/* More subroutines needed by GCC output code on some machines. */ /* Compile this one with gcc. */ /* Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* As a special exception, if you link this library with other files, some of which are compiled with GCC, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* It is incorrect to include config.h here, because this file is being compiled for the target, and hence definitions concerning only the host do not apply. */ #include "tconfig.h" /* We disable this when inhibit_libc, so that gcc can still be built without needing header files first. */ /* ??? This is not a good solution, since prototypes may be required in some cases for correct code. See also frame.c. */ #ifndef inhibit_libc /* fixproto guarantees these system headers exist. */ #include #include #endif #include "machmode.h" #include "defaults.h" #ifndef L_trampoline #include #endif /* Don't use `fancy_abort' here even if config.h says to use it. */ #ifdef abort #undef abort #endif #if (SUPPORTS_WEAK == 1) && (defined (ASM_OUTPUT_DEF) || defined (ASM_OUTPUT_WEAK_ALIAS)) #define WEAK_ALIAS #endif /* In a cross-compilation situation, default to inhibiting compilation of routines that use libc. */ #if defined(CROSS_COMPILE) && !defined(inhibit_libc) #define inhibit_libc #endif /* Permit the tm.h file to select the endianness to use just for this file. This is used when the endianness is determined when the compiler is run. */ #ifndef LIBGCC2_WORDS_BIG_ENDIAN #define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN #endif /* In the first part of this file, we are interfacing to calls generated by the compiler itself. These calls pass values into these routines which have very specific modes (rather than very specific types), and these compiler-generated calls also expect any return values to have very specific modes (rather than very specific types). Thus, we need to avoid using regular C language type names in this part of the file because the sizes for those types can be configured to be anything. Instead we use the following special type names. */ typedef unsigned int UQItype __attribute__ ((mode (QI))); typedef int SItype __attribute__ ((mode (SI))); typedef unsigned int USItype __attribute__ ((mode (SI))); typedef int DItype __attribute__ ((mode (DI))); typedef unsigned int UDItype __attribute__ ((mode (DI))); typedef float SFtype __attribute__ ((mode (SF))); typedef float DFtype __attribute__ ((mode (DF))); #if LONG_DOUBLE_TYPE_SIZE == 96 typedef float XFtype __attribute__ ((mode (XF))); #endif #if LONG_DOUBLE_TYPE_SIZE == 128 typedef float TFtype __attribute__ ((mode (TF))); #endif typedef int word_type __attribute__ ((mode (__word__))); /* Make sure that we don't accidentally use any normal C language built-in type names in the first part of this file. Instead we want to use *only* the type names defined above. The following macro definitions insure that if we *do* accidentally use some normal C language built-in type name, we will get a syntax error. */ #define char bogus_type #define short bogus_type #define int bogus_type #define long bogus_type #define unsigned bogus_type #define float bogus_type #define double bogus_type #define SI_TYPE_SIZE (sizeof (SItype) * BITS_PER_UNIT) /* DIstructs are pairs of SItype values in the order determined by LIBGCC2_WORDS_BIG_ENDIAN. */ #if LIBGCC2_WORDS_BIG_ENDIAN struct DIstruct {SItype high, low;}; #else struct DIstruct {SItype low, high;}; #endif /* We need this union to unpack/pack DImode values, since we don't have any arithmetic yet. Incoming DImode parameters are stored into the `ll' field, and the unpacked result is read from the struct `s'. */ typedef union { struct DIstruct s; DItype ll; } DIunion; #if (defined (L_udivmoddi4) || defined (L_muldi3) || defined (L_udiv_w_sdiv)\ || defined (L_divdi3) || defined (L_udivdi3) \ || defined (L_moddi3) || defined (L_umoddi3)) #include "longlong.h" #endif /* udiv or mul */ extern DItype __fixunssfdi (SFtype a); extern DItype __fixunsdfdi (DFtype a); #if LONG_DOUBLE_TYPE_SIZE == 96 extern DItype __fixunsxfdi (XFtype a); #endif #if LONG_DOUBLE_TYPE_SIZE == 128 extern DItype __fixunstfdi (TFtype a); #endif #if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3) #if defined (L_divdi3) || defined (L_moddi3) static inline #endif DItype __negdi2 (DItype u) { DIunion w; DIunion uu; uu.ll = u; w.s.low = -uu.s.low; w.s.high = -uu.s.high - ((USItype) w.s.low > 0); return w.ll; } #endif /* Unless shift functions are defined whith full ANSI prototypes, parameter b will be promoted to int if word_type is smaller than an int. */ #ifdef L_lshrdi3 DItype __lshrdi3 (DItype u, word_type b) { DIunion w; word_type bm; DIunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (SItype) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.high = 0; w.s.low = (USItype)uu.s.high >> -bm; } else { USItype carries = (USItype)uu.s.high << bm; w.s.high = (USItype)uu.s.high >> b; w.s.low = ((USItype)uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ashldi3 DItype __ashldi3 (DItype u, word_type b) { DIunion w; word_type bm; DIunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (SItype) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.low = 0; w.s.high = (USItype)uu.s.low << -bm; } else { USItype carries = (USItype)uu.s.low >> bm; w.s.low = (USItype)uu.s.low << b; w.s.high = ((USItype)uu.s.high << b) | carries; } return w.ll; } #endif #ifdef L_ashrdi3 DItype __ashrdi3 (DItype u, word_type b) { DIunion w; word_type bm; DIunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (SItype) * BITS_PER_UNIT) - b; if (bm <= 0) { /* w.s.high = 1..1 or 0..0 */ w.s.high = uu.s.high >> (sizeof (SItype) * BITS_PER_UNIT - 1); w.s.low = uu.s.high >> -bm; } else { USItype carries = (USItype)uu.s.high << bm; w.s.high = uu.s.high >> b; w.s.low = ((USItype)uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ffsdi2 DItype __ffsdi2 (DItype u) { DIunion uu, w; uu.ll = u; w.s.high = 0; w.s.low = ffs (uu.s.low); if (w.s.low != 0) return w.ll; w.s.low = ffs (uu.s.high); if (w.s.low != 0) { w.s.low += BITS_PER_UNIT * sizeof (SItype); return w.ll; } return w.ll; } #endif #ifdef L_muldi3 DItype __muldi3 (DItype u, DItype v) { DIunion w; DIunion uu, vv; uu.ll = u, vv.ll = v; w.ll = __umulsidi3 (uu.s.low, vv.s.low); w.s.high += ((USItype) uu.s.low * (USItype) vv.s.high + (USItype) uu.s.high * (USItype) vv.s.low); return w.ll; } #endif #ifdef L_udiv_w_sdiv #if defined (sdiv_qrnnd) USItype __udiv_w_sdiv (USItype *rp, USItype a1, USItype a0, USItype d) { USItype q, r; USItype c0, c1, b1; if ((SItype) d >= 0) { if (a1 < d - a1 - (a0 >> (SI_TYPE_SIZE - 1))) { /* dividend, divisor, and quotient are nonnegative */ sdiv_qrnnd (q, r, a1, a0, d); } else { /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (SI_TYPE_SIZE - 1)); /* Divide (c1*2^32 + c0) by d */ sdiv_qrnnd (q, r, c1, c0, d); /* Add 2^31 to quotient */ q += (USItype) 1 << (SI_TYPE_SIZE - 1); } } else { b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ c1 = a1 >> 1; /* A/2 */ c0 = (a1 << (SI_TYPE_SIZE - 1)) + (a0 >> 1); if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ { sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ { c1 = (b1 - 1) - c1; c0 = ~c0; /* logical NOT */ sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ q = ~q; /* (A/2)/b1 */ r = (b1 - 1) - r; r = 2*r + (a0 & 1); /* A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else /* Implies c1 = b1 */ { /* Hence a1 = d - 1 = 2*b1 - 1 */ if (a0 >= -d) { q = -1; r = a0 + d; } else { q = -2; r = a0 + 2*d; } } } *rp = r; return q; } #else /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ USItype __udiv_w_sdiv (USItype *rp __attribute__ ((__unused__)), USItype a1 __attribute__ ((__unused__)), USItype a0 __attribute__ ((__unused__)), USItype d __attribute__ ((__unused__))) { return 0; } #endif #endif #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) #define L_udivmoddi4 #endif #ifdef L_udivmoddi4 static const UQItype __clz_tab[] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, }; #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) static inline #endif UDItype __udivmoddi4 (UDItype n, UDItype d, UDItype *rp) { DIunion ww; DIunion nn, dd; DIunion rr; USItype d0, d1, n0, n1, n2; USItype q0, q1; USItype b, bm; nn.ll = n; dd.ll = d; d0 = dd.s.low; d1 = dd.s.high; n0 = nn.s.low; n1 = nn.s.high; #if !UDIV_NEEDS_NORMALIZATION if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ udiv_qrnnd (q1, n1, 0, n1, d0); udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0. */ } if (rp != 0) { rr.s.low = n0; rr.s.high = 0; *rp = rr.ll; } } #else /* UDIV_NEEDS_NORMALIZATION */ if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ count_leading_zeros (bm, d0); if (bm != 0) { /* Normalize, i.e. make the most significant bit of the denominator set. */ d0 = d0 << bm; n1 = (n1 << bm) | (n0 >> (SI_TYPE_SIZE - bm)); n0 = n0 << bm; } udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0 >> bm. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ count_leading_zeros (bm, d0); if (bm == 0) { /* From (n1 >= d0) /\ (the most significant bit of d0 is set), conclude (the most significant bit of n1 is set) /\ (the leading quotient digit q1 = 1). This special case is necessary, not an optimization. (Shifts counts of SI_TYPE_SIZE are undefined.) */ n1 -= d0; q1 = 1; } else { /* Normalize. */ b = SI_TYPE_SIZE - bm; d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q1, n1, n2, n1, d0); } /* n1 != d0... */ udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0 >> bm. */ } if (rp != 0) { rr.s.low = n0 >> bm; rr.s.high = 0; *rp = rr.ll; } } #endif /* UDIV_NEEDS_NORMALIZATION */ else { if (d1 > n1) { /* 00 = nn / DD */ q0 = 0; q1 = 0; /* Remainder in n1n0. */ if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { /* 0q = NN / dd */ count_leading_zeros (bm, d1); if (bm == 0) { /* From (n1 >= d1) /\ (the most significant bit of d1 is set), conclude (the most significant bit of n1 is set) /\ (the quotient digit q0 = 0 or 1). This special case is necessary, not an optimization. */ /* The condition on the next line takes advantage of that n1 >= d1 (true due to program flow). */ if (n1 > d1 || n0 >= d0) { q0 = 1; sub_ddmmss (n1, n0, n1, n0, d1, d0); } else q0 = 0; q1 = 0; if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { USItype m1, m0; /* Normalize. */ b = SI_TYPE_SIZE - bm; d1 = (d1 << bm) | (d0 >> b); d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q0, n1, n2, n1, d1); umul_ppmm (m1, m0, q0, d0); if (m1 > n1 || (m1 == n1 && m0 > n0)) { q0--; sub_ddmmss (m1, m0, m1, m0, d1, d0); } q1 = 0; /* Remainder in (n1n0 - m1m0) >> bm. */ if (rp != 0) { sub_ddmmss (n1, n0, n1, n0, m1, m0); rr.s.low = (n1 << b) | (n0 >> bm); rr.s.high = n1 >> bm; *rp = rr.ll; } } } } ww.s.low = q0; ww.s.high = q1; return ww.ll; } #endif #ifdef L_divdi3 UDItype __udivmoddi4 (); DItype __divdi3 (DItype u, DItype v) { word_type c = 0; DIunion uu, vv; DItype w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = __negdi2 (uu.ll); if (vv.s.high < 0) c = ~c, vv.ll = __negdi2 (vv.ll); w = __udivmoddi4 (uu.ll, vv.ll, (UDItype *) 0); if (c) w = __negdi2 (w); return w; } #endif #ifdef L_moddi3 UDItype __udivmoddi4 (); DItype __moddi3 (DItype u, DItype v) { word_type c = 0; DIunion uu, vv; DItype w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = __negdi2 (uu.ll); if (vv.s.high < 0) vv.ll = __negdi2 (vv.ll); (void) __udivmoddi4 (uu.ll, vv.ll, &w); if (c) w = __negdi2 (w); return w; } #endif #ifdef L_umoddi3 UDItype __udivmoddi4 (); UDItype __umoddi3 (UDItype u, UDItype v) { UDItype w; (void) __udivmoddi4 (u, v, &w); return w; } #endif #ifdef L_udivdi3 UDItype __udivmoddi4 (); UDItype __udivdi3 (UDItype n, UDItype d) { return __udivmoddi4 (n, d, (UDItype *) 0); } #endif #ifdef L_cmpdi2 word_type __cmpdi2 (DItype a, DItype b) { DIunion au, bu; au.ll = a, bu.ll = b; if (au.s.high < bu.s.high) return 0; else if (au.s.high > bu.s.high) return 2; if ((USItype) au.s.low < (USItype) bu.s.low) return 0; else if ((USItype) au.s.low > (USItype) bu.s.low) return 2; return 1; } #endif #ifdef L_ucmpdi2 word_type __ucmpdi2 (DItype a, DItype b) { DIunion au, bu; au.ll = a, bu.ll = b; if ((USItype) au.s.high < (USItype) bu.s.high) return 0; else if ((USItype) au.s.high > (USItype) bu.s.high) return 2; if ((USItype) au.s.low < (USItype) bu.s.low) return 0; else if ((USItype) au.s.low > (USItype) bu.s.low) return 2; return 1; } #endif #if defined(L_fixunstfdi) && (LONG_DOUBLE_TYPE_SIZE == 128) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunstfdi (TFtype a) { TFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the TFtype, leaving the low part as flonum. */ a -= (TFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #if defined(L_fixtfdi) && (LONG_DOUBLE_TYPE_SIZE == 128) DItype __fixtfdi (TFtype a) { if (a < 0) return - __fixunstfdi (-a); return __fixunstfdi (a); } #endif #if defined(L_fixunsxfdi) && (LONG_DOUBLE_TYPE_SIZE == 96) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunsxfdi (XFtype a) { XFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the XFtype, leaving the low part as flonum. */ a -= (XFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #if defined(L_fixxfdi) && (LONG_DOUBLE_TYPE_SIZE == 96) DItype __fixxfdi (XFtype a) { if (a < 0) return - __fixunsxfdi (-a); return __fixunsxfdi (a); } #endif #ifdef L_fixunsdfdi #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunsdfdi (DFtype a) { DFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the DFtype, leaving the low part as flonum. */ a -= (DFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #ifdef L_fixdfdi DItype __fixdfdi (DFtype a) { if (a < 0) return - __fixunsdfdi (-a); return __fixunsdfdi (a); } #endif #ifdef L_fixunssfdi #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunssfdi (SFtype original_a) { /* Convert the SFtype to a DFtype, because that is surely not going to lose any bits. Some day someone else can write a faster version that avoids converting to DFtype, and verify it really works right. */ DFtype a = original_a; DFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the DFtype, leaving the low part as flonum. */ a -= (DFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #ifdef L_fixsfdi DItype __fixsfdi (SFtype a) { if (a < 0) return - __fixunssfdi (-a); return __fixunssfdi (a); } #endif #if defined(L_floatdixf) && (LONG_DOUBLE_TYPE_SIZE == 96) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) XFtype __floatdixf (DItype u) { XFtype d; d = (SItype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (USItype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #if defined(L_floatditf) && (LONG_DOUBLE_TYPE_SIZE == 128) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) TFtype __floatditf (DItype u) { TFtype d; d = (SItype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (USItype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #ifdef L_floatdidf #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DFtype __floatdidf (DItype u) { DFtype d; d = (SItype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (USItype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #ifdef L_floatdisf #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) #define DI_SIZE (sizeof (DItype) * BITS_PER_UNIT) /* Define codes for all the float formats that we know of. Note that this is copied from real.h. */ #define UNKNOWN_FLOAT_FORMAT 0 #define IEEE_FLOAT_FORMAT 1 #define VAX_FLOAT_FORMAT 2 #define IBM_FLOAT_FORMAT 3 /* Default to IEEE float if not specified. Nearly all machines use it. */ #ifndef HOST_FLOAT_FORMAT #define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT #endif #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT #define DF_SIZE 53 #define SF_SIZE 24 #endif #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT #define DF_SIZE 56 #define SF_SIZE 24 #endif #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT #define DF_SIZE 56 #define SF_SIZE 24 #endif SFtype __floatdisf (DItype u) { /* Do the calculation in DFmode so that we don't lose any of the precision of the high word while multiplying it. */ DFtype f; /* Protect against double-rounding error. Represent any low-order bits, that might be truncated in DFmode, by a bit that won't be lost. The bit can go in anywhere below the rounding position of the SFmode. A fixed mask and bit position handles all usual configurations. It doesn't handle the case of 128-bit DImode, however. */ if (DF_SIZE < DI_SIZE && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE)) { #define REP_BIT ((USItype) 1 << (DI_SIZE - DF_SIZE)) if (! (- ((DItype) 1 << DF_SIZE) < u && u < ((DItype) 1 << DF_SIZE))) { if ((USItype) u & (REP_BIT - 1)) u |= REP_BIT; } } f = (SItype) (u >> WORD_SIZE); f *= HIGH_HALFWORD_COEFF; f *= HIGH_HALFWORD_COEFF; f += (USItype) (u & (HIGH_WORD_COEFF - 1)); return (SFtype) f; } #endif #if defined(L_fixunsxfsi) && LONG_DOUBLE_TYPE_SIZE == 96 /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include USItype __fixunsxfsi (XFtype a) { if (a >= - (DFtype) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif #ifdef L_fixunsdfsi /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include USItype __fixunsdfsi (DFtype a) { if (a >= - (DFtype) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif #ifdef L_fixunssfsi /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include USItype __fixunssfsi (SFtype a) { if (a >= - (SFtype) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif /* From here on down, the routines use normal data types. */ #define SItype bogus_type #define USItype bogus_type #define DItype bogus_type #define UDItype bogus_type #define SFtype bogus_type #define DFtype bogus_type #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #ifdef L__gcc_bcmp /* Like bcmp except the sign is meaningful. Result is negative if S1 is less than S2, positive if S1 is greater, 0 if S1 and S2 are equal. */ int __gcc_bcmp (unsigned char *s1, unsigned char *s2, size_t size) { while (size > 0) { unsigned char c1 = *s1++, c2 = *s2++; if (c1 != c2) return c1 - c2; size--; } return 0; } #endif #ifdef L__dummy void __dummy () {} #endif #ifdef L_varargs #ifdef __i860__ #if defined(__svr4__) || defined(__alliant__) asm (" .text"); asm (" .align 4"); /* The Alliant needs the added underscore. */ asm (".globl __builtin_saveregs"); asm ("__builtin_saveregs:"); asm (".globl ___builtin_saveregs"); asm ("___builtin_saveregs:"); asm (" andnot 0x0f,%sp,%sp"); /* round down to 16-byte boundary */ asm (" adds -96,%sp,%sp"); /* allocate stack space for reg save area and also for a new va_list structure */ /* Save all argument registers in the arg reg save area. The arg reg save area must have the following layout (according to the svr4 ABI): struct { union { float freg[8]; double dreg[4]; } float_regs; long ireg[12]; }; */ asm (" fst.q %f8, 0(%sp)"); /* save floating regs (f8-f15) */ asm (" fst.q %f12,16(%sp)"); asm (" st.l %r16,32(%sp)"); /* save integer regs (r16-r27) */ asm (" st.l %r17,36(%sp)"); asm (" st.l %r18,40(%sp)"); asm (" st.l %r19,44(%sp)"); asm (" st.l %r20,48(%sp)"); asm (" st.l %r21,52(%sp)"); asm (" st.l %r22,56(%sp)"); asm (" st.l %r23,60(%sp)"); asm (" st.l %r24,64(%sp)"); asm (" st.l %r25,68(%sp)"); asm (" st.l %r26,72(%sp)"); asm (" st.l %r27,76(%sp)"); asm (" adds 80,%sp,%r16"); /* compute the address of the new va_list structure. Put in into r16 so that it will be returned to the caller. */ /* Initialize all fields of the new va_list structure. This structure looks like: typedef struct { unsigned long ireg_used; unsigned long freg_used; long *reg_base; long *mem_ptr; } va_list; */ asm (" st.l %r0, 0(%r16)"); /* nfixed */ asm (" st.l %r0, 4(%r16)"); /* nfloating */ asm (" st.l %sp, 8(%r16)"); /* __va_ctl points to __va_struct. */ asm (" bri %r1"); /* delayed return */ asm (" st.l %r28,12(%r16)"); /* pointer to overflow args */ #else /* not __svr4__ */ #if defined(__PARAGON__) /* * we'll use SVR4-ish varargs but need SVR3.2 assembler syntax, * and we stand a better chance of hooking into libraries * compiled by PGI. [andyp@ssd.intel.com] */ asm (" .text"); asm (" .align 4"); asm (".globl __builtin_saveregs"); asm ("__builtin_saveregs:"); asm (".globl ___builtin_saveregs"); asm ("___builtin_saveregs:"); asm (" andnot 0x0f,sp,sp"); /* round down to 16-byte boundary */ asm (" adds -96,sp,sp"); /* allocate stack space for reg save area and also for a new va_list structure */ /* Save all argument registers in the arg reg save area. The arg reg save area must have the following layout (according to the svr4 ABI): struct { union { float freg[8]; double dreg[4]; } float_regs; long ireg[12]; }; */ asm (" fst.q f8, 0(sp)"); asm (" fst.q f12,16(sp)"); asm (" st.l r16,32(sp)"); asm (" st.l r17,36(sp)"); asm (" st.l r18,40(sp)"); asm (" st.l r19,44(sp)"); asm (" st.l r20,48(sp)"); asm (" st.l r21,52(sp)"); asm (" st.l r22,56(sp)"); asm (" st.l r23,60(sp)"); asm (" st.l r24,64(sp)"); asm (" st.l r25,68(sp)"); asm (" st.l r26,72(sp)"); asm (" st.l r27,76(sp)"); asm (" adds 80,sp,r16"); /* compute the address of the new va_list structure. Put in into r16 so that it will be returned to the caller. */ /* Initialize all fields of the new va_list structure. This structure looks like: typedef struct { unsigned long ireg_used; unsigned long freg_used; long *reg_base; long *mem_ptr; } va_list; */ asm (" st.l r0, 0(r16)"); /* nfixed */ asm (" st.l r0, 4(r16)"); /* nfloating */ asm (" st.l sp, 8(r16)"); /* __va_ctl points to __va_struct. */ asm (" bri r1"); /* delayed return */ asm (" st.l r28,12(r16)"); /* pointer to overflow args */ #else /* not __PARAGON__ */ asm (" .text"); asm (" .align 4"); asm (".globl ___builtin_saveregs"); asm ("___builtin_saveregs:"); asm (" mov sp,r30"); asm (" andnot 0x0f,sp,sp"); asm (" adds -96,sp,sp"); /* allocate sufficient space on the stack */ /* Fill in the __va_struct. */ asm (" st.l r16, 0(sp)"); /* save integer regs (r16-r27) */ asm (" st.l r17, 4(sp)"); /* int fixed[12] */ asm (" st.l r18, 8(sp)"); asm (" st.l r19,12(sp)"); asm (" st.l r20,16(sp)"); asm (" st.l r21,20(sp)"); asm (" st.l r22,24(sp)"); asm (" st.l r23,28(sp)"); asm (" st.l r24,32(sp)"); asm (" st.l r25,36(sp)"); asm (" st.l r26,40(sp)"); asm (" st.l r27,44(sp)"); asm (" fst.q f8, 48(sp)"); /* save floating regs (f8-f15) */ asm (" fst.q f12,64(sp)"); /* int floating[8] */ /* Fill in the __va_ctl. */ asm (" st.l sp, 80(sp)"); /* __va_ctl points to __va_struct. */ asm (" st.l r28,84(sp)"); /* pointer to more args */ asm (" st.l r0, 88(sp)"); /* nfixed */ asm (" st.l r0, 92(sp)"); /* nfloating */ asm (" adds 80,sp,r16"); /* return address of the __va_ctl. */ asm (" bri r1"); asm (" mov r30,sp"); /* recover stack and pass address to start of data. */ #endif /* not __PARAGON__ */ #endif /* not __svr4__ */ #else /* not __i860__ */ #ifdef __sparc__ asm (".global __builtin_saveregs"); asm ("__builtin_saveregs:"); asm (".global ___builtin_saveregs"); asm ("___builtin_saveregs:"); #ifdef NEED_PROC_COMMAND asm (".proc 020"); #endif asm ("st %i0,[%fp+68]"); asm ("st %i1,[%fp+72]"); asm ("st %i2,[%fp+76]"); asm ("st %i3,[%fp+80]"); asm ("st %i4,[%fp+84]"); asm ("retl"); asm ("st %i5,[%fp+88]"); #ifdef NEED_TYPE_COMMAND asm (".type __builtin_saveregs,#function"); asm (".size __builtin_saveregs,.-__builtin_saveregs"); #endif #else /* not __sparc__ */ #if defined(__MIPSEL__) | defined(__R3000__) | defined(__R2000__) | defined(__mips__) asm (" .text"); #ifdef __mips16 asm (" .set nomips16"); #endif asm (" .ent __builtin_saveregs"); asm (" .globl __builtin_saveregs"); asm ("__builtin_saveregs:"); asm (" sw $4,0($30)"); asm (" sw $5,4($30)"); asm (" sw $6,8($30)"); asm (" sw $7,12($30)"); asm (" j $31"); asm (" .end __builtin_saveregs"); #else /* not __mips__, etc. */ void * __builtin_saveregs () { abort (); } #endif /* not __mips__ */ #endif /* not __sparc__ */ #endif /* not __i860__ */ #endif #ifdef L_eprintf #ifndef inhibit_libc #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ #include /* This is used by the `assert' macro. */ extern void __eprintf (const char *, const char *, unsigned int, const char *) __attribute__ ((__noreturn__)); void __eprintf (const char *string, const char *expression, unsigned int line, const char *filename) { fprintf (stderr, string, expression, line, filename); fflush (stderr); abort (); } #endif #endif #ifdef L_bb /* Structure emitted by -a */ struct bb { long zero_word; const char *filename; long *counts; long ncounts; struct bb *next; const unsigned long *addresses; /* Older GCC's did not emit these fields. */ long nwords; const char **functions; const long *line_nums; const char **filenames; char *flags; }; #ifdef BLOCK_PROFILER_CODE BLOCK_PROFILER_CODE #else #ifndef inhibit_libc /* Simple minded basic block profiling output dumper for systems that don't provide tcov support. At present, it requires atexit and stdio. */ #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ #include char *ctime (); #include "gbl-ctors.h" #include "gcov-io.h" #include static struct bb *bb_head; /* Return the number of digits needed to print a value */ /* __inline__ */ static int num_digits (long value, int base) { int minus = (value < 0 && base != 16); unsigned long v = (minus) ? -value : value; int ret = minus; do { v /= base; ret++; } while (v); return ret; } void __bb_exit_func (void) { FILE *da_file, *file; long time_value; int i; if (bb_head == 0) return; i = strlen (bb_head->filename) - 3; if (!strcmp (bb_head->filename+i, ".da")) { /* Must be -fprofile-arcs not -a. Dump data in a form that gcov expects. */ struct bb *ptr; for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next) { /* If the file exists, and the number of counts in it is the same, then merge them in. */ if ((da_file = fopen (ptr->filename, "r")) != 0) { long n_counts = 0; if (__read_long (&n_counts, da_file, 8) != 0) { fprintf (stderr, "arc profiling: Can't read output file %s.\n", ptr->filename); continue; } if (n_counts == ptr->ncounts) { int i; for (i = 0; i < n_counts; i++) { long v = 0; if (__read_long (&v, da_file, 8) != 0) { fprintf (stderr, "arc profiling: Can't read output file %s.\n", ptr->filename); break; } ptr->counts[i] += v; } } if (fclose (da_file) == EOF) fprintf (stderr, "arc profiling: Error closing output file %s.\n", ptr->filename); } if ((da_file = fopen (ptr->filename, "w")) == 0) { fprintf (stderr, "arc profiling: Can't open output file %s.\n", ptr->filename); continue; } /* ??? Should first write a header to the file. Preferably, a 4 byte magic number, 4 bytes containing the time the program was compiled, 4 bytes containing the last modification time of the source file, and 4 bytes indicating the compiler options used. That way we can easily verify that the proper source/executable/ data file combination is being used from gcov. */ if (__write_long (ptr->ncounts, da_file, 8) != 0) { fprintf (stderr, "arc profiling: Error writing output file %s.\n", ptr->filename); } else { int j; long *count_ptr = ptr->counts; int ret = 0; for (j = ptr->ncounts; j > 0; j--) { if (__write_long (*count_ptr, da_file, 8) != 0) { ret=1; break; } count_ptr++; } if (ret) fprintf (stderr, "arc profiling: Error writing output file %s.\n", ptr->filename); } if (fclose (da_file) == EOF) fprintf (stderr, "arc profiling: Error closing output file %s.\n", ptr->filename); } return; } /* Must be basic block profiling. Emit a human readable output file. */ file = fopen ("bb.out", "a"); if (!file) perror ("bb.out"); else { struct bb *ptr; /* This is somewhat type incorrect, but it avoids worrying about exactly where time.h is included from. It should be ok unless a void * differs from other pointer formats, or if sizeof (long) is < sizeof (time_t). It would be nice if we could assume the use of rationale standards here. */ time ((void *) &time_value); fprintf (file, "Basic block profiling finished on %s\n", ctime ((void *) &time_value)); /* We check the length field explicitly in order to allow compatibility with older GCC's which did not provide it. */ for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next) { int i; int func_p = (ptr->nwords >= sizeof (struct bb) && ptr->nwords <= 1000 && ptr->functions); int line_p = (func_p && ptr->line_nums); int file_p = (func_p && ptr->filenames); int addr_p = (ptr->addresses != 0); long ncounts = ptr->ncounts; long cnt_max = 0; long line_max = 0; long addr_max = 0; int file_len = 0; int func_len = 0; int blk_len = num_digits (ncounts, 10); int cnt_len; int line_len; int addr_len; fprintf (file, "File %s, %ld basic blocks \n\n", ptr->filename, ncounts); /* Get max values for each field. */ for (i = 0; i < ncounts; i++) { const char *p; int len; if (cnt_max < ptr->counts[i]) cnt_max = ptr->counts[i]; if (addr_p && addr_max < ptr->addresses[i]) addr_max = ptr->addresses[i]; if (line_p && line_max < ptr->line_nums[i]) line_max = ptr->line_nums[i]; if (func_p) { p = (ptr->functions[i]) ? (ptr->functions[i]) : ""; len = strlen (p); if (func_len < len) func_len = len; } if (file_p) { p = (ptr->filenames[i]) ? (ptr->filenames[i]) : ""; len = strlen (p); if (file_len < len) file_len = len; } } addr_len = num_digits (addr_max, 16); cnt_len = num_digits (cnt_max, 10); line_len = num_digits (line_max, 10); /* Now print out the basic block information. */ for (i = 0; i < ncounts; i++) { fprintf (file, " Block #%*d: executed %*ld time(s)", blk_len, i+1, cnt_len, ptr->counts[i]); if (addr_p) fprintf (file, " address= 0x%.*lx", addr_len, ptr->addresses[i]); if (func_p) fprintf (file, " function= %-*s", func_len, (ptr->functions[i]) ? ptr->functions[i] : ""); if (line_p) fprintf (file, " line= %*ld", line_len, ptr->line_nums[i]); if (file_p) fprintf (file, " file= %s", (ptr->filenames[i]) ? ptr->filenames[i] : ""); fprintf (file, "\n"); } fprintf (file, "\n"); fflush (file); } fprintf (file, "\n\n"); fclose (file); } } void __bb_init_func (struct bb *blocks) { /* User is supposed to check whether the first word is non-0, but just in case.... */ if (blocks->zero_word) return; #ifdef ON_EXIT /* Initialize destructor. */ if (!bb_head) ON_EXIT (__bb_exit_func, 0); #endif /* Set up linked list. */ blocks->zero_word = 1; blocks->next = bb_head; bb_head = blocks; } #ifndef MACHINE_STATE_SAVE #define MACHINE_STATE_SAVE(ID) #endif #ifndef MACHINE_STATE_RESTORE #define MACHINE_STATE_RESTORE(ID) #endif /* Number of buckets in hashtable of basic block addresses. */ #define BB_BUCKETS 311 /* Maximum length of string in file bb.in. */ #define BBINBUFSIZE 500 /* BBINBUFSIZE-1 with double quotes. We could use #BBINBUFSIZE or "BBINBUFSIZE" but want to avoid trouble with preprocessors. */ #define BBINBUFSIZESTR "499" struct bb_edge { struct bb_edge *next; unsigned long src_addr; unsigned long dst_addr; unsigned long count; }; enum bb_func_mode { TRACE_KEEP = 0, TRACE_ON = 1, TRACE_OFF = 2 }; struct bb_func { struct bb_func *next; char *funcname; char *filename; enum bb_func_mode mode; }; /* This is the connection to the outside world. The BLOCK_PROFILER macro must set __bb.blocks and __bb.blockno. */ struct { unsigned long blockno; struct bb *blocks; } __bb; /* Vars to store addrs of source and destination basic blocks of a jump. */ static unsigned long bb_src = 0; static unsigned long bb_dst = 0; static FILE *bb_tracefile = (FILE *) 0; static struct bb_edge **bb_hashbuckets = (struct bb_edge **) 0; static struct bb_func *bb_func_head = (struct bb_func *) 0; static unsigned long bb_callcount = 0; static int bb_mode = 0; static unsigned long *bb_stack = (unsigned long *) 0; static size_t bb_stacksize = 0; static int reported = 0; /* Trace modes: Always : Print execution frequencies of basic blocks to file bb.out. bb_mode & 1 != 0 : Dump trace of basic blocks to file bbtrace[.gz] bb_mode & 2 != 0 : Print jump frequencies to file bb.out. bb_mode & 4 != 0 : Cut call instructions from basic block flow. bb_mode & 8 != 0 : Insert return instructions in basic block flow. */ #ifdef HAVE_POPEN /*#include */ #include /*#include */ /* Commands executed by gopen. */ #define GOPENDECOMPRESS "gzip -cd " #define GOPENCOMPRESS "gzip -c >" /* Like fopen but pipes through gzip. mode may only be "r" or "w". If it does not compile, simply replace gopen by fopen and delete '.gz' from any first parameter to gopen. */ static FILE * gopen (char *fn, char *mode) { int use_gzip; char *p; if (mode[1]) return (FILE *) 0; if (mode[0] != 'r' && mode[0] != 'w') return (FILE *) 0; p = fn + strlen (fn)-1; use_gzip = ((p[-1] == '.' && (p[0] == 'Z' || p[0] == 'z')) || (p[-2] == '.' && p[-1] == 'g' && p[0] == 'z')); if (use_gzip) { if (mode[0]=='r') { FILE *f; char *s = (char *) malloc (sizeof (char) * strlen (fn) + sizeof (GOPENDECOMPRESS)); strcpy (s, GOPENDECOMPRESS); strcpy (s + (sizeof (GOPENDECOMPRESS)-1), fn); f = popen (s, mode); free (s); return f; } else { FILE *f; char *s = (char *) malloc (sizeof (char) * strlen (fn) + sizeof (GOPENCOMPRESS)); strcpy (s, GOPENCOMPRESS); strcpy (s + (sizeof (GOPENCOMPRESS)-1), fn); if (!(f = popen (s, mode))) f = fopen (s, mode); free (s); return f; } } else return fopen (fn, mode); } static int gclose (FILE *f) { struct stat buf; if (f != 0) { if (!fstat (fileno (f), &buf) && S_ISFIFO (buf.st_mode)) return pclose (f); return fclose (f); } return 0; } #endif /* HAVE_POPEN */ /* Called once per program. */ static void __bb_exit_trace_func () { FILE *file = fopen ("bb.out", "a"); struct bb_func *f; struct bb *b; if (!file) perror ("bb.out"); if (bb_mode & 1) { if (!bb_tracefile) perror ("bbtrace"); else #ifdef HAVE_POPEN gclose (bb_tracefile); #else fclose (bb_tracefile); #endif /* HAVE_POPEN */ } /* Check functions in `bb.in'. */ if (file) { long time_value; const struct bb_func *p; int printed_something = 0; struct bb *ptr; long blk; /* This is somewhat type incorrect. */ time ((void *) &time_value); for (p = bb_func_head; p != (struct bb_func *) 0; p = p->next) { for (ptr = bb_head; ptr != (struct bb *) 0; ptr = ptr->next) { if (!ptr->filename || (p->filename != (char *) 0 && strcmp (p->filename, ptr->filename))) continue; for (blk = 0; blk < ptr->ncounts; blk++) { if (!strcmp (p->funcname, ptr->functions[blk])) goto found; } } if (!printed_something) { fprintf (file, "Functions in `bb.in' not executed during basic block profiling on %s\n", ctime ((void *) &time_value)); printed_something = 1; } fprintf (file, "\tFunction %s", p->funcname); if (p->filename) fprintf (file, " of file %s", p->filename); fprintf (file, "\n" ); found: ; } if (printed_something) fprintf (file, "\n"); } if (bb_mode & 2) { if (!bb_hashbuckets) { if (!reported) { fprintf (stderr, "Profiler: out of memory\n"); reported = 1; } return; } else if (file) { long time_value; int i; unsigned long addr_max = 0; unsigned long cnt_max = 0; int cnt_len; int addr_len; /* This is somewhat type incorrect, but it avoids worrying about exactly where time.h is included from. It should be ok unless a void * differs from other pointer formats, or if sizeof (long) is < sizeof (time_t). It would be nice if we could assume the use of rationale standards here. */ time ((void *) &time_value); fprintf (file, "Basic block jump tracing"); switch (bb_mode & 12) { case 0: fprintf (file, " (with call)"); break; case 4: /* Print nothing. */ break; case 8: fprintf (file, " (with call & ret)"); break; case 12: fprintf (file, " (with ret)"); break; } fprintf (file, " finished on %s\n", ctime ((void *) &time_value)); for (i = 0; i < BB_BUCKETS; i++) { struct bb_edge *bucket = bb_hashbuckets[i]; for ( ; bucket; bucket = bucket->next ) { if (addr_max < bucket->src_addr) addr_max = bucket->src_addr; if (addr_max < bucket->dst_addr) addr_max = bucket->dst_addr; if (cnt_max < bucket->count) cnt_max = bucket->count; } } addr_len = num_digits (addr_max, 16); cnt_len = num_digits (cnt_max, 10); for ( i = 0; i < BB_BUCKETS; i++) { struct bb_edge *bucket = bb_hashbuckets[i]; for ( ; bucket; bucket = bucket->next ) { fprintf (file, "Jump from block 0x%.*lx to " "block 0x%.*lx executed %*lu time(s)\n", addr_len, bucket->src_addr, addr_len, bucket->dst_addr, cnt_len, bucket->count); } } fprintf (file, "\n"); } } if (file) fclose (file); /* Free allocated memory. */ f = bb_func_head; while (f) { struct bb_func *old = f; f = f->next; if (old->funcname) free (old->funcname); if (old->filename) free (old->filename); free (old); } if (bb_stack) free (bb_stack); if (bb_hashbuckets) { int i; for (i = 0; i < BB_BUCKETS; i++) { struct bb_edge *old, *bucket = bb_hashbuckets[i]; while (bucket) { old = bucket; bucket = bucket->next; free (old); } } free (bb_hashbuckets); } for (b = bb_head; b; b = b->next) if (b->flags) free (b->flags); } /* Called once per program. */ static void __bb_init_prg () { FILE *file; char buf[BBINBUFSIZE]; const char *p; const char *pos; enum bb_func_mode m; #ifdef ON_EXIT /* Initialize destructor. */ ON_EXIT (__bb_exit_func, 0); #endif if (!(file = fopen ("bb.in", "r"))) return; while(fscanf (file, " %" BBINBUFSIZESTR "s ", buf) != EOF) { p = buf; if (*p == '-') { m = TRACE_OFF; p++; } else { m = TRACE_ON; } if (!strcmp (p, "__bb_trace__")) bb_mode |= 1; else if (!strcmp (p, "__bb_jumps__")) bb_mode |= 2; else if (!strcmp (p, "__bb_hidecall__")) bb_mode |= 4; else if (!strcmp (p, "__bb_showret__")) bb_mode |= 8; else { struct bb_func *f = (struct bb_func *) malloc (sizeof (struct bb_func)); if (f) { unsigned long l; f->next = bb_func_head; if ((pos = strchr (p, ':'))) { if (!(f->funcname = (char *) malloc (strlen (pos+1)+1))) continue; strcpy (f->funcname, pos+1); l = pos-p; if ((f->filename = (char *) malloc (l+1))) { strncpy (f->filename, p, l); f->filename[l] = '\0'; } else f->filename = (char *) 0; } else { if (!(f->funcname = (char *) malloc (strlen (p)+1))) continue; strcpy (f->funcname, p); f->filename = (char *) 0; } f->mode = m; bb_func_head = f; } } } fclose (file); #ifdef HAVE_POPEN if (bb_mode & 1) bb_tracefile = gopen ("bbtrace.gz", "w"); #else if (bb_mode & 1) bb_tracefile = fopen ("bbtrace", "w"); #endif /* HAVE_POPEN */ if (bb_mode & 2) { bb_hashbuckets = (struct bb_edge **) malloc (BB_BUCKETS * sizeof (struct bb_edge *)); if (bb_hashbuckets) memset (bb_hashbuckets, 0, BB_BUCKETS * sizeof (struct bb_edge *)); } if (bb_mode & 12) { bb_stacksize = 10; bb_stack = (unsigned long *) malloc (bb_stacksize * sizeof (*bb_stack)); } #ifdef ON_EXIT /* Initialize destructor. */ ON_EXIT (__bb_exit_trace_func, 0); #endif } /* Called upon entering a basic block. */ void __bb_trace_func () { struct bb_edge *bucket; MACHINE_STATE_SAVE("1") if (!bb_callcount || (__bb.blocks->flags && (__bb.blocks->flags[__bb.blockno] & TRACE_OFF))) goto skip; bb_dst = __bb.blocks->addresses[__bb.blockno]; __bb.blocks->counts[__bb.blockno]++; if (bb_tracefile) { fwrite (&bb_dst, sizeof (unsigned long), 1, bb_tracefile); } if (bb_hashbuckets) { struct bb_edge **startbucket, **oldnext; oldnext = startbucket = & bb_hashbuckets[ (((int) bb_src*8) ^ (int) bb_dst) % BB_BUCKETS ]; bucket = *startbucket; for (bucket = *startbucket; bucket; oldnext = &(bucket->next), bucket = *oldnext) { if (bucket->src_addr == bb_src && bucket->dst_addr == bb_dst) { bucket->count++; *oldnext = bucket->next; bucket->next = *startbucket; *startbucket = bucket; goto ret; } } bucket = (struct bb_edge *) malloc (sizeof (struct bb_edge)); if (!bucket) { if (!reported) { fprintf (stderr, "Profiler: out of memory\n"); reported = 1; } } else { bucket->src_addr = bb_src; bucket->dst_addr = bb_dst; bucket->next = *startbucket; *startbucket = bucket; bucket->count = 1; } } ret: bb_src = bb_dst; skip: ; MACHINE_STATE_RESTORE("1") } /* Called when returning from a function and `__bb_showret__' is set. */ static void __bb_trace_func_ret () { struct bb_edge *bucket; if (!bb_callcount || (__bb.blocks->flags && (__bb.blocks->flags[__bb.blockno] & TRACE_OFF))) goto skip; if (bb_hashbuckets) { struct bb_edge **startbucket, **oldnext; oldnext = startbucket = & bb_hashbuckets[ (((int) bb_dst * 8) ^ (int) bb_src) % BB_BUCKETS ]; bucket = *startbucket; for (bucket = *startbucket; bucket; oldnext = &(bucket->next), bucket = *oldnext) { if (bucket->src_addr == bb_dst && bucket->dst_addr == bb_src) { bucket->count++; *oldnext = bucket->next; bucket->next = *startbucket; *startbucket = bucket; goto ret; } } bucket = (struct bb_edge *) malloc (sizeof (struct bb_edge)); if (!bucket) { if (!reported) { fprintf (stderr, "Profiler: out of memory\n"); reported = 1; } } else { bucket->src_addr = bb_dst; bucket->dst_addr = bb_src; bucket->next = *startbucket; *startbucket = bucket; bucket->count = 1; } } ret: bb_dst = bb_src; skip: ; } /* Called upon entering the first function of a file. */ static void __bb_init_file (struct bb *blocks) { const struct bb_func *p; long blk, ncounts = blocks->ncounts; const char **functions = blocks->functions; /* Set up linked list. */ blocks->zero_word = 1; blocks->next = bb_head; bb_head = blocks; blocks->flags = 0; if (!bb_func_head || !(blocks->flags = (char *) malloc (sizeof (char) * blocks->ncounts))) return; for (blk = 0; blk < ncounts; blk++) blocks->flags[blk] = 0; for (blk = 0; blk < ncounts; blk++) { for (p = bb_func_head; p; p = p->next) { if (!strcmp (p->funcname, functions[blk]) && (!p->filename || !strcmp (p->filename, blocks->filename))) { blocks->flags[blk] |= p->mode; } } } } /* Called when exiting from a function. */ void __bb_trace_ret () { MACHINE_STATE_SAVE("2") if (bb_callcount) { if ((bb_mode & 12) && bb_stacksize > bb_callcount) { bb_src = bb_stack[bb_callcount]; if (bb_mode & 8) __bb_trace_func_ret (); } bb_callcount -= 1; } MACHINE_STATE_RESTORE("2") } /* Called when entering a function. */ void __bb_init_trace_func (struct bb *blocks, unsigned long blockno) { static int trace_init = 0; MACHINE_STATE_SAVE("3") if (!blocks->zero_word) { if (!trace_init) { trace_init = 1; __bb_init_prg (); } __bb_init_file (blocks); } if (bb_callcount) { bb_callcount += 1; if (bb_mode & 12) { if (bb_callcount >= bb_stacksize) { size_t newsize = bb_callcount + 100; bb_stack = (unsigned long *) realloc (bb_stack, newsize); if (! bb_stack) { if (!reported) { fprintf (stderr, "Profiler: out of memory\n"); reported = 1; } bb_stacksize = 0; goto stack_overflow; } bb_stacksize = newsize; } bb_stack[bb_callcount] = bb_src; if (bb_mode & 4) bb_src = 0; } stack_overflow:; } else if (blocks->flags && (blocks->flags[blockno] & TRACE_ON)) { bb_callcount = 1; bb_src = 0; if (bb_stack) bb_stack[bb_callcount] = bb_src; } MACHINE_STATE_RESTORE("3") } #endif /* not inhibit_libc */ #endif /* not BLOCK_PROFILER_CODE */ #endif /* L_bb */ #ifdef L_shtab unsigned int __shtab[] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000 }; #endif #ifdef L_clear_cache /* Clear part of an instruction cache. */ #define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH) void __clear_cache (char *beg, char *end) { #ifdef CLEAR_INSN_CACHE CLEAR_INSN_CACHE (beg, end); #else #ifdef INSN_CACHE_SIZE static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH]; static int initialized; int offset; void *start_addr void *end_addr; typedef (*function_ptr) (); #if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16 /* It's cheaper to clear the whole cache. Put in a series of jump instructions so that calling the beginning of the cache will clear the whole thing. */ if (! initialized) { int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH); int end_ptr = ptr + INSN_CACHE_SIZE; while (ptr < end_ptr) { *(INSTRUCTION_TYPE *)ptr = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH; ptr += INSN_CACHE_LINE_WIDTH; } *(INSTRUCTION_TYPE *) (ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION; initialized = 1; } /* Call the beginning of the sequence. */ (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH)) ()); #else /* Cache is large. */ if (! initialized) { int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH); while (ptr < (int) array + sizeof array) { *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION; ptr += INSN_CACHE_LINE_WIDTH; } initialized = 1; } /* Find the location in array that occupies the same cache line as BEG. */ offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1); start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1) & -INSN_CACHE_PLANE_SIZE) + offset); /* Compute the cache alignment of the place to stop clearing. */ #if 0 /* This is not needed for gcc's purposes. */ /* If the block to clear is bigger than a cache plane, we clear the entire cache, and OFFSET is already correct. */ if (end < beg + INSN_CACHE_PLANE_SIZE) #endif offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1)); #if INSN_CACHE_DEPTH > 1 end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset; if (end_addr <= start_addr) end_addr += INSN_CACHE_PLANE_SIZE; for (plane = 0; plane < INSN_CACHE_DEPTH; plane++) { int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE; int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE; while (addr != stop) { /* Call the return instruction at ADDR. */ ((function_ptr) addr) (); addr += INSN_CACHE_LINE_WIDTH; } } #else /* just one plane */ do { /* Call the return instruction at START_ADDR. */ ((function_ptr) start_addr) (); start_addr += INSN_CACHE_LINE_WIDTH; } while ((start_addr % INSN_CACHE_SIZE) != offset); #endif /* just one plane */ #endif /* Cache is large */ #endif /* Cache exists */ #endif /* CLEAR_INSN_CACHE */ } #endif /* L_clear_cache */ #ifdef L_trampoline /* Jump to a trampoline, loading the static chain address. */ #if defined(WINNT) && ! defined(__CYGWIN__) long getpagesize() { #ifdef _ALPHA_ return 8192; #else return 4096; #endif } #ifdef i386 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall)); #endif int mprotect (char *addr, int len, int prot) { int np, op; if (prot == 7) np = 0x40; else if (prot == 5) np = 0x20; else if (prot == 4) np = 0x10; else if (prot == 3) np = 0x04; else if (prot == 1) np = 0x02; else if (prot == 0) np = 0x01; if (VirtualProtect (addr, len, np, &op)) return 0; else return -1; } #endif #ifdef TRANSFER_FROM_TRAMPOLINE TRANSFER_FROM_TRAMPOLINE #endif #if defined (NeXT) && defined (__MACH__) /* Make stack executable so we can call trampolines on stack. This is called from INITIALIZE_TRAMPOLINE in next.h. */ #ifdef NeXTStep21 #include #else #include #endif void __enable_execute_stack (char *addr) { kern_return_t r; char *eaddr = addr + TRAMPOLINE_SIZE; vm_address_t a = (vm_address_t) addr; /* turn on execute access on stack */ r = vm_protect (task_self (), a, TRAMPOLINE_SIZE, FALSE, VM_PROT_ALL); if (r != KERN_SUCCESS) { mach_error("vm_protect VM_PROT_ALL", r); exit(1); } /* We inline the i-cache invalidation for speed */ #ifdef CLEAR_INSN_CACHE CLEAR_INSN_CACHE (addr, eaddr); #else __clear_cache ((int) addr, (int) eaddr); #endif } #endif /* defined (NeXT) && defined (__MACH__) */ #ifdef __convex__ /* Make stack executable so we can call trampolines on stack. This is called from INITIALIZE_TRAMPOLINE in convex.h. */ #include #include #include void __enable_execute_stack () { int fp; static unsigned lowest = USRSTACK; unsigned current = (unsigned) &fp & -NBPG; if (lowest > current) { unsigned len = lowest - current; mremap (current, &len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE); lowest = current; } /* Clear instruction cache in case an old trampoline is in it. */ asm ("pich"); } #endif /* __convex__ */ #ifdef __sysV88__ /* Modified from the convex -code above. */ #include #include #include void __enable_execute_stack () { int save_errno; static unsigned long lowest = USRSTACK; unsigned long current = (unsigned long) &save_errno & -NBPC; /* Ignore errno being set. memctl sets errno to EINVAL whenever the address is seen as 'negative'. That is the case with the stack. */ save_errno=errno; if (lowest > current) { unsigned len=lowest-current; memctl(current,len,MCT_TEXT); lowest = current; } else memctl(current,NBPC,MCT_TEXT); errno=save_errno; } #endif /* __sysV88__ */ #ifdef __sysV68__ #include #include /* Motorola forgot to put memctl.o in the libp version of libc881.a, so define it here, because we need it in __clear_insn_cache below */ /* On older versions of this OS, no memctl or MCT_TEXT are defined; hence we enable this stuff only if MCT_TEXT is #define'd. */ #ifdef MCT_TEXT asm("\n\ global memctl\n\ memctl:\n\ movq &75,%d0\n\ trap &0\n\ bcc.b noerror\n\ jmp cerror%\n\ noerror:\n\ movq &0,%d0\n\ rts"); #endif /* Clear instruction cache so we can call trampolines on stack. This is called from FINALIZE_TRAMPOLINE in mot3300.h. */ void __clear_insn_cache () { #ifdef MCT_TEXT int save_errno; /* Preserve errno, because users would be surprised to have errno changing without explicitly calling any system-call. */ save_errno = errno; /* Keep it simple : memctl (MCT_TEXT) always fully clears the insn cache. No need to use an address derived from _start or %sp, as 0 works also. */ memctl(0, 4096, MCT_TEXT); errno = save_errno; #endif } #endif /* __sysV68__ */ #ifdef __pyr__ #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ #include #include #include #include #include /* Modified from the convex -code above. mremap promises to clear the i-cache. */ void __enable_execute_stack () { int fp; if (mprotect (((unsigned int)&fp/PAGSIZ)*PAGSIZ, PAGSIZ, PROT_READ|PROT_WRITE|PROT_EXEC)) { perror ("mprotect in __enable_execute_stack"); fflush (stderr); abort (); } } #endif /* __pyr__ */ #if defined (sony_news) && defined (SYSTYPE_BSD) #include #include #include #include #include /* cacheflush function for NEWS-OS 4.2. This function is called from trampoline-initialize code defined in config/mips/mips.h. */ void cacheflush (char *beg, int size, int flag) { if (syscall (SYS_sysnews, NEWS_CACHEFLUSH, beg, size, FLUSH_BCACHE)) { perror ("cache_flush"); fflush (stderr); abort (); } } #endif /* sony_news */ #endif /* L_trampoline */ #ifndef __CYGWIN__ #ifdef L__main #include "gbl-ctors.h" /* Some systems use __main in a way incompatible with its use in gcc, in these cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to give the same symbol without quotes for an alternative entry point. You must define both, or neither. */ #ifndef NAME__MAIN #define NAME__MAIN "__main" #define SYMBOL__MAIN __main #endif #ifdef INIT_SECTION_ASM_OP #undef HAS_INIT_SECTION #define HAS_INIT_SECTION #endif #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF) /* Run all the global destructors on exit from the program. */ void __do_global_dtors () { #ifdef DO_GLOBAL_DTORS_BODY DO_GLOBAL_DTORS_BODY; #else static func_ptr *p = __DTOR_LIST__ + 1; while (*p) { p++; (*(p-1)) (); } #endif } #endif #ifndef HAS_INIT_SECTION /* Run all the global constructors on entry to the program. */ #ifndef ON_EXIT #define ON_EXIT(a, b) #else /* Make sure the exit routine is pulled in to define the globals as bss symbols, just in case the linker does not automatically pull bss definitions from the library. */ extern int _exit_dummy_decl; int *_exit_dummy_ref = &_exit_dummy_decl; #endif /* ON_EXIT */ void __do_global_ctors () { DO_GLOBAL_CTORS_BODY; ON_EXIT (__do_global_dtors, 0); } #endif /* no HAS_INIT_SECTION */ #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main) /* Subroutine called automatically by `main'. Compiling a global function named `main' produces an automatic call to this function at the beginning. For many systems, this routine calls __do_global_ctors. For systems which support a .init section we use the .init section to run __do_global_ctors, so we need not do anything here. */ void SYMBOL__MAIN () { /* Support recursive calls to `main': run initializers just once. */ static int initialized; if (! initialized) { initialized = 1; __do_global_ctors (); } } #endif /* no HAS_INIT_SECTION or INVOKE__main */ #endif /* L__main */ #endif /* __CYGWIN__ */ #ifdef L_ctors #include "gbl-ctors.h" /* Provide default definitions for the lists of constructors and destructors, so that we don't get linker errors. These symbols are intentionally bss symbols, so that gld and/or collect will provide the right values. */ /* We declare the lists here with two elements each, so that they are valid empty lists if no other definition is loaded. */ #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY) #if defined(__NeXT__) || defined(_AIX) /* After 2.3, try this definition on all systems. */ func_ptr __CTOR_LIST__[2] = {0, 0}; func_ptr __DTOR_LIST__[2] = {0, 0}; #else func_ptr __CTOR_LIST__[2]; func_ptr __DTOR_LIST__[2]; #endif #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */ #endif /* L_ctors */ #ifdef L_exit #include "gbl-ctors.h" #ifdef NEED_ATEXIT # ifdef ON_EXIT # undef ON_EXIT # endif int _exit_dummy_decl = 0; /* prevent compiler & linker warnings */ #endif #ifndef ON_EXIT #ifdef NEED_ATEXIT # include static func_ptr *atexit_chain = 0; static long atexit_chain_length = 0; static volatile long last_atexit_chain_slot = -1; int atexit (func_ptr func) { if (++last_atexit_chain_slot == atexit_chain_length) { atexit_chain_length += 32; if (atexit_chain) atexit_chain = (func_ptr *) realloc (atexit_chain, atexit_chain_length * sizeof (func_ptr)); else atexit_chain = (func_ptr *) malloc (atexit_chain_length * sizeof (func_ptr)); if (! atexit_chain) { atexit_chain_length = 0; last_atexit_chain_slot = -1; errno = ENOMEM; return (-1); } } atexit_chain[last_atexit_chain_slot] = func; return (0); } #endif /* NEED_ATEXIT */ /* If we have no known way of registering our own __do_global_dtors routine so that it will be invoked at program exit time, then we have to define our own exit routine which will get this to happen. */ extern void __do_global_dtors (); extern void __bb_exit_func (); extern void _cleanup (); extern void _exit () __attribute__ ((noreturn)); void exit (int status) { #if !defined (INIT_SECTION_ASM_OP) || !defined (OBJECT_FORMAT_ELF) #ifdef NEED_ATEXIT if (atexit_chain) { for ( ; last_atexit_chain_slot-- >= 0; ) { (*atexit_chain[last_atexit_chain_slot + 1]) (); atexit_chain[last_atexit_chain_slot + 1] = 0; } free (atexit_chain); atexit_chain = 0; } #else /* No NEED_ATEXIT */ __do_global_dtors (); #endif /* No NEED_ATEXIT */ #endif /* !defined (INIT_SECTION_ASM_OP) || !defined (OBJECT_FORMAT_ELF) */ /* In gbl-ctors.h, ON_EXIT is defined if HAVE_ATEXIT is defined. In __bb_init_func and _bb_init_prg, __bb_exit_func is registered with ON_EXIT if ON_EXIT is defined. Thus we must not call __bb_exit_func here if HAVE_ATEXIT is defined. */ #ifndef HAVE_ATEXIT #ifndef inhibit_libc __bb_exit_func (); #endif #endif /* !HAVE_ATEXIT */ #ifdef EXIT_BODY EXIT_BODY; #else _cleanup (); #endif _exit (status); } #else /* ON_EXIT defined */ int _exit_dummy_decl = 0; /* prevent compiler & linker warnings */ # ifndef HAVE_ATEXIT /* Provide a fake for atexit() using ON_EXIT. */ int atexit (func_ptr func) { return ON_EXIT (func, NULL); } # endif /* HAVE_ATEXIT */ #endif /* ON_EXIT defined */ #endif /* L_exit */ #ifdef L_eh #include "gthr.h" /* Shared exception handling support routines. */ extern void __default_terminate (void) __attribute__ ((__noreturn__)); void __default_terminate () { abort (); } void (*__terminate_func)() = __default_terminate; void __terminate () { (*__terminate_func)(); } void * __throw_type_match (void *catch_type, void *throw_type, void *obj) { #if 0 printf ("__throw_type_match (): catch_type = %s, throw_type = %s\n", catch_type, throw_type); #endif if (strcmp ((const char *)catch_type, (const char *)throw_type) == 0) return obj; return 0; } void __empty () { } /* Include definitions of EH context and table layout */ #include "eh-common.h" #ifndef inhibit_libc #include #endif /* Allocate and return a new EH context structure. */ extern void __throw (); static void * new_eh_context () { struct eh_full_context { struct eh_context c; void *top_elt[2]; } *ehfc = (struct eh_full_context *) malloc (sizeof *ehfc); if (! ehfc) __terminate (); memset (ehfc, 0, sizeof *ehfc); ehfc->c.dynamic_handler_chain = (void **) ehfc->top_elt; /* This should optimize out entirely. This should always be true, but just in case it ever isn't, don't allow bogus code to be generated. */ if ((void*)(&ehfc->c) != (void*)ehfc) __terminate (); return &ehfc->c; } #if __GTHREADS static __gthread_key_t eh_context_key; /* Destructor for struct eh_context. */ static void eh_context_free (void *ptr) { __gthread_key_dtor (eh_context_key, ptr); if (ptr) free (ptr); } #endif /* Pointer to function to return EH context. */ static struct eh_context *eh_context_initialize (); static struct eh_context *eh_context_static (); #if __GTHREADS static struct eh_context *eh_context_specific (); #endif static struct eh_context *(*get_eh_context) () = &eh_context_initialize; /* Routine to get EH context. This one will simply call the function pointer. */ void * __get_eh_context () { return (void *) (*get_eh_context) (); } /* Get and set the language specific info pointer. */ void ** __get_eh_info () { struct eh_context *eh = (*get_eh_context) (); return &eh->info; } #if __GTHREADS static void eh_threads_initialize () { /* Try to create the key. If it fails, revert to static method, otherwise start using thread specific EH contexts. */ if (__gthread_key_create (&eh_context_key, &eh_context_free) == 0) get_eh_context = &eh_context_specific; else get_eh_context = &eh_context_static; } #endif /* no __GTHREADS */ /* Initialize EH context. This will be called only once, since we change GET_EH_CONTEXT pointer to another routine. */ static struct eh_context * eh_context_initialize () { #if __GTHREADS static __gthread_once_t once = __GTHREAD_ONCE_INIT; /* Make sure that get_eh_context does not point to us anymore. Some systems have dummy thread routines in their libc that return a success (Solaris 2.6 for example). */ if (__gthread_once (&once, eh_threads_initialize) != 0 || get_eh_context == &eh_context_initialize) { /* Use static version of EH context. */ get_eh_context = &eh_context_static; } #else /* no __GTHREADS */ /* Use static version of EH context. */ get_eh_context = &eh_context_static; #endif /* no __GTHREADS */ return (*get_eh_context) (); } /* Return a static EH context. */ static struct eh_context * eh_context_static () { static struct eh_context eh; static int initialized; static void *top_elt[2]; if (! initialized) { initialized = 1; memset (&eh, 0, sizeof eh); eh.dynamic_handler_chain = top_elt; } return &eh; } #if __GTHREADS /* Return a thread specific EH context. */ static struct eh_context * eh_context_specific () { struct eh_context *eh; eh = (struct eh_context *) __gthread_getspecific (eh_context_key); if (! eh) { eh = new_eh_context (); if (__gthread_setspecific (eh_context_key, (void *) eh) != 0) __terminate (); } return eh; } #endif __GTHREADS /* Support routines for setjmp/longjmp exception handling. */ /* Calls to __sjthrow are generated by the compiler when an exception is raised when using the setjmp/longjmp exception handling codegen method. */ #ifdef DONT_USE_BUILTIN_SETJMP extern void longjmp (void *, int); #endif /* Routine to get the head of the current thread's dynamic handler chain use for exception handling. */ void *** __get_dynamic_handler_chain () { struct eh_context *eh = (*get_eh_context) (); return &eh->dynamic_handler_chain; } /* This is used to throw an exception when the setjmp/longjmp codegen method is used for exception handling. We call __terminate if there are no handlers left. Otherwise we run the cleanup actions off the dynamic cleanup stack, and pop the top of the dynamic handler chain, and use longjmp to transfer back to the associated handler. */ extern void __sjthrow (void) __attribute__ ((__noreturn__)); void __sjthrow () { struct eh_context *eh = (*get_eh_context) (); void ***dhc = &eh->dynamic_handler_chain; void *jmpbuf; void (*func)(void *, int); void *arg; void ***cleanup; /* The cleanup chain is one word into the buffer. Get the cleanup chain. */ cleanup = (void***)&(*dhc)[1]; /* If there are any cleanups in the chain, run them now. */ if (cleanup[0]) { double store[200]; void **buf = (void**)store; buf[1] = 0; buf[0] = (*dhc); /* try { */ #ifdef DONT_USE_BUILTIN_SETJMP if (! setjmp (&buf[2])) #else if (! __builtin_setjmp (&buf[2])) #endif { *dhc = buf; while (cleanup[0]) { func = (void(*)(void*, int))cleanup[0][1]; arg = (void*)cleanup[0][2]; /* Update this before running the cleanup. */ cleanup[0] = (void **)cleanup[0][0]; (*func)(arg, 2); } *dhc = buf[0]; } /* catch (...) */ else { __terminate (); } } /* We must call terminate if we try and rethrow an exception, when there is no exception currently active and when there are no handlers left. */ if (! eh->info || (*dhc)[0] == 0) __terminate (); /* Find the jmpbuf associated with the top element of the dynamic handler chain. The jumpbuf starts two words into the buffer. */ jmpbuf = &(*dhc)[2]; /* Then we pop the top element off the dynamic handler chain. */ *dhc = (void**)(*dhc)[0]; /* And then we jump to the handler. */ #ifdef DONT_USE_BUILTIN_SETJMP longjmp (jmpbuf, 1); #else __builtin_longjmp (jmpbuf, 1); #endif } /* Run cleanups on the dynamic cleanup stack for the current dynamic handler, then pop the handler off the dynamic handler stack, and then throw. This is used to skip the first handler, and transfer control to the next handler in the dynamic handler stack. */ extern void __sjpopnthrow (void) __attribute__ ((__noreturn__)); void __sjpopnthrow () { struct eh_context *eh = (*get_eh_context) (); void ***dhc = &eh->dynamic_handler_chain; void (*func)(void *, int); void *arg; void ***cleanup; /* The cleanup chain is one word into the buffer. Get the cleanup chain. */ cleanup = (void***)&(*dhc)[1]; /* If there are any cleanups in the chain, run them now. */ if (cleanup[0]) { double store[200]; void **buf = (void**)store; buf[1] = 0; buf[0] = (*dhc); /* try { */ #ifdef DONT_USE_BUILTIN_SETJMP if (! setjmp (&buf[2])) #else if (! __builtin_setjmp (&buf[2])) #endif { *dhc = buf; while (cleanup[0]) { func = (void(*)(void*, int))cleanup[0][1]; arg = (void*)cleanup[0][2]; /* Update this before running the cleanup. */ cleanup[0] = (void **)cleanup[0][0]; (*func)(arg, 2); } *dhc = buf[0]; } /* catch (...) */ else { __terminate (); } } /* Then we pop the top element off the dynamic handler chain. */ *dhc = (void**)(*dhc)[0]; __sjthrow (); } /* Support code for all exception region-based exception handling. */ int __eh_rtime_match (void *rtime) { void *info; __eh_matcher matcher; void *ret; info = *(__get_eh_info ()); matcher = ((__eh_info *)info)->match_function; if (! matcher) { #ifndef inhibit_libc fprintf (stderr, "Internal Compiler Bug: No runtime type matcher."); #endif return 0; } ret = (*matcher) (info, rtime, (void *)0); return (ret != NULL); } /* This value identifies the place from which an exception is being thrown. */ #ifdef EH_TABLE_LOOKUP EH_TABLE_LOOKUP #else #ifdef DWARF2_UNWIND_INFO /* Return the table version of an exception descriptor */ short __get_eh_table_version (exception_descriptor *table) { return table->lang.version; } /* Return the originating table language of an exception descriptor */ short __get_eh_table_language (exception_descriptor *table) { return table->lang.language; } /* This routine takes a PC and a pointer to the exception region TABLE for its translation unit, and returns the address of the exception handler associated with the closest exception table handler entry associated with that PC, or 0 if there are no table entries the PC fits in. In the advent of a tie, we have to give the last entry, as it represents an inner block. */ static void * old_find_exception_handler (void *pc, old_exception_table *table) { if (table) { int pos; int best = -1; /* We can't do a binary search because the table isn't guaranteed to be sorted from function to function. */ for (pos = 0; table[pos].start_region != (void *) -1; ++pos) { if (table[pos].start_region <= pc && table[pos].end_region > pc) { /* This can apply. Make sure it is at least as small as the previous best. */ if (best == -1 || (table[pos].end_region <= table[best].end_region && table[pos].start_region >= table[best].start_region)) best = pos; } /* But it is sorted by starting PC within a function. */ else if (best >= 0 && table[pos].start_region > pc) break; } if (best != -1) return table[best].exception_handler; } return (void *) 0; } static void * find_exception_handler (void *pc, exception_descriptor *table, void *eh_info) { if (table) { /* The new model assumed the table is sorted inner-most out so the first region we find which matches is the correct one */ int pos; void *ret; exception_table *tab = &(table->table[0]); /* Subtract 1 from the PC to avoid hitting the next region */ pc--; /* We can't do a binary search because the table is in inner-most to outermost address ranges within functions */ for (pos = 0; tab[pos].start_region != (void *) -1; pos++) { if (tab[pos].start_region <= pc && tab[pos].end_region > pc) { if (tab[pos].match_info) { __eh_matcher matcher = ((__eh_info *)eh_info)->match_function; /* match info but no matcher is NOT a match */ if (matcher) { ret = (*matcher)(eh_info, tab[pos].match_info, table); if (ret) return tab[pos].exception_handler; } } else return tab[pos].exception_handler; } } } return (void *) 0; } #endif /* DWARF2_UNWIND_INFO */ #endif /* EH_TABLE_LOOKUP */ #ifdef DWARF2_UNWIND_INFO /* Support code for exception handling using static unwind information. */ #include "frame.h" /* This type is used in get_reg and put_reg to deal with ABIs where a void* is smaller than a word, such as the Irix 6 n32 ABI. We cast twice to avoid a warning about casting between int and pointer of different sizes. */ typedef int ptr_type __attribute__ ((mode (pointer))); #ifdef INCOMING_REGNO /* Is the saved value for register REG in frame UDATA stored in a register window in the previous frame? */ /* ??? The Sparc INCOMING_REGNO references TARGET_FLAT. This allows us to use the macro here. One wonders, though, that perhaps TARGET_FLAT compiled functions won't work with the frame-unwind stuff here. Perhaps the entireity of in_reg_window should be conditional on having seen a DW_CFA_GNU_window_save? */ #define target_flags 0 static int in_reg_window (int reg, frame_state *udata) { if (udata->saved[reg] == REG_SAVED_REG) return INCOMING_REGNO (reg) == reg; if (udata->saved[reg] != REG_SAVED_OFFSET) return 0; #ifdef STACK_GROWS_DOWNWARD return udata->reg_or_offset[reg] > 0; #else return udata->reg_or_offset[reg] < 0; #endif } #else static inline int in_reg_window (int reg, frame_state *udata) { return 0; } #endif /* INCOMING_REGNO */ /* Get the address of register REG as saved in UDATA, where SUB_UDATA is a frame called by UDATA or 0. */ static word_type * get_reg_addr (unsigned reg, frame_state *udata, frame_state *sub_udata) { while (udata->saved[reg] == REG_SAVED_REG) { reg = udata->reg_or_offset[reg]; if (in_reg_window (reg, udata)) { udata = sub_udata; sub_udata = NULL; } } if (udata->saved[reg] == REG_SAVED_OFFSET) return (word_type *)(udata->cfa + udata->reg_or_offset[reg]); else abort (); } /* Get the value of register REG as saved in UDATA, where SUB_UDATA is a frame called by UDATA or 0. */ static inline void * get_reg (unsigned reg, frame_state *udata, frame_state *sub_udata) { return (void *)(ptr_type) *get_reg_addr (reg, udata, sub_udata); } /* Overwrite the saved value for register REG in frame UDATA with VAL. */ static inline void put_reg (unsigned reg, void *val, frame_state *udata) { *get_reg_addr (reg, udata, NULL) = (word_type)(ptr_type) val; } /* Copy the saved value for register REG from frame UDATA to frame TARGET_UDATA. Unlike the previous two functions, this can handle registers that are not one word large. */ static void copy_reg (unsigned reg, frame_state *udata, frame_state *target_udata) { word_type *preg = get_reg_addr (reg, udata, NULL); word_type *ptreg = get_reg_addr (reg, target_udata, NULL); memcpy (ptreg, preg, __builtin_dwarf_reg_size (reg)); } /* Retrieve the return address for frame UDATA. */ static inline void * get_return_addr (frame_state *udata, frame_state *sub_udata) { return __builtin_extract_return_addr (get_reg (udata->retaddr_column, udata, sub_udata)); } /* Overwrite the return address for frame UDATA with VAL. */ static inline void put_return_addr (void *val, frame_state *udata) { val = __builtin_frob_return_addr (val); put_reg (udata->retaddr_column, val, udata); } /* Given the current frame UDATA and its return address PC, return the information about the calling frame in CALLER_UDATA. */ static void * next_stack_level (void *pc, frame_state *udata, frame_state *caller_udata) { caller_udata = __frame_state_for (pc, caller_udata); if (! caller_udata) return 0; /* Now go back to our caller's stack frame. If our caller's CFA register was saved in our stack frame, restore it; otherwise, assume the CFA register is SP and restore it to our CFA value. */ if (udata->saved[caller_udata->cfa_reg]) caller_udata->cfa = get_reg (caller_udata->cfa_reg, udata, 0); else caller_udata->cfa = udata->cfa; caller_udata->cfa += caller_udata->cfa_offset; return caller_udata; } /* We first search for an exception handler, and if we don't find it, we call __terminate on the current stack frame so that we may use the debugger to walk the stack and understand why no handler was found. If we find one, then we unwind the frames down to the one that has the handler and transfer control into the handler. */ /*extern void __throw(void) __attribute__ ((__noreturn__));*/ void __throw () { struct eh_context *eh = (*get_eh_context) (); void *saved_pc, *pc, *handler; frame_state ustruct, ustruct2; frame_state *udata = &ustruct; frame_state *sub_udata = &ustruct2; frame_state my_ustruct, *my_udata = &my_ustruct; long args_size; int new_exception_model; /* This is required for C++ semantics. We must call terminate if we try and rethrow an exception, when there is no exception currently active. */ if (! eh->info) __terminate (); /* Start at our stack frame. */ label: udata = __frame_state_for (&&label, udata); if (! udata) __terminate (); /* We need to get the value from the CFA register. */ udata->cfa = __builtin_dwarf_cfa (); memcpy (my_udata, udata, sizeof (*udata)); /* Do any necessary initialization to access arbitrary stack frames. On the SPARC, this means flushing the register windows. */ __builtin_unwind_init (); /* Now reset pc to the right throw point. */ pc = __builtin_extract_return_addr (__builtin_return_address (0)) - 1; saved_pc = pc; handler = 0; for (;;) { frame_state *p = udata; udata = next_stack_level (pc, udata, sub_udata); sub_udata = p; /* If we couldn't find the next frame, we lose. */ if (! udata) break; if (udata->eh_ptr == NULL) new_exception_model = 0; else new_exception_model = (((exception_descriptor *)(udata->eh_ptr))-> runtime_id_field == NEW_EH_RUNTIME); if (new_exception_model) handler = find_exception_handler (pc, udata->eh_ptr, eh->info); else handler = old_find_exception_handler (pc, udata->eh_ptr); /* If we found one, we can stop searching. */ if (handler) { args_size = udata->args_size; break; } /* Otherwise, we continue searching. We subtract 1 from PC to avoid hitting the beginning of the next region. */ pc = get_return_addr (udata, sub_udata) - 1; } /* If we haven't found a handler by now, this is an unhandled exception. */ if (! handler) __terminate (); eh->handler_label = handler; if (pc == saved_pc) /* We found a handler in the throw context, no need to unwind. */ udata = my_udata; else { int i; /* Unwind all the frames between this one and the handler by copying their saved register values into our register save slots. */ /* Remember the PC where we found the handler. */ void *handler_pc = pc; /* Start from the throw context again. */ pc = saved_pc; memcpy (udata, my_udata, sizeof (*udata)); while (pc != handler_pc) { frame_state *p = udata; udata = next_stack_level (pc, udata, sub_udata); sub_udata = p; for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i) if (i != udata->retaddr_column && udata->saved[i]) { /* If you modify the saved value of the return address register on the SPARC, you modify the return address for your caller's frame. Don't do that here, as it will confuse get_return_addr. */ if (in_reg_window (i, udata) && udata->saved[udata->retaddr_column] == REG_SAVED_REG && udata->reg_or_offset[udata->retaddr_column] == i) continue; copy_reg (i, udata, my_udata); } pc = get_return_addr (udata, sub_udata) - 1; } /* But we do need to update the saved return address register from the last frame we unwind, or the handler frame will have the wrong return address. */ if (udata->saved[udata->retaddr_column] == REG_SAVED_REG) { i = udata->reg_or_offset[udata->retaddr_column]; if (in_reg_window (i, udata)) copy_reg (i, udata, my_udata); } } /* Now go! */ __builtin_eh_return ((void *)eh, #ifdef STACK_GROWS_DOWNWARD udata->cfa - my_udata->cfa, #else my_udata->cfa - udata->cfa, #endif handler); /* Epilogue: restore the handler frame's register values and return to the stub. */ } #endif /* DWARF2_UNWIND_INFO */ #endif /* L_eh */ #ifdef L_pure #ifndef inhibit_libc /* This gets us __GNU_LIBRARY__. */ #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ #include #ifdef __GNU_LIBRARY__ /* Avoid forcing the library's meaning of `write' on the user program by using the "internal" name (for use within the library) */ #define write(fd, buf, n) __write((fd), (buf), (n)) #endif #endif /* inhibit_libc */ #define MESSAGE "pure virtual method called\n" void __pure_virtual () { #ifndef inhibit_libc write (2, MESSAGE, sizeof (MESSAGE) - 1); #endif __terminate (); } #endif