/* More subroutines needed by GCC output code on some machines. */ /* Compile this one with gcc. */ /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "tconfig.h" #include "tsystem.h" #include "coretypes.h" #include "tm.h" #ifdef HAVE_GAS_HIDDEN #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden"))) #else #define ATTRIBUTE_HIDDEN #endif #ifndef MIN_UNITS_PER_WORD #define MIN_UNITS_PER_WORD UNITS_PER_WORD #endif /* Work out the largest "word" size that we can deal with on this target. */ #if MIN_UNITS_PER_WORD > 4 # define LIBGCC2_MAX_UNITS_PER_WORD 8 #elif (MIN_UNITS_PER_WORD > 2 \ || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32)) # define LIBGCC2_MAX_UNITS_PER_WORD 4 #else # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD #endif /* Work out what word size we are using for this compilation. The value can be set on the command line. */ #ifndef LIBGCC2_UNITS_PER_WORD #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD #endif #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD #include "libgcc2.h" #ifdef DECLARE_LIBRARY_RENAMES DECLARE_LIBRARY_RENAMES #endif #if defined (L_negdi2) DWtype __negdi2 (DWtype u) { const DWunion uu = {.ll = u}; const DWunion w = { {.low = -uu.s.low, .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } }; return w.ll; } #endif #ifdef L_addvsi3 Wtype __addvSI3 (Wtype a, Wtype b) { const Wtype w = (UWtype) a + (UWtype) b; if (b >= 0 ? w < a : w > a) abort (); return w; } #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC SItype __addvsi3 (SItype a, SItype b) { const SItype w = (USItype) a + (USItype) b; if (b >= 0 ? w < a : w > a) abort (); return w; } #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ #endif #ifdef L_addvdi3 DWtype __addvDI3 (DWtype a, DWtype b) { const DWtype w = (UDWtype) a + (UDWtype) b; if (b >= 0 ? w < a : w > a) abort (); return w; } #endif #ifdef L_subvsi3 Wtype __subvSI3 (Wtype a, Wtype b) { const Wtype w = (UWtype) a - (UWtype) b; if (b >= 0 ? w > a : w < a) abort (); return w; } #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC SItype __subvsi3 (SItype a, SItype b) { const SItype w = (USItype) a - (USItype) b; if (b >= 0 ? w > a : w < a) abort (); return w; } #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ #endif #ifdef L_subvdi3 DWtype __subvDI3 (DWtype a, DWtype b) { const DWtype w = (UDWtype) a - (UDWtype) b; if (b >= 0 ? w > a : w < a) abort (); return w; } #endif #ifdef L_mulvsi3 Wtype __mulvSI3 (Wtype a, Wtype b) { const DWtype w = (DWtype) a * (DWtype) b; if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1)) abort (); return w; } #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC #undef WORD_SIZE #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) SItype __mulvsi3 (SItype a, SItype b) { const DItype w = (DItype) a * (DItype) b; if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1)) abort (); return w; } #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ #endif #ifdef L_negvsi2 Wtype __negvSI2 (Wtype a) { const Wtype w = -(UWtype) a; if (a >= 0 ? w > 0 : w < 0) abort (); return w; } #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC SItype __negvsi2 (SItype a) { const SItype w = -(USItype) a; if (a >= 0 ? w > 0 : w < 0) abort (); return w; } #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ #endif #ifdef L_negvdi2 DWtype __negvDI2 (DWtype a) { const DWtype w = -(UDWtype) a; if (a >= 0 ? w > 0 : w < 0) abort (); return w; } #endif #ifdef L_absvsi2 Wtype __absvSI2 (Wtype a) { Wtype w = a; if (a < 0) #ifdef L_negvsi2 w = __negvSI2 (a); #else w = -(UWtype) a; if (w < 0) abort (); #endif return w; } #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC SItype __absvsi2 (SItype a) { SItype w = a; if (a < 0) #ifdef L_negvsi2 w = __negvsi2 (a); #else w = -(USItype) a; if (w < 0) abort (); #endif return w; } #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ #endif #ifdef L_absvdi2 DWtype __absvDI2 (DWtype a) { DWtype w = a; if (a < 0) #ifdef L_negvdi2 w = __negvDI2 (a); #else w = -(UDWtype) a; if (w < 0) abort (); #endif return w; } #endif #ifdef L_mulvdi3 DWtype __mulvDI3 (DWtype u, DWtype v) { /* The unchecked multiplication needs 3 Wtype x Wtype multiplications, but the checked multiplication needs only two. */ const DWunion uu = {.ll = u}; const DWunion vv = {.ll = v}; if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1)) { /* u fits in a single Wtype. */ if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1)) { /* v fits in a single Wtype as well. */ /* A single multiplication. No overflow risk. */ return (DWtype) uu.s.low * (DWtype) vv.s.low; } else { /* Two multiplications. */ DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low * (UDWtype) (UWtype) vv.s.low}; DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low * (UDWtype) (UWtype) vv.s.high}; if (vv.s.high < 0) w1.s.high -= uu.s.low; if (uu.s.low < 0) w1.ll -= vv.ll; w1.ll += (UWtype) w0.s.high; if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1)) { w0.s.high = w1.s.low; return w0.ll; } } } else { if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1)) { /* v fits into a single Wtype. */ /* Two multiplications. */ DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low * (UDWtype) (UWtype) vv.s.low}; DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high * (UDWtype) (UWtype) vv.s.low}; if (uu.s.high < 0) w1.s.high -= vv.s.low; if (vv.s.low < 0) w1.ll -= uu.ll; w1.ll += (UWtype) w0.s.high; if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1)) { w0.s.high = w1.s.low; return w0.ll; } } else { /* A few sign checks and a single multiplication. */ if (uu.s.high >= 0) { if (vv.s.high >= 0) { if (uu.s.high == 0 && vv.s.high == 0) { const DWtype w = (UDWtype) (UWtype) uu.s.low * (UDWtype) (UWtype) vv.s.low; if (__builtin_expect (w >= 0, 1)) return w; } } else { if (uu.s.high == 0 && vv.s.high == (Wtype) -1) { DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low * (UDWtype) (UWtype) vv.s.low}; ww.s.high -= uu.s.low; if (__builtin_expect (ww.s.high < 0, 1)) return ww.ll; } } } else { if (vv.s.high >= 0) { if (uu.s.high == (Wtype) -1 && vv.s.high == 0) { DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low * (UDWtype) (UWtype) vv.s.low}; ww.s.high -= vv.s.low; if (__builtin_expect (ww.s.high < 0, 1)) return ww.ll; } } else { if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1) { DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low * (UDWtype) (UWtype) vv.s.low}; ww.s.high -= uu.s.low; ww.s.high -= vv.s.low; if (__builtin_expect (ww.s.high >= 0, 1)) return ww.ll; } } } } } /* Overflow. */ abort (); } #endif /* Unless shift functions are defined with full ANSI prototypes, parameter b will be promoted to int if shift_count_type is smaller than an int. */ #ifdef L_lshrdi3 DWtype __lshrdi3 (DWtype u, shift_count_type b) { if (b == 0) return u; const DWunion uu = {.ll = u}; const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; DWunion w; if (bm <= 0) { w.s.high = 0; w.s.low = (UWtype) uu.s.high >> -bm; } else { const UWtype carries = (UWtype) uu.s.high << bm; w.s.high = (UWtype) uu.s.high >> b; w.s.low = ((UWtype) uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ashldi3 DWtype __ashldi3 (DWtype u, shift_count_type b) { if (b == 0) return u; const DWunion uu = {.ll = u}; const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; DWunion w; if (bm <= 0) { w.s.low = 0; w.s.high = (UWtype) uu.s.low << -bm; } else { const UWtype carries = (UWtype) uu.s.low >> bm; w.s.low = (UWtype) uu.s.low << b; w.s.high = ((UWtype) uu.s.high << b) | carries; } return w.ll; } #endif #ifdef L_ashrdi3 DWtype __ashrdi3 (DWtype u, shift_count_type b) { if (b == 0) return u; const DWunion uu = {.ll = u}; const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b; DWunion w; if (bm <= 0) { /* w.s.high = 1..1 or 0..0 */ w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1); w.s.low = uu.s.high >> -bm; } else { const UWtype carries = (UWtype) uu.s.high << bm; w.s.high = uu.s.high >> b; w.s.low = ((UWtype) uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_bswapsi2 SItype __bswapsi2 (SItype u) { return ((((u) & 0xff000000) >> 24) | (((u) & 0x00ff0000) >> 8) | (((u) & 0x0000ff00) << 8) | (((u) & 0x000000ff) << 24)); } #endif #ifdef L_bswapdi2 DItype __bswapdi2 (DItype u) { return ((((u) & 0xff00000000000000ull) >> 56) | (((u) & 0x00ff000000000000ull) >> 40) | (((u) & 0x0000ff0000000000ull) >> 24) | (((u) & 0x000000ff00000000ull) >> 8) | (((u) & 0x00000000ff000000ull) << 8) | (((u) & 0x0000000000ff0000ull) << 24) | (((u) & 0x000000000000ff00ull) << 40) | (((u) & 0x00000000000000ffull) << 56)); } #endif #ifdef L_ffssi2 #undef int int __ffsSI2 (UWtype u) { UWtype count; if (u == 0) return 0; count_trailing_zeros (count, u); return count + 1; } #endif #ifdef L_ffsdi2 #undef int int __ffsDI2 (DWtype u) { const DWunion uu = {.ll = u}; UWtype word, count, add; if (uu.s.low != 0) word = uu.s.low, add = 0; else if (uu.s.high != 0) word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype); else return 0; count_trailing_zeros (count, word); return count + add + 1; } #endif #ifdef L_muldi3 DWtype __muldi3 (DWtype u, DWtype v) { const DWunion uu = {.ll = u}; const DWunion vv = {.ll = v}; DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)}; w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high + (UWtype) uu.s.high * (UWtype) vv.s.low); return w.ll; } #endif #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) #if defined (sdiv_qrnnd) #define L_udiv_w_sdiv #endif #endif #ifdef L_udiv_w_sdiv #if defined (sdiv_qrnnd) #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) static inline __attribute__ ((__always_inline__)) #endif UWtype __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d) { UWtype q, r; UWtype c0, c1, b1; if ((Wtype) d >= 0) { if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1))) { /* Dividend, divisor, and quotient are nonnegative. */ sdiv_qrnnd (q, r, a1, a0, d); } else { /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */ sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1)); /* Divide (c1*2^32 + c0) by d. */ sdiv_qrnnd (q, r, c1, c0, d); /* Add 2^31 to quotient. */ q += (UWtype) 1 << (W_TYPE_SIZE - 1); } } else { b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ c1 = a1 >> 1; /* A/2 */ c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1); if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ { sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ { c1 = (b1 - 1) - c1; c0 = ~c0; /* logical NOT */ sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ q = ~q; /* (A/2)/b1 */ r = (b1 - 1) - r; r = 2*r + (a0 & 1); /* A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else /* Implies c1 = b1 */ { /* Hence a1 = d - 1 = 2*b1 - 1 */ if (a0 >= -d) { q = -1; r = a0 + d; } else { q = -2; r = a0 + 2*d; } } } *rp = r; return q; } #else /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ UWtype __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)), UWtype a1 __attribute__ ((__unused__)), UWtype a0 __attribute__ ((__unused__)), UWtype d __attribute__ ((__unused__))) { return 0; } #endif #endif #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) #define L_udivmoddi4 #endif #ifdef L_clz const UQItype __clz_tab[256] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 }; #endif #ifdef L_clzsi2 #undef int int __clzSI2 (UWtype x) { Wtype ret; count_leading_zeros (ret, x); return ret; } #endif #ifdef L_clzdi2 #undef int int __clzDI2 (UDWtype x) { const DWunion uu = {.ll = x}; UWtype word; Wtype ret, add; if (uu.s.high) word = uu.s.high, add = 0; else word = uu.s.low, add = W_TYPE_SIZE; count_leading_zeros (ret, word); return ret + add; } #endif #ifdef L_ctzsi2 #undef int int __ctzSI2 (UWtype x) { Wtype ret; count_trailing_zeros (ret, x); return ret; } #endif #ifdef L_ctzdi2 #undef int int __ctzDI2 (UDWtype x) { const DWunion uu = {.ll = x}; UWtype word; Wtype ret, add; if (uu.s.low) word = uu.s.low, add = 0; else word = uu.s.high, add = W_TYPE_SIZE; count_trailing_zeros (ret, word); return ret + add; } #endif #ifdef L_popcount_tab const UQItype __popcount_tab[256] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 }; #endif #ifdef L_popcountsi2 #undef int int __popcountSI2 (UWtype x) { int i, ret = 0; for (i = 0; i < W_TYPE_SIZE; i += 8) ret += __popcount_tab[(x >> i) & 0xff]; return ret; } #endif #ifdef L_popcountdi2 #undef int int __popcountDI2 (UDWtype x) { int i, ret = 0; for (i = 0; i < 2*W_TYPE_SIZE; i += 8) ret += __popcount_tab[(x >> i) & 0xff]; return ret; } #endif #ifdef L_paritysi2 #undef int int __paritySI2 (UWtype x) { #if W_TYPE_SIZE > 64 # error "fill out the table" #endif #if W_TYPE_SIZE > 32 x ^= x >> 32; #endif #if W_TYPE_SIZE > 16 x ^= x >> 16; #endif x ^= x >> 8; x ^= x >> 4; x &= 0xf; return (0x6996 >> x) & 1; } #endif #ifdef L_paritydi2 #undef int int __parityDI2 (UDWtype x) { const DWunion uu = {.ll = x}; UWtype nx = uu.s.low ^ uu.s.high; #if W_TYPE_SIZE > 64 # error "fill out the table" #endif #if W_TYPE_SIZE > 32 nx ^= nx >> 32; #endif #if W_TYPE_SIZE > 16 nx ^= nx >> 16; #endif nx ^= nx >> 8; nx ^= nx >> 4; nx &= 0xf; return (0x6996 >> nx) & 1; } #endif #ifdef L_udivmoddi4 #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) static inline __attribute__ ((__always_inline__)) #endif UDWtype __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) { const DWunion nn = {.ll = n}; const DWunion dd = {.ll = d}; DWunion rr; UWtype d0, d1, n0, n1, n2; UWtype q0, q1; UWtype b, bm; d0 = dd.s.low; d1 = dd.s.high; n0 = nn.s.low; n1 = nn.s.high; #if !UDIV_NEEDS_NORMALIZATION if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ udiv_qrnnd (q1, n1, 0, n1, d0); udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0. */ } if (rp != 0) { rr.s.low = n0; rr.s.high = 0; *rp = rr.ll; } } #else /* UDIV_NEEDS_NORMALIZATION */ if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ count_leading_zeros (bm, d0); if (bm != 0) { /* Normalize, i.e. make the most significant bit of the denominator set. */ d0 = d0 << bm; n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm)); n0 = n0 << bm; } udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0 >> bm. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ count_leading_zeros (bm, d0); if (bm == 0) { /* From (n1 >= d0) /\ (the most significant bit of d0 is set), conclude (the most significant bit of n1 is set) /\ (the leading quotient digit q1 = 1). This special case is necessary, not an optimization. (Shifts counts of W_TYPE_SIZE are undefined.) */ n1 -= d0; q1 = 1; } else { /* Normalize. */ b = W_TYPE_SIZE - bm; d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q1, n1, n2, n1, d0); } /* n1 != d0... */ udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0 >> bm. */ } if (rp != 0) { rr.s.low = n0 >> bm; rr.s.high = 0; *rp = rr.ll; } } #endif /* UDIV_NEEDS_NORMALIZATION */ else { if (d1 > n1) { /* 00 = nn / DD */ q0 = 0; q1 = 0; /* Remainder in n1n0. */ if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { /* 0q = NN / dd */ count_leading_zeros (bm, d1); if (bm == 0) { /* From (n1 >= d1) /\ (the most significant bit of d1 is set), conclude (the most significant bit of n1 is set) /\ (the quotient digit q0 = 0 or 1). This special case is necessary, not an optimization. */ /* The condition on the next line takes advantage of that n1 >= d1 (true due to program flow). */ if (n1 > d1 || n0 >= d0) { q0 = 1; sub_ddmmss (n1, n0, n1, n0, d1, d0); } else q0 = 0; q1 = 0; if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { UWtype m1, m0; /* Normalize. */ b = W_TYPE_SIZE - bm; d1 = (d1 << bm) | (d0 >> b); d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q0, n1, n2, n1, d1); umul_ppmm (m1, m0, q0, d0); if (m1 > n1 || (m1 == n1 && m0 > n0)) { q0--; sub_ddmmss (m1, m0, m1, m0, d1, d0); } q1 = 0; /* Remainder in (n1n0 - m1m0) >> bm. */ if (rp != 0) { sub_ddmmss (n1, n0, n1, n0, m1, m0); rr.s.low = (n1 << b) | (n0 >> bm); rr.s.high = n1 >> bm; *rp = rr.ll; } } } } const DWunion ww = {{.low = q0, .high = q1}}; return ww.ll; } #endif #ifdef L_divdi3 DWtype __divdi3 (DWtype u, DWtype v) { Wtype c = 0; DWunion uu = {.ll = u}; DWunion vv = {.ll = v}; DWtype w; if (uu.s.high < 0) c = ~c, uu.ll = -uu.ll; if (vv.s.high < 0) c = ~c, vv.ll = -vv.ll; w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0); if (c) w = -w; return w; } #endif #ifdef L_moddi3 DWtype __moddi3 (DWtype u, DWtype v) { Wtype c = 0; DWunion uu = {.ll = u}; DWunion vv = {.ll = v}; DWtype w; if (uu.s.high < 0) c = ~c, uu.ll = -uu.ll; if (vv.s.high < 0) vv.ll = -vv.ll; (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w); if (c) w = -w; return w; } #endif #ifdef L_umoddi3 UDWtype __umoddi3 (UDWtype u, UDWtype v) { UDWtype w; (void) __udivmoddi4 (u, v, &w); return w; } #endif #ifdef L_udivdi3 UDWtype __udivdi3 (UDWtype n, UDWtype d) { return __udivmoddi4 (n, d, (UDWtype *) 0); } #endif #ifdef L_cmpdi2 cmp_return_type __cmpdi2 (DWtype a, DWtype b) { const DWunion au = {.ll = a}; const DWunion bu = {.ll = b}; if (au.s.high < bu.s.high) return 0; else if (au.s.high > bu.s.high) return 2; if ((UWtype) au.s.low < (UWtype) bu.s.low) return 0; else if ((UWtype) au.s.low > (UWtype) bu.s.low) return 2; return 1; } #endif #ifdef L_ucmpdi2 cmp_return_type __ucmpdi2 (DWtype a, DWtype b) { const DWunion au = {.ll = a}; const DWunion bu = {.ll = b}; if ((UWtype) au.s.high < (UWtype) bu.s.high) return 0; else if ((UWtype) au.s.high > (UWtype) bu.s.high) return 2; if ((UWtype) au.s.low < (UWtype) bu.s.low) return 0; else if ((UWtype) au.s.low > (UWtype) bu.s.low) return 2; return 1; } #endif #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE UDWtype __fixunstfDI (TFtype a) { if (a < 0) return 0; /* Compute high word of result, as a flonum. */ const TFtype b = (a / Wtype_MAXp1_F); /* Convert that to fixed (but not to DWtype!), and shift it into the high word. */ UDWtype v = (UWtype) b; v <<= W_TYPE_SIZE; /* Remove high part from the TFtype, leaving the low part as flonum. */ a -= (TFtype)v; /* Convert that to fixed (but not to DWtype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (UWtype) (- a); else v += (UWtype) a; return v; } #endif #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE DWtype __fixtfdi (TFtype a) { if (a < 0) return - __fixunstfDI (-a); return __fixunstfDI (a); } #endif #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE UDWtype __fixunsxfDI (XFtype a) { if (a < 0) return 0; /* Compute high word of result, as a flonum. */ const XFtype b = (a / Wtype_MAXp1_F); /* Convert that to fixed (but not to DWtype!), and shift it into the high word. */ UDWtype v = (UWtype) b; v <<= W_TYPE_SIZE; /* Remove high part from the XFtype, leaving the low part as flonum. */ a -= (XFtype)v; /* Convert that to fixed (but not to DWtype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (UWtype) (- a); else v += (UWtype) a; return v; } #endif #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE DWtype __fixxfdi (XFtype a) { if (a < 0) return - __fixunsxfDI (-a); return __fixunsxfDI (a); } #endif #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE UDWtype __fixunsdfDI (DFtype a) { /* Get high part of result. The division here will just moves the radix point and will not cause any rounding. Then the conversion to integral type chops result as desired. */ const UWtype hi = a / Wtype_MAXp1_F; /* Get low part of result. Convert `hi' to floating type and scale it back, then subtract this from the number being converted. This leaves the low part. Convert that to integral type. */ const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F; /* Assemble result from the two parts. */ return ((UDWtype) hi << W_TYPE_SIZE) | lo; } #endif #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE DWtype __fixdfdi (DFtype a) { if (a < 0) return - __fixunsdfDI (-a); return __fixunsdfDI (a); } #endif #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE UDWtype __fixunssfDI (SFtype a) { #if LIBGCC2_HAS_DF_MODE /* Convert the SFtype to a DFtype, because that is surely not going to lose any bits. Some day someone else can write a faster version that avoids converting to DFtype, and verify it really works right. */ const DFtype dfa = a; /* Get high part of result. The division here will just moves the radix point and will not cause any rounding. Then the conversion to integral type chops result as desired. */ const UWtype hi = dfa / Wtype_MAXp1_F; /* Get low part of result. Convert `hi' to floating type and scale it back, then subtract this from the number being converted. This leaves the low part. Convert that to integral type. */ const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F; /* Assemble result from the two parts. */ return ((UDWtype) hi << W_TYPE_SIZE) | lo; #elif FLT_MANT_DIG < W_TYPE_SIZE if (a < 1) return 0; if (a < Wtype_MAXp1_F) return (UWtype)a; if (a < Wtype_MAXp1_F * Wtype_MAXp1_F) { /* Since we know that there are fewer significant bits in the SFmode quantity than in a word, we know that we can convert out all the significant bits in one step, and thus avoid losing bits. */ /* ??? This following loop essentially performs frexpf. If we could use the real libm function, or poke at the actual bits of the fp format, it would be significantly faster. */ UWtype shift = 0, counter; SFtype msb; a /= Wtype_MAXp1_F; for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1) { SFtype counterf = (UWtype)1 << counter; if (a >= counterf) { shift |= counter; a /= counterf; } } /* Rescale into the range of one word, extract the bits of that one word, and shift the result into position. */ a *= Wtype_MAXp1_F; counter = a; return (DWtype)counter << shift; } return -1; #else # error #endif } #endif #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE DWtype __fixsfdi (SFtype a) { if (a < 0) return - __fixunssfDI (-a); return __fixunssfDI (a); } #endif #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE XFtype __floatdixf (DWtype u) { #if W_TYPE_SIZE > XF_SIZE # error #endif XFtype d = (Wtype) (u >> W_TYPE_SIZE); d *= Wtype_MAXp1_F; d += (UWtype)u; return d; } #endif #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE XFtype __floatundixf (UDWtype u) { #if W_TYPE_SIZE > XF_SIZE # error #endif XFtype d = (UWtype) (u >> W_TYPE_SIZE); d *= Wtype_MAXp1_F; d += (UWtype)u; return d; } #endif #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE TFtype __floatditf (DWtype u) { #if W_TYPE_SIZE > TF_SIZE # error #endif TFtype d = (Wtype) (u >> W_TYPE_SIZE); d *= Wtype_MAXp1_F; d += (UWtype)u; return d; } #endif #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE TFtype __floatunditf (UDWtype u) { #if W_TYPE_SIZE > TF_SIZE # error #endif TFtype d = (UWtype) (u >> W_TYPE_SIZE); d *= Wtype_MAXp1_F; d += (UWtype)u; return d; } #endif #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \ || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE) #define DI_SIZE (W_TYPE_SIZE * 2) #define F_MODE_OK(SIZE) \ (SIZE < DI_SIZE \ && SIZE > (DI_SIZE - SIZE + FSSIZE) \ && !AVOID_FP_TYPE_CONVERSION(SIZE)) #if defined(L_floatdisf) #define FUNC __floatdisf #define FSTYPE SFtype #define FSSIZE SF_SIZE #else #define FUNC __floatdidf #define FSTYPE DFtype #define FSSIZE DF_SIZE #endif FSTYPE FUNC (DWtype u) { #if FSSIZE >= W_TYPE_SIZE /* When the word size is small, we never get any rounding error. */ FSTYPE f = (Wtype) (u >> W_TYPE_SIZE); f *= Wtype_MAXp1_F; f += (UWtype)u; return f; #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \ || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \ || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE)) #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) # define FSIZE DF_SIZE # define FTYPE DFtype #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) # define FSIZE XF_SIZE # define FTYPE XFtype #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE)) # define FSIZE TF_SIZE # define FTYPE TFtype #else # error #endif #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE)) /* Protect against double-rounding error. Represent any low-order bits, that might be truncated by a bit that won't be lost. The bit can go in anywhere below the rounding position of the FSTYPE. A fixed mask and bit position handles all usual configurations. */ if (! (- ((DWtype) 1 << FSIZE) < u && u < ((DWtype) 1 << FSIZE))) { if ((UDWtype) u & (REP_BIT - 1)) { u &= ~ (REP_BIT - 1); u |= REP_BIT; } } /* Do the calculation in a wider type so that we don't lose any of the precision of the high word while multiplying it. */ FTYPE f = (Wtype) (u >> W_TYPE_SIZE); f *= Wtype_MAXp1_F; f += (UWtype)u; return (FSTYPE) f; #else #if FSSIZE >= W_TYPE_SIZE - 2 # error #endif /* Finally, the word size is larger than the number of bits in the required FSTYPE, and we've got no suitable wider type. The only way to avoid double rounding is to special case the extraction. */ /* If there are no high bits set, fall back to one conversion. */ if ((Wtype)u == u) return (FSTYPE)(Wtype)u; /* Otherwise, find the power of two. */ Wtype hi = u >> W_TYPE_SIZE; if (hi < 0) hi = -hi; UWtype count, shift; count_leading_zeros (count, hi); /* No leading bits means u == minimum. */ if (count == 0) return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2)); shift = 1 + W_TYPE_SIZE - count; /* Shift down the most significant bits. */ hi = u >> shift; /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */ if ((UWtype)u << (W_TYPE_SIZE - shift)) hi |= 1; /* Convert the one word of data, and rescale. */ FSTYPE f = hi, e; if (shift == W_TYPE_SIZE) e = Wtype_MAXp1_F; /* The following two cases could be merged if we knew that the target supported a native unsigned->float conversion. More often, we only have a signed conversion, and have to add extra fixup code. */ else if (shift == W_TYPE_SIZE - 1) e = Wtype_MAXp1_F / 2; else e = (Wtype)1 << shift; return f * e; #endif } #endif #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \ || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE) #define DI_SIZE (W_TYPE_SIZE * 2) #define F_MODE_OK(SIZE) \ (SIZE < DI_SIZE \ && SIZE > (DI_SIZE - SIZE + FSSIZE) \ && !AVOID_FP_TYPE_CONVERSION(SIZE)) #if defined(L_floatundisf) #define FUNC __floatundisf #define FSTYPE SFtype #define FSSIZE SF_SIZE #else #define FUNC __floatundidf #define FSTYPE DFtype #define FSSIZE DF_SIZE #endif FSTYPE FUNC (UDWtype u) { #if FSSIZE >= W_TYPE_SIZE /* When the word size is small, we never get any rounding error. */ FSTYPE f = (UWtype) (u >> W_TYPE_SIZE); f *= Wtype_MAXp1_F; f += (UWtype)u; return f; #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \ || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \ || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE)) #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) # define FSIZE DF_SIZE # define FTYPE DFtype #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) # define FSIZE XF_SIZE # define FTYPE XFtype #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE)) # define FSIZE TF_SIZE # define FTYPE TFtype #else # error #endif #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE)) /* Protect against double-rounding error. Represent any low-order bits, that might be truncated by a bit that won't be lost. The bit can go in anywhere below the rounding position of the FSTYPE. A fixed mask and bit position handles all usual configurations. */ if (u >= ((UDWtype) 1 << FSIZE)) { if ((UDWtype) u & (REP_BIT - 1)) { u &= ~ (REP_BIT - 1); u |= REP_BIT; } } /* Do the calculation in a wider type so that we don't lose any of the precision of the high word while multiplying it. */ FTYPE f = (UWtype) (u >> W_TYPE_SIZE); f *= Wtype_MAXp1_F; f += (UWtype)u; return (FSTYPE) f; #else #if FSSIZE == W_TYPE_SIZE - 1 # error #endif /* Finally, the word size is larger than the number of bits in the required FSTYPE, and we've got no suitable wider type. The only way to avoid double rounding is to special case the extraction. */ /* If there are no high bits set, fall back to one conversion. */ if ((UWtype)u == u) return (FSTYPE)(UWtype)u; /* Otherwise, find the power of two. */ UWtype hi = u >> W_TYPE_SIZE; UWtype count, shift; count_leading_zeros (count, hi); shift = W_TYPE_SIZE - count; /* Shift down the most significant bits. */ hi = u >> shift; /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */ if ((UWtype)u << (W_TYPE_SIZE - shift)) hi |= 1; /* Convert the one word of data, and rescale. */ FSTYPE f = hi, e; if (shift == W_TYPE_SIZE) e = Wtype_MAXp1_F; /* The following two cases could be merged if we knew that the target supported a native unsigned->float conversion. More often, we only have a signed conversion, and have to add extra fixup code. */ else if (shift == W_TYPE_SIZE - 1) e = Wtype_MAXp1_F / 2; else e = (Wtype)1 << shift; return f * e; #endif } #endif #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include UWtype __fixunsxfSI (XFtype a) { if (a >= - (DFtype) Wtype_MIN) return (Wtype) (a + Wtype_MIN) - Wtype_MIN; return (Wtype) a; } #endif #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include UWtype __fixunsdfSI (DFtype a) { if (a >= - (DFtype) Wtype_MIN) return (Wtype) (a + Wtype_MIN) - Wtype_MIN; return (Wtype) a; } #endif #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include UWtype __fixunssfSI (SFtype a) { if (a >= - (SFtype) Wtype_MIN) return (Wtype) (a + Wtype_MIN) - Wtype_MIN; return (Wtype) a; } #endif /* Integer power helper used from __builtin_powi for non-constant exponents. */ #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \ || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \ || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \ || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE) # if defined(L_powisf2) # define TYPE SFtype # define NAME __powisf2 # elif defined(L_powidf2) # define TYPE DFtype # define NAME __powidf2 # elif defined(L_powixf2) # define TYPE XFtype # define NAME __powixf2 # elif defined(L_powitf2) # define TYPE TFtype # define NAME __powitf2 # endif #undef int #undef unsigned TYPE NAME (TYPE x, int m) { unsigned int n = m < 0 ? -m : m; TYPE y = n % 2 ? x : 1; while (n >>= 1) { x = x * x; if (n % 2) y = y * x; } return m < 0 ? 1/y : y; } #endif #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \ || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \ || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \ || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE) #undef float #undef double #undef long #if defined(L_mulsc3) || defined(L_divsc3) # define MTYPE SFtype # define CTYPE SCtype # define MODE sc # define CEXT f # define NOTRUNC __FLT_EVAL_METHOD__ == 0 #elif defined(L_muldc3) || defined(L_divdc3) # define MTYPE DFtype # define CTYPE DCtype # define MODE dc # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64 # define CEXT l # define NOTRUNC 1 # else # define CEXT # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1 # endif #elif defined(L_mulxc3) || defined(L_divxc3) # define MTYPE XFtype # define CTYPE XCtype # define MODE xc # define CEXT l # define NOTRUNC 1 #elif defined(L_multc3) || defined(L_divtc3) # define MTYPE TFtype # define CTYPE TCtype # define MODE tc # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128 # define CEXT l # else # define CEXT LIBGCC2_TF_CEXT # endif # define NOTRUNC 1 #else # error #endif #define CONCAT3(A,B,C) _CONCAT3(A,B,C) #define _CONCAT3(A,B,C) A##B##C #define CONCAT2(A,B) _CONCAT2(A,B) #define _CONCAT2(A,B) A##B /* All of these would be present in a full C99 implementation of and . Our problem is that only a few systems have such full implementations. Further, libgcc_s.so isn't currently linked against libm.so, and even for systems that do provide full C99, the extra overhead of all programs using libgcc having to link against libm. So avoid it. */ #define isnan(x) __builtin_expect ((x) != (x), 0) #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1) #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0) #define INFINITY CONCAT2(__builtin_inf, CEXT) () #define I 1i /* Helpers to make the following code slightly less gross. */ #define COPYSIGN CONCAT2(__builtin_copysign, CEXT) #define FABS CONCAT2(__builtin_fabs, CEXT) /* Verify that MTYPE matches up with CEXT. */ extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1]; /* Ensure that we've lost any extra precision. */ #if NOTRUNC # define TRUNC(x) #else # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x)) #endif #if defined(L_mulsc3) || defined(L_muldc3) \ || defined(L_mulxc3) || defined(L_multc3) CTYPE CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) { MTYPE ac, bd, ad, bc, x, y; ac = a * c; bd = b * d; ad = a * d; bc = b * c; TRUNC (ac); TRUNC (bd); TRUNC (ad); TRUNC (bc); x = ac - bd; y = ad + bc; if (isnan (x) && isnan (y)) { /* Recover infinities that computed as NaN + iNaN. */ _Bool recalc = 0; if (isinf (a) || isinf (b)) { /* z is infinite. "Box" the infinity and change NaNs in the other factor to 0. */ a = COPYSIGN (isinf (a) ? 1 : 0, a); b = COPYSIGN (isinf (b) ? 1 : 0, b); if (isnan (c)) c = COPYSIGN (0, c); if (isnan (d)) d = COPYSIGN (0, d); recalc = 1; } if (isinf (c) || isinf (d)) { /* w is infinite. "Box" the infinity and change NaNs in the other factor to 0. */ c = COPYSIGN (isinf (c) ? 1 : 0, c); d = COPYSIGN (isinf (d) ? 1 : 0, d); if (isnan (a)) a = COPYSIGN (0, a); if (isnan (b)) b = COPYSIGN (0, b); recalc = 1; } if (!recalc && (isinf (ac) || isinf (bd) || isinf (ad) || isinf (bc))) { /* Recover infinities from overflow by changing NaNs to 0. */ if (isnan (a)) a = COPYSIGN (0, a); if (isnan (b)) b = COPYSIGN (0, b); if (isnan (c)) c = COPYSIGN (0, c); if (isnan (d)) d = COPYSIGN (0, d); recalc = 1; } if (recalc) { x = INFINITY * (a * c - b * d); y = INFINITY * (a * d + b * c); } } return x + I * y; } #endif /* complex multiply */ #if defined(L_divsc3) || defined(L_divdc3) \ || defined(L_divxc3) || defined(L_divtc3) CTYPE CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) { MTYPE denom, ratio, x, y; /* ??? We can get better behavior from logarithmic scaling instead of the division. But that would mean starting to link libgcc against libm. We could implement something akin to ldexp/frexp as gcc builtins fairly easily... */ if (FABS (c) < FABS (d)) { ratio = c / d; denom = (c * ratio) + d; x = ((a * ratio) + b) / denom; y = ((b * ratio) - a) / denom; } else { ratio = d / c; denom = (d * ratio) + c; x = ((b * ratio) + a) / denom; y = (b - (a * ratio)) / denom; } /* Recover infinities and zeros that computed as NaN+iNaN; the only cases are nonzero/zero, infinite/finite, and finite/infinite. */ if (isnan (x) && isnan (y)) { if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b))) { x = COPYSIGN (INFINITY, c) * a; y = COPYSIGN (INFINITY, c) * b; } else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d)) { a = COPYSIGN (isinf (a) ? 1 : 0, a); b = COPYSIGN (isinf (b) ? 1 : 0, b); x = INFINITY * (a * c + b * d); y = INFINITY * (b * c - a * d); } else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b)) { c = COPYSIGN (isinf (c) ? 1 : 0, c); d = COPYSIGN (isinf (d) ? 1 : 0, d); x = 0.0 * (a * c + b * d); y = 0.0 * (b * c - a * d); } } return x + I * y; } #endif /* complex divide */ #endif /* all complex float routines */ /* From here on down, the routines use normal data types. */ #define SItype bogus_type #define USItype bogus_type #define DItype bogus_type #define UDItype bogus_type #define SFtype bogus_type #define DFtype bogus_type #undef Wtype #undef UWtype #undef HWtype #undef UHWtype #undef DWtype #undef UDWtype #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #ifdef L__gcc_bcmp /* Like bcmp except the sign is meaningful. Result is negative if S1 is less than S2, positive if S1 is greater, 0 if S1 and S2 are equal. */ int __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size) { while (size > 0) { const unsigned char c1 = *s1++, c2 = *s2++; if (c1 != c2) return c1 - c2; size--; } return 0; } #endif /* __eprintf used to be used by GCC's private version of . We no longer provide that header, but this routine remains in libgcc.a for binary backward compatibility. Note that it is not included in the shared version of libgcc. */ #ifdef L_eprintf #ifndef inhibit_libc #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ #include void __eprintf (const char *string, const char *expression, unsigned int line, const char *filename) { fprintf (stderr, string, expression, line, filename); fflush (stderr); abort (); } #endif #endif #ifdef L_clear_cache /* Clear part of an instruction cache. */ void __clear_cache (char *beg __attribute__((__unused__)), char *end __attribute__((__unused__))) { #ifdef CLEAR_INSN_CACHE CLEAR_INSN_CACHE (beg, end); #endif /* CLEAR_INSN_CACHE */ } #endif /* L_clear_cache */ #ifdef L_enable_execute_stack /* Attempt to turn on execute permission for the stack. */ #ifdef ENABLE_EXECUTE_STACK ENABLE_EXECUTE_STACK #else void __enable_execute_stack (void *addr __attribute__((__unused__))) {} #endif /* ENABLE_EXECUTE_STACK */ #endif /* L_enable_execute_stack */ #ifdef L_trampoline /* Jump to a trampoline, loading the static chain address. */ #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN) int getpagesize (void) { #ifdef _ALPHA_ return 8192; #else return 4096; #endif } int mprotect (char *addr, int len, int prot) { int np, op; if (prot == 7) np = 0x40; else if (prot == 5) np = 0x20; else if (prot == 4) np = 0x10; else if (prot == 3) np = 0x04; else if (prot == 1) np = 0x02; else if (prot == 0) np = 0x01; if (VirtualProtect (addr, len, np, &op)) return 0; else return -1; } #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */ #ifdef TRANSFER_FROM_TRAMPOLINE TRANSFER_FROM_TRAMPOLINE #endif #endif /* L_trampoline */ #ifndef __CYGWIN__ #ifdef L__main #include "gbl-ctors.h" /* Some systems use __main in a way incompatible with its use in gcc, in these cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to give the same symbol without quotes for an alternative entry point. You must define both, or neither. */ #ifndef NAME__MAIN #define NAME__MAIN "__main" #define SYMBOL__MAIN __main #endif #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP) #undef HAS_INIT_SECTION #define HAS_INIT_SECTION #endif #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF) /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this code to run constructors. In that case, we need to handle EH here, too. */ #ifdef EH_FRAME_SECTION_NAME #include "unwind-dw2-fde.h" extern unsigned char __EH_FRAME_BEGIN__[]; #endif /* Run all the global destructors on exit from the program. */ void __do_global_dtors (void) { #ifdef DO_GLOBAL_DTORS_BODY DO_GLOBAL_DTORS_BODY; #else static func_ptr *p = __DTOR_LIST__ + 1; while (*p) { p++; (*(p-1)) (); } #endif #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION) { static int completed = 0; if (! completed) { completed = 1; __deregister_frame_info (__EH_FRAME_BEGIN__); } } #endif } #endif #ifndef HAS_INIT_SECTION /* Run all the global constructors on entry to the program. */ void __do_global_ctors (void) { #ifdef EH_FRAME_SECTION_NAME { static struct object object; __register_frame_info (__EH_FRAME_BEGIN__, &object); } #endif DO_GLOBAL_CTORS_BODY; atexit (__do_global_dtors); } #endif /* no HAS_INIT_SECTION */ #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main) /* Subroutine called automatically by `main'. Compiling a global function named `main' produces an automatic call to this function at the beginning. For many systems, this routine calls __do_global_ctors. For systems which support a .init section we use the .init section to run __do_global_ctors, so we need not do anything here. */ extern void SYMBOL__MAIN (void); void SYMBOL__MAIN (void) { /* Support recursive calls to `main': run initializers just once. */ static int initialized; if (! initialized) { initialized = 1; __do_global_ctors (); } } #endif /* no HAS_INIT_SECTION or INVOKE__main */ #endif /* L__main */ #endif /* __CYGWIN__ */ #ifdef L_ctors #include "gbl-ctors.h" /* Provide default definitions for the lists of constructors and destructors, so that we don't get linker errors. These symbols are intentionally bss symbols, so that gld and/or collect will provide the right values. */ /* We declare the lists here with two elements each, so that they are valid empty lists if no other definition is loaded. If we are using the old "set" extensions to have the gnu linker collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__ must be in the bss/common section. Long term no port should use those extensions. But many still do. */ #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY) #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2) func_ptr __CTOR_LIST__[2] = {0, 0}; func_ptr __DTOR_LIST__[2] = {0, 0}; #else func_ptr __CTOR_LIST__[2]; func_ptr __DTOR_LIST__[2]; #endif #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */ #endif /* L_ctors */ #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */