_pseudos. */ int first_moveable_pseudo, last_moveable_pseudo; /* These two vectors hold data for every register added by find_movable_pseudos, with index 0 holding data for the first_moveable_pseudo. */ /* The original home register. */ static VEC (rtx, heap) *pseudo_replaced_reg; /* The move instruction we added to move the value to its original home register. */ static VEC (rtx, heap) *pseudo_move_insn; /* Look for instances where we have an instruction that is known to increase register pressure, and whose result is not used immediately. If it is possible to move the instruction downwards to just before its first use, split its lifetime into two ranges. We create a new pseudo to compute the value, and emit a move instruction just before the first use. If, after register allocation, the new pseudo remains unallocated, the function move_unallocated_pseudos then deletes the move instruction and places the computation just before the first use. Such a move is safe and profitable if all the input registers remain live and unchanged between the original computation and its first use. In such a situation, the computation is known to increase register pressure, and moving it is known to at least not worsen it. We restrict moves to only those cases where a register remains unallocated, in order to avoid interfering too much with the instruction schedule. As an exception, we may move insns which only modify their input register (typically induction variables), as this increases the freedom for our intended transformation, and does not limit the second instruction scheduler pass. */ static void find_moveable_pseudos (void) { unsigned i; int max_regs = max_reg_num (); int max_uid = get_max_uid (); basic_block bb; int *uid_luid = XNEWVEC (int, max_uid); rtx *closest_uses = XNEWVEC (rtx, max_regs); /* A set of registers which are live but not modified throughout a block. */ bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block); /* A set of registers which only exist in a given basic block. */ bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block); /* A set of registers which are set once, in an instruction that can be moved freely downwards, but are otherwise transparent to a block. */ bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block); bitmap_head live, used, set, interesting, unusable_as_input; bitmap_iterator bi; bitmap_initialize (&interesting, 0); first_moveable_pseudo = max_regs; VEC_free (rtx, heap, pseudo_move_insn); VEC_free (rtx, heap, pseudo_replaced_reg); VEC_safe_grow (rtx, heap, pseudo_move_insn, max_regs); VEC_safe_grow (rtx, heap, pseudo_replaced_reg, max_regs); df_analyze (); calculate_dominance_info (CDI_DOMINATORS); i = 0; bitmap_initialize (&live, 0); bitmap_initialize (&used, 0); bitmap_initialize (&set, 0); bitmap_initialize (&unusable_as_input, 0); FOR_EACH_BB (bb) { rtx insn; bitmap transp = bb_transp_live + bb->index; bitmap moveable = bb_moveable_reg_sets + bb->index; bitmap local = bb_local + bb->index; bitmap_initialize (local, 0); bitmap_initialize (transp, 0); bitmap_initialize (moveable, 0); bitmap_copy (&live, df_get_live_out (bb)); bitmap_and_into (&live, df_get_live_in (bb)); bitmap_copy (transp, &live); bitmap_clear (moveable); bitmap_clear (&live); bitmap_clear (&used); bitmap_clear (&set); FOR_BB_INSNS (bb, insn) if (NONDEBUG_INSN_P (insn)) { df_ref *u_rec, *d_rec; uid_luid[INSN_UID (insn)] = i++; u_rec = DF_INSN_USES (insn); d_rec = DF_INSN_DEFS (insn); if (d_rec[0] != NULL && d_rec[1] == NULL && u_rec[0] != NULL && u_rec[1] == NULL && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec) && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec)) && rtx_moveable_p (&PATTERN (insn), OP_IN)) { unsigned regno = DF_REF_REGNO (*u_rec); bitmap_set_bit (moveable, regno); bitmap_set_bit (&set, regno); bitmap_set_bit (&used, regno); bitmap_clear_bit (transp, regno); continue; } while (*u_rec) { unsigned regno = DF_REF_REGNO (*u_rec); bitmap_set_bit (&used, regno); if (bitmap_clear_bit (moveable, regno)) bitmap_clear_bit (transp, regno); u_rec++; } while (*d_rec) { unsigned regno = DF_REF_REGNO (*d_rec); bitmap_set_bit (&set, regno); bitmap_clear_bit (transp, regno); bitmap_clear_bit (moveable, regno); d_rec++; } } } bitmap_clear (&live); bitmap_clear (&used); bitmap_clear (&set); FOR_EACH_BB (bb) { bitmap local = bb_local + bb->index; rtx insn; FOR_BB_INSNS (bb, insn) if (NONDEBUG_INSN_P (insn)) { rtx def_insn, closest_use, note; df_ref *def_rec, def, use; unsigned regno; bool all_dominated, all_local; enum machine_mode mode; def_rec = DF_INSN_DEFS (insn); /* There must be exactly one def in this insn. */ def = *def_rec; if (!def || def_rec[1] || !single_set (insn)) continue; /* This must be the only definition of the reg. We also limit which modes we deal with so that we can assume we can generate move instructions. */ regno = DF_REF_REGNO (def); mode = GET_MODE (DF_REF_REG (def)); if (DF_REG_DEF_COUNT (regno) != 1 || !DF_REF_INSN_INFO (def) || HARD_REGISTER_NUM_P (regno) || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode))) continue; def_insn = DF_REF_INSN (def); for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0))) break; if (note) { if (dump_file) fprintf (dump_file, "Ignoring reg %d, has equiv memory\n", regno); bitmap_set_bit (&unusable_as_input, regno); continue; } use = DF_REG_USE_CHAIN (regno); all_dominated = true; all_local = true; closest_use = NULL_RTX; for (; use; use = DF_REF_NEXT_REG (use)) { rtx insn; if (!DF_REF_INSN_INFO (use)) { all_dominated = false; all_local = false; break; } insn = DF_REF_INSN (use); if (DEBUG_INSN_P (insn)) continue; if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn)) all_local = false; if (!insn_dominated_by_p (insn, def_insn, uid_luid)) all_dominated = false; if (closest_use != insn && closest_use != const0_rtx) { if (closest_use == NULL_RTX) closest_use = insn; else if (insn_dominated_by_p (closest_use, insn, uid_luid)) closest_use = insn; else if (!insn_dominated_by_p (insn, closest_use, uid_luid)) closest_use = const0_rtx; } } if (!all_dominated) { if (dump_file) fprintf (dump_file, "Reg %d not all uses dominated by set\n", regno); continue; } if (all_local) bitmap_set_bit (local, regno); if (closest_use == const0_rtx || closest_use == NULL || next_nonnote_nondebug_insn (def_insn) == closest_use) { if (dump_file) fprintf (dump_file, "Reg %d uninteresting%s\n", regno, closest_use == const0_rtx || closest_use == NULL ? " (no unique first use)" : ""); continue; } #ifdef HAVE_cc0 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use))) { if (dump_file) fprintf (dump_file, "Reg %d: closest user uses cc0\n", regno); continue; } #endif bitmap_set_bit (&interesting, regno); closest_uses[regno] = closest_use; if (dump_file && (all_local || all_dominated)) { fprintf (dump_file, "Reg %u:", regno); if (all_local) fprintf (dump_file, " local to bb %d", bb->index); if (all_dominated) fprintf (dump_file, " def dominates all uses"); if (closest_use != const0_rtx) fprintf (dump_file, " has unique first use"); fputs ("\n", dump_file); } } } EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi) { df_ref def = DF_REG_DEF_CHAIN (i); rtx def_insn = DF_REF_INSN (def); basic_block def_block = BLOCK_FOR_INSN (def_insn); bitmap def_bb_local = bb_local + def_block->index; bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index; bitmap def_bb_transp = bb_transp_live + def_block->index; bool local_to_bb_p = bitmap_bit_p (def_bb_local, i); rtx use_insn = closest_uses[i]; df_ref *def_insn_use_rec = DF_INSN_USES (def_insn); bool all_ok = true; bool all_transp = true; if (!REG_P (DF_REF_REG (def))) continue; if (!local_to_bb_p) { if (dump_file) fprintf (dump_file, "Reg %u not local to one basic block\n", i); continue; } if (reg_equiv_init (i) != NULL_RTX) { if (dump_file) fprintf (dump_file, "Ignoring reg %u with equiv init insn\n", i); continue; } if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN)) { if (dump_file) fprintf (dump_file, "Found def insn %d for %d to be not moveable\n", INSN_UID (def_insn), i); continue; } if (dump_file) fprintf (dump_file, "Examining insn %d, def for %d\n", INSN_UID (def_insn), i); while (*def_insn_use_rec != NULL) { df_ref use = *def_insn_use_rec; unsigned regno = DF_REF_REGNO (use); if (bitmap_bit_p (&unusable_as_input, regno)) { all_ok = false; if (dump_file) fprintf (dump_file, " found unusable input reg %u.\n", regno); break; } if (!bitmap_bit_p (def_bb_transp, regno)) { if (bitmap_bit_p (def_bb_moveable, regno) && !control_flow_insn_p (use_insn) #ifdef HAVE_cc0 && !sets_cc0_p (use_insn) #endif ) { if (modified_between_p (DF_REF_REG (use), def_insn, use_insn)) { rtx x = NEXT_INSN (def_insn); while (!modified_in_p (DF_REF_REG (use), x)) { gcc_assert (x != use_insn); x = NEXT_INSN (x); } if (dump_file) fprintf (dump_file, " input reg %u modified but insn %d moveable\n", regno, INSN_UID (x)); emit_insn_after (PATTERN (x), use_insn); set_insn_deleted (x); } else { if (dump_file) fprintf (dump_file, " input reg %u modified between def and use\n", regno); all_transp = false; } } else all_transp = false; } def_insn_use_rec++; } if (!all_ok) continue; if (!dbg_cnt (ira_move)) break; if (dump_file) fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : ""); if (all_transp) { rtx def_reg = DF_REF_REG (def); rtx newreg = ira_create_new_reg (def_reg); if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0)) { unsigned nregno = REGNO (newreg); rtx move = emit_insn_before (gen_move_insn (def_reg, newreg), use_insn); nregno -= max_regs; VEC_replace (rtx, pseudo_move_insn, nregno, move); VEC_replace (rtx, pseudo_replaced_reg, nregno, def_reg); } } } FOR_EACH_BB (bb) { bitmap_clear (bb_local + bb->index); bitmap_clear (bb_transp_live + bb->index); bitmap_clear (bb_moveable_reg_sets + bb->index); } bitmap_clear (&interesting); bitmap_clear (&unusable_as_input); free (uid_luid); free (closest_uses); free (bb_local); free (bb_transp_live); free (bb_moveable_reg_sets); last_moveable_pseudo = max_reg_num (); fix_reg_equiv_init(); regstat_free_n_sets_and_refs (); regstat_free_ri (); regstat_init_n_sets_and_refs (); regstat_compute_ri (); free_dominance_info (CDI_DOMINATORS); } /* Perform the second half of the transformation started in find_moveable_pseudos. We look for instances where the newly introduced pseudo remains unallocated, and remove it by moving the definition to just before its use, replacing the move instruction generated by find_moveable_pseudos. */ static void move_unallocated_pseudos (void) { int i; for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++) if (reg_renumber[i] < 0) { df_ref def = DF_REG_DEF_CHAIN (i); int idx = i - first_moveable_pseudo; rtx other_reg = VEC_index (rtx, pseudo_replaced_reg, idx); rtx def_insn = DF_REF_INSN (def); rtx move_insn = VEC_index (rtx, pseudo_move_insn, idx); rtx set; rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn); int success; if (dump_file) fprintf (dump_file, "moving def of %d (insn %d now) ", REGNO (other_reg), INSN_UID (def_insn)); set = single_set (newinsn); success = validate_change (newinsn, &SET_DEST (set), other_reg, 0); gcc_assert (success); if (dump_file) fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n", INSN_UID (newinsn), i); delete_insn (move_insn); delete_insn (def_insn); SET_REG_N_REFS (i, 0); } } /* All natural loops. */ struct loops ira_loops; /* True if we have allocno conflicts. It is false for non-optimized mode or when the conflict table is too big. */ bool ira_conflicts_p; /* Saved between IRA and reload. */ static int saved_flag_ira_share_spill_slots; /* This is the main entry of IRA. */ static void ira (FILE *f) { int allocated_reg_info_size; bool loops_p; int max_regno_before_ira, ira_max_point_before_emit; int rebuild_p; if (flag_caller_saves) init_caller_save (); if (flag_ira_verbose < 10) { internal_flag_ira_verbose = flag_ira_verbose; ira_dump_file = f; } else { internal_flag_ira_verbose = flag_ira_verbose - 10; ira_dump_file = stderr; } ira_conflicts_p = optimize > 0; setup_prohibited_mode_move_regs (); df_note_add_problem (); if (optimize == 1) { df_live_add_problem (); df_live_set_all_dirty (); } #ifdef ENABLE_CHECKING df->changeable_flags |= DF_VERIFY_SCHEDULED; #endif df_analyze (); df_clear_flags (DF_NO_INSN_RESCAN); regstat_init_n_sets_and_refs (); regstat_compute_ri (); /* If we are not optimizing, then this is the only place before register allocation where dataflow is done. And that is needed to generate these warnings. */ if (warn_clobbered) generate_setjmp_warnings (); /* Determine if the current function is a leaf before running IRA since this can impact optimizations done by the prologue and epilogue thus changing register elimination offsets. */ current_function_is_leaf = leaf_function_p (); if (resize_reg_info () && flag_ira_loop_pressure) ira_set_pseudo_classes (ira_dump_file); rebuild_p = update_equiv_regs (); #ifndef IRA_NO_OBSTACK gcc_obstack_init (&ira_obstack); #endif bitmap_obstack_initialize (&ira_bitmap_obstack); if (optimize) { max_regno = max_reg_num (); ira_reg_equiv_len = max_regno; ira_reg_equiv_invariant_p = (bool *) ira_allocate (max_regno * sizeof (bool)); memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool)); ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx)); memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx)); find_reg_equiv_invariant_const (); if (rebuild_p) { timevar_push (TV_JUMP); rebuild_jump_labels (get_insns ()); if (purge_all_dead_edges ()) delete_unreachable_blocks (); timevar_pop (TV_JUMP); } } find_moveable_pseudos (); max_regno_before_ira = allocated_reg_info_size = max_reg_num (); ira_setup_eliminable_regset (); ira_overall_cost = ira_reg_cost = ira_mem_cost = 0; ira_load_cost = ira_store_cost = ira_shuffle_cost = 0; ira_move_loops_num = ira_additional_jumps_num = 0; ira_assert (current_loops == NULL); if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED) { flow_loops_find (&ira_loops); record_loop_exits (); current_loops = &ira_loops; } if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL) fprintf (ira_dump_file, "Building IRA IR\n"); loops_p = ira_build (); ira_assert (ira_conflicts_p || !loops_p); saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots; if (too_high_register_pressure_p () || cfun->calls_setjmp) /* It is just wasting compiler's time to pack spilled pseudos into stack slots in this case -- prohibit it. We also do this if there is setjmp call because a variable not modified between setjmp and longjmp the compiler is required to preserve its value and sharing slots does not guarantee it. */ flag_ira_share_spill_slots = FALSE; ira_color (); ira_max_point_before_emit = ira_max_point; ira_initiate_emit_data (); ira_emit (loops_p); if (ira_conflicts_p) { max_regno = max_reg_num (); if (! loops_p) ira_initiate_assign (); else { expand_reg_info (allocated_reg_info_size); setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size); allocated_reg_info_size = max_regno; if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL) fprintf (ira_dump_file, "Flattening IR\n"); ira_flattening (max_regno_before_ira, ira_max_point_before_emit); /* New insns were generated: add notes and recalculate live info. */ df_analyze (); flow_loops_find (&ira_loops); record_loop_exits (); current_loops = &ira_loops; setup_allocno_assignment_flags (); ira_initiate_assign (); ira_reassign_conflict_allocnos (max_regno); } } ira_finish_emit_data (); setup_reg_renumber (); calculate_allocation_cost (); #ifdef ENABLE_IRA_CHECKING if (ira_conflicts_p) check_allocation (); #endif if (delete_trivially_dead_insns (get_insns (), max_reg_num ())) df_analyze (); if (max_regno != max_regno_before_ira) { regstat_free_n_sets_and_refs (); regstat_free_ri (); regstat_init_n_sets_and_refs (); regstat_compute_ri (); } overall_cost_before = ira_overall_cost; if (! ira_conflicts_p) grow_reg_equivs (); else { fix_reg_equiv_init (); #ifdef ENABLE_IRA_CHECKING print_redundant_copies (); #endif ira_spilled_reg_stack_slots_num = 0; ira_spilled_reg_stack_slots = ((struct ira_spilled_reg_stack_slot *) ira_allocate (max_regno * sizeof (struct ira_spilled_reg_stack_slot))); memset (ira_spilled_reg_stack_slots, 0, max_regno * sizeof (struct ira_spilled_reg_stack_slot)); } allocate_initial_values (reg_equivs); move_unallocated_pseudos (); } static void do_reload (void) { basic_block bb; bool need_dce; if (flag_ira_verbose < 10) ira_dump_file = dump_file; df_set_flags (DF_NO_INSN_RESCAN); build_insn_chain (); need_dce = reload (get_insns (), ira_conflicts_p); timevar_push (TV_IRA); if (ira_conflicts_p) { ira_free (ira_spilled_reg_stack_slots); ira_finish_assign (); } if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL && overall_cost_before != ira_overall_cost) fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost); ira_destroy (); flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots; if (current_loops != NULL) { flow_loops_free (&ira_loops); free_dominance_info (CDI_DOMINATORS); } FOR_ALL_BB (bb) bb->loop_father = NULL; current_loops = NULL; regstat_free_ri (); regstat_free_n_sets_and_refs (); if (optimize) { cleanup_cfg (CLEANUP_EXPENSIVE); ira_free (ira_reg_equiv_invariant_p); ira_free (ira_reg_equiv_const); } bitmap_obstack_release (&ira_bitmap_obstack); #ifndef IRA_NO_OBSTACK obstack_free (&ira_obstack, NULL); #endif /* The code after the reload has changed so much that at this point we might as well just rescan everything. Note that df_rescan_all_insns is not going to help here because it does not touch the artificial uses and defs. */ df_finish_pass (true); if (optimize > 1) df_live_add_problem (); df_scan_alloc (NULL); df_scan_blocks (); if (optimize) df_analyze (); if (need_dce && optimize) run_fast_dce (); timevar_pop (TV_IRA); } /* Run the integrated register allocator. */ static unsigned int rest_of_handle_ira (void) { ira (dump_file); return 0; } struct rtl_opt_pass pass_ira = { { RTL_PASS, "ira", /* name */ NULL, /* gate */ rest_of_handle_ira, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_IRA, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ } }; static unsigned int rest_of_handle_reload (void) { do_reload (); return 0; } struct rtl_opt_pass pass_reload = { { RTL_PASS, "reload", /* name */ NULL, /* gate */ rest_of_handle_reload, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_RELOAD, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_ggc_collect /* todo_flags_finish */ } };