/* More subroutines needed by GCC output code on some machines. */ /* Compile this one with gcc. */ /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* We include auto-host.h here to get HAVE_GAS_HIDDEN. This is supposedly valid even though this is a "target" file. */ #include "auto-host.h" /* It is incorrect to include config.h here, because this file is being compiled for the target, and hence definitions concerning only the host do not apply. */ #include "tconfig.h" #include "tsystem.h" #include "coretypes.h" #include "tm.h" /* Don't use `fancy_abort' here even if config.h says to use it. */ #ifdef abort #undef abort #endif #ifdef HAVE_GAS_HIDDEN #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden"))) #else #define ATTRIBUTE_HIDDEN #endif #include "libgcc2.h" #ifdef DECLARE_LIBRARY_RENAMES DECLARE_LIBRARY_RENAMES #endif #if defined (L_negdi2) DWtype __negdi2 (DWtype u) { DWunion w; DWunion uu; uu.ll = u; w.s.low = -uu.s.low; w.s.high = -uu.s.high - ((UWtype) w.s.low > 0); return w.ll; } #endif #ifdef L_addvsi3 Wtype __addvsi3 (Wtype a, Wtype b) { Wtype w; w = a + b; if (b >= 0 ? w < a : w > a) abort (); return w; } #endif #ifdef L_addvdi3 DWtype __addvdi3 (DWtype a, DWtype b) { DWtype w; w = a + b; if (b >= 0 ? w < a : w > a) abort (); return w; } #endif #ifdef L_subvsi3 Wtype __subvsi3 (Wtype a, Wtype b) { #ifdef L_addvsi3 return __addvsi3 (a, (-b)); #else DWtype w; w = a - b; if (b >= 0 ? w > a : w < a) abort (); return w; #endif } #endif #ifdef L_subvdi3 DWtype __subvdi3 (DWtype a, DWtype b) { #ifdef L_addvdi3 return __addvdi3 (a, (-b)); #else DWtype w; w = a - b; if (b >= 0 ? w > a : w < a) abort (); return w; #endif } #endif #ifdef L_mulvsi3 Wtype __mulvsi3 (Wtype a, Wtype b) { DWtype w; w = a * b; if (((a >= 0) == (b >= 0)) ? w < 0 : w > 0) abort (); return w; } #endif #ifdef L_negvsi2 Wtype __negvsi2 (Wtype a) { Wtype w; w = -a; if (a >= 0 ? w > 0 : w < 0) abort (); return w; } #endif #ifdef L_negvdi2 DWtype __negvdi2 (DWtype a) { DWtype w; w = -a; if (a >= 0 ? w > 0 : w < 0) abort (); return w; } #endif #ifdef L_absvsi2 Wtype __absvsi2 (Wtype a) { Wtype w = a; if (a < 0) #ifdef L_negvsi2 w = __negvsi2 (a); #else w = -a; if (w < 0) abort (); #endif return w; } #endif #ifdef L_absvdi2 DWtype __absvdi2 (DWtype a) { DWtype w = a; if (a < 0) #ifdef L_negvsi2 w = __negvsi2 (a); #else w = -a; if (w < 0) abort (); #endif return w; } #endif #ifdef L_mulvdi3 DWtype __mulvdi3 (DWtype u, DWtype v) { DWtype w; w = u * v; if (((u >= 0) == (v >= 0)) ? w < 0 : w > 0) abort (); return w; } #endif /* Unless shift functions are defined with full ANSI prototypes, parameter b will be promoted to int if word_type is smaller than an int. */ #ifdef L_lshrdi3 DWtype __lshrdi3 (DWtype u, word_type b) { DWunion w; word_type bm; DWunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.high = 0; w.s.low = (UWtype) uu.s.high >> -bm; } else { UWtype carries = (UWtype) uu.s.high << bm; w.s.high = (UWtype) uu.s.high >> b; w.s.low = ((UWtype) uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ashldi3 DWtype __ashldi3 (DWtype u, word_type b) { DWunion w; word_type bm; DWunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.low = 0; w.s.high = (UWtype) uu.s.low << -bm; } else { UWtype carries = (UWtype) uu.s.low >> bm; w.s.low = (UWtype) uu.s.low << b; w.s.high = ((UWtype) uu.s.high << b) | carries; } return w.ll; } #endif #ifdef L_ashrdi3 DWtype __ashrdi3 (DWtype u, word_type b) { DWunion w; word_type bm; DWunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; if (bm <= 0) { /* w.s.high = 1..1 or 0..0 */ w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1); w.s.low = uu.s.high >> -bm; } else { UWtype carries = (UWtype) uu.s.high << bm; w.s.high = uu.s.high >> b; w.s.low = ((UWtype) uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ffssi2 #undef int extern int __ffsSI2 (UWtype u); int __ffsSI2 (UWtype u) { UWtype count; if (u == 0) return 0; count_trailing_zeros (count, u); return count + 1; } #endif #ifdef L_ffsdi2 #undef int extern int __ffsDI2 (DWtype u); int __ffsDI2 (DWtype u) { DWunion uu; UWtype word, count, add; uu.ll = u; if (uu.s.low != 0) word = uu.s.low, add = 0; else if (uu.s.high != 0) word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype); else return 0; count_trailing_zeros (count, word); return count + add + 1; } #endif #ifdef L_muldi3 DWtype __muldi3 (DWtype u, DWtype v) { DWunion w; DWunion uu, vv; uu.ll = u, vv.ll = v; w.ll = __umulsidi3 (uu.s.low, vv.s.low); w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high + (UWtype) uu.s.high * (UWtype) vv.s.low); return w.ll; } #endif #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) #if defined (sdiv_qrnnd) #define L_udiv_w_sdiv #endif #endif #ifdef L_udiv_w_sdiv #if defined (sdiv_qrnnd) #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) static inline __attribute__ ((__always_inline__)) #endif UWtype __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d) { UWtype q, r; UWtype c0, c1, b1; if ((Wtype) d >= 0) { if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1))) { /* dividend, divisor, and quotient are nonnegative */ sdiv_qrnnd (q, r, a1, a0, d); } else { /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1)); /* Divide (c1*2^32 + c0) by d */ sdiv_qrnnd (q, r, c1, c0, d); /* Add 2^31 to quotient */ q += (UWtype) 1 << (W_TYPE_SIZE - 1); } } else { b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ c1 = a1 >> 1; /* A/2 */ c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1); if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ { sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ { c1 = (b1 - 1) - c1; c0 = ~c0; /* logical NOT */ sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ q = ~q; /* (A/2)/b1 */ r = (b1 - 1) - r; r = 2*r + (a0 & 1); /* A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else /* Implies c1 = b1 */ { /* Hence a1 = d - 1 = 2*b1 - 1 */ if (a0 >= -d) { q = -1; r = a0 + d; } else { q = -2; r = a0 + 2*d; } } } *rp = r; return q; } #else /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ UWtype __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)), UWtype a1 __attribute__ ((__unused__)), UWtype a0 __attribute__ ((__unused__)), UWtype d __attribute__ ((__unused__))) { return 0; } #endif #endif #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) #define L_udivmoddi4 #endif #ifdef L_clz const UQItype __clz_tab[] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, }; #endif #ifdef L_clzsi2 #undef int extern int __clzsi2 (USItype x); int __clzsi2 (USItype x) { UWtype w = x; Wtype ret; count_leading_zeros (ret, w); ret -= (sizeof(w) - sizeof(x)) * BITS_PER_UNIT; return ret; } #endif #ifdef L_clzdi2 #undef int extern int __clzdi2 (UDItype x); int __clzdi2 (UDItype x) { UWtype word; Wtype ret, add; if (sizeof(x) > sizeof(word)) { DWunion uu; uu.ll = x; if (uu.s.high) word = uu.s.high, add = 0; else word = uu.s.low, add = W_TYPE_SIZE; } else word = x, add = (Wtype)(sizeof(x) - sizeof(word)) * BITS_PER_UNIT; count_leading_zeros (ret, word); return ret + add; } #endif #ifdef L_ctzsi2 #undef int extern int __ctzsi2 (USItype x); int __ctzsi2 (USItype x) { Wtype ret; count_trailing_zeros (ret, x); return ret; } #endif #ifdef L_ctzdi2 #undef int extern int __ctzdi2 (UDItype x); int __ctzdi2 (UDItype x) { UWtype word; Wtype ret, add; if (sizeof(x) > sizeof(word)) { DWunion uu; uu.ll = x; if (uu.s.low) word = uu.s.low, add = 0; else word = uu.s.high, add = W_TYPE_SIZE; } else word = x, add = 0; count_trailing_zeros (ret, word); return ret + add; } #endif #if (defined (L_popcountsi2) || defined (L_popcountdi2) \ || defined (L_popcount_tab)) extern const UQItype __popcount_tab[] ATTRIBUTE_HIDDEN; #endif #ifdef L_popcount_tab const UQItype __popcount_tab[] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8, }; #endif #ifdef L_popcountsi2 #undef int extern int __popcountsi2 (USItype x); int __popcountsi2 (USItype x) { return __popcount_tab[(x >> 0) & 0xff] + __popcount_tab[(x >> 8) & 0xff] + __popcount_tab[(x >> 16) & 0xff] + __popcount_tab[(x >> 24) & 0xff]; } #endif #ifdef L_popcountdi2 #undef int extern int __popcountdi2 (UDItype x); int __popcountdi2 (UDItype x) { return __popcount_tab[(x >> 0) & 0xff] + __popcount_tab[(x >> 8) & 0xff] + __popcount_tab[(x >> 16) & 0xff] + __popcount_tab[(x >> 24) & 0xff] + __popcount_tab[(x >> 32) & 0xff] + __popcount_tab[(x >> 40) & 0xff] + __popcount_tab[(x >> 48) & 0xff] + __popcount_tab[(x >> 56) & 0xff]; } #endif #ifdef L_paritysi2 #undef int extern int __paritysi2 (USItype x); int __paritysi2 (USItype x) { UWtype nx = x; nx ^= nx >> 16; nx ^= nx >> 8; nx ^= nx >> 4; nx &= 0xf; return (0x6996 >> nx) & 1; } #endif #ifdef L_paritydi2 #undef int extern int __paritydi2 (UDItype x); int __paritydi2 (UDItype x) { UWtype nx = x ^ (x >> 32); nx ^= nx >> 16; nx ^= nx >> 8; nx ^= nx >> 4; nx &= 0xf; return (0x6996 >> nx) & 1; } #endif #ifdef L_udivmoddi4 #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) static inline __attribute__ ((__always_inline__)) #endif UDWtype __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) { DWunion ww; DWunion nn, dd; DWunion rr; UWtype d0, d1, n0, n1, n2; UWtype q0, q1; UWtype b, bm; nn.ll = n; dd.ll = d; d0 = dd.s.low; d1 = dd.s.high; n0 = nn.s.low; n1 = nn.s.high; #if !UDIV_NEEDS_NORMALIZATION if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ udiv_qrnnd (q1, n1, 0, n1, d0); udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0. */ } if (rp != 0) { rr.s.low = n0; rr.s.high = 0; *rp = rr.ll; } } #else /* UDIV_NEEDS_NORMALIZATION */ if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ count_leading_zeros (bm, d0); if (bm != 0) { /* Normalize, i.e. make the most significant bit of the denominator set. */ d0 = d0 << bm; n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm)); n0 = n0 << bm; } udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0 >> bm. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ count_leading_zeros (bm, d0); if (bm == 0) { /* From (n1 >= d0) /\ (the most significant bit of d0 is set), conclude (the most significant bit of n1 is set) /\ (the leading quotient digit q1 = 1). This special case is necessary, not an optimization. (Shifts counts of W_TYPE_SIZE are undefined.) */ n1 -= d0; q1 = 1; } else { /* Normalize. */ b = W_TYPE_SIZE - bm; d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q1, n1, n2, n1, d0); } /* n1 != d0... */ udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0 >> bm. */ } if (rp != 0) { rr.s.low = n0 >> bm; rr.s.high = 0; *rp = rr.ll; } } #endif /* UDIV_NEEDS_NORMALIZATION */ else { if (d1 > n1) { /* 00 = nn / DD */ q0 = 0; q1 = 0; /* Remainder in n1n0. */ if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { /* 0q = NN / dd */ count_leading_zeros (bm, d1); if (bm == 0) { /* From (n1 >= d1) /\ (the most significant bit of d1 is set), conclude (the most significant bit of n1 is set) /\ (the quotient digit q0 = 0 or 1). This special case is necessary, not an optimization. */ /* The condition on the next line takes advantage of that n1 >= d1 (true due to program flow). */ if (n1 > d1 || n0 >= d0) { q0 = 1; sub_ddmmss (n1, n0, n1, n0, d1, d0); } else q0 = 0; q1 = 0; if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { UWtype m1, m0; /* Normalize. */ b = W_TYPE_SIZE - bm; d1 = (d1 << bm) | (d0 >> b); d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q0, n1, n2, n1, d1); umul_ppmm (m1, m0, q0, d0); if (m1 > n1 || (m1 == n1 && m0 > n0)) { q0--; sub_ddmmss (m1, m0, m1, m0, d1, d0); } q1 = 0; /* Remainder in (n1n0 - m1m0) >> bm. */ if (rp != 0) { sub_ddmmss (n1, n0, n1, n0, m1, m0); rr.s.low = (n1 << b) | (n0 >> bm); rr.s.high = n1 >> bm; *rp = rr.ll; } } } } ww.s.low = q0; ww.s.high = q1; return ww.ll; } #endif #ifdef L_divdi3 DWtype __divdi3 (DWtype u, DWtype v) { word_type c = 0; DWunion uu, vv; DWtype w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = -uu.ll; if (vv.s.high < 0) c = ~c, vv.ll = -vv.ll; w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0); if (c) w = -w; return w; } #endif #ifdef L_moddi3 DWtype __moddi3 (DWtype u, DWtype v) { word_type c = 0; DWunion uu, vv; DWtype w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = -uu.ll; if (vv.s.high < 0) vv.ll = -vv.ll; (void) __udivmoddi4 (uu.ll, vv.ll, &w); if (c) w = -w; return w; } #endif #ifdef L_umoddi3 UDWtype __umoddi3 (UDWtype u, UDWtype v) { UDWtype w; (void) __udivmoddi4 (u, v, &w); return w; } #endif #ifdef L_udivdi3 UDWtype __udivdi3 (UDWtype n, UDWtype d) { return __udivmoddi4 (n, d, (UDWtype *) 0); } #endif #ifdef L_cmpdi2 word_type __cmpdi2 (DWtype a, DWtype b) { DWunion au, bu; au.ll = a, bu.ll = b; if (au.s.high < bu.s.high) return 0; else if (au.s.high > bu.s.high) return 2; if ((UWtype) au.s.low < (UWtype) bu.s.low) return 0; else if ((UWtype) au.s.low > (UWtype) bu.s.low) return 2; return 1; } #endif #ifdef L_ucmpdi2 word_type __ucmpdi2 (DWtype a, DWtype b) { DWunion au, bu; au.ll = a, bu.ll = b; if ((UWtype) au.s.high < (UWtype) bu.s.high) return 0; else if ((UWtype) au.s.high > (UWtype) bu.s.high) return 2; if ((UWtype) au.s.low < (UWtype) bu.s.low) return 0; else if ((UWtype) au.s.low > (UWtype) bu.s.low) return 2; return 1; } #endif #if defined(L_fixunstfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) DWtype __fixunstfDI (TFtype a) { TFtype b; UDWtype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DWtype!), and shift it into the high word. */ v = (UWtype) b; v <<= WORD_SIZE; /* Remove high part from the TFtype, leaving the low part as flonum. */ a -= (TFtype)v; /* Convert that to fixed (but not to DWtype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (UWtype) (- a); else v += (UWtype) a; return v; } #endif #if defined(L_fixtfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) DWtype __fixtfdi (TFtype a) { if (a < 0) return - __fixunstfDI (-a); return __fixunstfDI (a); } #endif #if defined(L_fixunsxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) DWtype __fixunsxfDI (XFtype a) { XFtype b; UDWtype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DWtype!), and shift it into the high word. */ v = (UWtype) b; v <<= WORD_SIZE; /* Remove high part from the XFtype, leaving the low part as flonum. */ a -= (XFtype)v; /* Convert that to fixed (but not to DWtype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (UWtype) (- a); else v += (UWtype) a; return v; } #endif #if defined(L_fixxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) DWtype __fixxfdi (XFtype a) { if (a < 0) return - __fixunsxfDI (-a); return __fixunsxfDI (a); } #endif #ifdef L_fixunsdfdi #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) DWtype __fixunsdfDI (DFtype a) { UWtype hi, lo; /* Get high part of result. The division here will just moves the radix point and will not cause any rounding. Then the conversion to integral type chops result as desired. */ hi = a / HIGH_WORD_COEFF; /* Get low part of result. Convert `hi' to floating type and scale it back, then subtract this from the number being converted. This leaves the low part. Convert that to integral type. */ lo = (a - ((DFtype) hi) * HIGH_WORD_COEFF); /* Assemble result from the two parts. */ return ((UDWtype) hi << WORD_SIZE) | lo; } #endif #ifdef L_fixdfdi DWtype __fixdfdi (DFtype a) { if (a < 0) return - __fixunsdfDI (-a); return __fixunsdfDI (a); } #endif #ifdef L_fixunssfdi #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) DWtype __fixunssfDI (SFtype original_a) { /* Convert the SFtype to a DFtype, because that is surely not going to lose any bits. Some day someone else can write a faster version that avoids converting to DFtype, and verify it really works right. */ DFtype a = original_a; UWtype hi, lo; /* Get high part of result. The division here will just moves the radix point and will not cause any rounding. Then the conversion to integral type chops result as desired. */ hi = a / HIGH_WORD_COEFF; /* Get low part of result. Convert `hi' to floating type and scale it back, then subtract this from the number being converted. This leaves the low part. Convert that to integral type. */ lo = (a - ((DFtype) hi) * HIGH_WORD_COEFF); /* Assemble result from the two parts. */ return ((UDWtype) hi << WORD_SIZE) | lo; } #endif #ifdef L_fixsfdi DWtype __fixsfdi (SFtype a) { if (a < 0) return - __fixunssfDI (-a); return __fixunssfDI (a); } #endif #if defined(L_floatdixf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) XFtype __floatdixf (DWtype u) { XFtype d; d = (Wtype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (UWtype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #if defined(L_floatditf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) TFtype __floatditf (DWtype u) { TFtype d; d = (Wtype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (UWtype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #ifdef L_floatdidf #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) DFtype __floatdidf (DWtype u) { DFtype d; d = (Wtype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (UWtype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #ifdef L_floatdisf #define WORD_SIZE (sizeof (Wtype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDWtype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDWtype) 1) << WORD_SIZE) #define DI_SIZE (sizeof (DWtype) * BITS_PER_UNIT) #define DF_SIZE DBL_MANT_DIG #define SF_SIZE FLT_MANT_DIG SFtype __floatdisf (DWtype u) { /* Do the calculation in DFmode so that we don't lose any of the precision of the high word while multiplying it. */ DFtype f; /* Protect against double-rounding error. Represent any low-order bits, that might be truncated in DFmode, by a bit that won't be lost. The bit can go in anywhere below the rounding position of the SFmode. A fixed mask and bit position handles all usual configurations. It doesn't handle the case of 128-bit DImode, however. */ if (DF_SIZE < DI_SIZE && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE)) { #define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE)) if (! (- ((DWtype) 1 << DF_SIZE) < u && u < ((DWtype) 1 << DF_SIZE))) { if ((UDWtype) u & (REP_BIT - 1)) { u &= ~ (REP_BIT - 1); u |= REP_BIT; } } } f = (Wtype) (u >> WORD_SIZE); f *= HIGH_HALFWORD_COEFF; f *= HIGH_HALFWORD_COEFF; f += (UWtype) (u & (HIGH_WORD_COEFF - 1)); return (SFtype) f; } #endif #if defined(L_fixunsxfsi) && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96 /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include UWtype __fixunsxfSI (XFtype a) { if (a >= - (DFtype) Wtype_MIN) return (Wtype) (a + Wtype_MIN) - Wtype_MIN; return (Wtype) a; } #endif #ifdef L_fixunsdfsi /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include UWtype __fixunsdfSI (DFtype a) { if (a >= - (DFtype) Wtype_MIN) return (Wtype) (a + Wtype_MIN) - Wtype_MIN; return (Wtype) a; } #endif #ifdef L_fixunssfsi /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include UWtype __fixunssfSI (SFtype a) { if (a >= - (SFtype) Wtype_MIN) return (Wtype) (a + Wtype_MIN) - Wtype_MIN; return (Wtype) a; } #endif /* From here on down, the routines use normal data types. */ #define SItype bogus_type #define USItype bogus_type #define DItype bogus_type #define UDItype bogus_type #define SFtype bogus_type #define DFtype bogus_type #undef Wtype #undef UWtype #undef HWtype #undef UHWtype #undef DWtype #undef UDWtype #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #ifdef L__gcc_bcmp /* Like bcmp except the sign is meaningful. Result is negative if S1 is less than S2, positive if S1 is greater, 0 if S1 and S2 are equal. */ int __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size) { while (size > 0) { unsigned char c1 = *s1++, c2 = *s2++; if (c1 != c2) return c1 - c2; size--; } return 0; } #endif /* __eprintf used to be used by GCC's private version of . We no longer provide that header, but this routine remains in libgcc.a for binary backward compatibility. Note that it is not included in the shared version of libgcc. */ #ifdef L_eprintf #ifndef inhibit_libc #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ #include void __eprintf (const char *string, const char *expression, unsigned int line, const char *filename) { fprintf (stderr, string, expression, line, filename); fflush (stderr); abort (); } #endif #endif #ifdef L_clear_cache /* Clear part of an instruction cache. */ #define INSN_CACHE_PLANE_SIZE (INSN_CACHE_SIZE / INSN_CACHE_DEPTH) void __clear_cache (char *beg __attribute__((__unused__)), char *end __attribute__((__unused__))) { #ifdef CLEAR_INSN_CACHE CLEAR_INSN_CACHE (beg, end); #else #ifdef INSN_CACHE_SIZE static char array[INSN_CACHE_SIZE + INSN_CACHE_PLANE_SIZE + INSN_CACHE_LINE_WIDTH]; static int initialized; int offset; void *start_addr void *end_addr; typedef (*function_ptr) (void); #if (INSN_CACHE_SIZE / INSN_CACHE_LINE_WIDTH) < 16 /* It's cheaper to clear the whole cache. Put in a series of jump instructions so that calling the beginning of the cache will clear the whole thing. */ if (! initialized) { int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH); int end_ptr = ptr + INSN_CACHE_SIZE; while (ptr < end_ptr) { *(INSTRUCTION_TYPE *)ptr = JUMP_AHEAD_INSTRUCTION + INSN_CACHE_LINE_WIDTH; ptr += INSN_CACHE_LINE_WIDTH; } *(INSTRUCTION_TYPE *) (ptr - INSN_CACHE_LINE_WIDTH) = RETURN_INSTRUCTION; initialized = 1; } /* Call the beginning of the sequence. */ (((function_ptr) (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH)) ()); #else /* Cache is large. */ if (! initialized) { int ptr = (((int) array + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH); while (ptr < (int) array + sizeof array) { *(INSTRUCTION_TYPE *)ptr = RETURN_INSTRUCTION; ptr += INSN_CACHE_LINE_WIDTH; } initialized = 1; } /* Find the location in array that occupies the same cache line as BEG. */ offset = ((int) beg & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1); start_addr = (((int) (array + INSN_CACHE_PLANE_SIZE - 1) & -INSN_CACHE_PLANE_SIZE) + offset); /* Compute the cache alignment of the place to stop clearing. */ #if 0 /* This is not needed for gcc's purposes. */ /* If the block to clear is bigger than a cache plane, we clear the entire cache, and OFFSET is already correct. */ if (end < beg + INSN_CACHE_PLANE_SIZE) #endif offset = (((int) (end + INSN_CACHE_LINE_WIDTH - 1) & -INSN_CACHE_LINE_WIDTH) & (INSN_CACHE_PLANE_SIZE - 1)); #if INSN_CACHE_DEPTH > 1 end_addr = (start_addr & -INSN_CACHE_PLANE_SIZE) + offset; if (end_addr <= start_addr) end_addr += INSN_CACHE_PLANE_SIZE; for (plane = 0; plane < INSN_CACHE_DEPTH; plane++) { int addr = start_addr + plane * INSN_CACHE_PLANE_SIZE; int stop = end_addr + plane * INSN_CACHE_PLANE_SIZE; while (addr != stop) { /* Call the return instruction at ADDR. */ ((function_ptr) addr) (); addr += INSN_CACHE_LINE_WIDTH; } } #else /* just one plane */ do { /* Call the return instruction at START_ADDR. */ ((function_ptr) start_addr) (); start_addr += INSN_CACHE_LINE_WIDTH; } while ((start_addr % INSN_CACHE_SIZE) != offset); #endif /* just one plane */ #endif /* Cache is large */ #endif /* Cache exists */ #endif /* CLEAR_INSN_CACHE */ } #endif /* L_clear_cache */ #ifdef L_trampoline /* Jump to a trampoline, loading the static chain address. */ #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN) long getpagesize (void) { #ifdef _ALPHA_ return 8192; #else return 4096; #endif } #ifdef __i386__ extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall)); #endif int mprotect (char *addr, int len, int prot) { int np, op; if (prot == 7) np = 0x40; else if (prot == 5) np = 0x20; else if (prot == 4) np = 0x10; else if (prot == 3) np = 0x04; else if (prot == 1) np = 0x02; else if (prot == 0) np = 0x01; if (VirtualProtect (addr, len, np, &op)) return 0; else return -1; } #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */ #ifdef TRANSFER_FROM_TRAMPOLINE TRANSFER_FROM_TRAMPOLINE #endif #ifdef __sysV68__ #include #include /* Motorola forgot to put memctl.o in the libp version of libc881.a, so define it here, because we need it in __clear_insn_cache below */ /* On older versions of this OS, no memctl or MCT_TEXT are defined; hence we enable this stuff only if MCT_TEXT is #define'd. */ #ifdef MCT_TEXT asm("\n\ global memctl\n\ memctl:\n\ movq &75,%d0\n\ trap &0\n\ bcc.b noerror\n\ jmp cerror%\n\ noerror:\n\ movq &0,%d0\n\ rts"); #endif /* Clear instruction cache so we can call trampolines on stack. This is called from FINALIZE_TRAMPOLINE in mot3300.h. */ void __clear_insn_cache (void) { #ifdef MCT_TEXT int save_errno; /* Preserve errno, because users would be surprised to have errno changing without explicitly calling any system-call. */ save_errno = errno; /* Keep it simple : memctl (MCT_TEXT) always fully clears the insn cache. No need to use an address derived from _start or %sp, as 0 works also. */ memctl(0, 4096, MCT_TEXT); errno = save_errno; #endif } #endif /* __sysV68__ */ #endif /* L_trampoline */ #ifndef __CYGWIN__ #ifdef L__main #include "gbl-ctors.h" /* Some systems use __main in a way incompatible with its use in gcc, in these cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to give the same symbol without quotes for an alternative entry point. You must define both, or neither. */ #ifndef NAME__MAIN #define NAME__MAIN "__main" #define SYMBOL__MAIN __main #endif #ifdef INIT_SECTION_ASM_OP #undef HAS_INIT_SECTION #define HAS_INIT_SECTION #endif #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF) /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this code to run constructors. In that case, we need to handle EH here, too. */ #ifdef EH_FRAME_SECTION_NAME #include "unwind-dw2-fde.h" extern unsigned char __EH_FRAME_BEGIN__[]; #endif /* Run all the global destructors on exit from the program. */ void __do_global_dtors (void) { #ifdef DO_GLOBAL_DTORS_BODY DO_GLOBAL_DTORS_BODY; #else static func_ptr *p = __DTOR_LIST__ + 1; while (*p) { p++; (*(p-1)) (); } #endif #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION) { static int completed = 0; if (! completed) { completed = 1; __deregister_frame_info (__EH_FRAME_BEGIN__); } } #endif } #endif #ifndef HAS_INIT_SECTION /* Run all the global constructors on entry to the program. */ void __do_global_ctors (void) { #ifdef EH_FRAME_SECTION_NAME { static struct object object; __register_frame_info (__EH_FRAME_BEGIN__, &object); } #endif DO_GLOBAL_CTORS_BODY; atexit (__do_global_dtors); } #endif /* no HAS_INIT_SECTION */ #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main) /* Subroutine called automatically by `main'. Compiling a global function named `main' produces an automatic call to this function at the beginning. For many systems, this routine calls __do_global_ctors. For systems which support a .init section we use the .init section to run __do_global_ctors, so we need not do anything here. */ void SYMBOL__MAIN () { /* Support recursive calls to `main': run initializers just once. */ static int initialized; if (! initialized) { initialized = 1; __do_global_ctors (); } } #endif /* no HAS_INIT_SECTION or INVOKE__main */ #endif /* L__main */ #endif /* __CYGWIN__ */ #ifdef L_ctors #include "gbl-ctors.h" /* Provide default definitions for the lists of constructors and destructors, so that we don't get linker errors. These symbols are intentionally bss symbols, so that gld and/or collect will provide the right values. */ /* We declare the lists here with two elements each, so that they are valid empty lists if no other definition is loaded. If we are using the old "set" extensions to have the gnu linker collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__ must be in the bss/common section. Long term no port should use those extensions. But many still do. */ #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY) #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2) func_ptr __CTOR_LIST__[2] = {0, 0}; func_ptr __DTOR_LIST__[2] = {0, 0}; #else func_ptr __CTOR_LIST__[2]; func_ptr __DTOR_LIST__[2]; #endif #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */ #endif /* L_ctors */ #ifdef L_exit #include "gbl-ctors.h" #ifdef NEED_ATEXIT #ifndef ON_EXIT # include static func_ptr *atexit_chain = 0; static long atexit_chain_length = 0; static volatile long last_atexit_chain_slot = -1; int atexit (func_ptr func) { if (++last_atexit_chain_slot == atexit_chain_length) { atexit_chain_length += 32; if (atexit_chain) atexit_chain = (func_ptr *) realloc (atexit_chain, atexit_chain_length * sizeof (func_ptr)); else atexit_chain = (func_ptr *) malloc (atexit_chain_length * sizeof (func_ptr)); if (! atexit_chain) { atexit_chain_length = 0; last_atexit_chain_slot = -1; errno = ENOMEM; return (-1); } } atexit_chain[last_atexit_chain_slot] = func; return (0); } extern void _cleanup (void); extern void _exit (int) __attribute__ ((__noreturn__)); void exit (int status) { if (atexit_chain) { for ( ; last_atexit_chain_slot-- >= 0; ) { (*atexit_chain[last_atexit_chain_slot + 1]) (); atexit_chain[last_atexit_chain_slot + 1] = 0; } free (atexit_chain); atexit_chain = 0; } #ifdef EXIT_BODY EXIT_BODY; #else _cleanup (); #endif _exit (status); } #else /* ON_EXIT */ /* Simple; we just need a wrapper for ON_EXIT. */ int atexit (func_ptr func) { return ON_EXIT (func); } #endif /* ON_EXIT */ #endif /* NEED_ATEXIT */ #endif /* L_exit */