/* Assign reload pseudos. Copyright (C) 2010-2014 Free Software Foundation, Inc. Contributed by Vladimir Makarov . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This file's main objective is to assign hard registers to reload pseudos. It also tries to allocate hard registers to other pseudos, but at a lower priority than the reload pseudos. The pass does not transform the RTL. We must allocate a hard register to every reload pseudo. We try to increase the chances of finding a viable allocation by assigning the pseudos in order of fewest available hard registers first. If we still fail to find a hard register, we spill other (non-reload) pseudos in order to make room. find_hard_regno_for finds hard registers for allocation without spilling. spill_for does the same with spilling. Both functions use a cost model to determine the most profitable choice of hard and spill registers. Once we have finished allocating reload pseudos, we also try to assign registers to other (non-reload) pseudos. This is useful if hard registers were freed up by the spilling just described. We try to assign hard registers by collecting pseudos into threads. These threads contain reload and inheritance pseudos that are connected by copies (move insns). Doing this improves the chances of pseudos in the thread getting the same hard register and, as a result, of allowing some move insns to be deleted. When we assign a hard register to a pseudo, we decrease the cost of using the same hard register for pseudos that are connected by copies. If two hard registers have the same frequency-derived cost, we prefer hard registers with higher priorities. The mapping of registers to priorities is controlled by the register_priority target hook. For example, x86-64 has a few register priorities: hard registers with and without REX prefixes have different priorities. This permits us to generate smaller code as insns without REX prefixes are shorter. If a few hard registers are still equally good for the assignment, we choose the least used hard register. It is called leveling and may be profitable for some targets. Only insns with changed allocation pseudos are processed on the next constraint pass. The pseudo live-ranges are used to find conflicting pseudos. For understanding the code, it is important to keep in mind that inheritance, split, and reload pseudos created since last constraint pass have regno >= lra_constraint_new_regno_start. Inheritance and split pseudos created on any pass are in the corresponding bitmaps. Inheritance and split pseudos since the last constraint pass have also the corresponding non-negative restore_regno. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "hard-reg-set.h" #include "rtl.h" #include "rtl-error.h" #include "tm_p.h" #include "target.h" #include "insn-config.h" #include "recog.h" #include "output.h" #include "regs.h" #include "hashtab.h" #include "hash-set.h" #include "vec.h" #include "machmode.h" #include "input.h" #include "function.h" #include "expr.h" #include "basic-block.h" #include "except.h" #include "df.h" #include "ira.h" #include "sparseset.h" #include "params.h" #include "lra-int.h" /* Current iteration number of the pass and current iteration number of the pass after the latest spill pass when any former reload pseudo was spilled. */ int lra_assignment_iter; int lra_assignment_iter_after_spill; /* Flag of spilling former reload pseudos on this pass. */ static bool former_reload_pseudo_spill_p; /* Array containing corresponding values of function lra_get_allocno_class. It is used to speed up the code. */ static enum reg_class *regno_allocno_class_array; /* Information about the thread to which a pseudo belongs. Threads are a set of connected reload and inheritance pseudos with the same set of available hard registers. Lone registers belong to their own threads. */ struct regno_assign_info { /* First/next pseudo of the same thread. */ int first, next; /* Frequency of the thread (execution frequency of only reload pseudos in the thread when the thread contains a reload pseudo). Defined only for the first thread pseudo. */ int freq; }; /* Map regno to the corresponding regno assignment info. */ static struct regno_assign_info *regno_assign_info; /* All inherited, subreg or optional pseudos created before last spill sub-pass. Such pseudos are permitted to get memory instead of hard regs. */ static bitmap_head non_reload_pseudos; /* Process a pseudo copy with execution frequency COPY_FREQ connecting REGNO1 and REGNO2 to form threads. */ static void process_copy_to_form_thread (int regno1, int regno2, int copy_freq) { int last, regno1_first, regno2_first; lra_assert (regno1 >= lra_constraint_new_regno_start && regno2 >= lra_constraint_new_regno_start); regno1_first = regno_assign_info[regno1].first; regno2_first = regno_assign_info[regno2].first; if (regno1_first != regno2_first) { for (last = regno2_first; regno_assign_info[last].next >= 0; last = regno_assign_info[last].next) regno_assign_info[last].first = regno1_first; regno_assign_info[last].first = regno1_first; regno_assign_info[last].next = regno_assign_info[regno1_first].next; regno_assign_info[regno1_first].next = regno2_first; regno_assign_info[regno1_first].freq += regno_assign_info[regno2_first].freq; } regno_assign_info[regno1_first].freq -= 2 * copy_freq; lra_assert (regno_assign_info[regno1_first].freq >= 0); } /* Initialize REGNO_ASSIGN_INFO and form threads. */ static void init_regno_assign_info (void) { int i, regno1, regno2, max_regno = max_reg_num (); lra_copy_t cp; regno_assign_info = XNEWVEC (struct regno_assign_info, max_regno); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) { regno_assign_info[i].first = i; regno_assign_info[i].next = -1; regno_assign_info[i].freq = lra_reg_info[i].freq; } /* Form the threads. */ for (i = 0; (cp = lra_get_copy (i)) != NULL; i++) if ((regno1 = cp->regno1) >= lra_constraint_new_regno_start && (regno2 = cp->regno2) >= lra_constraint_new_regno_start && reg_renumber[regno1] < 0 && lra_reg_info[regno1].nrefs != 0 && reg_renumber[regno2] < 0 && lra_reg_info[regno2].nrefs != 0 && (ira_class_hard_regs_num[regno_allocno_class_array[regno1]] == ira_class_hard_regs_num[regno_allocno_class_array[regno2]])) process_copy_to_form_thread (regno1, regno2, cp->freq); } /* Free REGNO_ASSIGN_INFO. */ static void finish_regno_assign_info (void) { free (regno_assign_info); } /* The function is used to sort *reload* and *inheritance* pseudos to try to assign them hard registers. We put pseudos from the same thread always nearby. */ static int reload_pseudo_compare_func (const void *v1p, const void *v2p) { int r1 = *(const int *) v1p, r2 = *(const int *) v2p; enum reg_class cl1 = regno_allocno_class_array[r1]; enum reg_class cl2 = regno_allocno_class_array[r2]; int diff; lra_assert (r1 >= lra_constraint_new_regno_start && r2 >= lra_constraint_new_regno_start); /* Prefer to assign reload registers with smaller classes first to guarantee assignment to all reload registers. */ if ((diff = (ira_class_hard_regs_num[cl1] - ira_class_hard_regs_num[cl2])) != 0) return diff; if ((diff = (ira_reg_class_max_nregs[cl2][lra_reg_info[r2].biggest_mode] - ira_reg_class_max_nregs[cl1][lra_reg_info[r1].biggest_mode])) != 0 /* The code below executes rarely as nregs == 1 in most cases. So we should not worry about using faster data structures to check reload pseudos. */ && ! bitmap_bit_p (&non_reload_pseudos, r1) && ! bitmap_bit_p (&non_reload_pseudos, r2)) return diff; if ((diff = (regno_assign_info[regno_assign_info[r2].first].freq - regno_assign_info[regno_assign_info[r1].first].freq)) != 0) return diff; /* Allocate bigger pseudos first to avoid register file fragmentation. */ if ((diff = (ira_reg_class_max_nregs[cl2][lra_reg_info[r2].biggest_mode] - ira_reg_class_max_nregs[cl1][lra_reg_info[r1].biggest_mode])) != 0) return diff; /* Put pseudos from the thread nearby. */ if ((diff = regno_assign_info[r1].first - regno_assign_info[r2].first) != 0) return diff; /* If regs are equally good, sort by their numbers, so that the results of qsort leave nothing to chance. */ return r1 - r2; } /* The function is used to sort *non-reload* pseudos to try to assign them hard registers. The order calculation is simpler than in the previous function and based on the pseudo frequency usage. */ static int pseudo_compare_func (const void *v1p, const void *v2p) { int r1 = *(const int *) v1p, r2 = *(const int *) v2p; int diff; /* Prefer to assign more frequently used registers first. */ if ((diff = lra_reg_info[r2].freq - lra_reg_info[r1].freq) != 0) return diff; /* If regs are equally good, sort by their numbers, so that the results of qsort leave nothing to chance. */ return r1 - r2; } /* Arrays of size LRA_LIVE_MAX_POINT mapping a program point to the pseudo live ranges with given start point. We insert only live ranges of pseudos interesting for assignment purposes. They are reload pseudos and pseudos assigned to hard registers. */ static lra_live_range_t *start_point_ranges; /* Used as a flag that a live range is not inserted in the start point chain. */ static struct lra_live_range not_in_chain_mark; /* Create and set up START_POINT_RANGES. */ static void create_live_range_start_chains (void) { int i, max_regno; lra_live_range_t r; start_point_ranges = XCNEWVEC (lra_live_range_t, lra_live_max_point); max_regno = max_reg_num (); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (i >= lra_constraint_new_regno_start || reg_renumber[i] >= 0) { for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next) { r->start_next = start_point_ranges[r->start]; start_point_ranges[r->start] = r; } } else { for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next) r->start_next = ¬_in_chain_mark; } } /* Insert live ranges of pseudo REGNO into start chains if they are not there yet. */ static void insert_in_live_range_start_chain (int regno) { lra_live_range_t r = lra_reg_info[regno].live_ranges; if (r->start_next != ¬_in_chain_mark) return; for (; r != NULL; r = r->next) { r->start_next = start_point_ranges[r->start]; start_point_ranges[r->start] = r; } } /* Free START_POINT_RANGES. */ static void finish_live_range_start_chains (void) { gcc_assert (start_point_ranges != NULL); free (start_point_ranges); start_point_ranges = NULL; } /* Map: program point -> bitmap of all pseudos living at the point and assigned to hard registers. */ static bitmap_head *live_hard_reg_pseudos; static bitmap_obstack live_hard_reg_pseudos_bitmap_obstack; /* reg_renumber corresponding to pseudos marked in live_hard_reg_pseudos. reg_renumber might be not matched to live_hard_reg_pseudos but live_pseudos_reg_renumber always reflects live_hard_reg_pseudos. */ static int *live_pseudos_reg_renumber; /* Sparseset used to calculate living hard reg pseudos for some program point range. */ static sparseset live_range_hard_reg_pseudos; /* Sparseset used to calculate living reload/inheritance pseudos for some program point range. */ static sparseset live_range_reload_inheritance_pseudos; /* Allocate and initialize the data about living pseudos at program points. */ static void init_lives (void) { int i, max_regno = max_reg_num (); live_range_hard_reg_pseudos = sparseset_alloc (max_regno); live_range_reload_inheritance_pseudos = sparseset_alloc (max_regno); live_hard_reg_pseudos = XNEWVEC (bitmap_head, lra_live_max_point); bitmap_obstack_initialize (&live_hard_reg_pseudos_bitmap_obstack); for (i = 0; i < lra_live_max_point; i++) bitmap_initialize (&live_hard_reg_pseudos[i], &live_hard_reg_pseudos_bitmap_obstack); live_pseudos_reg_renumber = XNEWVEC (int, max_regno); for (i = 0; i < max_regno; i++) live_pseudos_reg_renumber[i] = -1; } /* Free the data about living pseudos at program points. */ static void finish_lives (void) { sparseset_free (live_range_hard_reg_pseudos); sparseset_free (live_range_reload_inheritance_pseudos); free (live_hard_reg_pseudos); bitmap_obstack_release (&live_hard_reg_pseudos_bitmap_obstack); free (live_pseudos_reg_renumber); } /* Update the LIVE_HARD_REG_PSEUDOS and LIVE_PSEUDOS_REG_RENUMBER entries for pseudo REGNO. Assume that the register has been spilled if FREE_P, otherwise assume that it has been assigned reg_renumber[REGNO] (if >= 0). We also insert the pseudo live ranges in the start chains when it is assumed to be assigned to a hard register because we use the chains of pseudos assigned to hard registers during allocation. */ static void update_lives (int regno, bool free_p) { int p; lra_live_range_t r; if (reg_renumber[regno] < 0) return; live_pseudos_reg_renumber[regno] = free_p ? -1 : reg_renumber[regno]; for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next) { for (p = r->start; p <= r->finish; p++) if (free_p) bitmap_clear_bit (&live_hard_reg_pseudos[p], regno); else { bitmap_set_bit (&live_hard_reg_pseudos[p], regno); insert_in_live_range_start_chain (regno); } } } /* Sparseset used to calculate reload pseudos conflicting with a given pseudo when we are trying to find a hard register for the given pseudo. */ static sparseset conflict_reload_and_inheritance_pseudos; /* Map: program point -> bitmap of all reload and inheritance pseudos living at the point. */ static bitmap_head *live_reload_and_inheritance_pseudos; static bitmap_obstack live_reload_and_inheritance_pseudos_bitmap_obstack; /* Allocate and initialize data about living reload pseudos at any given program point. */ static void init_live_reload_and_inheritance_pseudos (void) { int i, p, max_regno = max_reg_num (); lra_live_range_t r; conflict_reload_and_inheritance_pseudos = sparseset_alloc (max_regno); live_reload_and_inheritance_pseudos = XNEWVEC (bitmap_head, lra_live_max_point); bitmap_obstack_initialize (&live_reload_and_inheritance_pseudos_bitmap_obstack); for (p = 0; p < lra_live_max_point; p++) bitmap_initialize (&live_reload_and_inheritance_pseudos[p], &live_reload_and_inheritance_pseudos_bitmap_obstack); for (i = lra_constraint_new_regno_start; i < max_regno; i++) { for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next) for (p = r->start; p <= r->finish; p++) bitmap_set_bit (&live_reload_and_inheritance_pseudos[p], i); } } /* Finalize data about living reload pseudos at any given program point. */ static void finish_live_reload_and_inheritance_pseudos (void) { sparseset_free (conflict_reload_and_inheritance_pseudos); free (live_reload_and_inheritance_pseudos); bitmap_obstack_release (&live_reload_and_inheritance_pseudos_bitmap_obstack); } /* The value used to check that cost of given hard reg is really defined currently. */ static int curr_hard_regno_costs_check = 0; /* Array used to check that cost of the corresponding hard reg (the array element index) is really defined currently. */ static int hard_regno_costs_check[FIRST_PSEUDO_REGISTER]; /* The current costs of allocation of hard regs. Defined only if the value of the corresponding element of the previous array is equal to CURR_HARD_REGNO_COSTS_CHECK. */ static int hard_regno_costs[FIRST_PSEUDO_REGISTER]; /* Adjust cost of HARD_REGNO by INCR. Reset the cost first if it is not defined yet. */ static inline void adjust_hard_regno_cost (int hard_regno, int incr) { if (hard_regno_costs_check[hard_regno] != curr_hard_regno_costs_check) hard_regno_costs[hard_regno] = 0; hard_regno_costs_check[hard_regno] = curr_hard_regno_costs_check; hard_regno_costs[hard_regno] += incr; } /* Try to find a free hard register for pseudo REGNO. Return the hard register on success and set *COST to the cost of using that register. (If several registers have equal cost, the one with the highest priority wins.) Return -1 on failure. If FIRST_P, return the first available hard reg ignoring other criteria, e.g. allocation cost. This approach results in less hard reg pool fragmentation and permit to allocate hard regs to reload pseudos in complicated situations where pseudo sizes are different. If TRY_ONLY_HARD_REGNO >= 0, consider only that hard register, otherwise consider all hard registers in REGNO's class. */ static int find_hard_regno_for (int regno, int *cost, int try_only_hard_regno, bool first_p) { HARD_REG_SET conflict_set; int best_cost = INT_MAX, best_priority = INT_MIN, best_usage = INT_MAX; lra_live_range_t r; int p, i, j, rclass_size, best_hard_regno, priority, hard_regno; int hr, conflict_hr, nregs; enum machine_mode biggest_mode; unsigned int k, conflict_regno; int offset, val, biggest_nregs, nregs_diff; enum reg_class rclass; bitmap_iterator bi; bool *rclass_intersect_p; HARD_REG_SET impossible_start_hard_regs, available_regs; COPY_HARD_REG_SET (conflict_set, lra_no_alloc_regs); rclass = regno_allocno_class_array[regno]; rclass_intersect_p = ira_reg_classes_intersect_p[rclass]; curr_hard_regno_costs_check++; sparseset_clear (conflict_reload_and_inheritance_pseudos); sparseset_clear (live_range_hard_reg_pseudos); IOR_HARD_REG_SET (conflict_set, lra_reg_info[regno].conflict_hard_regs); biggest_mode = lra_reg_info[regno].biggest_mode; for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next) { EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi) if (rclass_intersect_p[regno_allocno_class_array[k]]) sparseset_set_bit (live_range_hard_reg_pseudos, k); EXECUTE_IF_SET_IN_BITMAP (&live_reload_and_inheritance_pseudos[r->start], 0, k, bi) if (lra_reg_info[k].preferred_hard_regno1 >= 0 && live_pseudos_reg_renumber[k] < 0 && rclass_intersect_p[regno_allocno_class_array[k]]) sparseset_set_bit (conflict_reload_and_inheritance_pseudos, k); for (p = r->start + 1; p <= r->finish; p++) { lra_live_range_t r2; for (r2 = start_point_ranges[p]; r2 != NULL; r2 = r2->start_next) { if (r2->regno >= lra_constraint_new_regno_start && lra_reg_info[r2->regno].preferred_hard_regno1 >= 0 && live_pseudos_reg_renumber[r2->regno] < 0 && rclass_intersect_p[regno_allocno_class_array[r2->regno]]) sparseset_set_bit (conflict_reload_and_inheritance_pseudos, r2->regno); if (live_pseudos_reg_renumber[r2->regno] >= 0 && rclass_intersect_p[regno_allocno_class_array[r2->regno]]) sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno); } } } if ((hard_regno = lra_reg_info[regno].preferred_hard_regno1) >= 0) { adjust_hard_regno_cost (hard_regno, -lra_reg_info[regno].preferred_hard_regno_profit1); if ((hard_regno = lra_reg_info[regno].preferred_hard_regno2) >= 0) adjust_hard_regno_cost (hard_regno, -lra_reg_info[regno].preferred_hard_regno_profit2); } #ifdef STACK_REGS if (lra_reg_info[regno].no_stack_p) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) SET_HARD_REG_BIT (conflict_set, i); #endif sparseset_clear_bit (conflict_reload_and_inheritance_pseudos, regno); val = lra_reg_info[regno].val; offset = lra_reg_info[regno].offset; CLEAR_HARD_REG_SET (impossible_start_hard_regs); EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno) if (lra_reg_val_equal_p (conflict_regno, val, offset)) { conflict_hr = live_pseudos_reg_renumber[conflict_regno]; nregs = (hard_regno_nregs[conflict_hr] [lra_reg_info[conflict_regno].biggest_mode]); /* Remember about multi-register pseudos. For example, 2 hard register pseudos can start on the same hard register but can not start on HR and HR+1/HR-1. */ for (hr = conflict_hr + 1; hr < FIRST_PSEUDO_REGISTER && hr < conflict_hr + nregs; hr++) SET_HARD_REG_BIT (impossible_start_hard_regs, hr); for (hr = conflict_hr - 1; hr >= 0 && hr + hard_regno_nregs[hr][biggest_mode] > conflict_hr; hr--) SET_HARD_REG_BIT (impossible_start_hard_regs, hr); } else { add_to_hard_reg_set (&conflict_set, lra_reg_info[conflict_regno].biggest_mode, live_pseudos_reg_renumber[conflict_regno]); if (hard_reg_set_subset_p (reg_class_contents[rclass], conflict_set)) return -1; } EXECUTE_IF_SET_IN_SPARSESET (conflict_reload_and_inheritance_pseudos, conflict_regno) if (!lra_reg_val_equal_p (conflict_regno, val, offset)) { lra_assert (live_pseudos_reg_renumber[conflict_regno] < 0); if ((hard_regno = lra_reg_info[conflict_regno].preferred_hard_regno1) >= 0) { adjust_hard_regno_cost (hard_regno, lra_reg_info[conflict_regno].preferred_hard_regno_profit1); if ((hard_regno = lra_reg_info[conflict_regno].preferred_hard_regno2) >= 0) adjust_hard_regno_cost (hard_regno, lra_reg_info[conflict_regno].preferred_hard_regno_profit2); } } /* Make sure that all registers in a multi-word pseudo belong to the required class. */ IOR_COMPL_HARD_REG_SET (conflict_set, reg_class_contents[rclass]); lra_assert (rclass != NO_REGS); rclass_size = ira_class_hard_regs_num[rclass]; best_hard_regno = -1; hard_regno = ira_class_hard_regs[rclass][0]; biggest_nregs = hard_regno_nregs[hard_regno][biggest_mode]; nregs_diff = (biggest_nregs - hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)]); COPY_HARD_REG_SET (available_regs, reg_class_contents[rclass]); AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs); for (i = 0; i < rclass_size; i++) { if (try_only_hard_regno >= 0) hard_regno = try_only_hard_regno; else hard_regno = ira_class_hard_regs[rclass][i]; if (! overlaps_hard_reg_set_p (conflict_set, PSEUDO_REGNO_MODE (regno), hard_regno) /* We can not use prohibited_class_mode_regs because it is not defined for all classes. */ && HARD_REGNO_MODE_OK (hard_regno, PSEUDO_REGNO_MODE (regno)) && ! TEST_HARD_REG_BIT (impossible_start_hard_regs, hard_regno) && (nregs_diff == 0 || (WORDS_BIG_ENDIAN ? (hard_regno - nregs_diff >= 0 && TEST_HARD_REG_BIT (available_regs, hard_regno - nregs_diff)) : TEST_HARD_REG_BIT (available_regs, hard_regno + nregs_diff)))) { if (hard_regno_costs_check[hard_regno] != curr_hard_regno_costs_check) { hard_regno_costs_check[hard_regno] = curr_hard_regno_costs_check; hard_regno_costs[hard_regno] = 0; } for (j = 0; j < hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)]; j++) if (! TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + j) && ! df_regs_ever_live_p (hard_regno + j)) /* It needs save restore. */ hard_regno_costs[hard_regno] += (2 * REG_FREQ_FROM_BB (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) + 1); priority = targetm.register_priority (hard_regno); if (best_hard_regno < 0 || hard_regno_costs[hard_regno] < best_cost || (hard_regno_costs[hard_regno] == best_cost && (priority > best_priority || (targetm.register_usage_leveling_p () && priority == best_priority && best_usage > lra_hard_reg_usage[hard_regno])))) { best_hard_regno = hard_regno; best_cost = hard_regno_costs[hard_regno]; best_priority = priority; best_usage = lra_hard_reg_usage[hard_regno]; } } if (try_only_hard_regno >= 0 || (first_p && best_hard_regno >= 0)) break; } if (best_hard_regno >= 0) *cost = best_cost - lra_reg_info[regno].freq; return best_hard_regno; } /* Current value used for checking elements in update_hard_regno_preference_check. */ static int curr_update_hard_regno_preference_check; /* If an element value is equal to the above variable value, then the corresponding regno has been processed for preference propagation. */ static int *update_hard_regno_preference_check; /* Update the preference for using HARD_REGNO for pseudos that are connected directly or indirectly with REGNO. Apply divisor DIV to any preference adjustments. The more indirectly a pseudo is connected, the smaller its effect should be. We therefore increase DIV on each "hop". */ static void update_hard_regno_preference (int regno, int hard_regno, int div) { int another_regno, cost; lra_copy_t cp, next_cp; /* Search depth 5 seems to be enough. */ if (div > (1 << 5)) return; for (cp = lra_reg_info[regno].copies; cp != NULL; cp = next_cp) { if (cp->regno1 == regno) { next_cp = cp->regno1_next; another_regno = cp->regno2; } else if (cp->regno2 == regno) { next_cp = cp->regno2_next; another_regno = cp->regno1; } else gcc_unreachable (); if (reg_renumber[another_regno] < 0 && (update_hard_regno_preference_check[another_regno] != curr_update_hard_regno_preference_check)) { update_hard_regno_preference_check[another_regno] = curr_update_hard_regno_preference_check; cost = cp->freq < div ? 1 : cp->freq / div; lra_setup_reload_pseudo_preferenced_hard_reg (another_regno, hard_regno, cost); update_hard_regno_preference (another_regno, hard_regno, div * 2); } } } /* Return prefix title for pseudo REGNO. */ static const char * pseudo_prefix_title (int regno) { return (regno < lra_constraint_new_regno_start ? "" : bitmap_bit_p (&lra_inheritance_pseudos, regno) ? "inheritance " : bitmap_bit_p (&lra_split_regs, regno) ? "split " : bitmap_bit_p (&lra_optional_reload_pseudos, regno) ? "optional reload " : bitmap_bit_p (&lra_subreg_reload_pseudos, regno) ? "subreg reload " : "reload "); } /* Update REG_RENUMBER and other pseudo preferences by assignment of HARD_REGNO to pseudo REGNO and print about it if PRINT_P. */ void lra_setup_reg_renumber (int regno, int hard_regno, bool print_p) { int i, hr; /* We can not just reassign hard register. */ lra_assert (hard_regno < 0 || reg_renumber[regno] < 0); if ((hr = hard_regno) < 0) hr = reg_renumber[regno]; reg_renumber[regno] = hard_regno; lra_assert (hr >= 0); for (i = 0; i < hard_regno_nregs[hr][PSEUDO_REGNO_MODE (regno)]; i++) if (hard_regno < 0) lra_hard_reg_usage[hr + i] -= lra_reg_info[regno].freq; else lra_hard_reg_usage[hr + i] += lra_reg_info[regno].freq; if (print_p && lra_dump_file != NULL) fprintf (lra_dump_file, " Assign %d to %sr%d (freq=%d)\n", reg_renumber[regno], pseudo_prefix_title (regno), regno, lra_reg_info[regno].freq); if (hard_regno >= 0) { curr_update_hard_regno_preference_check++; update_hard_regno_preference (regno, hard_regno, 1); } } /* Pseudos which occur in insns containing a particular pseudo. */ static bitmap_head insn_conflict_pseudos; /* Bitmaps used to contain spill pseudos for given pseudo hard regno and best spill pseudos for given pseudo (and best hard regno). */ static bitmap_head spill_pseudos_bitmap, best_spill_pseudos_bitmap; /* Current pseudo check for validity of elements in TRY_HARD_REG_PSEUDOS. */ static int curr_pseudo_check; /* Array used for validity of elements in TRY_HARD_REG_PSEUDOS. */ static int try_hard_reg_pseudos_check[FIRST_PSEUDO_REGISTER]; /* Pseudos who hold given hard register at the considered points. */ static bitmap_head try_hard_reg_pseudos[FIRST_PSEUDO_REGISTER]; /* Set up try_hard_reg_pseudos for given program point P and class RCLASS. Those are pseudos living at P and assigned to a hard register of RCLASS. In other words, those are pseudos which can be spilled to assign a hard register of RCLASS to a pseudo living at P. */ static void setup_try_hard_regno_pseudos (int p, enum reg_class rclass) { int i, hard_regno; enum machine_mode mode; unsigned int spill_regno; bitmap_iterator bi; /* Find what pseudos could be spilled. */ EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[p], 0, spill_regno, bi) { mode = PSEUDO_REGNO_MODE (spill_regno); hard_regno = live_pseudos_reg_renumber[spill_regno]; if (overlaps_hard_reg_set_p (reg_class_contents[rclass], mode, hard_regno)) { for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--) { if (try_hard_reg_pseudos_check[hard_regno + i] != curr_pseudo_check) { try_hard_reg_pseudos_check[hard_regno + i] = curr_pseudo_check; bitmap_clear (&try_hard_reg_pseudos[hard_regno + i]); } bitmap_set_bit (&try_hard_reg_pseudos[hard_regno + i], spill_regno); } } } } /* Assign temporarily HARD_REGNO to pseudo REGNO. Temporary assignment means that we might undo the data change. */ static void assign_temporarily (int regno, int hard_regno) { int p; lra_live_range_t r; for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next) { for (p = r->start; p <= r->finish; p++) if (hard_regno < 0) bitmap_clear_bit (&live_hard_reg_pseudos[p], regno); else { bitmap_set_bit (&live_hard_reg_pseudos[p], regno); insert_in_live_range_start_chain (regno); } } live_pseudos_reg_renumber[regno] = hard_regno; } /* Array used for sorting reload pseudos for subsequent allocation after spilling some pseudo. */ static int *sorted_reload_pseudos; /* Spill some pseudos for a reload pseudo REGNO and return hard register which should be used for pseudo after spilling. The function adds spilled pseudos to SPILLED_PSEUDO_BITMAP. When we choose hard register (and pseudos occupying the hard registers and to be spilled), we take into account not only how REGNO will benefit from the spills but also how other reload pseudos not yet assigned to hard registers benefit from the spills too. In very rare cases, the function can fail and return -1. If FIRST_P, return the first available hard reg ignoring other criteria, e.g. allocation cost and cost of spilling non-reload pseudos. This approach results in less hard reg pool fragmentation and permit to allocate hard regs to reload pseudos in complicated situations where pseudo sizes are different. */ static int spill_for (int regno, bitmap spilled_pseudo_bitmap, bool first_p) { int i, j, n, p, hard_regno, best_hard_regno, cost, best_cost, rclass_size; int reload_hard_regno, reload_cost; enum machine_mode mode; enum reg_class rclass; unsigned int spill_regno, reload_regno, uid; int insn_pseudos_num, best_insn_pseudos_num; lra_live_range_t r; bitmap_iterator bi; rclass = regno_allocno_class_array[regno]; lra_assert (reg_renumber[regno] < 0 && rclass != NO_REGS); bitmap_clear (&insn_conflict_pseudos); bitmap_clear (&best_spill_pseudos_bitmap); EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi) { struct lra_insn_reg *ir; for (ir = lra_get_insn_regs (uid); ir != NULL; ir = ir->next) if (ir->regno >= FIRST_PSEUDO_REGISTER) bitmap_set_bit (&insn_conflict_pseudos, ir->regno); } best_hard_regno = -1; best_cost = INT_MAX; best_insn_pseudos_num = INT_MAX; rclass_size = ira_class_hard_regs_num[rclass]; mode = PSEUDO_REGNO_MODE (regno); /* Invalidate try_hard_reg_pseudos elements. */ curr_pseudo_check++; for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next) for (p = r->start; p <= r->finish; p++) setup_try_hard_regno_pseudos (p, rclass); for (i = 0; i < rclass_size; i++) { hard_regno = ira_class_hard_regs[rclass][i]; bitmap_clear (&spill_pseudos_bitmap); for (j = hard_regno_nregs[hard_regno][mode] - 1; j >= 0; j--) { if (try_hard_reg_pseudos_check[hard_regno + j] != curr_pseudo_check) continue; lra_assert (!bitmap_empty_p (&try_hard_reg_pseudos[hard_regno + j])); bitmap_ior_into (&spill_pseudos_bitmap, &try_hard_reg_pseudos[hard_regno + j]); } /* Spill pseudos. */ EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi) if ((pic_offset_table_rtx != NULL && spill_regno == REGNO (pic_offset_table_rtx)) || ((int) spill_regno >= lra_constraint_new_regno_start && ! bitmap_bit_p (&lra_inheritance_pseudos, spill_regno) && ! bitmap_bit_p (&lra_split_regs, spill_regno) && ! bitmap_bit_p (&lra_subreg_reload_pseudos, spill_regno) && ! bitmap_bit_p (&lra_optional_reload_pseudos, spill_regno))) goto fail; insn_pseudos_num = 0; if (lra_dump_file != NULL) fprintf (lra_dump_file, " Trying %d:", hard_regno); sparseset_clear (live_range_reload_inheritance_pseudos); EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi) { if (bitmap_bit_p (&insn_conflict_pseudos, spill_regno)) insn_pseudos_num++; for (r = lra_reg_info[spill_regno].live_ranges; r != NULL; r = r->next) { for (p = r->start; p <= r->finish; p++) { lra_live_range_t r2; for (r2 = start_point_ranges[p]; r2 != NULL; r2 = r2->start_next) if (r2->regno >= lra_constraint_new_regno_start) sparseset_set_bit (live_range_reload_inheritance_pseudos, r2->regno); } } } n = 0; if (sparseset_cardinality (live_range_reload_inheritance_pseudos) <= (unsigned)LRA_MAX_CONSIDERED_RELOAD_PSEUDOS) EXECUTE_IF_SET_IN_SPARSESET (live_range_reload_inheritance_pseudos, reload_regno) if ((int) reload_regno != regno && (ira_reg_classes_intersect_p [rclass][regno_allocno_class_array[reload_regno]]) && live_pseudos_reg_renumber[reload_regno] < 0 && find_hard_regno_for (reload_regno, &cost, -1, first_p) < 0) sorted_reload_pseudos[n++] = reload_regno; EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi) { update_lives (spill_regno, true); if (lra_dump_file != NULL) fprintf (lra_dump_file, " spill %d(freq=%d)", spill_regno, lra_reg_info[spill_regno].freq); } hard_regno = find_hard_regno_for (regno, &cost, -1, first_p); if (hard_regno >= 0) { assign_temporarily (regno, hard_regno); qsort (sorted_reload_pseudos, n, sizeof (int), reload_pseudo_compare_func); for (j = 0; j < n; j++) { reload_regno = sorted_reload_pseudos[j]; lra_assert (live_pseudos_reg_renumber[reload_regno] < 0); if ((reload_hard_regno = find_hard_regno_for (reload_regno, &reload_cost, -1, first_p)) >= 0) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " assign %d(cost=%d)", reload_regno, reload_cost); assign_temporarily (reload_regno, reload_hard_regno); cost += reload_cost; } } EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi) { rtx_insn_list *x; cost += lra_reg_info[spill_regno].freq; if (ira_reg_equiv[spill_regno].memory != NULL || ira_reg_equiv[spill_regno].constant != NULL) for (x = ira_reg_equiv[spill_regno].init_insns; x != NULL; x = x->next ()) cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (x->insn ())); } if (best_insn_pseudos_num > insn_pseudos_num || (best_insn_pseudos_num == insn_pseudos_num && best_cost > cost)) { best_insn_pseudos_num = insn_pseudos_num; best_cost = cost; best_hard_regno = hard_regno; bitmap_copy (&best_spill_pseudos_bitmap, &spill_pseudos_bitmap); if (lra_dump_file != NULL) fprintf (lra_dump_file, " Now best %d(cost=%d)\n", hard_regno, cost); } assign_temporarily (regno, -1); for (j = 0; j < n; j++) { reload_regno = sorted_reload_pseudos[j]; if (live_pseudos_reg_renumber[reload_regno] >= 0) assign_temporarily (reload_regno, -1); } } if (lra_dump_file != NULL) fprintf (lra_dump_file, "\n"); /* Restore the live hard reg pseudo info for spilled pseudos. */ EXECUTE_IF_SET_IN_BITMAP (&spill_pseudos_bitmap, 0, spill_regno, bi) update_lives (spill_regno, false); fail: ; } /* Spill: */ EXECUTE_IF_SET_IN_BITMAP (&best_spill_pseudos_bitmap, 0, spill_regno, bi) { if ((int) spill_regno >= lra_constraint_new_regno_start) former_reload_pseudo_spill_p = true; if (lra_dump_file != NULL) fprintf (lra_dump_file, " Spill %sr%d(hr=%d, freq=%d) for r%d\n", pseudo_prefix_title (spill_regno), spill_regno, reg_renumber[spill_regno], lra_reg_info[spill_regno].freq, regno); update_lives (spill_regno, true); lra_setup_reg_renumber (spill_regno, -1, false); } bitmap_ior_into (spilled_pseudo_bitmap, &best_spill_pseudos_bitmap); return best_hard_regno; } /* Assign HARD_REGNO to REGNO. */ static void assign_hard_regno (int hard_regno, int regno) { int i; lra_assert (hard_regno >= 0); lra_setup_reg_renumber (regno, hard_regno, true); update_lives (regno, false); for (i = 0; i < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode]; i++) df_set_regs_ever_live (hard_regno + i, true); } /* Array used for sorting different pseudos. */ static int *sorted_pseudos; /* The constraints pass is allowed to create equivalences between pseudos that make the current allocation "incorrect" (in the sense that pseudos are assigned to hard registers from their own conflict sets). The global variable lra_risky_transformations_p says whether this might have happened. Process pseudos assigned to hard registers (less frequently used first), spill if a conflict is found, and mark the spilled pseudos in SPILLED_PSEUDO_BITMAP. Set up LIVE_HARD_REG_PSEUDOS from pseudos, assigned to hard registers. */ static void setup_live_pseudos_and_spill_after_risky_transforms (bitmap spilled_pseudo_bitmap) { int p, i, j, n, regno, hard_regno; unsigned int k, conflict_regno; int val, offset; HARD_REG_SET conflict_set; enum machine_mode mode; lra_live_range_t r; bitmap_iterator bi; int max_regno = max_reg_num (); if (! lra_risky_transformations_p) { for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (reg_renumber[i] >= 0 && lra_reg_info[i].nrefs > 0) update_lives (i, false); return; } for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if ((pic_offset_table_rtx == NULL_RTX || i != (int) REGNO (pic_offset_table_rtx)) && reg_renumber[i] >= 0 && lra_reg_info[i].nrefs > 0) sorted_pseudos[n++] = i; qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func); if (pic_offset_table_rtx != NULL_RTX && (regno = REGNO (pic_offset_table_rtx)) >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0 && lra_reg_info[regno].nrefs > 0) sorted_pseudos[n++] = regno; for (i = n - 1; i >= 0; i--) { regno = sorted_pseudos[i]; hard_regno = reg_renumber[regno]; lra_assert (hard_regno >= 0); mode = lra_reg_info[regno].biggest_mode; sparseset_clear (live_range_hard_reg_pseudos); for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next) { EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi) sparseset_set_bit (live_range_hard_reg_pseudos, k); for (p = r->start + 1; p <= r->finish; p++) { lra_live_range_t r2; for (r2 = start_point_ranges[p]; r2 != NULL; r2 = r2->start_next) if (live_pseudos_reg_renumber[r2->regno] >= 0) sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno); } } COPY_HARD_REG_SET (conflict_set, lra_no_alloc_regs); IOR_HARD_REG_SET (conflict_set, lra_reg_info[regno].conflict_hard_regs); val = lra_reg_info[regno].val; offset = lra_reg_info[regno].offset; EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno) if (!lra_reg_val_equal_p (conflict_regno, val, offset) /* If it is multi-register pseudos they should start on the same hard register. */ || hard_regno != reg_renumber[conflict_regno]) add_to_hard_reg_set (&conflict_set, lra_reg_info[conflict_regno].biggest_mode, reg_renumber[conflict_regno]); if (! overlaps_hard_reg_set_p (conflict_set, mode, hard_regno)) { update_lives (regno, false); continue; } bitmap_set_bit (spilled_pseudo_bitmap, regno); for (j = 0; j < hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (regno)]; j++) lra_hard_reg_usage[hard_regno + j] -= lra_reg_info[regno].freq; reg_renumber[regno] = -1; if (regno >= lra_constraint_new_regno_start) former_reload_pseudo_spill_p = true; if (lra_dump_file != NULL) fprintf (lra_dump_file, " Spill r%d after risky transformations\n", regno); } } /* Improve allocation by assigning the same hard regno of inheritance pseudos to the connected pseudos. We need this because inheritance pseudos are allocated after reload pseudos in the thread and when we assign a hard register to a reload pseudo we don't know yet that the connected inheritance pseudos can get the same hard register. Add pseudos with changed allocation to bitmap CHANGED_PSEUDOS. */ static void improve_inheritance (bitmap changed_pseudos) { unsigned int k; int regno, another_regno, hard_regno, another_hard_regno, cost, i, n; lra_copy_t cp, next_cp; bitmap_iterator bi; if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES) return; n = 0; EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, k, bi) if (reg_renumber[k] >= 0 && lra_reg_info[k].nrefs != 0) sorted_pseudos[n++] = k; qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func); for (i = 0; i < n; i++) { regno = sorted_pseudos[i]; hard_regno = reg_renumber[regno]; lra_assert (hard_regno >= 0); for (cp = lra_reg_info[regno].copies; cp != NULL; cp = next_cp) { if (cp->regno1 == regno) { next_cp = cp->regno1_next; another_regno = cp->regno2; } else if (cp->regno2 == regno) { next_cp = cp->regno2_next; another_regno = cp->regno1; } else gcc_unreachable (); /* Don't change reload pseudo allocation. It might have this allocation for a purpose and changing it can result in LRA cycling. */ if ((another_regno < lra_constraint_new_regno_start || bitmap_bit_p (&lra_inheritance_pseudos, another_regno)) && (another_hard_regno = reg_renumber[another_regno]) >= 0 && another_hard_regno != hard_regno) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " Improving inheritance for %d(%d) and %d(%d)...\n", regno, hard_regno, another_regno, another_hard_regno); update_lives (another_regno, true); lra_setup_reg_renumber (another_regno, -1, false); if (hard_regno == find_hard_regno_for (another_regno, &cost, hard_regno, false)) assign_hard_regno (hard_regno, another_regno); else assign_hard_regno (another_hard_regno, another_regno); bitmap_set_bit (changed_pseudos, another_regno); } } } } /* Bitmap finally containing all pseudos spilled on this assignment pass. */ static bitmap_head all_spilled_pseudos; /* All pseudos whose allocation was changed. */ static bitmap_head changed_pseudo_bitmap; /* Add to LIVE_RANGE_HARD_REG_PSEUDOS all pseudos conflicting with REGNO and whose hard regs can be assigned to REGNO. */ static void find_all_spills_for (int regno) { int p; lra_live_range_t r; unsigned int k; bitmap_iterator bi; enum reg_class rclass; bool *rclass_intersect_p; rclass = regno_allocno_class_array[regno]; rclass_intersect_p = ira_reg_classes_intersect_p[rclass]; for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next) { EXECUTE_IF_SET_IN_BITMAP (&live_hard_reg_pseudos[r->start], 0, k, bi) if (rclass_intersect_p[regno_allocno_class_array[k]]) sparseset_set_bit (live_range_hard_reg_pseudos, k); for (p = r->start + 1; p <= r->finish; p++) { lra_live_range_t r2; for (r2 = start_point_ranges[p]; r2 != NULL; r2 = r2->start_next) { if (live_pseudos_reg_renumber[r2->regno] >= 0 && rclass_intersect_p[regno_allocno_class_array[r2->regno]]) sparseset_set_bit (live_range_hard_reg_pseudos, r2->regno); } } } } /* Assign hard registers to reload pseudos and other pseudos. */ static void assign_by_spills (void) { int i, n, nfails, iter, regno, hard_regno, cost, restore_regno; rtx_insn *insn; bitmap_head changed_insns, do_not_assign_nonreload_pseudos; unsigned int u, conflict_regno; bitmap_iterator bi; bool reload_p; int max_regno = max_reg_num (); for (n = 0, i = lra_constraint_new_regno_start; i < max_regno; i++) if (reg_renumber[i] < 0 && lra_reg_info[i].nrefs != 0 && regno_allocno_class_array[i] != NO_REGS) sorted_pseudos[n++] = i; bitmap_initialize (&insn_conflict_pseudos, ®_obstack); bitmap_initialize (&spill_pseudos_bitmap, ®_obstack); bitmap_initialize (&best_spill_pseudos_bitmap, ®_obstack); update_hard_regno_preference_check = XCNEWVEC (int, max_regno); curr_update_hard_regno_preference_check = 0; memset (try_hard_reg_pseudos_check, 0, sizeof (try_hard_reg_pseudos_check)); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) bitmap_initialize (&try_hard_reg_pseudos[i], ®_obstack); curr_pseudo_check = 0; bitmap_initialize (&changed_insns, ®_obstack); bitmap_initialize (&non_reload_pseudos, ®_obstack); bitmap_ior (&non_reload_pseudos, &lra_inheritance_pseudos, &lra_split_regs); bitmap_ior_into (&non_reload_pseudos, &lra_subreg_reload_pseudos); bitmap_ior_into (&non_reload_pseudos, &lra_optional_reload_pseudos); for (iter = 0; iter <= 1; iter++) { qsort (sorted_pseudos, n, sizeof (int), reload_pseudo_compare_func); nfails = 0; for (i = 0; i < n; i++) { regno = sorted_pseudos[i]; if (lra_dump_file != NULL) fprintf (lra_dump_file, " Assigning to %d " "(cl=%s, orig=%d, freq=%d, tfirst=%d, tfreq=%d)...\n", regno, reg_class_names[regno_allocno_class_array[regno]], ORIGINAL_REGNO (regno_reg_rtx[regno]), lra_reg_info[regno].freq, regno_assign_info[regno].first, regno_assign_info[regno_assign_info[regno].first].freq); hard_regno = find_hard_regno_for (regno, &cost, -1, iter == 1); reload_p = ! bitmap_bit_p (&non_reload_pseudos, regno); if (hard_regno < 0 && reload_p) hard_regno = spill_for (regno, &all_spilled_pseudos, iter == 1); if (hard_regno < 0) { if (reload_p) sorted_pseudos[nfails++] = regno; } else { /* This register might have been spilled by the previous pass. Indicate that it is no longer spilled. */ bitmap_clear_bit (&all_spilled_pseudos, regno); assign_hard_regno (hard_regno, regno); if (! reload_p) /* As non-reload pseudo assignment is changed we should reconsider insns referring for the pseudo. */ bitmap_set_bit (&changed_pseudo_bitmap, regno); } } if (nfails == 0) break; if (iter > 0) { /* We did not assign hard regs to reload pseudos after two iterations. Either it's an asm and something is wrong with the constraints, or we have run out of spill registers; error out in either case. */ bool asm_p = false; bitmap_head failed_reload_insns; bitmap_initialize (&failed_reload_insns, ®_obstack); for (i = 0; i < nfails; i++) { regno = sorted_pseudos[i]; bitmap_ior_into (&failed_reload_insns, &lra_reg_info[regno].insn_bitmap); /* Assign an arbitrary hard register of regno class to avoid further trouble with this insn. */ bitmap_clear_bit (&all_spilled_pseudos, regno); assign_hard_regno (ira_class_hard_regs[regno_allocno_class_array[regno]][0], regno); } EXECUTE_IF_SET_IN_BITMAP (&failed_reload_insns, 0, u, bi) { insn = lra_insn_recog_data[u]->insn; if (asm_noperands (PATTERN (insn)) >= 0) { asm_p = true; error_for_asm (insn, "% operand has impossible constraints"); /* Avoid further trouble with this insn. For asm goto, instead of fixing up all the edges just clear the template and clear input operands (asm goto doesn't have any output operands). */ if (JUMP_P (insn)) { rtx asm_op = extract_asm_operands (PATTERN (insn)); ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup (""); ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0); ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0); lra_update_insn_regno_info (insn); } else { PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx); lra_set_insn_deleted (insn); } } else if (!asm_p) { error ("unable to find a register to spill"); fatal_insn ("this is the insn:", insn); } } break; } /* This is a very rare event. We can not assign a hard register to reload pseudo because the hard register was assigned to another reload pseudo on a previous assignment pass. For x86 example, on the 1st pass we assigned CX (although another hard register could be used for this) to reload pseudo in an insn, on the 2nd pass we need CX (and only this) hard register for a new reload pseudo in the same insn. Another possible situation may occur in assigning to multi-regs reload pseudos when hard regs pool is too fragmented even after spilling non-reload pseudos. We should do something radical here to succeed. Here we spill *all* conflicting pseudos and reassign them. */ if (lra_dump_file != NULL) fprintf (lra_dump_file, " 2nd iter for reload pseudo assignments:\n"); sparseset_clear (live_range_hard_reg_pseudos); for (i = 0; i < nfails; i++) { if (lra_dump_file != NULL) fprintf (lra_dump_file, " Reload r%d assignment failure\n", sorted_pseudos[i]); find_all_spills_for (sorted_pseudos[i]); } EXECUTE_IF_SET_IN_SPARSESET (live_range_hard_reg_pseudos, conflict_regno) { if ((int) conflict_regno >= lra_constraint_new_regno_start) { sorted_pseudos[nfails++] = conflict_regno; former_reload_pseudo_spill_p = true; } if (lra_dump_file != NULL) fprintf (lra_dump_file, " Spill %s r%d(hr=%d, freq=%d)\n", pseudo_prefix_title (conflict_regno), conflict_regno, reg_renumber[conflict_regno], lra_reg_info[conflict_regno].freq); update_lives (conflict_regno, true); lra_setup_reg_renumber (conflict_regno, -1, false); } n = nfails; } improve_inheritance (&changed_pseudo_bitmap); bitmap_clear (&non_reload_pseudos); bitmap_clear (&changed_insns); if (! lra_simple_p) { /* We should not assign to original pseudos of inheritance pseudos or split pseudos if any its inheritance pseudo did not get hard register or any its split pseudo was not split because undo inheritance/split pass will extend live range of such inheritance or split pseudos. */ bitmap_initialize (&do_not_assign_nonreload_pseudos, ®_obstack); EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, u, bi) if ((restore_regno = lra_reg_info[u].restore_regno) >= 0 && reg_renumber[u] < 0 && bitmap_bit_p (&lra_inheritance_pseudos, u)) bitmap_set_bit (&do_not_assign_nonreload_pseudos, restore_regno); EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, u, bi) if ((restore_regno = lra_reg_info[u].restore_regno) >= 0 && reg_renumber[u] >= 0) bitmap_set_bit (&do_not_assign_nonreload_pseudos, restore_regno); for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (((i < lra_constraint_new_regno_start && ! bitmap_bit_p (&do_not_assign_nonreload_pseudos, i)) || (bitmap_bit_p (&lra_inheritance_pseudos, i) && lra_reg_info[i].restore_regno >= 0) || (bitmap_bit_p (&lra_split_regs, i) && lra_reg_info[i].restore_regno >= 0) || bitmap_bit_p (&lra_subreg_reload_pseudos, i) || bitmap_bit_p (&lra_optional_reload_pseudos, i)) && reg_renumber[i] < 0 && lra_reg_info[i].nrefs != 0 && regno_allocno_class_array[i] != NO_REGS) sorted_pseudos[n++] = i; bitmap_clear (&do_not_assign_nonreload_pseudos); if (n != 0 && lra_dump_file != NULL) fprintf (lra_dump_file, " Reassigning non-reload pseudos\n"); qsort (sorted_pseudos, n, sizeof (int), pseudo_compare_func); for (i = 0; i < n; i++) { regno = sorted_pseudos[i]; hard_regno = find_hard_regno_for (regno, &cost, -1, false); if (hard_regno >= 0) { assign_hard_regno (hard_regno, regno); /* We change allocation for non-reload pseudo on this iteration -- mark the pseudo for invalidation of used alternatives of insns containing the pseudo. */ bitmap_set_bit (&changed_pseudo_bitmap, regno); } else { enum reg_class rclass = lra_get_allocno_class (regno); enum reg_class spill_class; if (targetm.spill_class == NULL || lra_reg_info[regno].restore_regno < 0 || ! bitmap_bit_p (&lra_inheritance_pseudos, regno) || (spill_class = ((enum reg_class) targetm.spill_class ((reg_class_t) rclass, PSEUDO_REGNO_MODE (regno)))) == NO_REGS) continue; regno_allocno_class_array[regno] = spill_class; hard_regno = find_hard_regno_for (regno, &cost, -1, false); if (hard_regno < 0) regno_allocno_class_array[regno] = rclass; else { setup_reg_classes (regno, spill_class, spill_class, spill_class); assign_hard_regno (hard_regno, regno); bitmap_set_bit (&changed_pseudo_bitmap, regno); } } } } free (update_hard_regno_preference_check); bitmap_clear (&best_spill_pseudos_bitmap); bitmap_clear (&spill_pseudos_bitmap); bitmap_clear (&insn_conflict_pseudos); } /* Entry function to assign hard registers to new reload pseudos starting with LRA_CONSTRAINT_NEW_REGNO_START (by possible spilling of old pseudos) and possibly to the old pseudos. The function adds what insns to process for the next constraint pass. Those are all insns who contains non-reload and non-inheritance pseudos with changed allocation. Return true if we did not spill any non-reload and non-inheritance pseudos. */ bool lra_assign (void) { int i; unsigned int u; bitmap_iterator bi; bitmap_head insns_to_process; bool no_spills_p; int max_regno = max_reg_num (); timevar_push (TV_LRA_ASSIGN); lra_assignment_iter++; if (lra_dump_file != NULL) fprintf (lra_dump_file, "\n********** Assignment #%d: **********\n\n", lra_assignment_iter); init_lives (); sorted_pseudos = XNEWVEC (int, max_regno); sorted_reload_pseudos = XNEWVEC (int, max_regno); regno_allocno_class_array = XNEWVEC (enum reg_class, max_regno); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) regno_allocno_class_array[i] = lra_get_allocno_class (i); former_reload_pseudo_spill_p = false; init_regno_assign_info (); bitmap_initialize (&all_spilled_pseudos, ®_obstack); create_live_range_start_chains (); setup_live_pseudos_and_spill_after_risky_transforms (&all_spilled_pseudos); #ifdef ENABLE_CHECKING if (!flag_use_caller_save) for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0 && lra_reg_info[i].call_p && overlaps_hard_reg_set_p (call_used_reg_set, PSEUDO_REGNO_MODE (i), reg_renumber[i])) gcc_unreachable (); #endif /* Setup insns to process on the next constraint pass. */ bitmap_initialize (&changed_pseudo_bitmap, ®_obstack); init_live_reload_and_inheritance_pseudos (); assign_by_spills (); finish_live_reload_and_inheritance_pseudos (); bitmap_ior_into (&changed_pseudo_bitmap, &all_spilled_pseudos); no_spills_p = true; EXECUTE_IF_SET_IN_BITMAP (&all_spilled_pseudos, 0, u, bi) /* We ignore spilled pseudos created on last inheritance pass because they will be removed. */ if (lra_reg_info[u].restore_regno < 0) { no_spills_p = false; break; } finish_live_range_start_chains (); bitmap_clear (&all_spilled_pseudos); bitmap_initialize (&insns_to_process, ®_obstack); EXECUTE_IF_SET_IN_BITMAP (&changed_pseudo_bitmap, 0, u, bi) bitmap_ior_into (&insns_to_process, &lra_reg_info[u].insn_bitmap); bitmap_clear (&changed_pseudo_bitmap); EXECUTE_IF_SET_IN_BITMAP (&insns_to_process, 0, u, bi) { lra_push_insn_by_uid (u); /* Invalidate alternatives for insn should be processed. */ lra_set_used_insn_alternative_by_uid (u, -1); } bitmap_clear (&insns_to_process); finish_regno_assign_info (); free (regno_allocno_class_array); free (sorted_pseudos); free (sorted_reload_pseudos); finish_lives (); timevar_pop (TV_LRA_ASSIGN); if (former_reload_pseudo_spill_p) lra_assignment_iter_after_spill++; if (lra_assignment_iter_after_spill > LRA_MAX_ASSIGNMENT_ITERATION_NUMBER) internal_error ("Maximum number of LRA assignment passes is achieved (%d)\n", LRA_MAX_ASSIGNMENT_ITERATION_NUMBER); return no_spills_p; }