/* Implement classes and message passing for Objective C. Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Steve Naroff. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #ifdef OBJCPLUS #include "cp-tree.h" #else #include "c-tree.h" #include "c-lang.h" #endif #include "c-family/c-common.h" #include "c-family/c-objc.h" #include "c-family/c-pragma.h" #include "c-family/c-format.h" #include "flags.h" #include "langhooks.h" #include "objc-act.h" #include "input.h" #include "function.h" #include "output.h" #include "toplev.h" #include "ggc.h" #include "debug.h" #include "target.h" #include "diagnostic-core.h" #include "intl.h" #include "cgraph.h" #include "tree-iterator.h" #include "hashtab.h" #include "langhooks-def.h" /* For default_tree_printer (). */ #include "tree-pretty-print.h" /* For enum gimplify_status */ #include "gimple.h" #define OBJC_VOID_AT_END void_list_node static unsigned int should_call_super_dealloc = 0; /* When building Objective-C++, we are not linking against the C front-end and so need to replicate the C tree-construction functions in some way. */ #ifdef OBJCPLUS #define OBJCP_REMAP_FUNCTIONS #include "objcp-decl.h" #endif /* OBJCPLUS */ /* This is the default way of generating a method name. */ /* This has the problem that "test_method:argument:" and "test:method_argument:" will generate the same name ("_i_Test__test_method_argument_" for an instance method of the class "Test"), so you can't have them both in the same class! Moreover, the demangling (going from "_i_Test__test_method_argument" back to the original name) is undefined because there are two correct ways of demangling the name. */ #ifndef OBJC_GEN_METHOD_LABEL #define OBJC_GEN_METHOD_LABEL(BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME, NUM) \ do { \ char *temp; \ sprintf ((BUF), "_%s_%s_%s_%s", \ ((IS_INST) ? "i" : "c"), \ (CLASS_NAME), \ ((CAT_NAME)? (CAT_NAME) : ""), \ (SEL_NAME)); \ for (temp = (BUF); *temp; temp++) \ if (*temp == ':') *temp = '_'; \ } while (0) #endif /* These need specifying. */ #ifndef OBJC_FORWARDING_STACK_OFFSET #define OBJC_FORWARDING_STACK_OFFSET 0 #endif #ifndef OBJC_FORWARDING_MIN_OFFSET #define OBJC_FORWARDING_MIN_OFFSET 0 #endif /* Set up for use of obstacks. */ #include "obstack.h" /* This obstack is used to accumulate the encoding of a data type. */ static struct obstack util_obstack; /* This points to the beginning of obstack contents, so we can free the whole contents. */ char *util_firstobj; /* The version identifies which language generation and runtime the module (file) was compiled for, and is recorded in the module descriptor. */ #define OBJC_VERSION (flag_next_runtime ? 6 : 8) #define PROTOCOL_VERSION 2 /* (Decide if these can ever be validly changed.) */ #define OBJC_ENCODE_INLINE_DEFS 0 #define OBJC_ENCODE_DONT_INLINE_DEFS 1 /*** Private Interface (procedures) ***/ /* Used by compile_file. */ static void init_objc (void); static void finish_objc (void); /* Code generation. */ static tree objc_build_constructor (tree, VEC(constructor_elt,gc) *); static tree build_objc_method_call (location_t, int, tree, tree, tree, tree); static tree get_proto_encoding (tree); static tree lookup_interface (tree); static tree objc_add_static_instance (tree, tree); static tree start_class (enum tree_code, tree, tree, tree, tree); static tree continue_class (tree); static void finish_class (tree); static void start_method_def (tree); #ifdef OBJCPLUS static void objc_start_function (tree, tree, tree, tree); #else static void objc_start_function (tree, tree, tree, struct c_arg_info *); #endif static tree start_protocol (enum tree_code, tree, tree, tree); static tree build_method_decl (enum tree_code, tree, tree, tree, bool); static tree objc_add_method (tree, tree, int, bool); static tree add_instance_variable (tree, objc_ivar_visibility_kind, tree); static tree build_ivar_reference (tree); static tree is_ivar (tree, tree); static void build_objc_exception_stuff (void); static void build_next_objc_exception_stuff (void); /* We only need the following for ObjC; ObjC++ will use C++'s definition of DERIVED_FROM_P. */ #ifndef OBJCPLUS static bool objc_derived_from_p (tree, tree); #define DERIVED_FROM_P(PARENT, CHILD) objc_derived_from_p (PARENT, CHILD) #endif /* Property. */ static void objc_gen_property_data (tree, tree); static void objc_synthesize_getter (tree, tree, tree); static void objc_synthesize_setter (tree, tree, tree); static char *objc_build_property_setter_name (tree); static int match_proto_with_proto (tree, tree, int); static tree lookup_property (tree, tree); static tree lookup_property_in_list (tree, tree); static tree lookup_property_in_protocol_list (tree, tree); static void build_objc_property_accessor_helpers (void); static void objc_xref_basetypes (tree, tree); static void build_class_template (void); static void build_selector_template (void); static void build_category_template (void); static void build_super_template (void); static tree build_protocol_initializer (tree, tree, tree, tree, tree); static tree get_class_ivars (tree, bool); static tree generate_protocol_list (tree); static void build_protocol_reference (tree); static void build_fast_enumeration_state_template (void); #ifdef OBJCPLUS static void objc_generate_cxx_cdtors (void); #endif /* objc attribute */ static void objc_decl_method_attributes (tree*, tree, int); static tree build_keyword_selector (tree); static const char *synth_id_with_class_suffix (const char *, tree); /* Hash tables to manage the global pool of method prototypes. */ hash *nst_method_hash_list = 0; hash *cls_method_hash_list = 0; /* Hash tables to manage the global pool of class names. */ hash *cls_name_hash_list = 0; hash *als_name_hash_list = 0; static void hash_class_name_enter (hash *, tree, tree); static hash hash_class_name_lookup (hash *, tree); static hash hash_lookup (hash *, tree); static tree lookup_method (tree, tree); static tree lookup_method_static (tree, tree, int); static tree add_class (tree, tree); static void add_category (tree, tree); static inline tree lookup_category (tree, tree); enum string_section { class_names, /* class, category, protocol, module names */ meth_var_names, /* method and variable names */ meth_var_types /* method and variable type descriptors */ }; static tree add_objc_string (tree, enum string_section); static void build_selector_table_decl (void); /* Protocols. */ static tree lookup_protocol (tree, bool, bool); static tree lookup_and_install_protocols (tree, bool); /* Type encoding. */ static void encode_type_qualifiers (tree); static void encode_type (tree, int, int); static void encode_field_decl (tree, int, int); #ifdef OBJCPLUS static void really_start_method (tree, tree); #else static void really_start_method (tree, struct c_arg_info *); #endif static int comp_proto_with_proto (tree, tree, int); static tree get_arg_type_list (tree, int, int); static tree objc_decay_parm_type (tree); static void objc_push_parm (tree); #ifdef OBJCPLUS static tree objc_get_parm_info (int); #else static struct c_arg_info *objc_get_parm_info (int); #endif /* Utilities for debugging and error diagnostics. */ static char *gen_type_name (tree); static char *gen_type_name_0 (tree); static char *gen_method_decl (tree); static char *gen_declaration (tree); /* Everything else. */ static tree create_field_decl (tree, const char *); static void add_class_reference (tree); static void build_protocol_template (void); static tree encode_method_prototype (tree); static void generate_classref_translation_entry (tree); static void handle_class_ref (tree); static void generate_struct_by_value_array (void) ATTRIBUTE_NORETURN; static void mark_referenced_methods (void); static void generate_objc_image_info (void); static bool objc_type_valid_for_messaging (tree type, bool allow_classes); /*** Private Interface (data) ***/ /* Reserved tag definitions. */ #define OBJECT_TYPEDEF_NAME "id" #define CLASS_TYPEDEF_NAME "Class" #define TAG_OBJECT "objc_object" #define TAG_CLASS "objc_class" #define TAG_SUPER "objc_super" #define TAG_SELECTOR "objc_selector" #define UTAG_CLASS "_objc_class" #define UTAG_IVAR "_objc_ivar" #define UTAG_IVAR_LIST "_objc_ivar_list" #define UTAG_METHOD "_objc_method" #define UTAG_METHOD_LIST "_objc_method_list" #define UTAG_CATEGORY "_objc_category" #define UTAG_MODULE "_objc_module" #define UTAG_SYMTAB "_objc_symtab" #define UTAG_SUPER "_objc_super" #define UTAG_SELECTOR "_objc_selector" #define UTAG_PROTOCOL "_objc_protocol" #define UTAG_METHOD_PROTOTYPE "_objc_method_prototype" #define UTAG_METHOD_PROTOTYPE_LIST "_objc__method_prototype_list" /* Note that the string object global name is only needed for the NeXT runtime. */ #define STRING_OBJECT_GLOBAL_FORMAT "_%sClassReference" #define PROTOCOL_OBJECT_CLASS_NAME "Protocol" #define TAG_ENUMERATION_MUTATION "objc_enumerationMutation" #define TAG_FAST_ENUMERATION_STATE "__objcFastEnumerationState" static const char *TAG_GETCLASS; static const char *TAG_GETMETACLASS; static const char *TAG_MSGSEND; static const char *TAG_MSGSENDSUPER; /* The NeXT Objective-C messenger may have two extra entry points, for use when returning a structure. */ static const char *TAG_MSGSEND_STRET; static const char *TAG_MSGSENDSUPER_STRET; static const char *default_constant_string_class_name; /* Runtime metadata flags. */ #define CLS_FACTORY 0x0001L #define CLS_META 0x0002L #define CLS_HAS_CXX_STRUCTORS 0x2000L #define OBJC_MODIFIER_STATIC 0x00000001 #define OBJC_MODIFIER_FINAL 0x00000002 #define OBJC_MODIFIER_PUBLIC 0x00000004 #define OBJC_MODIFIER_PRIVATE 0x00000008 #define OBJC_MODIFIER_PROTECTED 0x00000010 #define OBJC_MODIFIER_NATIVE 0x00000020 #define OBJC_MODIFIER_SYNCHRONIZED 0x00000040 #define OBJC_MODIFIER_ABSTRACT 0x00000080 #define OBJC_MODIFIER_VOLATILE 0x00000100 #define OBJC_MODIFIER_TRANSIENT 0x00000200 #define OBJC_MODIFIER_NONE_SPECIFIED 0x80000000 /* NeXT-specific tags. */ #define TAG_MSGSEND_NONNIL "objc_msgSendNonNil" #define TAG_MSGSEND_NONNIL_STRET "objc_msgSendNonNil_stret" #define TAG_EXCEPTIONEXTRACT "objc_exception_extract" #define TAG_EXCEPTIONTRYENTER "objc_exception_try_enter" #define TAG_EXCEPTIONTRYEXIT "objc_exception_try_exit" #define TAG_EXCEPTIONMATCH "objc_exception_match" #define TAG_EXCEPTIONTHROW "objc_exception_throw" #define TAG_SYNCENTER "objc_sync_enter" #define TAG_SYNCEXIT "objc_sync_exit" #define TAG_SETJMP "_setjmp" #define UTAG_EXCDATA "_objc_exception_data" #define TAG_ASSIGNIVAR "objc_assign_ivar" #define TAG_ASSIGNGLOBAL "objc_assign_global" #define TAG_ASSIGNSTRONGCAST "objc_assign_strongCast" /* Branch entry points. All that matters here are the addresses; functions with these names do not really exist in libobjc. */ #define TAG_MSGSEND_FAST "objc_msgSend_Fast" #define TAG_ASSIGNIVAR_FAST "objc_assign_ivar_Fast" #define TAG_CXX_CONSTRUCT ".cxx_construct" #define TAG_CXX_DESTRUCT ".cxx_destruct" /* GNU-specific tags. */ #define TAG_EXECCLASS "__objc_exec_class" #define TAG_GNUINIT "__objc_gnu_init" /* Flags for lookup_method_static(). */ /* Look for class methods. */ #define OBJC_LOOKUP_CLASS 1 /* Do not examine superclasses. */ #define OBJC_LOOKUP_NO_SUPER 2 /* Disable returning an instance method of a root class when a class method can't be found. */ #define OBJC_LOOKUP_NO_INSTANCE_METHODS_OF_ROOT_CLASS 4 /* The OCTI_... enumeration itself is in objc/objc-act.h. */ tree objc_global_trees[OCTI_MAX]; static void handle_impent (struct imp_entry *); struct imp_entry *imp_list = 0; int imp_count = 0; /* `@implementation' */ int cat_count = 0; /* `@category' */ objc_ivar_visibility_kind objc_ivar_visibility; /* Use to generate method labels. */ static int method_slot = 0; /* Flag to say whether methods in a protocol are optional or required. */ static bool objc_method_optional_flag = false; static int objc_collecting_ivars = 0; /* Flag that is set to 'true' while we are processing a class extension. Since a class extension just "reopens" the main @interface, this can be used to determine if we are in the main @interface, or in a class extension. */ static bool objc_in_class_extension = false; #define BUFSIZE 1024 static char *errbuf; /* Buffer for error diagnostics */ /* An array of all the local variables in the current function that need to be marked as volatile. */ VEC(tree,gc) *local_variables_to_volatilize = NULL; static int flag_typed_selectors; /* Store all constructed constant strings in a hash table so that they get uniqued properly. */ struct GTY(()) string_descriptor { /* The literal argument . */ tree literal; /* The resulting constant string. */ tree constructor; }; static GTY((param_is (struct string_descriptor))) htab_t string_htab; FILE *gen_declaration_file; /* Tells "encode_pointer/encode_aggregate" whether we are generating type descriptors for instance variables (as opposed to methods). Type descriptors for instance variables contain more information than methods (for static typing and embedded structures). */ static int generating_instance_variables = 0; /* For building an objc struct. These may not be used when this file is compiled as part of obj-c++. */ static bool objc_building_struct; static struct c_struct_parse_info *objc_struct_info ATTRIBUTE_UNUSED; /* Start building a struct for objc. */ static tree objc_start_struct (tree name) { gcc_assert (!objc_building_struct); objc_building_struct = true; return start_struct (input_location, RECORD_TYPE, name, &objc_struct_info); } /* Finish building a struct for objc. */ static tree objc_finish_struct (tree type, tree fieldlist) { gcc_assert (objc_building_struct); objc_building_struct = false; return finish_struct (input_location, type, fieldlist, NULL_TREE, objc_struct_info); } static tree build_sized_array_type (tree base_type, int size) { tree index_type = build_index_type (build_int_cst (NULL_TREE, size - 1)); return build_array_type (base_type, index_type); } static tree add_field_decl (tree type, const char *name, tree **chain) { tree field = create_field_decl (type, name); if (*chain != NULL) **chain = field; *chain = &DECL_CHAIN (field); return field; } /* Create a temporary variable of type 'type'. If 'name' is set, uses the specified name, else use no name. Returns the declaration of the type. The 'name' is mostly useful for debugging. */ static tree objc_create_temporary_var (tree type, const char *name) { tree decl; if (name != NULL) { decl = build_decl (input_location, VAR_DECL, get_identifier (name), type); } else { decl = build_decl (input_location, VAR_DECL, NULL_TREE, type); } TREE_USED (decl) = 1; DECL_ARTIFICIAL (decl) = 1; DECL_IGNORED_P (decl) = 1; DECL_CONTEXT (decl) = current_function_decl; return decl; } /* Some platforms pass small structures through registers versus through an invisible pointer. Determine at what size structure is the transition point between the two possibilities. */ static void generate_struct_by_value_array (void) { tree type; tree decls; int i, j; int aggregate_in_mem[32]; int found = 0; /* Presumably no platform passes 32 byte structures in a register. */ for (i = 1; i < 32; i++) { char buffer[5]; tree *chain = NULL; /* Create an unnamed struct that has `i' character components */ type = objc_start_struct (NULL_TREE); strcpy (buffer, "c1"); decls = add_field_decl (char_type_node, buffer, &chain); for (j = 1; j < i; j++) { sprintf (buffer, "c%d", j + 1); add_field_decl (char_type_node, buffer, &chain); } objc_finish_struct (type, decls); aggregate_in_mem[i] = aggregate_value_p (type, 0); if (!aggregate_in_mem[i]) found = 1; } /* We found some structures that are returned in registers instead of memory so output the necessary data. */ if (found) { for (i = 31; i >= 0; i--) if (!aggregate_in_mem[i]) break; printf ("#define OBJC_MAX_STRUCT_BY_VALUE %d\n", i); } exit (0); } bool objc_init (void) { #ifdef OBJCPLUS if (cxx_init () == false) #else if (c_objc_common_init () == false) #endif return false; /* If gen_declaration desired, open the output file. */ if (flag_gen_declaration) { register char * const dumpname = concat (dump_base_name, ".decl", NULL); gen_declaration_file = fopen (dumpname, "w"); if (gen_declaration_file == 0) fatal_error ("can%'t open %s: %m", dumpname); free (dumpname); } if (flag_next_runtime) { TAG_GETCLASS = "objc_getClass"; TAG_GETMETACLASS = "objc_getMetaClass"; TAG_MSGSEND = "objc_msgSend"; TAG_MSGSENDSUPER = "objc_msgSendSuper"; TAG_MSGSEND_STRET = "objc_msgSend_stret"; TAG_MSGSENDSUPER_STRET = "objc_msgSendSuper_stret"; default_constant_string_class_name = "NSConstantString"; } else { TAG_GETCLASS = "objc_get_class"; TAG_GETMETACLASS = "objc_get_meta_class"; TAG_MSGSEND = "objc_msg_lookup"; TAG_MSGSENDSUPER = "objc_msg_lookup_super"; /* GNU runtime does not provide special functions to support structure-returning methods. */ default_constant_string_class_name = "NXConstantString"; flag_typed_selectors = 1; /* GNU runtime does not need the compiler to change code in order to do GC. */ if (flag_objc_gc) { warning_at (0, 0, "%<-fobjc-gc%> is ignored for %<-fgnu-runtime%>"); flag_objc_gc=0; } } init_objc (); if (print_struct_values && !flag_compare_debug) generate_struct_by_value_array (); #ifndef OBJCPLUS if (flag_objc_exceptions && !flag_objc_sjlj_exceptions) using_eh_for_cleanups (); #endif return true; } /* This is called automatically (at the very end of compilation) by c_write_global_declarations and cp_write_global_declarations. */ void objc_write_global_declarations (void) { mark_referenced_methods (); /* Finalize Objective-C runtime data. */ finish_objc (); if (gen_declaration_file) fclose (gen_declaration_file); } /* Return the first occurrence of a method declaration corresponding to sel_name in rproto_list. Search rproto_list recursively. If is_class is 0, search for instance methods, otherwise for class methods. */ static tree lookup_method_in_protocol_list (tree rproto_list, tree sel_name, int is_class) { tree rproto, p, m; for (rproto = rproto_list; rproto; rproto = TREE_CHAIN (rproto)) { p = TREE_VALUE (rproto); m = NULL_TREE; if (TREE_CODE (p) == PROTOCOL_INTERFACE_TYPE) { /* First, search the @required protocol methods. */ if (is_class) m = lookup_method (PROTOCOL_CLS_METHODS (p), sel_name); else m = lookup_method (PROTOCOL_NST_METHODS (p), sel_name); if (m) return m; /* If still not found, search the @optional protocol methods. */ if (is_class) m = lookup_method (PROTOCOL_OPTIONAL_CLS_METHODS (p), sel_name); else m = lookup_method (PROTOCOL_OPTIONAL_NST_METHODS (p), sel_name); if (m) return m; /* If still not found, search the attached protocols. */ if (PROTOCOL_LIST (p)) m = lookup_method_in_protocol_list (PROTOCOL_LIST (p), sel_name, is_class); if (m) return m; } else { ; /* An identifier...if we could not find a protocol. */ } } return 0; } static tree lookup_protocol_in_reflist (tree rproto_list, tree lproto) { tree rproto, p; /* Make sure the protocol is supported by the object on the rhs. */ if (TREE_CODE (lproto) == PROTOCOL_INTERFACE_TYPE) { tree fnd = 0; for (rproto = rproto_list; rproto; rproto = TREE_CHAIN (rproto)) { p = TREE_VALUE (rproto); if (TREE_CODE (p) == PROTOCOL_INTERFACE_TYPE) { if (lproto == p) fnd = lproto; else if (PROTOCOL_LIST (p)) fnd = lookup_protocol_in_reflist (PROTOCOL_LIST (p), lproto); } if (fnd) return fnd; } } else { ; /* An identifier...if we could not find a protocol. */ } return 0; } void objc_start_class_interface (tree klass, tree super_class, tree protos, tree attributes) { if (flag_objc1_only && attributes) error_at (input_location, "class attributes are not available in Objective-C 1.0"); objc_interface_context = objc_ivar_context = start_class (CLASS_INTERFACE_TYPE, klass, super_class, protos, attributes); objc_ivar_visibility = OBJC_IVAR_VIS_PROTECTED; } void objc_start_category_interface (tree klass, tree categ, tree protos, tree attributes) { if (attributes) { if (flag_objc1_only) error_at (input_location, "category attributes are not available in Objective-C 1.0"); else warning_at (input_location, OPT_Wattributes, "category attributes are not available in this version" " of the compiler, (ignored)"); } if (categ == NULL_TREE) { if (flag_objc1_only) error_at (input_location, "class extensions are not available in Objective-C 1.0"); else { /* Iterate over all the classes and categories implemented up to now in this compilation unit. */ struct imp_entry *t; for (t = imp_list; t; t = t->next) { /* If we find a class @implementation with the same name as the one we are extending, produce an error. */ if (TREE_CODE (t->imp_context) == CLASS_IMPLEMENTATION_TYPE && IDENTIFIER_POINTER (CLASS_NAME (t->imp_context)) == IDENTIFIER_POINTER (klass)) error_at (input_location, "class extension for class %qE declared after its %<@implementation%>", klass); } } } objc_interface_context = start_class (CATEGORY_INTERFACE_TYPE, klass, categ, protos, NULL_TREE); objc_ivar_chain = continue_class (objc_interface_context); } void objc_start_protocol (tree name, tree protos, tree attributes) { if (flag_objc1_only && attributes) error_at (input_location, "protocol attributes are not available in Objective-C 1.0"); objc_interface_context = start_protocol (PROTOCOL_INTERFACE_TYPE, name, protos, attributes); objc_method_optional_flag = false; } void objc_continue_interface (void) { objc_ivar_chain = continue_class (objc_interface_context); } void objc_finish_interface (void) { finish_class (objc_interface_context); objc_interface_context = NULL_TREE; objc_method_optional_flag = false; objc_in_class_extension = false; } void objc_start_class_implementation (tree klass, tree super_class) { objc_implementation_context = objc_ivar_context = start_class (CLASS_IMPLEMENTATION_TYPE, klass, super_class, NULL_TREE, NULL_TREE); objc_ivar_visibility = OBJC_IVAR_VIS_PROTECTED; } void objc_start_category_implementation (tree klass, tree categ) { objc_implementation_context = start_class (CATEGORY_IMPLEMENTATION_TYPE, klass, categ, NULL_TREE, NULL_TREE); objc_ivar_chain = continue_class (objc_implementation_context); } void objc_continue_implementation (void) { objc_ivar_chain = continue_class (objc_implementation_context); } void objc_finish_implementation (void) { #ifdef OBJCPLUS if (flag_objc_call_cxx_cdtors) objc_generate_cxx_cdtors (); #endif if (objc_implementation_context) { finish_class (objc_implementation_context); objc_ivar_chain = NULL_TREE; objc_implementation_context = NULL_TREE; } else warning (0, "%<@end%> must appear in an @implementation context"); } void objc_set_visibility (objc_ivar_visibility_kind visibility) { if (visibility == OBJC_IVAR_VIS_PACKAGE) { if (flag_objc1_only) error ("%<@package%> is not available in Objective-C 1.0"); else warning (0, "%<@package%> presently has the same effect as %<@public%>"); } objc_ivar_visibility = visibility; } void objc_set_method_opt (bool optional) { if (flag_objc1_only) { if (optional) error_at (input_location, "%<@optional%> is not available in Objective-C 1.0"); else error_at (input_location, "%<@required%> is not available in Objective-C 1.0"); } objc_method_optional_flag = optional; if (!objc_interface_context || TREE_CODE (objc_interface_context) != PROTOCOL_INTERFACE_TYPE) { if (optional) error ("%<@optional%> is allowed in @protocol context only"); else error ("%<@required%> is allowed in @protocol context only"); objc_method_optional_flag = false; } } /* This routine looks for a given PROPERTY in a list of CLASS, CATEGORY, or PROTOCOL. */ static tree lookup_property_in_list (tree chain, tree property) { tree x; for (x = CLASS_PROPERTY_DECL (chain); x; x = TREE_CHAIN (x)) if (PROPERTY_NAME (x) == property) return x; return NULL_TREE; } /* This routine looks for a given PROPERTY in the tree chain of RPROTO_LIST. */ static tree lookup_property_in_protocol_list (tree rproto_list, tree property) { tree rproto, x; for (rproto = rproto_list; rproto; rproto = TREE_CHAIN (rproto)) { tree p = TREE_VALUE (rproto); if (TREE_CODE (p) == PROTOCOL_INTERFACE_TYPE) { if ((x = lookup_property_in_list (p, property))) return x; if (PROTOCOL_LIST (p)) return lookup_property_in_protocol_list (PROTOCOL_LIST (p), property); } else { ; /* An identifier...if we could not find a protocol. */ } } return NULL_TREE; } /* This routine looks up the PROPERTY in current INTERFACE, its categories and up the chain of interface hierarchy. */ static tree lookup_property (tree interface_type, tree property) { tree inter = interface_type; while (inter) { tree x, category; if ((x = lookup_property_in_list (inter, property))) return x; /* Failing that, look for the property in each category of the class. */ category = inter; while ((category = CLASS_CATEGORY_LIST (category))) { if ((x = lookup_property_in_list (category, property))) return x; /* When checking a category, also check the protocols attached with the category itself. */ if (CLASS_PROTOCOL_LIST (category) && (x = lookup_property_in_protocol_list (CLASS_PROTOCOL_LIST (category), property))) return x; } /* Failing to find in categories, look for property in protocol list. */ if (CLASS_PROTOCOL_LIST (inter) && (x = lookup_property_in_protocol_list (CLASS_PROTOCOL_LIST (inter), property))) return x; /* Failing that, climb up the inheritance hierarchy. */ inter = lookup_interface (CLASS_SUPER_NAME (inter)); } return inter; } /* This routine is called by the parser when a @property... declaration is found. 'decl' is the declaration of the property (type/identifier), and the other arguments represent property attributes that may have been specified in the Objective-C declaration. 'parsed_property_readonly' is 'true' if the attribute 'readonly' was specified, and 'false' if not; similarly for the other bool parameters. 'parsed_property_getter_ident' is NULL_TREE if the attribute 'getter' was not specified, and is the identifier corresponding to the specified getter if it was; similarly for 'parsed_property_setter_ident'. */ void objc_add_property_declaration (location_t location, tree decl, bool parsed_property_readonly, bool parsed_property_readwrite, bool parsed_property_assign, bool parsed_property_retain, bool parsed_property_copy, bool parsed_property_nonatomic, tree parsed_property_getter_ident, tree parsed_property_setter_ident) { tree property_decl; tree x; /* 'property_readonly' and 'property_assign_semantics' are the final attributes of the property after all parsed attributes have been considered (eg, if we parsed no 'readonly' and no 'readwrite', ie parsed_property_readonly = false and parsed_property_readwrite = false, then property_readonly will be false because the default is readwrite). */ bool property_readonly = false; objc_property_assign_semantics property_assign_semantics = OBJC_PROPERTY_ASSIGN; bool property_extension_in_class_extension = false; if (flag_objc1_only) error_at (input_location, "%<@property%> is not available in Objective-C 1.0"); if (parsed_property_readonly && parsed_property_readwrite) { error_at (location, "% attribute conflicts with % attribute"); /* In case of conflicting attributes (here and below), after producing an error, we pick one of the attributes and keep going. */ property_readonly = false; } else { if (parsed_property_readonly) property_readonly = true; if (parsed_property_readwrite) property_readonly = false; } if (parsed_property_readonly && parsed_property_setter_ident) { error_at (location, "% attribute conflicts with % attribute"); property_readonly = false; } if (parsed_property_assign && parsed_property_retain) { error_at (location, "% attribute conflicts with % attribute"); property_assign_semantics = OBJC_PROPERTY_RETAIN; } else if (parsed_property_assign && parsed_property_copy) { error_at (location, "% attribute conflicts with % attribute"); property_assign_semantics = OBJC_PROPERTY_COPY; } else if (parsed_property_retain && parsed_property_copy) { error_at (location, "% attribute conflicts with % attribute"); property_assign_semantics = OBJC_PROPERTY_COPY; } else { if (parsed_property_assign) property_assign_semantics = OBJC_PROPERTY_ASSIGN; if (parsed_property_retain) property_assign_semantics = OBJC_PROPERTY_RETAIN; if (parsed_property_copy) property_assign_semantics = OBJC_PROPERTY_COPY; } if (!objc_interface_context) { error_at (location, "property declaration not in @interface or @protocol context"); return; } /* At this point we know that we are either in an interface, a category, or a protocol. */ /* We expect a FIELD_DECL from the parser. Make sure we didn't get something else, as that would confuse the checks below. */ if (TREE_CODE (decl) != FIELD_DECL) { error_at (location, "invalid property declaration"); return; } /* Do some spot-checks for the most obvious invalid types. */ if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE) { error_at (location, "property can not be an array"); return; } /* The C++/ObjC++ parser seems to reject the ':' for a bitfield when parsing, while the C/ObjC parser accepts it and gives us a FIELD_DECL with a DECL_INITIAL set. So we use the DECL_INITIAL to check for a bitfield when doing ObjC. */ #ifndef OBJCPLUS if (DECL_INITIAL (decl)) { /* A @property is not an actual variable, but it is a way to describe a pair of accessor methods, so its type (which is the type of the return value of the getter and the first argument of the setter) can't be a bitfield (as return values and arguments of functions can not be bitfields). The underlying instance variable could be a bitfield, but that is a different matter. */ error_at (location, "property can not be a bit-field"); return; } #endif /* TODO: Check that the property type is an Objective-C object or a "POD". */ /* Implement -Wproperty-assign-default (which is enabled by default). */ if (warn_property_assign_default /* If garbage collection is not being used, then 'assign' is valid for objects (and typically used for delegates) but it is wrong in most cases (since most objects need to be retained or copied in setters). Warn users when 'assign' is used implicitly. */ && property_assign_semantics == OBJC_PROPERTY_ASSIGN /* Read-only properties are never assigned, so the assignment semantics do not matter in that case. */ && !property_readonly && !flag_objc_gc) { /* Please note that it would make sense to default to 'assign' for non-{Objective-C objects}, and to 'retain' for Objective-C objects. But that would break compatibility with other compilers. */ if (!parsed_property_assign && !parsed_property_retain && !parsed_property_copy) { /* Use 'false' so we do not warn for Class objects. */ if (objc_type_valid_for_messaging (TREE_TYPE (decl), false)) { warning_at (location, 0, "object property %qD has no %, % or % attribute; assuming %", decl); inform (location, "% can be unsafe for Objective-C objects; please state explicitly if you need it"); } } } if (property_assign_semantics == OBJC_PROPERTY_RETAIN && !objc_type_valid_for_messaging (TREE_TYPE (decl), true)) error_at (location, "% attribute is only valid for Objective-C objects"); if (property_assign_semantics == OBJC_PROPERTY_COPY && !objc_type_valid_for_messaging (TREE_TYPE (decl), true)) error_at (location, "% attribute is only valid for Objective-C objects"); /* Now determine the final property getter and setter names. They will be stored in the PROPERTY_DECL, from which they'll always be extracted and used. */ /* Adjust, or fill in, setter and getter names. We overwrite the parsed_property_setter_ident and parsed_property_getter_ident with the final setter and getter identifiers that will be used. */ if (parsed_property_setter_ident) { /* The setter should be terminated by ':', but the parser only gives us an identifier without ':'. So, we need to add ':' at the end. */ const char *parsed_setter = IDENTIFIER_POINTER (parsed_property_setter_ident); size_t length = strlen (parsed_setter); char *final_setter = (char *)alloca (length + 2); sprintf (final_setter, "%s:", parsed_setter); parsed_property_setter_ident = get_identifier (final_setter); } else { if (!property_readonly) parsed_property_setter_ident = get_identifier (objc_build_property_setter_name (DECL_NAME (decl))); } if (!parsed_property_getter_ident) parsed_property_getter_ident = DECL_NAME (decl); /* Check for duplicate property declarations. We first check the immediate context for a property with the same name. Any such declarations are an error, unless this is a class extension and we are extending a property from readonly to readwrite. */ for (x = CLASS_PROPERTY_DECL (objc_interface_context); x; x = TREE_CHAIN (x)) { if (PROPERTY_NAME (x) == DECL_NAME (decl)) { if (objc_in_class_extension && property_readonly == 0 && PROPERTY_READONLY (x) == 1) { /* This is a class extension, and we are extending an existing readonly property to a readwrite one. That's fine. :-) */ property_extension_in_class_extension = true; break; } else { location_t original_location = DECL_SOURCE_LOCATION (x); error_at (location, "redeclaration of property %qD", decl); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } } } /* If x is not NULL_TREE, we must be in a class extension and we're extending a readonly property. In that case, no point in searching for another declaration. */ if (x == NULL_TREE) { /* We now need to check for existing property declarations (in the superclass, other categories or protocols) and check that the new declaration is not in conflict with existing ones. */ /* Search for a previous, existing declaration of a property with the same name in superclasses, protocols etc. If one is found, it will be in the 'x' variable. */ /* Note that, for simplicity, the following may search again the local context. That's Ok as nothing will be found (else we'd have thrown an error above); it's only a little inefficient, but the code is simpler. */ switch (TREE_CODE (objc_interface_context)) { case CLASS_INTERFACE_TYPE: /* Look up the property in the current @interface (which will find nothing), then its protocols and categories and superclasses. */ x = lookup_property (objc_interface_context, DECL_NAME (decl)); break; case CATEGORY_INTERFACE_TYPE: /* Look up the property in the main @interface, then protocols and categories (one of them is ours, and will find nothing) and superclasses. */ x = lookup_property (lookup_interface (CLASS_NAME (objc_interface_context)), DECL_NAME (decl)); break; case PROTOCOL_INTERFACE_TYPE: /* Looks up the property in any protocols attached to the current protocol. */ if (PROTOCOL_LIST (objc_interface_context)) { x = lookup_property_in_protocol_list (PROTOCOL_LIST (objc_interface_context), DECL_NAME (decl)); } break; default: gcc_unreachable (); } } if (x != NULL_TREE) { /* An existing property was found; check that it has the same types, or it is compatible. */ location_t original_location = DECL_SOURCE_LOCATION (x); if (PROPERTY_NONATOMIC (x) != parsed_property_nonatomic) { warning_at (location, 0, "'nonatomic' attribute of property %qD conflicts with previous declaration", decl); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } if (PROPERTY_GETTER_NAME (x) != parsed_property_getter_ident) { warning_at (location, 0, "'getter' attribute of property %qD conflicts with previous declaration", decl); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } /* We can only compare the setter names if both the old and new property have a setter. */ if (!property_readonly && !PROPERTY_READONLY(x)) { if (PROPERTY_SETTER_NAME (x) != parsed_property_setter_ident) { warning_at (location, 0, "'setter' attribute of property %qD conflicts with previous declaration", decl); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } } if (PROPERTY_ASSIGN_SEMANTICS (x) != property_assign_semantics) { warning_at (location, 0, "assign semantics attributes of property %qD conflict with previous declaration", decl); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } /* It's ok to have a readonly property that becomes a readwrite, but not vice versa. */ if (PROPERTY_READONLY (x) == 0 && property_readonly == 1) { warning_at (location, 0, "'readonly' attribute of property %qD conflicts with previous declaration", decl); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } /* We now check that the new and old property declarations have the same types (or compatible one). In the Objective-C tradition of loose type checking, we do type-checking but only generate warnings (not errors) if they do not match. For non-readonly properties, the types must match exactly; for readonly properties, it is allowed to use a "more specialized" type in the new property declaration. Eg, the superclass has a getter returning (NSArray *) and the subclass a getter returning (NSMutableArray *). The object's getter returns an (NSMutableArray *); but if you cast the object to the superclass, which is allowed, you'd still expect the getter to return an (NSArray *), which works since an (NSMutableArray *) is an (NSArray *) too. So, the set of objects belonging to the type of the new @property should be a subset of the set of objects belonging to the type of the old @property. This is what "specialization" means. And the reason it only applies to readonly properties is that for a readwrite property the setter would have the opposite requirement - ie that the superclass type is more specialized then the subclass one; hence the only way to satisfy both constraints is that the types match. */ /* If the types are not the same in the C sense, we warn ... */ if (!comptypes (TREE_TYPE (x), TREE_TYPE (decl)) /* ... unless the property is readonly, in which case we allow a new, more specialized, declaration. */ && (!property_readonly || !objc_compare_types (TREE_TYPE (x), TREE_TYPE (decl), -5, NULL_TREE))) { warning_at (location, 0, "type of property %qD conflicts with previous declaration", decl); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } /* If we are in a class extension and we're extending a readonly property in the main @interface, we'll just update the existing property with the readwrite flag and potentially the new setter name. */ if (property_extension_in_class_extension) { PROPERTY_READONLY (x) = 0; PROPERTY_SETTER_NAME (x) = parsed_property_setter_ident; return; } } /* Create a PROPERTY_DECL node. */ property_decl = make_node (PROPERTY_DECL); /* Copy the basic information from the original decl. */ TREE_TYPE (property_decl) = TREE_TYPE (decl); DECL_SOURCE_LOCATION (property_decl) = DECL_SOURCE_LOCATION (decl); TREE_DEPRECATED (property_decl) = TREE_DEPRECATED (decl); /* Add property-specific information. */ PROPERTY_NAME (property_decl) = DECL_NAME (decl); PROPERTY_GETTER_NAME (property_decl) = parsed_property_getter_ident; PROPERTY_SETTER_NAME (property_decl) = parsed_property_setter_ident; PROPERTY_READONLY (property_decl) = property_readonly; PROPERTY_NONATOMIC (property_decl) = parsed_property_nonatomic; PROPERTY_ASSIGN_SEMANTICS (property_decl) = property_assign_semantics; PROPERTY_IVAR_NAME (property_decl) = NULL_TREE; PROPERTY_DYNAMIC (property_decl) = 0; /* Remember the fact that the property was found in the @optional section in a @protocol, or not. */ if (objc_method_optional_flag) PROPERTY_OPTIONAL (property_decl) = 1; else PROPERTY_OPTIONAL (property_decl) = 0; /* Note that PROPERTY_GETTER_NAME is always set for all PROPERTY_DECLs, and PROPERTY_SETTER_NAME is always set for all PROPERTY_DECLs where PROPERTY_READONLY == 0. Any time we deal with a getter or setter, we should get the PROPERTY_DECL and use PROPERTY_GETTER_NAME and PROPERTY_SETTER_NAME to know the correct names. */ /* Add the PROPERTY_DECL to the list of properties for the class. */ TREE_CHAIN (property_decl) = CLASS_PROPERTY_DECL (objc_interface_context); CLASS_PROPERTY_DECL (objc_interface_context) = property_decl; } /* This is a subroutine of objc_maybe_build_component_ref. Search the list of methods in the interface (and, failing that, the local list in the implementation, and failing that, the protocol list) provided for a 'setter' or 'getter' for 'component' with default names (ie, if 'component' is "name", then search for "name" and "setName:"). It is also possible to specify a different 'getter_name' (this is used for @optional readonly properties). If any is found, then create an artificial property that uses them. Return NULL_TREE if 'getter' or 'setter' could not be found. */ static tree maybe_make_artificial_property_decl (tree interface, tree implementation, tree protocol_list, tree component, bool is_class, tree getter_name) { tree setter_name = get_identifier (objc_build_property_setter_name (component)); tree getter = NULL_TREE; tree setter = NULL_TREE; if (getter_name == NULL_TREE) getter_name = component; /* First, check the @interface and all superclasses. */ if (interface) { int flags = 0; /* Using instance methods of the root class as accessors is most likely unwanted and can be extremely confusing (and, most importantly, other Objective-C 2.0 compilers do not do it). Turn it off. */ if (is_class) flags = OBJC_LOOKUP_CLASS | OBJC_LOOKUP_NO_INSTANCE_METHODS_OF_ROOT_CLASS; getter = lookup_method_static (interface, getter_name, flags); setter = lookup_method_static (interface, setter_name, flags); } /* Second, check the local @implementation context. */ if (!getter && !setter) { if (implementation) { if (is_class) { getter = lookup_method (CLASS_CLS_METHODS (implementation), getter_name); setter = lookup_method (CLASS_CLS_METHODS (implementation), setter_name); } else { getter = lookup_method (CLASS_NST_METHODS (implementation), getter_name); setter = lookup_method (CLASS_NST_METHODS (implementation), setter_name); } } } /* Try the protocol_list if we didn't find anything in the @interface and in the @implementation. */ if (!getter && !setter) { getter = lookup_method_in_protocol_list (protocol_list, getter_name, is_class); setter = lookup_method_in_protocol_list (protocol_list, setter_name, is_class); } /* There needs to be at least a getter or setter for this to be a valid 'object.component' syntax. */ if (getter || setter) { /* Yes ... determine the type of the expression. */ tree property_decl; tree type; if (getter) type = TREE_VALUE (TREE_TYPE (getter)); else type = TREE_VALUE (TREE_TYPE (METHOD_SEL_ARGS (setter))); /* Create an artificial property declaration with the information we collected on the type and getter/setter names. */ property_decl = make_node (PROPERTY_DECL); TREE_TYPE (property_decl) = type; DECL_SOURCE_LOCATION (property_decl) = input_location; TREE_DEPRECATED (property_decl) = 0; DECL_ARTIFICIAL (property_decl) = 1; /* Add property-specific information. Note that one of PROPERTY_GETTER_NAME or PROPERTY_SETTER_NAME may refer to a non-existing method; this will generate an error when the expression is later compiled. At this stage we don't know if the getter or setter will be used, so we can't generate an error. */ PROPERTY_NAME (property_decl) = component; PROPERTY_GETTER_NAME (property_decl) = getter_name; PROPERTY_SETTER_NAME (property_decl) = setter_name; PROPERTY_READONLY (property_decl) = 0; PROPERTY_NONATOMIC (property_decl) = 0; PROPERTY_ASSIGN_SEMANTICS (property_decl) = 0; PROPERTY_IVAR_NAME (property_decl) = NULL_TREE; PROPERTY_DYNAMIC (property_decl) = 0; PROPERTY_OPTIONAL (property_decl) = 0; if (!getter) PROPERTY_HAS_NO_GETTER (property_decl) = 1; /* The following is currently unused, but it's nice to have there. We may use it if we need in the future. */ if (!setter) PROPERTY_HAS_NO_SETTER (property_decl) = 1; return property_decl; } return NULL_TREE; } /* This hook routine is invoked by the parser when an expression such as 'xxx.yyy' is parsed. We get a chance to process these expressions in a way that is specified to Objective-C (to implement the Objective-C 2.0 dot-syntax, properties, or non-fragile ivars). If the expression is not an Objective-C specified expression, we should return NULL_TREE; else we return the expression. At the moment this only implements dot-syntax and properties (not non-fragile ivars yet), ie 'object.property' or 'object.component' where 'component' is not a declared property, but a valid getter or setter for it could be found. */ tree objc_maybe_build_component_ref (tree object, tree property_ident) { tree x = NULL_TREE; tree rtype; /* If we are in Objective-C 1.0 mode, dot-syntax and properties are not available. */ if (flag_objc1_only) return NULL_TREE; /* Try to determine if 'object' is an Objective-C object or not. If not, return. */ if (object == NULL_TREE || object == error_mark_node || (rtype = TREE_TYPE (object)) == NULL_TREE) return NULL_TREE; if (property_ident == NULL_TREE || property_ident == error_mark_node || TREE_CODE (property_ident) != IDENTIFIER_NODE) return NULL_TREE; /* The following analysis of 'object' is similar to the one used for the 'receiver' of a method invocation. We need to determine what 'object' is and find the appropriate property (either declared, or artificial) for it (in the same way as we need to find the appropriate method prototype for a method invocation). There are some simplifications here though: "object.property" is invalid if "object" has a type of "id" or "Class"; it must at least have a protocol attached to it, and "object" is never a class name as that is done by objc_build_class_component_ref. Finally, we don't know if this really is a dot-syntax expression, so we want to make a quick exit if it is not; for this reason, we try to postpone checks after determining that 'object' looks like an Objective-C object. */ if (objc_is_id (rtype)) { /* This is the case that the 'object' is of type 'id' or 'Class'. */ /* Check if at least it is of type 'id ' or 'Class '; if so, look the property up in the protocols. */ if (TYPE_HAS_OBJC_INFO (TREE_TYPE (rtype))) { tree rprotos = TYPE_OBJC_PROTOCOL_LIST (TREE_TYPE (rtype)); if (rprotos) { /* No point looking up declared @properties if we are dealing with a class. Classes have no declared properties. */ if (!IS_CLASS (rtype)) x = lookup_property_in_protocol_list (rprotos, property_ident); if (x == NULL_TREE) { /* Ok, no property. Maybe it was an object.component dot-syntax without a declared property (this is valid for classes too). Look for getter/setter methods and internally declare an artifical property based on them if found. */ x = maybe_make_artificial_property_decl (NULL_TREE, NULL_TREE, rprotos, property_ident, IS_CLASS (rtype), NULL_TREE); } else if (PROPERTY_OPTIONAL (x) && PROPERTY_READONLY (x)) { /* This is a special, complicated case. If the property is optional, and is read-only, then the property is always used for reading, but an eventual existing non-property setter can be used for writing. We create an artificial property decl copying the getter from the optional property, and looking up the setter in the interface. */ x = maybe_make_artificial_property_decl (NULL_TREE, NULL_TREE, rprotos, property_ident, false, PROPERTY_GETTER_NAME (x)); } } } else if (objc_method_context) { /* Else, if we are inside a method it could be the case of 'super' or 'self'. */ tree interface_type = NULL_TREE; tree t = object; while (TREE_CODE (t) == COMPOUND_EXPR || TREE_CODE (t) == MODIFY_EXPR || CONVERT_EXPR_P (t) || TREE_CODE (t) == COMPONENT_REF) t = TREE_OPERAND (t, 0); if (t == UOBJC_SUPER_decl) interface_type = lookup_interface (CLASS_SUPER_NAME (implementation_template)); else if (t == self_decl) interface_type = lookup_interface (CLASS_NAME (implementation_template)); if (interface_type) { if (TREE_CODE (objc_method_context) != CLASS_METHOD_DECL) x = lookup_property (interface_type, property_ident); if (x == NULL_TREE) { /* Try the dot-syntax without a declared property. If this is an access to 'self', it is possible that they may refer to a setter/getter that is not declared in the interface, but exists locally in the implementation. In that case, get the implementation context and use it. */ tree implementation = NULL_TREE; if (t == self_decl) implementation = objc_implementation_context; x = maybe_make_artificial_property_decl (interface_type, implementation, NULL_TREE, property_ident, (TREE_CODE (objc_method_context) == CLASS_METHOD_DECL), NULL_TREE); } else if (PROPERTY_OPTIONAL (x) && PROPERTY_READONLY (x)) { tree implementation = NULL_TREE; if (t == self_decl) implementation = objc_implementation_context; x = maybe_make_artificial_property_decl (interface_type, implementation, NULL_TREE, property_ident, false, PROPERTY_GETTER_NAME (x)); } } } } else { /* This is the case where we have more information on 'rtype'. */ tree basetype = TYPE_MAIN_VARIANT (rtype); /* Skip the pointer - if none, it's not an Objective-C object or class. */ if (basetype != NULL_TREE && TREE_CODE (basetype) == POINTER_TYPE) basetype = TREE_TYPE (basetype); else return NULL_TREE; /* Traverse typedefs. */ while (basetype != NULL_TREE && TREE_CODE (basetype) == RECORD_TYPE && OBJC_TYPE_NAME (basetype) && TREE_CODE (OBJC_TYPE_NAME (basetype)) == TYPE_DECL && DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (basetype))) basetype = DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (basetype)); if (basetype != NULL_TREE && TYPED_OBJECT (basetype)) { tree interface_type = TYPE_OBJC_INTERFACE (basetype); tree protocol_list = TYPE_OBJC_PROTOCOL_LIST (basetype); if (interface_type && (TREE_CODE (interface_type) == CLASS_INTERFACE_TYPE || TREE_CODE (interface_type) == CATEGORY_INTERFACE_TYPE || TREE_CODE (interface_type) == PROTOCOL_INTERFACE_TYPE)) { /* Not sure 'rtype' could ever be a class here! Just for safety we keep the checks. */ if (!IS_CLASS (rtype)) { x = lookup_property (interface_type, property_ident); if (x == NULL_TREE) x = lookup_property_in_protocol_list (protocol_list, property_ident); } if (x == NULL_TREE) { /* Try the dot-syntax without a declared property. If we are inside a method implementation, it is possible that they may refer to a setter/getter that is not declared in the interface, but exists locally in the implementation. In that case, get the implementation context and use it. */ tree implementation = NULL_TREE; if (objc_implementation_context && CLASS_NAME (objc_implementation_context) == OBJC_TYPE_NAME (interface_type)) implementation = objc_implementation_context; x = maybe_make_artificial_property_decl (interface_type, implementation, protocol_list, property_ident, IS_CLASS (rtype), NULL_TREE); } else if (PROPERTY_OPTIONAL (x) && PROPERTY_READONLY (x)) { tree implementation = NULL_TREE; if (objc_implementation_context && CLASS_NAME (objc_implementation_context) == OBJC_TYPE_NAME (interface_type)) implementation = objc_implementation_context; x = maybe_make_artificial_property_decl (interface_type, implementation, protocol_list, property_ident, false, PROPERTY_GETTER_NAME (x)); } } } } if (x) { tree expression; tree getter_call; tree deprecated_method_prototype = NULL_TREE; /* We have an additional nasty problem here; if this PROPERTY_REF needs to become a 'getter', then the conversion from PROPERTY_REF into a getter call happens in gimplify, after the selector table has already been generated and when it is too late to add another selector to it. To work around the problem, we always create the getter call at this stage, which puts the selector in the table. Note that if the PROPERTY_REF becomes a 'setter' instead of a 'getter', then we have added a selector too many to the selector table. This is a little inefficient. Also note that method calls to 'self' and 'super' require the context (self_decl, UOBJS_SUPER_decl, objc_implementation_context etc) to be built correctly; this is yet another reason why building the call at the gimplify stage (when this context has been lost) is not very practical. If we build it at this stage, we know it will always be built correctly. If the PROPERTY_HAS_NO_GETTER() (ie, it is an artificial property decl created to deal with a dotsyntax not really referring to an existing property) then do not try to build a call to the getter as there is no getter. */ if (PROPERTY_HAS_NO_GETTER (x)) getter_call = NULL_TREE; else getter_call = objc_finish_message_expr (object, PROPERTY_GETTER_NAME (x), NULL_TREE, /* Disable the immediate deprecation warning if the getter is deprecated, but record the fact that the getter is deprecated by setting PROPERTY_REF_DEPRECATED_GETTER to the method prototype. */ &deprecated_method_prototype); expression = build4 (PROPERTY_REF, TREE_TYPE(x), object, x, getter_call, deprecated_method_prototype); SET_EXPR_LOCATION (expression, input_location); TREE_SIDE_EFFECTS (expression) = 1; return expression; } return NULL_TREE; } /* This hook routine is invoked by the parser when an expression such as 'xxx.yyy' is parsed, and 'xxx' is a class name. This is the Objective-C 2.0 dot-syntax applied to classes, so we need to convert it into a setter/getter call on the class. */ tree objc_build_class_component_ref (tree class_name, tree property_ident) { tree x = NULL_TREE; tree object, rtype; if (flag_objc1_only) error_at (input_location, "the dot syntax is not available in Objective-C 1.0"); if (class_name == NULL_TREE || class_name == error_mark_node || TREE_CODE (class_name) != IDENTIFIER_NODE) return error_mark_node; if (property_ident == NULL_TREE || property_ident == error_mark_node || TREE_CODE (property_ident) != IDENTIFIER_NODE) return NULL_TREE; object = objc_get_class_reference (class_name); if (!object) { /* We know that 'class_name' is an Objective-C class name as the parser won't call this function if it is not. This is only a double-check for safety. */ error_at (input_location, "could not find class %qE", class_name); return error_mark_node; } rtype = lookup_interface (class_name); if (!rtype) { /* Again, this should never happen, but we do check. */ error_at (input_location, "could not find interface for class %qE", class_name); return error_mark_node; } else { if (TREE_DEPRECATED (rtype)) warning (OPT_Wdeprecated_declarations, "class %qE is deprecated", class_name); } x = maybe_make_artificial_property_decl (rtype, NULL_TREE, NULL_TREE, property_ident, true, NULL_TREE); if (x) { tree expression; tree getter_call; tree deprecated_method_prototype = NULL_TREE; if (PROPERTY_HAS_NO_GETTER (x)) getter_call = NULL_TREE; else getter_call = objc_finish_message_expr (object, PROPERTY_GETTER_NAME (x), NULL_TREE, &deprecated_method_prototype); expression = build4 (PROPERTY_REF, TREE_TYPE(x), object, x, getter_call, deprecated_method_prototype); SET_EXPR_LOCATION (expression, input_location); TREE_SIDE_EFFECTS (expression) = 1; return expression; } else { error_at (input_location, "could not find setter/getter for %qE in class %qE", property_ident, class_name); return error_mark_node; } return NULL_TREE; } /* This is used because we don't want to expose PROPERTY_REF to the C/C++ frontends. Maybe we should! */ bool objc_is_property_ref (tree node) { if (node && TREE_CODE (node) == PROPERTY_REF) return true; else return false; } /* This function builds a setter call for a PROPERTY_REF (real, for a declared property, or artificial, for a dot-syntax accessor which is not corresponding to a property). 'lhs' must be a PROPERTY_REF (the caller must check this beforehand). 'rhs' is the value to assign to the property. A plain setter call is returned, or error_mark_node if the property is readonly. */ static tree objc_build_setter_call (tree lhs, tree rhs) { tree object_expr = PROPERTY_REF_OBJECT (lhs); tree property_decl = PROPERTY_REF_PROPERTY_DECL (lhs); if (PROPERTY_READONLY (property_decl)) { error ("readonly property can not be set"); return error_mark_node; } else { tree setter_argument = build_tree_list (NULL_TREE, rhs); tree setter; /* TODO: Check that the setter return type is 'void'. */ /* TODO: Decay arguments in C. */ setter = objc_finish_message_expr (object_expr, PROPERTY_SETTER_NAME (property_decl), setter_argument, NULL); return setter; } /* Unreachable, but the compiler may not realize. */ return error_mark_node; } /* This hook routine is called when a MODIFY_EXPR is being built. We check what is being modified; if it is a PROPERTY_REF, we need to generate a 'setter' function call for the property. If this is not a PROPERTY_REF, we return NULL_TREE and the C/C++ frontend will go on creating their MODIFY_EXPR. This is used for example if you write object.count = 1; where 'count' is a property. The left-hand side creates a PROPERTY_REF, and then the compiler tries to generate a MODIFY_EXPR to assign something to it. We intercept that here, and generate a call to the 'setter' method instead. */ tree objc_maybe_build_modify_expr (tree lhs, tree rhs) { if (lhs && TREE_CODE (lhs) == PROPERTY_REF) { /* Building a simple call to the setter method would work for cases such as object.count = 1; but wouldn't work for cases such as count = object2.count = 1; to get these to work with very little effort, we build a compound statement which does the setter call (to set the property to 'rhs'), but which can also be evaluated returning the 'rhs'. So, we want to create the following: (temp = rhs; [object setProperty: temp]; temp) */ tree temp_variable_decl, bind; /* s1, s2 and s3 are the tree statements that we need in the compound expression. */ tree s1, s2, s3, compound_expr; /* TODO: If 'rhs' is a constant, we could maybe do without the 'temp' variable ? */ /* Declare __objc_property_temp in a local bind. */ temp_variable_decl = objc_create_temporary_var (TREE_TYPE (rhs), "__objc_property_temp"); DECL_SOURCE_LOCATION (temp_variable_decl) = input_location; bind = build3 (BIND_EXPR, void_type_node, temp_variable_decl, NULL, NULL); SET_EXPR_LOCATION (bind, input_location); TREE_SIDE_EFFECTS (bind) = 1; add_stmt (bind); /* Now build the compound statement. */ /* s1: __objc_property_temp = rhs */ s1 = build_modify_expr (input_location, temp_variable_decl, NULL_TREE, NOP_EXPR, input_location, rhs, NULL_TREE); SET_EXPR_LOCATION (s1, input_location); /* s2: [object setProperty: __objc_property_temp] */ s2 = objc_build_setter_call (lhs, temp_variable_decl); /* This happens if building the setter failed because the property is readonly. */ if (s2 == error_mark_node) return error_mark_node; SET_EXPR_LOCATION (s2, input_location); /* s3: __objc_property_temp */ s3 = convert (TREE_TYPE (lhs), temp_variable_decl); /* Now build the compound statement (s1, s2, s3) */ compound_expr = build_compound_expr (input_location, build_compound_expr (input_location, s1, s2), s3); /* Without this, with -Wall you get a 'valued computed is not used' every time there is a "object.property = x" where the value of the resulting MODIFY_EXPR is not used. That is correct (maybe a more sophisticated implementation could avoid generating the compound expression if not needed), but we need to turn it off. */ TREE_NO_WARNING (compound_expr) = 1; return compound_expr; } else return NULL_TREE; } /* This hook is called by the frontend when one of the four unary expressions PREINCREMENT_EXPR, POSTINCREMENT_EXPR, PREDECREMENT_EXPR and POSTDECREMENT_EXPR is being built with an argument which is a PROPERTY_REF. For example, this happens if you have object.count++; where 'count' is a property. We need to use the 'getter' and 'setter' for the property in an appropriate way to build the appropriate expression. 'code' is the code for the expression (one of the four mentioned above); 'argument' is the PROPERTY_REF, and 'increment' is how much we need to add or subtract. */ tree objc_build_incr_expr_for_property_ref (location_t location, enum tree_code code, tree argument, tree increment) { /* Here are the expressions that we want to build: For PREINCREMENT_EXPR / PREDECREMENT_EXPR: (temp = [object property] +/- increment, [object setProperty: temp], temp) For POSTINCREMENT_EXPR / POSTECREMENT_EXPR: (temp = [object property], [object setProperty: temp +/- increment], temp) */ tree temp_variable_decl, bind; /* s1, s2 and s3 are the tree statements that we need in the compound expression. */ tree s1, s2, s3, compound_expr; /* Safety check. */ if (!argument || TREE_CODE (argument) != PROPERTY_REF) return error_mark_node; /* Declare __objc_property_temp in a local bind. */ temp_variable_decl = objc_create_temporary_var (TREE_TYPE (argument), "__objc_property_temp"); DECL_SOURCE_LOCATION (temp_variable_decl) = location; bind = build3 (BIND_EXPR, void_type_node, temp_variable_decl, NULL, NULL); SET_EXPR_LOCATION (bind, location); TREE_SIDE_EFFECTS (bind) = 1; add_stmt (bind); /* Now build the compound statement. */ /* Note that the 'getter' is generated at gimplify time; at this time, we can simply put the property_ref (ie, argument) wherever we want the getter ultimately to be. */ /* s1: __objc_property_temp = [object property] <+/- increment> */ switch (code) { case PREINCREMENT_EXPR: /* __objc_property_temp = [object property] + increment */ s1 = build_modify_expr (location, temp_variable_decl, NULL_TREE, NOP_EXPR, location, build2 (PLUS_EXPR, TREE_TYPE (argument), argument, increment), NULL_TREE); break; case PREDECREMENT_EXPR: /* __objc_property_temp = [object property] - increment */ s1 = build_modify_expr (location, temp_variable_decl, NULL_TREE, NOP_EXPR, location, build2 (MINUS_EXPR, TREE_TYPE (argument), argument, increment), NULL_TREE); break; case POSTINCREMENT_EXPR: case POSTDECREMENT_EXPR: /* __objc_property_temp = [object property] */ s1 = build_modify_expr (location, temp_variable_decl, NULL_TREE, NOP_EXPR, location, argument, NULL_TREE); break; default: gcc_unreachable (); } /* s2: [object setProperty: __objc_property_temp <+/- increment>] */ switch (code) { case PREINCREMENT_EXPR: case PREDECREMENT_EXPR: /* [object setProperty: __objc_property_temp] */ s2 = objc_build_setter_call (argument, temp_variable_decl); break; case POSTINCREMENT_EXPR: /* [object setProperty: __objc_property_temp + increment] */ s2 = objc_build_setter_call (argument, build2 (PLUS_EXPR, TREE_TYPE (argument), temp_variable_decl, increment)); break; case POSTDECREMENT_EXPR: /* [object setProperty: __objc_property_temp - increment] */ s2 = objc_build_setter_call (argument, build2 (MINUS_EXPR, TREE_TYPE (argument), temp_variable_decl, increment)); break; default: gcc_unreachable (); } /* This happens if building the setter failed because the property is readonly. */ if (s2 == error_mark_node) return error_mark_node; SET_EXPR_LOCATION (s2, location); /* s3: __objc_property_temp */ s3 = convert (TREE_TYPE (argument), temp_variable_decl); /* Now build the compound statement (s1, s2, s3) */ compound_expr = build_compound_expr (location, build_compound_expr (location, s1, s2), s3); /* Prevent C++ from warning with -Wall that "right operand of comma operator has no effect". */ TREE_NO_WARNING (compound_expr) = 1; return compound_expr; } tree objc_build_method_signature (bool is_class_method, tree rettype, tree selector, tree optparms, bool ellipsis) { if (is_class_method) return build_method_decl (CLASS_METHOD_DECL, rettype, selector, optparms, ellipsis); else return build_method_decl (INSTANCE_METHOD_DECL, rettype, selector, optparms, ellipsis); } void objc_add_method_declaration (bool is_class_method, tree decl, tree attributes) { if (!objc_interface_context) { /* PS: At the moment, due to how the parser works, it should be impossible to get here. But it's good to have the check in case the parser changes. */ fatal_error ("method declaration not in @interface context"); } if (flag_objc1_only && attributes) error_at (input_location, "method attributes are not available in Objective-C 1.0"); objc_decl_method_attributes (&decl, attributes, 0); objc_add_method (objc_interface_context, decl, is_class_method, objc_method_optional_flag); } /* Return 'true' if the method definition could be started, and 'false' if not (because we are outside an @implementation context). */ bool objc_start_method_definition (bool is_class_method, tree decl, tree attributes) { if (!objc_implementation_context) { error ("method definition not in @implementation context"); return false; } if (decl != NULL_TREE && METHOD_SEL_NAME (decl) == error_mark_node) return false; #ifndef OBJCPLUS /* Indicate no valid break/continue context by setting these variables to some non-null, non-label value. We'll notice and emit the proper error message in c_finish_bc_stmt. */ c_break_label = c_cont_label = size_zero_node; #endif if (attributes) warning_at (input_location, 0, "method attributes can not be specified in @implementation context"); else objc_decl_method_attributes (&decl, attributes, 0); objc_add_method (objc_implementation_context, decl, is_class_method, /* is optional */ false); start_method_def (decl); return true; } void objc_add_instance_variable (tree decl) { (void) add_instance_variable (objc_ivar_context, objc_ivar_visibility, decl); } /* Return true if TYPE is 'id'. */ static bool objc_is_object_id (tree type) { return OBJC_TYPE_NAME (type) == objc_object_id; } static bool objc_is_class_id (tree type) { return OBJC_TYPE_NAME (type) == objc_class_id; } /* Construct a C struct with same name as KLASS, a base struct with tag SUPER_NAME (if any), and FIELDS indicated. */ static tree objc_build_struct (tree klass, tree fields, tree super_name) { tree name = CLASS_NAME (klass); tree s = objc_start_struct (name); tree super = (super_name ? xref_tag (RECORD_TYPE, super_name) : NULL_TREE); tree t; VEC(tree,heap) *objc_info = NULL; int i; if (super) { /* Prepend a packed variant of the base class into the layout. This is necessary to preserve ObjC ABI compatibility. */ tree base = build_decl (input_location, FIELD_DECL, NULL_TREE, super); tree field = TYPE_FIELDS (super); while (field && DECL_CHAIN (field) && TREE_CODE (DECL_CHAIN (field)) == FIELD_DECL) field = DECL_CHAIN (field); /* For ObjC ABI purposes, the "packed" size of a base class is the sum of the offset and the size (in bits) of the last field in the class. */ DECL_SIZE (base) = (field && TREE_CODE (field) == FIELD_DECL ? size_binop (PLUS_EXPR, size_binop (PLUS_EXPR, size_binop (MULT_EXPR, convert (bitsizetype, DECL_FIELD_OFFSET (field)), bitsize_int (BITS_PER_UNIT)), DECL_FIELD_BIT_OFFSET (field)), DECL_SIZE (field)) : bitsize_zero_node); DECL_SIZE_UNIT (base) = size_binop (FLOOR_DIV_EXPR, convert (sizetype, DECL_SIZE (base)), size_int (BITS_PER_UNIT)); DECL_ARTIFICIAL (base) = 1; DECL_ALIGN (base) = 1; DECL_FIELD_CONTEXT (base) = s; #ifdef OBJCPLUS DECL_FIELD_IS_BASE (base) = 1; if (fields) TREE_NO_WARNING (fields) = 1; /* Suppress C++ ABI warnings -- we */ #endif /* are following the ObjC ABI here. */ DECL_CHAIN (base) = fields; fields = base; } /* NB: Calling finish_struct() may cause type TYPE_OBJC_INFO information in all variants of this RECORD_TYPE to be destroyed (this is because the C frontend manipulates TYPE_LANG_SPECIFIC for something else and then will change all variants to use the same resulting TYPE_LANG_SPECIFIC, ignoring the fact that we use it for ObjC protocols and that such propagation will make all variants use the same objc_info), but it is therein that we store protocol conformance info (e.g., 'NSObject '). Hence, we must save the ObjC-specific information before calling finish_struct(), and then reinstate it afterwards. */ for (t = TYPE_MAIN_VARIANT (s); t; t = TYPE_NEXT_VARIANT (t)) { INIT_TYPE_OBJC_INFO (t); VEC_safe_push (tree, heap, objc_info, TYPE_OBJC_INFO (t)); } s = objc_finish_struct (s, fields); for (i = 0, t = TYPE_MAIN_VARIANT (s); t; t = TYPE_NEXT_VARIANT (t), i++) { /* We now want to restore the different TYPE_OBJC_INFO, but we have the additional problem that the C frontend doesn't just copy TYPE_LANG_SPECIFIC from one variant to the other; it actually makes all of them the *same* TYPE_LANG_SPECIFIC. As we need a different TYPE_OBJC_INFO for each (and TYPE_OBJC_INFO is a field in TYPE_LANG_SPECIFIC), we need to make a copy of each TYPE_LANG_SPECIFIC before we modify TYPE_OBJC_INFO. */ if (TYPE_LANG_SPECIFIC (t)) { /* Create a copy of TYPE_LANG_SPECIFIC. */ struct lang_type *old_lang_type = TYPE_LANG_SPECIFIC (t); ALLOC_OBJC_TYPE_LANG_SPECIFIC (t); memcpy (TYPE_LANG_SPECIFIC (t), old_lang_type, SIZEOF_OBJC_TYPE_LANG_SPECIFIC); } else { /* Just create a new one. */ ALLOC_OBJC_TYPE_LANG_SPECIFIC (t); } /* Replace TYPE_OBJC_INFO with the saved one. This restores any protocol information that may have been associated with the type. */ TYPE_OBJC_INFO (t) = VEC_index (tree, objc_info, i); /* Replace the IDENTIFIER_NODE with an actual @interface now that we have it. */ TYPE_OBJC_INTERFACE (t) = klass; } VEC_free (tree, heap, objc_info); /* Use TYPE_BINFO structures to point at the super class, if any. */ objc_xref_basetypes (s, super); /* Mark this struct as a class template. */ CLASS_STATIC_TEMPLATE (klass) = s; return s; } /* Mark DECL as being 'volatile' for purposes of Darwin _setjmp()/_longjmp() exception handling. Called from objc_mark_locals_volatile(). */ void objc_volatilize_decl (tree decl) { /* Do not mess with variables that are 'static' or (already) 'volatile'. */ if (!TREE_THIS_VOLATILE (decl) && !TREE_STATIC (decl) && (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL)) { if (local_variables_to_volatilize == NULL) local_variables_to_volatilize = VEC_alloc (tree, gc, 8); VEC_safe_push (tree, gc, local_variables_to_volatilize, decl); } } /* Called when parsing of a function completes; if any local variables in the function were marked as variables to volatilize, change them to volatile. We do this at the end of the function when the warnings about discarding 'volatile' have already been produced. We are making the variables as volatile just to force the compiler to preserve them between setjmp/longjmp, but we don't want warnings for them as they aren't really volatile. */ void objc_finish_function (void) { /* If there are any local variables to volatilize, volatilize them. */ if (local_variables_to_volatilize) { int i; tree decl; FOR_EACH_VEC_ELT (tree, local_variables_to_volatilize, i, decl) { tree t = TREE_TYPE (decl); t = build_qualified_type (t, TYPE_QUALS (t) | TYPE_QUAL_VOLATILE); TREE_TYPE (decl) = t; TREE_THIS_VOLATILE (decl) = 1; TREE_SIDE_EFFECTS (decl) = 1; DECL_REGISTER (decl) = 0; #ifndef OBJCPLUS C_DECL_REGISTER (decl) = 0; #endif } /* Now we delete the vector. This sets it to NULL as well. */ VEC_free (tree, gc, local_variables_to_volatilize); } } /* Check if protocol PROTO is adopted (directly or indirectly) by class CLS (including its categories and superclasses) or by object type TYP. Issue a warning if PROTO is not adopted anywhere and WARN is set. */ static bool objc_lookup_protocol (tree proto, tree cls, tree typ, bool warn) { bool class_type = (cls != NULL_TREE); while (cls) { tree c; /* Check protocols adopted by the class and its categories. */ for (c = cls; c; c = CLASS_CATEGORY_LIST (c)) { if (lookup_protocol_in_reflist (CLASS_PROTOCOL_LIST (c), proto)) return true; } /* Repeat for superclasses. */ cls = lookup_interface (CLASS_SUPER_NAME (cls)); } /* Check for any protocols attached directly to the object type. */ if (TYPE_HAS_OBJC_INFO (typ)) { if (lookup_protocol_in_reflist (TYPE_OBJC_PROTOCOL_LIST (typ), proto)) return true; } if (warn) { *errbuf = 0; gen_type_name_0 (class_type ? typ : TYPE_POINTER_TO (typ)); /* NB: Types 'id' and 'Class' cannot reasonably be described as "implementing" a given protocol, since they do not have an implementation. */ if (class_type) warning (0, "class %qs does not implement the %qE protocol", identifier_to_locale (errbuf), PROTOCOL_NAME (proto)); else warning (0, "type %qs does not conform to the %qE protocol", identifier_to_locale (errbuf), PROTOCOL_NAME (proto)); } return false; } /* Check if class RCLS and instance struct type RTYP conform to at least the same protocols that LCLS and LTYP conform to. */ static bool objc_compare_protocols (tree lcls, tree ltyp, tree rcls, tree rtyp, bool warn) { tree p; bool have_lproto = false; while (lcls) { /* NB: We do _not_ look at categories defined for LCLS; these may or may not get loaded in, and therefore it is unreasonable to require that RCLS/RTYP must implement any of their protocols. */ for (p = CLASS_PROTOCOL_LIST (lcls); p; p = TREE_CHAIN (p)) { have_lproto = true; if (!objc_lookup_protocol (TREE_VALUE (p), rcls, rtyp, warn)) return warn; } /* Repeat for superclasses. */ lcls = lookup_interface (CLASS_SUPER_NAME (lcls)); } /* Check for any protocols attached directly to the object type. */ if (TYPE_HAS_OBJC_INFO (ltyp)) { for (p = TYPE_OBJC_PROTOCOL_LIST (ltyp); p; p = TREE_CHAIN (p)) { have_lproto = true; if (!objc_lookup_protocol (TREE_VALUE (p), rcls, rtyp, warn)) return warn; } } /* NB: If LTYP and LCLS have no protocols to search for, return 'true' vacuously, _unless_ RTYP is a protocol-qualified 'id'. We can get away with simply checking for 'id' or 'Class' (!RCLS), since this routine will not get called in other cases. */ return have_lproto || (rcls != NULL_TREE); } /* Given two types TYPE1 and TYPE2, return their least common ancestor. Both TYPE1 and TYPE2 must be pointers, and already determined to be compatible by objc_compare_types() below. */ tree objc_common_type (tree type1, tree type2) { tree inner1 = TREE_TYPE (type1), inner2 = TREE_TYPE (type2); while (POINTER_TYPE_P (inner1)) { inner1 = TREE_TYPE (inner1); inner2 = TREE_TYPE (inner2); } /* If one type is derived from another, return the base type. */ if (DERIVED_FROM_P (inner1, inner2)) return type1; else if (DERIVED_FROM_P (inner2, inner1)) return type2; /* If both types are 'Class', return 'Class'. */ if (objc_is_class_id (inner1) && objc_is_class_id (inner2)) return objc_class_type; /* Otherwise, return 'id'. */ return objc_object_type; } /* Determine if it is permissible to assign (if ARGNO is greater than -3) an instance of RTYP to an instance of LTYP or to compare the two (if ARGNO is equal to -3), per ObjC type system rules. Before returning 'true', this routine may issue warnings related to, e.g., protocol conformance. When returning 'false', the routine must produce absolutely no warnings; the C or C++ front-end will do so instead, if needed. If either LTYP or RTYP is not an Objective-C type, the routine must return 'false'. The ARGNO parameter is encoded as follows: >= 1 Parameter number (CALLEE contains function being called); 0 Return value; -1 Assignment; -2 Initialization; -3 Comparison (LTYP and RTYP may match in either direction); -4 Silent comparison (for C++ overload resolution); -5 Silent "specialization" comparison for RTYP to be a "specialization" of LTYP (a specialization means that RTYP is LTYP plus some constraints, so that each object of type RTYP is also of type LTYP). This is used when comparing property types. */ bool objc_compare_types (tree ltyp, tree rtyp, int argno, tree callee) { tree lcls, rcls, lproto, rproto; bool pointers_compatible; /* We must be dealing with pointer types */ if (!POINTER_TYPE_P (ltyp) || !POINTER_TYPE_P (rtyp)) return false; do { ltyp = TREE_TYPE (ltyp); /* Remove indirections. */ rtyp = TREE_TYPE (rtyp); } while (POINTER_TYPE_P (ltyp) && POINTER_TYPE_P (rtyp)); /* We must also handle function pointers, since ObjC is a bit more lenient than C or C++ on this. */ if (TREE_CODE (ltyp) == FUNCTION_TYPE && TREE_CODE (rtyp) == FUNCTION_TYPE) { /* Return types must be covariant. */ if (!comptypes (TREE_TYPE (ltyp), TREE_TYPE (rtyp)) && !objc_compare_types (TREE_TYPE (ltyp), TREE_TYPE (rtyp), argno, callee)) return false; /* Argument types must be contravariant. */ for (ltyp = TYPE_ARG_TYPES (ltyp), rtyp = TYPE_ARG_TYPES (rtyp); ltyp && rtyp; ltyp = TREE_CHAIN (ltyp), rtyp = TREE_CHAIN (rtyp)) { if (!comptypes (TREE_VALUE (rtyp), TREE_VALUE (ltyp)) && !objc_compare_types (TREE_VALUE (rtyp), TREE_VALUE (ltyp), argno, callee)) return false; } return (ltyp == rtyp); } /* Past this point, we are only interested in ObjC class instances, or 'id' or 'Class'. */ if (TREE_CODE (ltyp) != RECORD_TYPE || TREE_CODE (rtyp) != RECORD_TYPE) return false; if (!objc_is_object_id (ltyp) && !objc_is_class_id (ltyp) && !TYPE_HAS_OBJC_INFO (ltyp)) return false; if (!objc_is_object_id (rtyp) && !objc_is_class_id (rtyp) && !TYPE_HAS_OBJC_INFO (rtyp)) return false; /* Past this point, we are committed to returning 'true' to the caller (unless performing a silent comparison; see below). However, we can still warn about type and/or protocol mismatches. */ if (TYPE_HAS_OBJC_INFO (ltyp)) { lcls = TYPE_OBJC_INTERFACE (ltyp); lproto = TYPE_OBJC_PROTOCOL_LIST (ltyp); } else lcls = lproto = NULL_TREE; if (TYPE_HAS_OBJC_INFO (rtyp)) { rcls = TYPE_OBJC_INTERFACE (rtyp); rproto = TYPE_OBJC_PROTOCOL_LIST (rtyp); } else rcls = rproto = NULL_TREE; /* If we could not find an @interface declaration, we must have only seen a @class declaration; for purposes of type comparison, treat it as a stand-alone (root) class. */ if (lcls && TREE_CODE (lcls) == IDENTIFIER_NODE) lcls = NULL_TREE; if (rcls && TREE_CODE (rcls) == IDENTIFIER_NODE) rcls = NULL_TREE; /* If either type is an unqualified 'id', we're done. This is because an 'id' can be assigned to or from any type with no warnings. */ if (argno != -5) { if ((!lproto && objc_is_object_id (ltyp)) || (!rproto && objc_is_object_id (rtyp))) return true; } else { /* For property checks, though, an 'id' is considered the most general type of object, hence if you try to specialize an 'NSArray *' (ltyp) property with an 'id' (rtyp) one, we need to warn. */ if (!lproto && objc_is_object_id (ltyp)) return true; } pointers_compatible = (TYPE_MAIN_VARIANT (ltyp) == TYPE_MAIN_VARIANT (rtyp)); /* If the underlying types are the same, and at most one of them has a protocol list, we do not need to issue any diagnostics. */ if (pointers_compatible && (!lproto || !rproto)) return true; /* If exactly one of the types is 'Class', issue a diagnostic; any exceptions of this rule have already been handled. */ if (objc_is_class_id (ltyp) ^ objc_is_class_id (rtyp)) pointers_compatible = false; /* Otherwise, check for inheritance relations. */ else { if (!pointers_compatible) { /* Again, if any of the two is an 'id', we're satisfied, unless we're comparing properties, in which case only an 'id' on the left-hand side (old property) is good enough. */ if (argno != -5) pointers_compatible = (objc_is_object_id (ltyp) || objc_is_object_id (rtyp)); else pointers_compatible = objc_is_object_id (ltyp); } if (!pointers_compatible) pointers_compatible = DERIVED_FROM_P (ltyp, rtyp); if (!pointers_compatible && (argno == -3 || argno == -4)) pointers_compatible = DERIVED_FROM_P (rtyp, ltyp); } /* If the pointers match modulo protocols, check for protocol conformance mismatches. */ if (pointers_compatible) { pointers_compatible = objc_compare_protocols (lcls, ltyp, rcls, rtyp, argno != -3); if (!pointers_compatible && argno == -3) pointers_compatible = objc_compare_protocols (rcls, rtyp, lcls, ltyp, argno != -3); } if (!pointers_compatible) { /* The two pointers are not exactly compatible. Issue a warning, unless we are performing a silent comparison, in which case return 'false' instead. */ /* NB: For the time being, we shall make our warnings look like their C counterparts. In the future, we may wish to make them more ObjC-specific. */ switch (argno) { case -5: case -4: return false; case -3: warning (0, "comparison of distinct Objective-C types lacks a cast"); break; case -2: warning (0, "initialization from distinct Objective-C type"); break; case -1: warning (0, "assignment from distinct Objective-C type"); break; case 0: warning (0, "distinct Objective-C type in return"); break; default: warning (0, "passing argument %d of %qE from distinct " "Objective-C type", argno, callee); break; } } return true; } /* This routine is similar to objc_compare_types except that function-pointers are excluded. This is because, caller assumes that common types are of (id, Object*) variety and calls objc_common_type to obtain a common type. There is no commonolty between two function-pointers in this regard. */ bool objc_have_common_type (tree ltyp, tree rtyp, int argno, tree callee) { if (objc_compare_types (ltyp, rtyp, argno, callee)) { /* exclude function-pointer types. */ do { ltyp = TREE_TYPE (ltyp); /* Remove indirections. */ rtyp = TREE_TYPE (rtyp); } while (POINTER_TYPE_P (ltyp) && POINTER_TYPE_P (rtyp)); return !(TREE_CODE (ltyp) == FUNCTION_TYPE && TREE_CODE (rtyp) == FUNCTION_TYPE); } return false; } #ifndef OBJCPLUS /* Determine if CHILD is derived from PARENT. The routine assumes that both parameters are RECORD_TYPEs, and is non-reflexive. */ static bool objc_derived_from_p (tree parent, tree child) { parent = TYPE_MAIN_VARIANT (parent); for (child = TYPE_MAIN_VARIANT (child); TYPE_BINFO (child) && BINFO_N_BASE_BINFOS (TYPE_BINFO (child));) { child = TYPE_MAIN_VARIANT (BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (child), 0))); if (child == parent) return true; } return false; } #endif static tree objc_build_component_ref (tree datum, tree component) { /* If COMPONENT is NULL, the caller is referring to the anonymous base class field. */ if (!component) { tree base = TYPE_FIELDS (TREE_TYPE (datum)); return build3 (COMPONENT_REF, TREE_TYPE (base), datum, base, NULL_TREE); } /* The 'build_component_ref' routine has been removed from the C++ front-end, but 'finish_class_member_access_expr' seems to be a worthy substitute. */ #ifdef OBJCPLUS return finish_class_member_access_expr (datum, component, false, tf_warning_or_error); #else return build_component_ref (input_location, datum, component); #endif } /* Recursively copy inheritance information rooted at BINFO. To do this, we emulate the song and dance performed by cp/tree.c:copy_binfo(). */ static tree objc_copy_binfo (tree binfo) { tree btype = BINFO_TYPE (binfo); tree binfo2 = make_tree_binfo (BINFO_N_BASE_BINFOS (binfo)); tree base_binfo; int ix; BINFO_TYPE (binfo2) = btype; BINFO_OFFSET (binfo2) = BINFO_OFFSET (binfo); BINFO_BASE_ACCESSES (binfo2) = BINFO_BASE_ACCESSES (binfo); /* Recursively copy base binfos of BINFO. */ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) { tree base_binfo2 = objc_copy_binfo (base_binfo); BINFO_INHERITANCE_CHAIN (base_binfo2) = binfo2; BINFO_BASE_APPEND (binfo2, base_binfo2); } return binfo2; } /* Record superclass information provided in BASETYPE for ObjC class REF. This is loosely based on cp/decl.c:xref_basetypes(). */ static void objc_xref_basetypes (tree ref, tree basetype) { tree binfo = make_tree_binfo (basetype ? 1 : 0); TYPE_BINFO (ref) = binfo; BINFO_OFFSET (binfo) = size_zero_node; BINFO_TYPE (binfo) = ref; if (basetype) { tree base_binfo = objc_copy_binfo (TYPE_BINFO (basetype)); BINFO_INHERITANCE_CHAIN (base_binfo) = binfo; BINFO_BASE_ACCESSES (binfo) = VEC_alloc (tree, gc, 1); BINFO_BASE_APPEND (binfo, base_binfo); BINFO_BASE_ACCESS_APPEND (binfo, access_public_node); } } /* Called from finish_decl. */ void objc_check_decl (tree decl) { tree type = TREE_TYPE (decl); if (TREE_CODE (type) != RECORD_TYPE) return; if (OBJC_TYPE_NAME (type) && (type = objc_is_class_name (OBJC_TYPE_NAME (type)))) error ("statically allocated instance of Objective-C class %qE", type); } void objc_check_global_decl (tree decl) { tree id = DECL_NAME (decl); if (objc_is_class_name (id) && global_bindings_p()) error ("redeclaration of Objective-C class %qs", IDENTIFIER_POINTER (id)); } /* Construct a PROTOCOLS-qualified variant of INTERFACE, where INTERFACE may either name an Objective-C class, or refer to the special 'id' or 'Class' types. If INTERFACE is not a valid ObjC type, just return it unchanged. This function is often called when PROTOCOLS is NULL_TREE, in which case we simply look up the appropriate INTERFACE. */ tree objc_get_protocol_qualified_type (tree interface, tree protocols) { /* If INTERFACE is not provided, default to 'id'. */ tree type = (interface ? objc_is_id (interface) : objc_object_type); bool is_ptr = (type != NULL_TREE); if (!is_ptr) { type = objc_is_class_name (interface); if (type) { /* If looking at a typedef, retrieve the precise type it describes. */ if (TREE_CODE (interface) == IDENTIFIER_NODE) interface = identifier_global_value (interface); type = ((interface && TREE_CODE (interface) == TYPE_DECL && DECL_ORIGINAL_TYPE (interface)) ? DECL_ORIGINAL_TYPE (interface) : xref_tag (RECORD_TYPE, type)); } else { /* This case happens when we are given an 'interface' which is not a valid class name. For example if a typedef was used, and 'interface' really is the identifier of the typedef, but when you resolve it you don't get an Objective-C class, but something else, such as 'int'. This is an error; protocols make no sense unless you use them with Objective-C objects. */ error_at (input_location, "only Objective-C object types can be qualified with a protocol"); /* Try to recover. Ignore the invalid class name, and treat the object as an 'id' to silence further warnings about the class. */ type = objc_object_type; is_ptr = true; } } if (protocols) { type = build_variant_type_copy (type); /* For pointers (i.e., 'id' or 'Class'), attach the protocol(s) to the pointee. */ if (is_ptr) { tree orig_pointee_type = TREE_TYPE (type); TREE_TYPE (type) = build_variant_type_copy (orig_pointee_type); /* Set up the canonical type information. */ TYPE_CANONICAL (type) = TYPE_CANONICAL (TYPE_POINTER_TO (orig_pointee_type)); TYPE_POINTER_TO (TREE_TYPE (type)) = type; type = TREE_TYPE (type); } /* Look up protocols and install in lang specific list. */ DUP_TYPE_OBJC_INFO (type, TYPE_MAIN_VARIANT (type)); TYPE_OBJC_PROTOCOL_LIST (type) = lookup_and_install_protocols (protocols, /* definition_required */ false); /* For RECORD_TYPEs, point to the @interface; for 'id' and 'Class', return the pointer to the new pointee variant. */ if (is_ptr) type = TYPE_POINTER_TO (type); else TYPE_OBJC_INTERFACE (type) = TYPE_OBJC_INTERFACE (TYPE_MAIN_VARIANT (type)); } return type; } /* Check for circular dependencies in protocols. The arguments are PROTO, the protocol to check, and LIST, a list of protocol it conforms to. */ static void check_protocol_recursively (tree proto, tree list) { tree p; for (p = list; p; p = TREE_CHAIN (p)) { tree pp = TREE_VALUE (p); if (TREE_CODE (pp) == IDENTIFIER_NODE) pp = lookup_protocol (pp, /* warn if deprecated */ false, /* definition_required */ false); if (pp == proto) fatal_error ("protocol %qE has circular dependency", PROTOCOL_NAME (pp)); if (pp) check_protocol_recursively (proto, PROTOCOL_LIST (pp)); } } /* Look up PROTOCOLS, and return a list of those that are found. If none are found, return NULL. Note that this function will emit a warning if a protocol is found and is deprecated. If 'definition_required', then warn if the protocol is found but is not defined (ie, if we only saw a forward-declaration of the protocol (as in "@protocol NSObject;") not a real definition with the list of methods). */ static tree lookup_and_install_protocols (tree protocols, bool definition_required) { tree proto; tree return_value = NULL_TREE; if (protocols == error_mark_node) return NULL; for (proto = protocols; proto; proto = TREE_CHAIN (proto)) { tree ident = TREE_VALUE (proto); tree p = lookup_protocol (ident, /* warn_if_deprecated */ true, definition_required); if (p) return_value = chainon (return_value, build_tree_list (NULL_TREE, p)); else if (ident != error_mark_node) error ("cannot find protocol declaration for %qE", ident); } return return_value; } /* Create a declaration for field NAME of a given TYPE. */ static tree create_field_decl (tree type, const char *name) { return build_decl (input_location, FIELD_DECL, get_identifier (name), type); } /* Create a global, static declaration for variable NAME of a given TYPE. The finish_var_decl() routine will need to be called on it afterwards. */ static tree start_var_decl (tree type, const char *name) { tree var = build_decl (input_location, VAR_DECL, get_identifier (name), type); TREE_STATIC (var) = 1; DECL_INITIAL (var) = error_mark_node; /* A real initializer is coming... */ DECL_IGNORED_P (var) = 1; DECL_ARTIFICIAL (var) = 1; DECL_CONTEXT (var) = NULL_TREE; #ifdef OBJCPLUS DECL_THIS_STATIC (var) = 1; /* squash redeclaration errors */ #endif return var; } /* Finish off the variable declaration created by start_var_decl(). */ static void finish_var_decl (tree var, tree initializer) { finish_decl (var, input_location, initializer, NULL_TREE, NULL_TREE); } /* Find the decl for the constant string class reference. This is only used for the NeXT runtime. */ static tree setup_string_decl (void) { char *name; size_t length; /* %s in format will provide room for terminating null */ length = strlen (STRING_OBJECT_GLOBAL_FORMAT) + strlen (constant_string_class_name); name = XNEWVEC (char, length); sprintf (name, STRING_OBJECT_GLOBAL_FORMAT, constant_string_class_name); constant_string_global_id = get_identifier (name); string_class_decl = lookup_name (constant_string_global_id); return string_class_decl; } /* Purpose: "play" parser, creating/installing representations of the declarations that are required by Objective-C. Model: type_spec--------->sc_spec (tree_list) (tree_list) | | | | identifier_node identifier_node */ static void synth_module_prologue (void) { tree type; enum debug_info_type save_write_symbols = write_symbols; const struct gcc_debug_hooks *const save_hooks = debug_hooks; /* Suppress outputting debug symbols, because dbxout_init hasn't been called yet. */ write_symbols = NO_DEBUG; debug_hooks = &do_nothing_debug_hooks; #ifdef OBJCPLUS push_lang_context (lang_name_c); /* extern "C" */ #endif /* The following are also defined in and friends. */ objc_object_id = get_identifier (TAG_OBJECT); objc_class_id = get_identifier (TAG_CLASS); objc_object_reference = xref_tag (RECORD_TYPE, objc_object_id); objc_class_reference = xref_tag (RECORD_TYPE, objc_class_id); objc_object_type = build_pointer_type (objc_object_reference); objc_class_type = build_pointer_type (objc_class_reference); objc_object_name = get_identifier (OBJECT_TYPEDEF_NAME); objc_class_name = get_identifier (CLASS_TYPEDEF_NAME); /* Declare the 'id' and 'Class' typedefs. */ type = lang_hooks.decls.pushdecl (build_decl (input_location, TYPE_DECL, objc_object_name, objc_object_type)); TREE_NO_WARNING (type) = 1; type = lang_hooks.decls.pushdecl (build_decl (input_location, TYPE_DECL, objc_class_name, objc_class_type)); TREE_NO_WARNING (type) = 1; /* Forward-declare '@interface Protocol'. */ type = get_identifier (PROTOCOL_OBJECT_CLASS_NAME); objc_declare_class (tree_cons (NULL_TREE, type, NULL_TREE)); objc_protocol_type = build_pointer_type (xref_tag (RECORD_TYPE, type)); /* Declare type of selector-objects that represent an operation name. */ if (flag_next_runtime) /* `struct objc_selector *' */ objc_selector_type = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (TAG_SELECTOR))); else /* `const struct objc_selector *' */ objc_selector_type = build_pointer_type (build_qualified_type (xref_tag (RECORD_TYPE, get_identifier (TAG_SELECTOR)), TYPE_QUAL_CONST)); /* Declare receiver type used for dispatching messages to 'super'. */ /* `struct objc_super *' */ objc_super_type = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (TAG_SUPER))); /* Declare pointers to method and ivar lists. */ objc_method_list_ptr = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (UTAG_METHOD_LIST))); objc_method_proto_list_ptr = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (UTAG_METHOD_PROTOTYPE_LIST))); objc_ivar_list_ptr = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (UTAG_IVAR_LIST))); /* TREE_NOTHROW is cleared for the message-sending functions, because the function that gets called can throw in Obj-C++, or could itself call something that can throw even in Obj-C. */ if (flag_next_runtime) { /* NB: In order to call one of the ..._stret (struct-returning) functions, the function *MUST* first be cast to a signature that corresponds to the actual ObjC method being invoked. This is what is done by the build_objc_method_call() routine below. */ /* id objc_msgSend (id, SEL, ...); */ /* id objc_msgSendNonNil (id, SEL, ...); */ /* id objc_msgSend_stret (id, SEL, ...); */ /* id objc_msgSendNonNil_stret (id, SEL, ...); */ type = build_varargs_function_type_list (objc_object_type, objc_object_type, objc_selector_type, NULL_TREE); umsg_decl = add_builtin_function (TAG_MSGSEND, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); umsg_nonnil_decl = add_builtin_function (TAG_MSGSEND_NONNIL, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); umsg_stret_decl = add_builtin_function (TAG_MSGSEND_STRET, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); umsg_nonnil_stret_decl = add_builtin_function (TAG_MSGSEND_NONNIL_STRET, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); /* These can throw, because the function that gets called can throw in Obj-C++, or could itself call something that can throw even in Obj-C. */ TREE_NOTHROW (umsg_decl) = 0; TREE_NOTHROW (umsg_nonnil_decl) = 0; TREE_NOTHROW (umsg_stret_decl) = 0; TREE_NOTHROW (umsg_nonnil_stret_decl) = 0; /* id objc_msgSend_Fast (id, SEL, ...) __attribute__ ((hard_coded_address (OFFS_MSGSEND_FAST))); */ #ifdef OFFS_MSGSEND_FAST umsg_fast_decl = add_builtin_function (TAG_MSGSEND_FAST, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (umsg_fast_decl) = 0; DECL_ATTRIBUTES (umsg_fast_decl) = tree_cons (get_identifier ("hard_coded_address"), build_int_cst (NULL_TREE, OFFS_MSGSEND_FAST), NULL_TREE); #else /* No direct dispatch available. */ umsg_fast_decl = umsg_decl; #endif /* id objc_msgSendSuper (struct objc_super *, SEL, ...); */ /* id objc_msgSendSuper_stret (struct objc_super *, SEL, ...); */ type = build_varargs_function_type_list (objc_object_type, objc_super_type, objc_selector_type, NULL_TREE); umsg_super_decl = add_builtin_function (TAG_MSGSENDSUPER, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); umsg_super_stret_decl = add_builtin_function (TAG_MSGSENDSUPER_STRET, type, 0, NOT_BUILT_IN, 0, NULL_TREE); TREE_NOTHROW (umsg_super_decl) = 0; TREE_NOTHROW (umsg_super_stret_decl) = 0; } else { /* GNU runtime messenger entry points. */ /* typedef id (*IMP)(id, SEL, ...); */ tree ftype = build_varargs_function_type_list (objc_object_type, objc_object_type, objc_selector_type, NULL_TREE); tree IMP_type = build_pointer_type (ftype); /* IMP objc_msg_lookup (id, SEL); */ type = build_function_type_list (IMP_type, objc_object_type, objc_selector_type, NULL_TREE); umsg_decl = add_builtin_function (TAG_MSGSEND, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (umsg_decl) = 0; /* IMP objc_msg_lookup_super (struct objc_super *, SEL); */ type = build_function_type_list (IMP_type, objc_super_type, objc_selector_type, NULL_TREE); umsg_super_decl = add_builtin_function (TAG_MSGSENDSUPER, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (umsg_super_decl) = 0; /* The following GNU runtime entry point is called to initialize each module: __objc_exec_class (void *); */ type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); execclass_decl = add_builtin_function (TAG_EXECCLASS, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); } /* id objc_getClass (const char *); */ type = build_function_type_list (objc_object_type, const_string_type_node, NULL_TREE); objc_get_class_decl = add_builtin_function (TAG_GETCLASS, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); /* id objc_getMetaClass (const char *); */ objc_get_meta_class_decl = add_builtin_function (TAG_GETMETACLASS, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); build_class_template (); build_super_template (); build_protocol_template (); build_category_template (); build_objc_exception_stuff (); /* Declare objc_getProperty, object_setProperty and other property accessor helpers. */ build_objc_property_accessor_helpers (); if (flag_next_runtime) build_next_objc_exception_stuff (); /* static SEL _OBJC_SELECTOR_TABLE[]; */ if (! flag_next_runtime) build_selector_table_decl (); /* Forward declare constant_string_id and constant_string_type. */ if (!constant_string_class_name) constant_string_class_name = default_constant_string_class_name; constant_string_id = get_identifier (constant_string_class_name); objc_declare_class (tree_cons (NULL_TREE, constant_string_id, NULL_TREE)); /* Pre-build the following entities - for speed/convenience. */ self_id = get_identifier ("self"); ucmd_id = get_identifier ("_cmd"); /* Declare struct _objc_fast_enumeration_state { ... }; */ build_fast_enumeration_state_template (); /* void objc_enumeration_mutation (id) */ type = build_function_type (void_type_node, tree_cons (NULL_TREE, objc_object_type, NULL_TREE)); objc_enumeration_mutation_decl = add_builtin_function (TAG_ENUMERATION_MUTATION, type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (objc_enumeration_mutation_decl) = 0; #ifdef OBJCPLUS pop_lang_context (); #endif write_symbols = save_write_symbols; debug_hooks = save_hooks; } /* Ensure that the ivar list for NSConstantString/NXConstantString (or whatever was specified via `-fconstant-string-class') contains fields at least as large as the following three, so that the runtime can stomp on them with confidence: struct STRING_OBJECT_CLASS_NAME { Object isa; char *cString; unsigned int length; }; */ static int check_string_class_template (void) { tree field_decl = objc_get_class_ivars (constant_string_id); #define AT_LEAST_AS_LARGE_AS(F, T) \ (F && TREE_CODE (F) == FIELD_DECL \ && (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (F))) \ >= TREE_INT_CST_LOW (TYPE_SIZE (T)))) if (!AT_LEAST_AS_LARGE_AS (field_decl, ptr_type_node)) return 0; field_decl = DECL_CHAIN (field_decl); if (!AT_LEAST_AS_LARGE_AS (field_decl, ptr_type_node)) return 0; field_decl = DECL_CHAIN (field_decl); return AT_LEAST_AS_LARGE_AS (field_decl, unsigned_type_node); #undef AT_LEAST_AS_LARGE_AS } /* Avoid calling `check_string_class_template ()' more than once. */ static GTY(()) int string_layout_checked; /* Construct an internal string layout to be used as a template for creating NSConstantString/NXConstantString instances. */ static tree objc_build_internal_const_str_type (void) { tree type = (*lang_hooks.types.make_type) (RECORD_TYPE); tree fields = build_decl (input_location, FIELD_DECL, NULL_TREE, ptr_type_node); tree field = build_decl (input_location, FIELD_DECL, NULL_TREE, ptr_type_node); DECL_CHAIN (field) = fields; fields = field; field = build_decl (input_location, FIELD_DECL, NULL_TREE, unsigned_type_node); DECL_CHAIN (field) = fields; fields = field; /* NB: The finish_builtin_struct() routine expects FIELD_DECLs in reverse order! */ finish_builtin_struct (type, "__builtin_ObjCString", fields, NULL_TREE); return type; } /* Custom build_string which sets TREE_TYPE! */ static tree my_build_string (int len, const char *str) { return fix_string_type (build_string (len, str)); } /* Build a string with contents STR and length LEN and convert it to a pointer. */ static tree my_build_string_pointer (int len, const char *str) { tree string = my_build_string (len, str); tree ptrtype = build_pointer_type (TREE_TYPE (TREE_TYPE (string))); return build1 (ADDR_EXPR, ptrtype, string); } static hashval_t string_hash (const void *ptr) { const_tree const str = ((const struct string_descriptor *)ptr)->literal; const unsigned char *p = (const unsigned char *) TREE_STRING_POINTER (str); int i, len = TREE_STRING_LENGTH (str); hashval_t h = len; for (i = 0; i < len; i++) h = ((h * 613) + p[i]); return h; } static int string_eq (const void *ptr1, const void *ptr2) { const_tree const str1 = ((const struct string_descriptor *)ptr1)->literal; const_tree const str2 = ((const struct string_descriptor *)ptr2)->literal; int len1 = TREE_STRING_LENGTH (str1); return (len1 == TREE_STRING_LENGTH (str2) && !memcmp (TREE_STRING_POINTER (str1), TREE_STRING_POINTER (str2), len1)); } /* Given a chain of STRING_CST's, build a static instance of NXConstantString which points at the concatenation of those strings. We place the string object in the __string_objects section of the __OBJC segment. The Objective-C runtime will initialize the isa pointers of the string objects to point at the NXConstantString class object. */ tree objc_build_string_object (tree string) { tree constant_string_class; int length; tree fields, addr; struct string_descriptor *desc, key; void **loc; /* Prep the string argument. */ string = fix_string_type (string); TREE_SET_CODE (string, STRING_CST); length = TREE_STRING_LENGTH (string) - 1; /* The target may have different ideas on how to construct an ObjC string literal. On Darwin (Mac OS X), for example, we may wish to obtain a constant CFString reference instead. At present, this is only supported for the NeXT runtime. */ if (flag_next_runtime && targetcm.objc_construct_string_object) { tree constructor = (*targetcm.objc_construct_string_object) (string); if (constructor) return build1 (NOP_EXPR, objc_object_type, constructor); } /* Check whether the string class being used actually exists and has the correct ivar layout. */ if (!string_layout_checked) { string_layout_checked = -1; constant_string_class = lookup_interface (constant_string_id); internal_const_str_type = objc_build_internal_const_str_type (); if (!constant_string_class || !(constant_string_type = CLASS_STATIC_TEMPLATE (constant_string_class))) error ("cannot find interface declaration for %qE", constant_string_id); /* The NSConstantString/NXConstantString ivar layout is now known. */ else if (!check_string_class_template ()) error ("interface %qE does not have valid constant string layout", constant_string_id); /* For the NeXT runtime, we can generate a literal reference to the string class, don't need to run a constructor. */ else if (flag_next_runtime && !setup_string_decl ()) error ("cannot find reference tag for class %qE", constant_string_id); else { string_layout_checked = 1; /* Success! */ add_class_reference (constant_string_id); } } if (string_layout_checked == -1) return error_mark_node; /* Perhaps we already constructed a constant string just like this one? */ key.literal = string; loc = htab_find_slot (string_htab, &key, INSERT); desc = (struct string_descriptor *) *loc; if (!desc) { tree var, constructor; VEC(constructor_elt,gc) *v = NULL; *loc = desc = ggc_alloc_string_descriptor (); desc->literal = string; /* GNU: (NXConstantString *) & ((__builtin_ObjCString) { NULL, string, length }) */ /* NeXT: (NSConstantString *) & ((__builtin_ObjCString) { isa, string, length }) */ fields = TYPE_FIELDS (internal_const_str_type); CONSTRUCTOR_APPEND_ELT (v, fields, flag_next_runtime ? build_unary_op (input_location, ADDR_EXPR, string_class_decl, 0) : build_int_cst (NULL_TREE, 0)); fields = DECL_CHAIN (fields); CONSTRUCTOR_APPEND_ELT (v, fields, build_unary_op (input_location, ADDR_EXPR, string, 1)); fields = DECL_CHAIN (fields); CONSTRUCTOR_APPEND_ELT (v, fields, build_int_cst (NULL_TREE, length)); constructor = objc_build_constructor (internal_const_str_type, v); if (!flag_next_runtime) constructor = objc_add_static_instance (constructor, constant_string_type); else { var = build_decl (input_location, CONST_DECL, NULL, TREE_TYPE (constructor)); DECL_INITIAL (var) = constructor; TREE_STATIC (var) = 1; pushdecl_top_level (var); constructor = var; } desc->constructor = constructor; } addr = convert (build_pointer_type (constant_string_type), build_unary_op (input_location, ADDR_EXPR, desc->constructor, 1)); return addr; } /* Declare a static instance of CLASS_DECL initialized by CONSTRUCTOR. */ static GTY(()) int num_static_inst; static tree objc_add_static_instance (tree constructor, tree class_decl) { tree *chain, decl; char buf[256]; /* Find the list of static instances for the CLASS_DECL. Create one if not found. */ for (chain = &objc_static_instances; *chain && TREE_VALUE (*chain) != class_decl; chain = &TREE_CHAIN (*chain)); if (!*chain) { *chain = tree_cons (NULL_TREE, class_decl, NULL_TREE); add_objc_string (OBJC_TYPE_NAME (class_decl), class_names); } sprintf (buf, "_OBJC_INSTANCE_%d", num_static_inst++); decl = build_decl (input_location, VAR_DECL, get_identifier (buf), class_decl); TREE_STATIC (decl) = 1; DECL_ARTIFICIAL (decl) = 1; TREE_USED (decl) = 1; DECL_INITIAL (decl) = constructor; /* We may be writing something else just now. Postpone till end of input. */ DECL_DEFER_OUTPUT (decl) = 1; pushdecl_top_level (decl); rest_of_decl_compilation (decl, 1, 0); /* Add the DECL to the head of this CLASS' list. */ TREE_PURPOSE (*chain) = tree_cons (NULL_TREE, decl, TREE_PURPOSE (*chain)); return decl; } /* Build a static constant CONSTRUCTOR with type TYPE and elements ELTS. */ static tree objc_build_constructor (tree type, VEC(constructor_elt,gc) *elts) { tree constructor = build_constructor (type, elts); TREE_CONSTANT (constructor) = 1; TREE_STATIC (constructor) = 1; TREE_READONLY (constructor) = 1; #ifdef OBJCPLUS /* Adjust for impedance mismatch. We should figure out how to build CONSTRUCTORs that consistently please both the C and C++ gods. */ if (!VEC_index (constructor_elt, elts, 0)->index) TREE_TYPE (constructor) = init_list_type_node; #endif return constructor; } /* Take care of defining and initializing _OBJC_SYMBOLS. */ /* Predefine the following data type: struct _objc_symtab { long sel_ref_cnt; SEL *refs; short cls_def_cnt; short cat_def_cnt; void *defs[cls_def_cnt + cat_def_cnt]; }; */ static void build_objc_symtab_template (void) { tree fields, *chain = NULL; objc_symtab_template = objc_start_struct (get_identifier (UTAG_SYMTAB)); /* long sel_ref_cnt; */ fields = add_field_decl (long_integer_type_node, "sel_ref_cnt", &chain); /* SEL *refs; */ add_field_decl (build_pointer_type (objc_selector_type), "refs", &chain); /* short cls_def_cnt; */ add_field_decl (short_integer_type_node, "cls_def_cnt", &chain); /* short cat_def_cnt; */ add_field_decl (short_integer_type_node, "cat_def_cnt", &chain); if (imp_count || cat_count || !flag_next_runtime) { /* void *defs[imp_count + cat_count (+ 1)]; */ /* NB: The index is one less than the size of the array. */ int index = imp_count + cat_count + (flag_next_runtime ? -1: 0); tree array_type = build_sized_array_type (ptr_type_node, index + 1); add_field_decl (array_type, "defs", &chain); } objc_finish_struct (objc_symtab_template, fields); } /* Create the initial value for the `defs' field of _objc_symtab. This is a CONSTRUCTOR. */ static tree init_def_list (tree type) { tree expr; struct imp_entry *impent; VEC(constructor_elt,gc) *v = NULL; if (imp_count) for (impent = imp_list; impent; impent = impent->next) { if (TREE_CODE (impent->imp_context) == CLASS_IMPLEMENTATION_TYPE) { expr = build_unary_op (input_location, ADDR_EXPR, impent->class_decl, 0); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } } if (cat_count) for (impent = imp_list; impent; impent = impent->next) { if (TREE_CODE (impent->imp_context) == CATEGORY_IMPLEMENTATION_TYPE) { expr = build_unary_op (input_location, ADDR_EXPR, impent->class_decl, 0); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } } if (!flag_next_runtime) { /* statics = { ..., _OBJC_STATIC_INSTANCES, ... } */ if (static_instances_decl) expr = build_unary_op (input_location, ADDR_EXPR, static_instances_decl, 0); else expr = integer_zero_node; CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } return objc_build_constructor (type, v); } /* Construct the initial value for all of _objc_symtab. */ static tree init_objc_symtab (tree type) { VEC(constructor_elt,gc) *v = NULL; /* sel_ref_cnt = { ..., 5, ... } */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (long_integer_type_node, 0)); /* refs = { ..., _OBJC_SELECTOR_TABLE, ... } */ if (flag_next_runtime || ! sel_ref_chain) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, convert ( build_pointer_type (objc_selector_type), integer_zero_node)); else { tree expr = build_unary_op (input_location, ADDR_EXPR, UOBJC_SELECTOR_TABLE_decl, 1); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, convert (build_pointer_type (objc_selector_type), expr)); } /* cls_def_cnt = { ..., 5, ... } */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (short_integer_type_node, imp_count)); /* cat_def_cnt = { ..., 5, ... } */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (short_integer_type_node, cat_count)); /* cls_def = { ..., { &Foo, &Bar, ...}, ... } */ if (imp_count || cat_count || !flag_next_runtime) { tree field = TYPE_FIELDS (type); field = DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (DECL_CHAIN (field)))); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_def_list (TREE_TYPE (field))); } return objc_build_constructor (type, v); } /* Generate forward declarations for metadata such as 'OBJC_CLASS_...'. */ static tree build_metadata_decl (const char *name, tree type) { tree decl; /* struct TYPE NAME_; */ decl = start_var_decl (type, synth_id_with_class_suffix (name, objc_implementation_context)); return decl; } /* Push forward-declarations of all the categories so that init_def_list can use them in a CONSTRUCTOR. */ static void forward_declare_categories (void) { struct imp_entry *impent; tree sav = objc_implementation_context; for (impent = imp_list; impent; impent = impent->next) { if (TREE_CODE (impent->imp_context) == CATEGORY_IMPLEMENTATION_TYPE) { /* Set an invisible arg to synth_id_with_class_suffix. */ objc_implementation_context = impent->imp_context; /* extern struct objc_category _OBJC_CATEGORY_; */ impent->class_decl = build_metadata_decl ("_OBJC_CATEGORY", objc_category_template); } } objc_implementation_context = sav; } /* Create the declaration of _OBJC_SYMBOLS, with type `struct _objc_symtab' and initialized appropriately. */ static void generate_objc_symtab_decl (void) { build_objc_symtab_template (); UOBJC_SYMBOLS_decl = start_var_decl (objc_symtab_template, "_OBJC_SYMBOLS"); finish_var_decl (UOBJC_SYMBOLS_decl, init_objc_symtab (TREE_TYPE (UOBJC_SYMBOLS_decl))); } static tree init_module_descriptor (tree type) { tree expr; VEC(constructor_elt,gc) *v = NULL; /* version = { 1, ... } */ expr = build_int_cst (long_integer_type_node, OBJC_VERSION); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); /* size = { ..., sizeof (struct _objc_module), ... } */ expr = convert (long_integer_type_node, size_in_bytes (objc_module_template)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); /* Don't provide any file name for security reasons. */ /* name = { ..., "", ... } */ expr = add_objc_string (get_identifier (""), class_names); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); /* symtab = { ..., _OBJC_SYMBOLS, ... } */ if (UOBJC_SYMBOLS_decl) expr = build_unary_op (input_location, ADDR_EXPR, UOBJC_SYMBOLS_decl, 0); else expr = null_pointer_node; CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); return objc_build_constructor (type, v); } /* Write out the data structures to describe Objective C classes defined. struct _objc_module { ... } _OBJC_MODULE = { ... }; */ static void build_module_descriptor (void) { tree decls, *chain = NULL; #ifdef OBJCPLUS push_lang_context (lang_name_c); /* extern "C" */ #endif objc_module_template = objc_start_struct (get_identifier (UTAG_MODULE)); /* long version; */ decls = add_field_decl (long_integer_type_node, "version", &chain); /* long size; */ add_field_decl (long_integer_type_node, "size", &chain); /* char *name; */ add_field_decl (string_type_node, "name", &chain); /* struct _objc_symtab *symtab; */ add_field_decl (build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (UTAG_SYMTAB))), "symtab", &chain); objc_finish_struct (objc_module_template, decls); /* Create an instance of "_objc_module". */ UOBJC_MODULES_decl = start_var_decl (objc_module_template, "_OBJC_MODULES"); /* This is the root of the metadata for defined classes and categories, it is referenced by the runtime and, therefore, needed. */ DECL_PRESERVE_P (UOBJC_MODULES_decl) = 1; finish_var_decl (UOBJC_MODULES_decl, init_module_descriptor (TREE_TYPE (UOBJC_MODULES_decl))); #ifdef OBJCPLUS pop_lang_context (); #endif } /* The GNU runtime requires us to provide a static initializer function for each module: static void __objc_gnu_init (void) { __objc_exec_class (&L_OBJC_MODULES); } */ static void build_module_initializer_routine (void) { tree body; #ifdef OBJCPLUS push_lang_context (lang_name_c); /* extern "C" */ #endif objc_push_parm (build_decl (input_location, PARM_DECL, NULL_TREE, void_type_node)); #ifdef OBJCPLUS objc_start_function (get_identifier (TAG_GNUINIT), build_function_type_list (void_type_node, NULL_TREE), NULL_TREE, NULL_TREE); #else objc_start_function (get_identifier (TAG_GNUINIT), build_function_type_list (void_type_node, NULL_TREE), NULL_TREE, objc_get_parm_info (0)); #endif body = c_begin_compound_stmt (true); add_stmt (build_function_call (input_location, execclass_decl, build_tree_list (NULL_TREE, build_unary_op (input_location, ADDR_EXPR, UOBJC_MODULES_decl, 0)))); add_stmt (c_end_compound_stmt (input_location, body, true)); TREE_PUBLIC (current_function_decl) = 0; #ifndef OBJCPLUS /* For Objective-C++, we will need to call __objc_gnu_init from objc_generate_static_init_call() below. */ DECL_STATIC_CONSTRUCTOR (current_function_decl) = 1; #endif GNU_INIT_decl = current_function_decl; finish_function (); #ifdef OBJCPLUS pop_lang_context (); #endif } #ifdef OBJCPLUS /* Return 1 if the __objc_gnu_init function has been synthesized and needs to be called by the module initializer routine. */ int objc_static_init_needed_p (void) { return (GNU_INIT_decl != NULL_TREE); } /* Generate a call to the __objc_gnu_init initializer function. */ tree objc_generate_static_init_call (tree ctors ATTRIBUTE_UNUSED) { add_stmt (build_stmt (input_location, EXPR_STMT, build_function_call (input_location, GNU_INIT_decl, NULL_TREE))); return ctors; } #endif /* OBJCPLUS */ /* Return the DECL of the string IDENT in the SECTION. */ static tree get_objc_string_decl (tree ident, enum string_section section) { tree chain; switch (section) { case class_names: chain = class_names_chain; break; case meth_var_names: chain = meth_var_names_chain; break; case meth_var_types: chain = meth_var_types_chain; break; default: gcc_unreachable (); } for (; chain != 0; chain = TREE_CHAIN (chain)) if (TREE_VALUE (chain) == ident) return (TREE_PURPOSE (chain)); gcc_unreachable (); return NULL_TREE; } /* Output references to all statically allocated objects. Return the DECL for the array built. */ static void generate_static_references (void) { tree expr = NULL_TREE; tree class_name, klass, decl; tree cl_chain, in_chain, type = build_array_type (build_pointer_type (void_type_node), NULL_TREE); int num_inst, num_class; char buf[256]; VEC(constructor_elt,gc) *decls = NULL; if (flag_next_runtime) gcc_unreachable (); for (cl_chain = objc_static_instances, num_class = 0; cl_chain; cl_chain = TREE_CHAIN (cl_chain), num_class++) { VEC(constructor_elt,gc) *v = NULL; for (num_inst = 0, in_chain = TREE_PURPOSE (cl_chain); in_chain; num_inst++, in_chain = TREE_CHAIN (in_chain)); sprintf (buf, "_OBJC_STATIC_INSTANCES_%d", num_class); decl = start_var_decl (type, buf); /* Output {class_name, ...}. */ klass = TREE_VALUE (cl_chain); class_name = get_objc_string_decl (OBJC_TYPE_NAME (klass), class_names); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_unary_op (input_location, ADDR_EXPR, class_name, 1)); /* Output {..., instance, ...}. */ for (in_chain = TREE_PURPOSE (cl_chain); in_chain; in_chain = TREE_CHAIN (in_chain)) { expr = build_unary_op (input_location, ADDR_EXPR, TREE_VALUE (in_chain), 1); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } /* Output {..., NULL}. */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); expr = objc_build_constructor (TREE_TYPE (decl), v); finish_var_decl (decl, expr); CONSTRUCTOR_APPEND_ELT (decls, NULL_TREE, build_unary_op (input_location, ADDR_EXPR, decl, 1)); } CONSTRUCTOR_APPEND_ELT (decls, NULL_TREE, build_int_cst (NULL_TREE, 0)); expr = objc_build_constructor (type, decls); static_instances_decl = start_var_decl (type, "_OBJC_STATIC_INSTANCES"); finish_var_decl (static_instances_decl, expr); } static GTY(()) int selector_reference_idx; static tree build_selector_reference_decl (void) { tree decl; char buf[256]; sprintf (buf, "_OBJC_SELECTOR_REFERENCES_%d", selector_reference_idx++); decl = start_var_decl (objc_selector_type, buf); return decl; } static void build_selector_table_decl (void) { tree temp; if (flag_typed_selectors) { build_selector_template (); temp = build_array_type (objc_selector_template, NULL_TREE); } else temp = build_array_type (objc_selector_type, NULL_TREE); UOBJC_SELECTOR_TABLE_decl = start_var_decl (temp, "_OBJC_SELECTOR_TABLE"); } /* Just a handy wrapper for add_objc_string. */ static tree build_selector (tree ident) { return convert (objc_selector_type, add_objc_string (ident, meth_var_names)); } /* Used only by build_*_selector_translation_table (). */ static void diagnose_missing_method (tree meth, location_t here) { tree method_chain; bool found = false; for (method_chain = meth_var_names_chain; method_chain; method_chain = TREE_CHAIN (method_chain)) { if (TREE_VALUE (method_chain) == meth) { found = true; break; } } if (!found) warning_at (here, 0, "creating selector for nonexistent method %qE", meth); } static void build_next_selector_translation_table (void) { tree chain; for (chain = sel_ref_chain; chain; chain = TREE_CHAIN (chain)) { tree expr; tree decl = TREE_PURPOSE (chain); if (warn_selector && objc_implementation_context) { location_t loc; if (decl) loc = DECL_SOURCE_LOCATION (decl); else loc = input_location; diagnose_missing_method (TREE_VALUE (chain), loc); } expr = build_selector (TREE_VALUE (chain)); if (decl) { /* Entries of this form are used for references to methods. The runtime re-writes these on start-up, but the compiler can't see that and optimizes it away unless we force it. */ DECL_PRESERVE_P (decl) = 1; finish_var_decl (decl, expr); } } } static void build_gnu_selector_translation_table (void) { tree chain; /* int offset = 0; tree decl = NULL_TREE;*/ VEC(constructor_elt,gc) *inits = NULL; for (chain = sel_ref_chain; chain; chain = TREE_CHAIN (chain)) { tree expr; if (warn_selector && objc_implementation_context) diagnose_missing_method (TREE_VALUE (chain), input_location); expr = build_selector (TREE_VALUE (chain)); /* add one for the '\0' character offset += IDENTIFIER_LENGTH (TREE_VALUE (chain)) + 1;*/ { if (flag_typed_selectors) { VEC(constructor_elt,gc) *v = NULL; tree encoding = get_proto_encoding (TREE_PURPOSE (chain)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, encoding); expr = objc_build_constructor (objc_selector_template, v); } CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, expr); } } /* each element in the chain */ { /* Cause the selector table (previously forward-declared) to be actually output. */ tree expr; if (flag_typed_selectors) { VEC(constructor_elt,gc) *v = NULL; CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, integer_zero_node); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, integer_zero_node); expr = objc_build_constructor (objc_selector_template, v); } else expr = integer_zero_node; CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, expr); expr = objc_build_constructor (TREE_TYPE (UOBJC_SELECTOR_TABLE_decl), inits); finish_var_decl (UOBJC_SELECTOR_TABLE_decl, expr); } } static tree get_proto_encoding (tree proto) { tree encoding; if (proto) { if (! METHOD_ENCODING (proto)) { encoding = encode_method_prototype (proto); METHOD_ENCODING (proto) = encoding; } else encoding = METHOD_ENCODING (proto); return add_objc_string (encoding, meth_var_types); } else return build_int_cst (NULL_TREE, 0); } /* sel_ref_chain is a list whose "value" fields will be instances of identifier_node that represent the selector. LOC is the location of the @selector. */ static tree build_typed_selector_reference (location_t loc, tree ident, tree prototype) { tree *chain = &sel_ref_chain; tree expr; int index = 0; while (*chain) { if (TREE_PURPOSE (*chain) == prototype && TREE_VALUE (*chain) == ident) goto return_at_index; index++; chain = &TREE_CHAIN (*chain); } *chain = tree_cons (prototype, ident, NULL_TREE); return_at_index: expr = build_unary_op (loc, ADDR_EXPR, build_array_ref (loc, UOBJC_SELECTOR_TABLE_decl, build_int_cst (NULL_TREE, index)), 1); return convert (objc_selector_type, expr); } static tree build_selector_reference (location_t loc, tree ident) { tree *chain = &sel_ref_chain; tree expr; int index = 0; while (*chain) { if (TREE_VALUE (*chain) == ident) return (flag_next_runtime ? TREE_PURPOSE (*chain) : build_array_ref (loc, UOBJC_SELECTOR_TABLE_decl, build_int_cst (NULL_TREE, index))); index++; chain = &TREE_CHAIN (*chain); } expr = (flag_next_runtime ? build_selector_reference_decl (): NULL_TREE); *chain = tree_cons (expr, ident, NULL_TREE); return (flag_next_runtime ? expr : build_array_ref (loc, UOBJC_SELECTOR_TABLE_decl, build_int_cst (NULL_TREE, index))); } static GTY(()) int class_reference_idx; static tree build_class_reference_decl (void) { tree decl; char buf[256]; sprintf (buf, "_OBJC_CLASS_REFERENCES_%d", class_reference_idx++); decl = start_var_decl (objc_class_type, buf); return decl; } /* Create a class reference, but don't create a variable to reference it. */ static void add_class_reference (tree ident) { tree chain; if ((chain = cls_ref_chain)) { tree tail; do { if (ident == TREE_VALUE (chain)) return; tail = chain; chain = TREE_CHAIN (chain); } while (chain); /* Append to the end of the list */ TREE_CHAIN (tail) = tree_cons (NULL_TREE, ident, NULL_TREE); } else cls_ref_chain = tree_cons (NULL_TREE, ident, NULL_TREE); } /* Get a class reference, creating it if necessary. Also create the reference variable. */ tree objc_get_class_reference (tree ident) { tree orig_ident = (DECL_P (ident) ? DECL_NAME (ident) : TYPE_P (ident) ? OBJC_TYPE_NAME (ident) : ident); bool local_scope = false; #ifdef OBJCPLUS if (processing_template_decl) /* Must wait until template instantiation time. */ return build_min_nt (CLASS_REFERENCE_EXPR, ident); #endif if (TREE_CODE (ident) == TYPE_DECL) ident = (DECL_ORIGINAL_TYPE (ident) ? DECL_ORIGINAL_TYPE (ident) : TREE_TYPE (ident)); #ifdef OBJCPLUS if (TYPE_P (ident) && CP_TYPE_CONTEXT (ident) != global_namespace) local_scope = true; #endif if (local_scope || !(ident = objc_is_class_name (ident))) { error ("%qE is not an Objective-C class name or alias", orig_ident); return error_mark_node; } if (flag_next_runtime && !flag_zero_link) { tree *chain; tree decl; for (chain = &cls_ref_chain; *chain; chain = &TREE_CHAIN (*chain)) if (TREE_VALUE (*chain) == ident) { if (! TREE_PURPOSE (*chain)) TREE_PURPOSE (*chain) = build_class_reference_decl (); return TREE_PURPOSE (*chain); } decl = build_class_reference_decl (); *chain = tree_cons (decl, ident, NULL_TREE); return decl; } else { tree params; add_class_reference (ident); params = build_tree_list (NULL_TREE, my_build_string_pointer (IDENTIFIER_LENGTH (ident) + 1, IDENTIFIER_POINTER (ident))); assemble_external (objc_get_class_decl); return build_function_call (input_location, objc_get_class_decl, params); } } /* For each string section we have a chain which maps identifier nodes to decls for the strings. */ static GTY(()) int class_names_idx; static GTY(()) int meth_var_names_idx; static GTY(()) int meth_var_types_idx; static tree add_objc_string (tree ident, enum string_section section) { tree *chain, decl, type, string_expr; char buf[256]; buf[0] = 0; switch (section) { case class_names: chain = &class_names_chain; sprintf (buf, "_OBJC_CLASS_NAME_%d", class_names_idx++); break; case meth_var_names: chain = &meth_var_names_chain; sprintf (buf, "_OBJC_METH_VAR_NAME_%d", meth_var_names_idx++); break; case meth_var_types: chain = &meth_var_types_chain; sprintf (buf, "_OBJC_METH_VAR_TYPE_%d", meth_var_types_idx++); break; default: gcc_unreachable (); } while (*chain) { if (TREE_VALUE (*chain) == ident) return convert (string_type_node, build_unary_op (input_location, ADDR_EXPR, TREE_PURPOSE (*chain), 1)); chain = &TREE_CHAIN (*chain); } type = build_sized_array_type (char_type_node, IDENTIFIER_LENGTH (ident) + 1); decl = start_var_decl (type, buf); string_expr = my_build_string (IDENTIFIER_LENGTH (ident) + 1, IDENTIFIER_POINTER (ident)); TREE_CONSTANT (decl) = 1; finish_var_decl (decl, string_expr); *chain = tree_cons (decl, ident, NULL_TREE); return convert (string_type_node, build_unary_op (input_location, ADDR_EXPR, decl, 1)); } void objc_declare_alias (tree alias_ident, tree class_ident) { tree underlying_class; #ifdef OBJCPLUS if (current_namespace != global_namespace) { error ("Objective-C declarations may only appear in global scope"); } #endif /* OBJCPLUS */ if (!(underlying_class = objc_is_class_name (class_ident))) warning (0, "cannot find class %qE", class_ident); else if (objc_is_class_name (alias_ident)) warning (0, "class %qE already exists", alias_ident); else { /* Implement @compatibility_alias as a typedef. */ #ifdef OBJCPLUS push_lang_context (lang_name_c); /* extern "C" */ #endif lang_hooks.decls.pushdecl (build_decl (input_location, TYPE_DECL, alias_ident, xref_tag (RECORD_TYPE, underlying_class))); #ifdef OBJCPLUS pop_lang_context (); #endif hash_class_name_enter (als_name_hash_list, alias_ident, underlying_class); } } void objc_declare_class (tree ident_list) { tree list; #ifdef OBJCPLUS if (current_namespace != global_namespace) { error ("Objective-C declarations may only appear in global scope"); } #endif /* OBJCPLUS */ for (list = ident_list; list; list = TREE_CHAIN (list)) { tree ident = TREE_VALUE (list); if (! objc_is_class_name (ident)) { tree record = lookup_name (ident), type = record; if (record) { if (TREE_CODE (record) == TYPE_DECL) type = DECL_ORIGINAL_TYPE (record) ? DECL_ORIGINAL_TYPE (record) : TREE_TYPE (record); if (!TYPE_HAS_OBJC_INFO (type) || !TYPE_OBJC_INTERFACE (type)) { error ("%qE redeclared as different kind of symbol", ident); error ("previous declaration of %q+D", record); } } record = xref_tag (RECORD_TYPE, ident); INIT_TYPE_OBJC_INFO (record); /* In the case of a @class declaration, we store the ident in the TYPE_OBJC_INTERFACE. If later an @interface is found, we'll replace the ident with the interface. */ TYPE_OBJC_INTERFACE (record) = ident; hash_class_name_enter (cls_name_hash_list, ident, NULL_TREE); } } } tree objc_is_class_name (tree ident) { hash target; if (ident && TREE_CODE (ident) == IDENTIFIER_NODE && identifier_global_value (ident)) ident = identifier_global_value (ident); while (ident && TREE_CODE (ident) == TYPE_DECL && DECL_ORIGINAL_TYPE (ident)) ident = OBJC_TYPE_NAME (DECL_ORIGINAL_TYPE (ident)); if (ident && TREE_CODE (ident) == RECORD_TYPE) ident = OBJC_TYPE_NAME (ident); #ifdef OBJCPLUS if (ident && TREE_CODE (ident) == TYPE_DECL) { tree type = TREE_TYPE (ident); if (type && TREE_CODE (type) == TEMPLATE_TYPE_PARM) return NULL_TREE; ident = DECL_NAME (ident); } #endif if (!ident || TREE_CODE (ident) != IDENTIFIER_NODE) return NULL_TREE; if (lookup_interface (ident)) return ident; target = hash_class_name_lookup (cls_name_hash_list, ident); if (target) return target->key; target = hash_class_name_lookup (als_name_hash_list, ident); if (target) { gcc_assert (target->list && target->list->value); return target->list->value; } return 0; } /* Check whether TYPE is either 'id' or 'Class'. */ tree objc_is_id (tree type) { if (type && TREE_CODE (type) == IDENTIFIER_NODE && identifier_global_value (type)) type = identifier_global_value (type); if (type && TREE_CODE (type) == TYPE_DECL) type = TREE_TYPE (type); /* NB: This function may be called before the ObjC front-end has been initialized, in which case OBJC_OBJECT_TYPE will (still) be NULL. */ return (objc_object_type && type && (IS_ID (type) || IS_CLASS (type) || IS_SUPER (type)) ? type : NULL_TREE); } /* Check whether TYPE is either 'id', 'Class', or a pointer to an ObjC class instance. This is needed by other parts of the compiler to handle ObjC types gracefully. */ tree objc_is_object_ptr (tree type) { tree ret; type = TYPE_MAIN_VARIANT (type); if (!POINTER_TYPE_P (type)) return 0; ret = objc_is_id (type); if (!ret) ret = objc_is_class_name (TREE_TYPE (type)); return ret; } static int objc_is_gcable_type (tree type, int or_strong_p) { tree name; if (!TYPE_P (type)) return 0; if (objc_is_id (TYPE_MAIN_VARIANT (type))) return 1; if (or_strong_p && lookup_attribute ("objc_gc", TYPE_ATTRIBUTES (type))) return 1; if (TREE_CODE (type) != POINTER_TYPE && TREE_CODE (type) != INDIRECT_REF) return 0; type = TREE_TYPE (type); if (TREE_CODE (type) != RECORD_TYPE) return 0; name = TYPE_NAME (type); return (objc_is_class_name (name) != NULL_TREE); } static tree objc_substitute_decl (tree expr, tree oldexpr, tree newexpr) { if (expr == oldexpr) return newexpr; switch (TREE_CODE (expr)) { case COMPONENT_REF: return objc_build_component_ref (objc_substitute_decl (TREE_OPERAND (expr, 0), oldexpr, newexpr), DECL_NAME (TREE_OPERAND (expr, 1))); case ARRAY_REF: return build_array_ref (input_location, objc_substitute_decl (TREE_OPERAND (expr, 0), oldexpr, newexpr), TREE_OPERAND (expr, 1)); case INDIRECT_REF: return build_indirect_ref (input_location, objc_substitute_decl (TREE_OPERAND (expr, 0), oldexpr, newexpr), RO_ARROW); default: return expr; } } static tree objc_build_ivar_assignment (tree outervar, tree lhs, tree rhs) { tree func_params; /* The LHS parameter contains the expression 'outervar->memberspec'; we need to transform it into '&((typeof(outervar) *) 0)->memberspec', where memberspec may be arbitrarily complex (e.g., 'g->f.d[2].g[3]'). */ tree offs = objc_substitute_decl (lhs, outervar, convert (TREE_TYPE (outervar), integer_zero_node)); tree func = (flag_objc_direct_dispatch ? objc_assign_ivar_fast_decl : objc_assign_ivar_decl); offs = convert (integer_type_node, build_unary_op (input_location, ADDR_EXPR, offs, 0)); offs = fold (offs); func_params = tree_cons (NULL_TREE, convert (objc_object_type, rhs), tree_cons (NULL_TREE, convert (objc_object_type, outervar), tree_cons (NULL_TREE, offs, NULL_TREE))); assemble_external (func); return build_function_call (input_location, func, func_params); } static tree objc_build_global_assignment (tree lhs, tree rhs) { tree func_params = tree_cons (NULL_TREE, convert (objc_object_type, rhs), tree_cons (NULL_TREE, convert (build_pointer_type (objc_object_type), build_unary_op (input_location, ADDR_EXPR, lhs, 0)), NULL_TREE)); assemble_external (objc_assign_global_decl); return build_function_call (input_location, objc_assign_global_decl, func_params); } static tree objc_build_strong_cast_assignment (tree lhs, tree rhs) { tree func_params = tree_cons (NULL_TREE, convert (objc_object_type, rhs), tree_cons (NULL_TREE, convert (build_pointer_type (objc_object_type), build_unary_op (input_location, ADDR_EXPR, lhs, 0)), NULL_TREE)); assemble_external (objc_assign_strong_cast_decl); return build_function_call (input_location, objc_assign_strong_cast_decl, func_params); } static int objc_is_gcable_p (tree expr) { return (TREE_CODE (expr) == COMPONENT_REF ? objc_is_gcable_p (TREE_OPERAND (expr, 1)) : TREE_CODE (expr) == ARRAY_REF ? (objc_is_gcable_p (TREE_TYPE (expr)) || objc_is_gcable_p (TREE_OPERAND (expr, 0))) : TREE_CODE (expr) == ARRAY_TYPE ? objc_is_gcable_p (TREE_TYPE (expr)) : TYPE_P (expr) ? objc_is_gcable_type (expr, 1) : (objc_is_gcable_p (TREE_TYPE (expr)) || (DECL_P (expr) && lookup_attribute ("objc_gc", DECL_ATTRIBUTES (expr))))); } static int objc_is_ivar_reference_p (tree expr) { return (TREE_CODE (expr) == ARRAY_REF ? objc_is_ivar_reference_p (TREE_OPERAND (expr, 0)) : TREE_CODE (expr) == COMPONENT_REF ? TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL : 0); } static int objc_is_global_reference_p (tree expr) { return (TREE_CODE (expr) == INDIRECT_REF || TREE_CODE (expr) == PLUS_EXPR ? objc_is_global_reference_p (TREE_OPERAND (expr, 0)) : DECL_P (expr) ? (DECL_FILE_SCOPE_P (expr) || TREE_STATIC (expr)) : 0); } tree objc_generate_write_barrier (tree lhs, enum tree_code modifycode, tree rhs) { tree result = NULL_TREE, outer; int strong_cast_p = 0, outer_gc_p = 0, indirect_p = 0; /* This function is currently only used with the next runtime with garbage collection enabled (-fobjc-gc). */ gcc_assert (flag_next_runtime); /* See if we have any lhs casts, and strip them out. NB: The lvalue casts will have been transformed to the form '*(type *)&expr'. */ if (TREE_CODE (lhs) == INDIRECT_REF) { outer = TREE_OPERAND (lhs, 0); while (!strong_cast_p && (CONVERT_EXPR_P (outer) || TREE_CODE (outer) == NON_LVALUE_EXPR)) { tree lhstype = TREE_TYPE (outer); /* Descend down the cast chain, and record the first objc_gc attribute found. */ if (POINTER_TYPE_P (lhstype)) { tree attr = lookup_attribute ("objc_gc", TYPE_ATTRIBUTES (TREE_TYPE (lhstype))); if (attr) strong_cast_p = 1; } outer = TREE_OPERAND (outer, 0); } } /* If we have a __strong cast, it trumps all else. */ if (strong_cast_p) { if (modifycode != NOP_EXPR) goto invalid_pointer_arithmetic; if (warn_assign_intercept) warning (0, "strong-cast assignment has been intercepted"); result = objc_build_strong_cast_assignment (lhs, rhs); goto exit_point; } /* the lhs must be of a suitable type, regardless of its underlying structure. */ if (!objc_is_gcable_p (lhs)) goto exit_point; outer = lhs; while (outer && (TREE_CODE (outer) == COMPONENT_REF || TREE_CODE (outer) == ARRAY_REF)) outer = TREE_OPERAND (outer, 0); if (TREE_CODE (outer) == INDIRECT_REF) { outer = TREE_OPERAND (outer, 0); indirect_p = 1; } outer_gc_p = objc_is_gcable_p (outer); /* Handle ivar assignments. */ if (objc_is_ivar_reference_p (lhs)) { /* if the struct to the left of the ivar is not an Objective-C object (__strong doesn't cut it here), the best we can do here is suggest a cast. */ if (!objc_is_gcable_type (TREE_TYPE (outer), 0)) { /* We may still be able to use the global write barrier... */ if (!indirect_p && objc_is_global_reference_p (outer)) goto global_reference; suggest_cast: if (modifycode == NOP_EXPR) { if (warn_assign_intercept) warning (0, "strong-cast may possibly be needed"); } goto exit_point; } if (modifycode != NOP_EXPR) goto invalid_pointer_arithmetic; if (warn_assign_intercept) warning (0, "instance variable assignment has been intercepted"); result = objc_build_ivar_assignment (outer, lhs, rhs); goto exit_point; } /* Likewise, intercept assignment to global/static variables if their type is GC-marked. */ if (objc_is_global_reference_p (outer)) { if (indirect_p) goto suggest_cast; global_reference: if (modifycode != NOP_EXPR) { invalid_pointer_arithmetic: if (outer_gc_p) warning (0, "pointer arithmetic for garbage-collected objects not allowed"); goto exit_point; } if (warn_assign_intercept) warning (0, "global/static variable assignment has been intercepted"); result = objc_build_global_assignment (lhs, rhs); } /* In all other cases, fall back to the normal mechanism. */ exit_point: return result; } struct GTY(()) interface_tuple { tree id; tree class_name; }; static GTY ((param_is (struct interface_tuple))) htab_t interface_htab; static hashval_t hash_interface (const void *p) { const struct interface_tuple *d = (const struct interface_tuple *) p; return IDENTIFIER_HASH_VALUE (d->id); } static int eq_interface (const void *p1, const void *p2) { const struct interface_tuple *d = (const struct interface_tuple *) p1; return d->id == p2; } static tree lookup_interface (tree ident) { #ifdef OBJCPLUS if (ident && TREE_CODE (ident) == TYPE_DECL) ident = DECL_NAME (ident); #endif if (ident == NULL_TREE || TREE_CODE (ident) != IDENTIFIER_NODE) return NULL_TREE; { struct interface_tuple **slot; tree i = NULL_TREE; if (interface_htab) { slot = (struct interface_tuple **) htab_find_slot_with_hash (interface_htab, ident, IDENTIFIER_HASH_VALUE (ident), NO_INSERT); if (slot && *slot) i = (*slot)->class_name; } return i; } } /* Implement @defs () within struct bodies. */ tree objc_get_class_ivars (tree class_name) { tree interface = lookup_interface (class_name); if (interface) return get_class_ivars (interface, true); error ("cannot find interface declaration for %qE", class_name); return error_mark_node; } /* Called when checking the variables in a struct. If we are not doing the ivars list inside an @interface context, then returns fieldlist unchanged. Else, returns the list of class ivars. */ tree objc_get_interface_ivars (tree fieldlist) { if (!objc_collecting_ivars || !objc_interface_context || TREE_CODE (objc_interface_context) != CLASS_INTERFACE_TYPE || CLASS_SUPER_NAME (objc_interface_context) == NULL_TREE) return fieldlist; return get_class_ivars (objc_interface_context, true); } /* Used by: build_private_template, continue_class, and for @defs constructs. */ static tree get_class_ivars (tree interface, bool inherited) { tree ivar_chain = copy_list (CLASS_RAW_IVARS (interface)); /* Both CLASS_RAW_IVARS and CLASS_IVARS contain a list of ivars declared by the current class (i.e., they do not include super-class ivars). However, the CLASS_IVARS list will be side-effected by a call to finish_struct(), which will fill in field offsets. */ if (!CLASS_IVARS (interface)) CLASS_IVARS (interface) = ivar_chain; if (!inherited) return ivar_chain; while (CLASS_SUPER_NAME (interface)) { /* Prepend super-class ivars. */ interface = lookup_interface (CLASS_SUPER_NAME (interface)); ivar_chain = chainon (copy_list (CLASS_RAW_IVARS (interface)), ivar_chain); } return ivar_chain; } /* Exception handling constructs. We begin by having the parser do most of the work and passing us blocks. What we do next depends on whether we're doing "native" exception handling or legacy Darwin setjmp exceptions. We abstract all of this in a handful of appropriately named routines. */ /* Stack of open try blocks. */ struct objc_try_context { struct objc_try_context *outer; /* Statements (or statement lists) as processed by the parser. */ tree try_body; tree finally_body; /* Some file position locations. */ location_t try_locus; location_t end_try_locus; location_t end_catch_locus; location_t finally_locus; location_t end_finally_locus; /* A STATEMENT_LIST of CATCH_EXPRs, appropriate for sticking into op1 of a TRY_CATCH_EXPR. Even when doing Darwin setjmp. */ tree catch_list; /* The CATCH_EXPR of an open @catch clause. */ tree current_catch; /* The VAR_DECL holding the Darwin equivalent of __builtin_eh_pointer. */ tree caught_decl; tree stack_decl; tree rethrow_decl; }; static struct objc_try_context *cur_try_context; static GTY(()) tree objc_eh_personality_decl; /* This hook, called via lang_eh_runtime_type, generates a runtime object that represents TYPE. For Objective-C, this is just the class name. */ /* ??? Isn't there a class object or some such? Is it easy to get? */ #ifndef OBJCPLUS tree objc_eh_runtime_type (tree type) { /* Use 'ErrorMarkNode' as class name when error_mark_node is found to prevent an ICE. Note that we know that the compiler will terminate with an error and this 'ErrorMarkNode' class name will never be actually used. */ if (type == error_mark_node) return add_objc_string (get_identifier ("ErrorMarkNode"), class_names); else return add_objc_string (OBJC_TYPE_NAME (TREE_TYPE (type)), class_names); } tree objc_eh_personality (void) { if (!flag_objc_sjlj_exceptions && !objc_eh_personality_decl) objc_eh_personality_decl = build_personality_function (flag_next_runtime ? "objc" : "gnu_objc"); return objc_eh_personality_decl; } #endif void objc_maybe_warn_exceptions (location_t loc) { /* -fobjc-exceptions is required to enable Objective-C exceptions. For example, on Darwin, ObjC exceptions require a sufficiently recent version of the runtime, so the user must ask for them explicitly. On other platforms, at the moment -fobjc-exceptions triggers -fexceptions which again is required for exceptions to work. */ if (!flag_objc_exceptions) { /* Warn only once per compilation unit. */ static bool warned = false; if (!warned) { error_at (loc, "%<-fobjc-exceptions%> is required to enable Objective-C exception syntax"); warned = true; } } } /* Build __builtin_eh_pointer, or the moral equivalent. In the case of Darwin, we'll arrange for it to be initialized (and associated with a binding) later. */ static tree objc_build_exc_ptr (void) { if (flag_objc_sjlj_exceptions) { tree var = cur_try_context->caught_decl; if (!var) { var = objc_create_temporary_var (objc_object_type, NULL); cur_try_context->caught_decl = var; } return var; } else { tree t; t = built_in_decls[BUILT_IN_EH_POINTER]; t = build_call_expr (t, 1, integer_zero_node); return fold_convert (objc_object_type, t); } } /* Build "objc_exception_try_exit(&_stack)". */ static tree next_sjlj_build_try_exit (void) { tree t; t = build_fold_addr_expr_loc (input_location, cur_try_context->stack_decl); t = tree_cons (NULL, t, NULL); t = build_function_call (input_location, objc_exception_try_exit_decl, t); return t; } /* Build objc_exception_try_enter (&_stack); if (_setjmp(&_stack.buf)) ; else ; Return the COND_EXPR. Note that the THEN and ELSE fields are left empty, ready for the caller to fill them in. */ static tree next_sjlj_build_enter_and_setjmp (void) { tree t, enter, sj, cond; t = build_fold_addr_expr_loc (input_location, cur_try_context->stack_decl); t = tree_cons (NULL, t, NULL); enter = build_function_call (input_location, objc_exception_try_enter_decl, t); t = objc_build_component_ref (cur_try_context->stack_decl, get_identifier ("buf")); t = build_fold_addr_expr_loc (input_location, t); #ifdef OBJCPLUS /* Convert _setjmp argument to type that is expected. */ if (prototype_p (TREE_TYPE (objc_setjmp_decl))) t = convert (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (objc_setjmp_decl))), t); else t = convert (ptr_type_node, t); #else t = convert (ptr_type_node, t); #endif t = tree_cons (NULL, t, NULL); sj = build_function_call (input_location, objc_setjmp_decl, t); cond = build2 (COMPOUND_EXPR, TREE_TYPE (sj), enter, sj); cond = c_common_truthvalue_conversion (input_location, cond); return build3 (COND_EXPR, void_type_node, cond, NULL, NULL); } /* Build: DECL = objc_exception_extract(&_stack); */ static tree next_sjlj_build_exc_extract (tree decl) { tree t; t = build_fold_addr_expr_loc (input_location, cur_try_context->stack_decl); t = tree_cons (NULL, t, NULL); t = build_function_call (input_location, objc_exception_extract_decl, t); t = convert (TREE_TYPE (decl), t); t = build2 (MODIFY_EXPR, void_type_node, decl, t); return t; } /* Build if (objc_exception_match(obj_get_class(TYPE), _caught) BODY else if (...) ... else { _rethrow = _caught; objc_exception_try_exit(&_stack); } from the sequence of CATCH_EXPRs in the current try context. */ static tree next_sjlj_build_catch_list (void) { tree_stmt_iterator i = tsi_start (cur_try_context->catch_list); tree catch_seq, t; tree *last = &catch_seq; bool saw_id = false; for (; !tsi_end_p (i); tsi_next (&i)) { tree stmt = tsi_stmt (i); tree type = CATCH_TYPES (stmt); tree body = CATCH_BODY (stmt); if (type == NULL) { *last = body; saw_id = true; break; } else { tree args, cond; if (type == error_mark_node) cond = error_mark_node; else { args = tree_cons (NULL, cur_try_context->caught_decl, NULL); t = objc_get_class_reference (OBJC_TYPE_NAME (TREE_TYPE (type))); args = tree_cons (NULL, t, args); t = build_function_call (input_location, objc_exception_match_decl, args); cond = c_common_truthvalue_conversion (input_location, t); } t = build3 (COND_EXPR, void_type_node, cond, body, NULL); SET_EXPR_LOCATION (t, EXPR_LOCATION (stmt)); *last = t; last = &COND_EXPR_ELSE (t); } } if (!saw_id) { t = build2 (MODIFY_EXPR, void_type_node, cur_try_context->rethrow_decl, cur_try_context->caught_decl); SET_EXPR_LOCATION (t, cur_try_context->end_catch_locus); append_to_statement_list (t, last); t = next_sjlj_build_try_exit (); SET_EXPR_LOCATION (t, cur_try_context->end_catch_locus); append_to_statement_list (t, last); } return catch_seq; } /* Build a complete @try-@catch-@finally block for legacy Darwin setjmp exception handling. We aim to build: { struct _objc_exception_data _stack; id _rethrow = 0; try { objc_exception_try_enter (&_stack); if (_setjmp(&_stack.buf)) { id _caught = objc_exception_extract(&_stack); objc_exception_try_enter (&_stack); if (_setjmp(&_stack.buf)) _rethrow = objc_exception_extract(&_stack); else CATCH-LIST } else TRY-BLOCK } finally { if (!_rethrow) objc_exception_try_exit(&_stack); FINALLY-BLOCK if (_rethrow) objc_exception_throw(_rethrow); } } If CATCH-LIST is empty, we can omit all of the block containing "_caught" except for the setting of _rethrow. Note the use of a real TRY_FINALLY_EXPR here, which is not involved in EH per-se, but handles goto and other exits from the block. */ static tree next_sjlj_build_try_catch_finally (void) { tree rethrow_decl, stack_decl, t; tree catch_seq, try_fin, bind; /* Create the declarations involved. */ t = xref_tag (RECORD_TYPE, get_identifier (UTAG_EXCDATA)); stack_decl = objc_create_temporary_var (t, NULL); cur_try_context->stack_decl = stack_decl; rethrow_decl = objc_create_temporary_var (objc_object_type, NULL); cur_try_context->rethrow_decl = rethrow_decl; TREE_CHAIN (rethrow_decl) = stack_decl; /* Build the outermost variable binding level. */ bind = build3 (BIND_EXPR, void_type_node, rethrow_decl, NULL, NULL); SET_EXPR_LOCATION (bind, cur_try_context->try_locus); TREE_SIDE_EFFECTS (bind) = 1; /* Initialize rethrow_decl. */ t = build2 (MODIFY_EXPR, void_type_node, rethrow_decl, convert (objc_object_type, null_pointer_node)); SET_EXPR_LOCATION (t, cur_try_context->try_locus); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); /* Build the outermost TRY_FINALLY_EXPR. */ try_fin = build2 (TRY_FINALLY_EXPR, void_type_node, NULL, NULL); SET_EXPR_LOCATION (try_fin, cur_try_context->try_locus); TREE_SIDE_EFFECTS (try_fin) = 1; append_to_statement_list (try_fin, &BIND_EXPR_BODY (bind)); /* Create the complete catch sequence. */ if (cur_try_context->catch_list) { tree caught_decl = objc_build_exc_ptr (); catch_seq = build_stmt (input_location, BIND_EXPR, caught_decl, NULL, NULL); TREE_SIDE_EFFECTS (catch_seq) = 1; t = next_sjlj_build_exc_extract (caught_decl); append_to_statement_list (t, &BIND_EXPR_BODY (catch_seq)); t = next_sjlj_build_enter_and_setjmp (); COND_EXPR_THEN (t) = next_sjlj_build_exc_extract (rethrow_decl); COND_EXPR_ELSE (t) = next_sjlj_build_catch_list (); append_to_statement_list (t, &BIND_EXPR_BODY (catch_seq)); } else catch_seq = next_sjlj_build_exc_extract (rethrow_decl); SET_EXPR_LOCATION (catch_seq, cur_try_context->end_try_locus); /* Build the main register-and-try if statement. */ t = next_sjlj_build_enter_and_setjmp (); SET_EXPR_LOCATION (t, cur_try_context->try_locus); COND_EXPR_THEN (t) = catch_seq; COND_EXPR_ELSE (t) = cur_try_context->try_body; TREE_OPERAND (try_fin, 0) = t; /* Build the complete FINALLY statement list. */ t = next_sjlj_build_try_exit (); t = build_stmt (input_location, COND_EXPR, c_common_truthvalue_conversion (input_location, rethrow_decl), NULL, t); SET_EXPR_LOCATION (t, cur_try_context->finally_locus); append_to_statement_list (t, &TREE_OPERAND (try_fin, 1)); append_to_statement_list (cur_try_context->finally_body, &TREE_OPERAND (try_fin, 1)); t = tree_cons (NULL, rethrow_decl, NULL); t = build_function_call (input_location, objc_exception_throw_decl, t); t = build_stmt (input_location, COND_EXPR, c_common_truthvalue_conversion (input_location, rethrow_decl), t, NULL); SET_EXPR_LOCATION (t, cur_try_context->end_finally_locus); append_to_statement_list (t, &TREE_OPERAND (try_fin, 1)); return bind; } /* Called just after parsing the @try and its associated BODY. We now must prepare for the tricky bits -- handling the catches and finally. */ void objc_begin_try_stmt (location_t try_locus, tree body) { struct objc_try_context *c = XCNEW (struct objc_try_context); c->outer = cur_try_context; c->try_body = body; c->try_locus = try_locus; c->end_try_locus = input_location; cur_try_context = c; /* Collect the list of local variables. We'll mark them as volatile at the end of compilation of this function to prevent them being clobbered by setjmp/longjmp. */ if (flag_objc_sjlj_exceptions) objc_mark_locals_volatile (NULL); } /* Called just after parsing "@catch (parm)". Open a binding level, enter DECL into the binding level, and initialize it. Leave the binding level open while the body of the compound statement is parsed. If DECL is NULL_TREE, then we are compiling "@catch(...)" which we compile as "@catch(id tmp_variable)". */ void objc_begin_catch_clause (tree decl) { tree compound, type, t; /* Begin a new scope that the entire catch clause will live in. */ compound = c_begin_compound_stmt (true); /* Create the appropriate declaration for the argument. */ if (decl == error_mark_node) type = error_mark_node; else { if (decl == NULL_TREE) { /* If @catch(...) was specified, create a temporary variable of type 'id' and use it. */ decl = objc_create_temporary_var (objc_object_type, "__objc_generic_catch_var"); DECL_SOURCE_LOCATION (decl) = input_location; } else { /* The parser passed in a PARM_DECL, but what we really want is a VAR_DECL. */ decl = build_decl (input_location, VAR_DECL, DECL_NAME (decl), TREE_TYPE (decl)); } lang_hooks.decls.pushdecl (decl); /* Mark the declaration as used so you never any warnings whether you use the exception argument or not. TODO: Implement a -Wunused-exception-parameter flag, which would cause warnings if exception parameter is not used. */ TREE_USED (decl) = 1; DECL_READ_P (decl) = 1; type = TREE_TYPE (decl); } /* Verify that the type of the catch is valid. It must be a pointer to an Objective-C class, or "id" (which is catch-all). */ if (type == error_mark_node) { ;/* Just keep going. */ } else if (!objc_type_valid_for_messaging (type, false)) { error ("@catch parameter is not a known Objective-C class type"); type = error_mark_node; } else if (TYPE_HAS_OBJC_INFO (TREE_TYPE (type)) && TYPE_OBJC_PROTOCOL_LIST (TREE_TYPE (type))) { error ("@catch parameter can not be protocol-qualified"); type = error_mark_node; } else if (objc_is_object_id (TREE_TYPE (type))) type = NULL; else { /* If 'type' was built using typedefs, we need to get rid of them and get a simple pointer to the class. */ bool is_typedef = false; tree x = TYPE_MAIN_VARIANT (type); /* Skip from the pointer to the pointee. */ if (TREE_CODE (x) == POINTER_TYPE) x = TREE_TYPE (x); /* Traverse typedef aliases */ while (TREE_CODE (x) == RECORD_TYPE && OBJC_TYPE_NAME (x) && TREE_CODE (OBJC_TYPE_NAME (x)) == TYPE_DECL && DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (x))) { is_typedef = true; x = DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (x)); } /* If it was a typedef, build a pointer to the final, original class. */ if (is_typedef) type = build_pointer_type (x); if (cur_try_context->catch_list) { /* Examine previous @catch clauses and see if we've already caught the type in question. */ tree_stmt_iterator i = tsi_start (cur_try_context->catch_list); for (; !tsi_end_p (i); tsi_next (&i)) { tree stmt = tsi_stmt (i); t = CATCH_TYPES (stmt); if (t == error_mark_node) continue; if (!t || DERIVED_FROM_P (TREE_TYPE (t), TREE_TYPE (type))) { warning (0, "exception of type %<%T%> will be caught", TREE_TYPE (type)); warning_at (EXPR_LOCATION (stmt), 0, " by earlier handler for %<%T%>", TREE_TYPE (t ? t : objc_object_type)); break; } } } } /* Record the data for the catch in the try context so that we can finalize it later. */ t = build_stmt (input_location, CATCH_EXPR, type, compound); cur_try_context->current_catch = t; /* Initialize the decl from the EXC_PTR_EXPR we get from the runtime. */ t = objc_build_exc_ptr (); t = convert (TREE_TYPE (decl), t); t = build2 (MODIFY_EXPR, void_type_node, decl, t); add_stmt (t); } /* Called just after parsing the closing brace of a @catch clause. Close the open binding level, and record a CATCH_EXPR for it. */ void objc_finish_catch_clause (void) { tree c = cur_try_context->current_catch; cur_try_context->current_catch = NULL; cur_try_context->end_catch_locus = input_location; CATCH_BODY (c) = c_end_compound_stmt (input_location, CATCH_BODY (c), 1); append_to_statement_list (c, &cur_try_context->catch_list); } /* Called after parsing a @finally clause and its associated BODY. Record the body for later placement. */ void objc_build_finally_clause (location_t finally_locus, tree body) { cur_try_context->finally_body = body; cur_try_context->finally_locus = finally_locus; cur_try_context->end_finally_locus = input_location; } /* Called to finalize a @try construct. */ tree objc_finish_try_stmt (void) { struct objc_try_context *c = cur_try_context; tree stmt; if (c->catch_list == NULL && c->finally_body == NULL) error ("%<@try%> without %<@catch%> or %<@finally%>"); /* If we're doing Darwin setjmp exceptions, build the big nasty. */ if (flag_objc_sjlj_exceptions) { bool save = in_late_binary_op; in_late_binary_op = true; if (!cur_try_context->finally_body) { cur_try_context->finally_locus = input_location; cur_try_context->end_finally_locus = input_location; } stmt = next_sjlj_build_try_catch_finally (); in_late_binary_op = save; } else { /* Otherwise, nest the CATCH inside a FINALLY. */ stmt = c->try_body; if (c->catch_list) { stmt = build_stmt (input_location, TRY_CATCH_EXPR, stmt, c->catch_list); SET_EXPR_LOCATION (stmt, cur_try_context->try_locus); } if (c->finally_body) { stmt = build_stmt (input_location, TRY_FINALLY_EXPR, stmt, c->finally_body); SET_EXPR_LOCATION (stmt, cur_try_context->try_locus); } } add_stmt (stmt); cur_try_context = c->outer; free (c); return stmt; } tree objc_build_throw_stmt (location_t loc, tree throw_expr) { tree args; objc_maybe_warn_exceptions (loc); if (throw_expr == NULL) { /* If we're not inside a @catch block, there is no "current exception" to be rethrown. */ if (cur_try_context == NULL || cur_try_context->current_catch == NULL) { error_at (loc, "%<@throw%> (rethrow) used outside of a @catch block"); return error_mark_node; } /* Otherwise the object is still sitting in the EXC_PTR_EXPR value that we get from the runtime. */ throw_expr = objc_build_exc_ptr (); } else if (throw_expr != error_mark_node) { if (!objc_type_valid_for_messaging (TREE_TYPE (throw_expr), true)) { error_at (loc, "%<@throw%> argument is not an object"); return error_mark_node; } } /* A throw is just a call to the runtime throw function with the object as a parameter. */ args = tree_cons (NULL, throw_expr, NULL); return add_stmt (build_function_call (loc, objc_exception_throw_decl, args)); } tree objc_build_synchronized (location_t start_locus, tree object_expr, tree body) { /* object_expr should never be NULL; but in case it is, convert it to error_mark_node. */ if (object_expr == NULL) object_expr = error_mark_node; /* Validate object_expr. If not valid, set it to error_mark_node. */ if (object_expr != error_mark_node) { if (!objc_type_valid_for_messaging (TREE_TYPE (object_expr), true)) { error_at (start_locus, "%<@synchronized%> argument is not an object"); object_expr = error_mark_node; } } if (object_expr == error_mark_node) { /* If we found an error, we simply ignore the '@synchronized'. Compile the body so we can keep going with minimal casualties. */ return add_stmt (body); } else { tree call; tree args; /* objc_sync_enter (object_expr); */ object_expr = save_expr (object_expr); args = tree_cons (NULL, object_expr, NULL); call = build_function_call (input_location, objc_sync_enter_decl, args); SET_EXPR_LOCATION (call, start_locus); add_stmt (call); /* Build "objc_sync_exit (object_expr);" but do not add it yet; it goes inside the @finalize() clause. */ args = tree_cons (NULL, object_expr, NULL); call = build_function_call (input_location, objc_sync_exit_decl, args); SET_EXPR_LOCATION (call, input_location); /* @try { body; } */ objc_begin_try_stmt (start_locus, body); /* @finally { objc_sync_exit (object_expr); } */ objc_build_finally_clause (input_location, call); /* End of try statement. */ return objc_finish_try_stmt (); } } /* Predefine the following data type: struct _objc_exception_data { int buf[OBJC_JBLEN]; void *pointers[4]; }; */ /* The following yuckiness should prevent users from having to #include in their code... */ /* Define to a harmless positive value so the below code doesn't die. */ #ifndef OBJC_JBLEN #define OBJC_JBLEN 18 #endif static void build_next_objc_exception_stuff (void) { tree decls, temp_type, *chain = NULL; objc_exception_data_template = objc_start_struct (get_identifier (UTAG_EXCDATA)); /* int buf[OBJC_JBLEN]; */ temp_type = build_sized_array_type (integer_type_node, OBJC_JBLEN); decls = add_field_decl (temp_type, "buf", &chain); /* void *pointers[4]; */ temp_type = build_sized_array_type (ptr_type_node, 4); add_field_decl (temp_type, "pointers", &chain); objc_finish_struct (objc_exception_data_template, decls); /* int _setjmp(...); */ /* If the user includes , this shall be superseded by 'int _setjmp(jmp_buf);' */ temp_type = build_varargs_function_type_list (integer_type_node, NULL_TREE); objc_setjmp_decl = add_builtin_function (TAG_SETJMP, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); /* id objc_exception_extract(struct _objc_exception_data *); */ temp_type = build_function_type_list (objc_object_type, build_pointer_type (objc_exception_data_template), NULL_TREE); objc_exception_extract_decl = add_builtin_function (TAG_EXCEPTIONEXTRACT, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); /* void objc_exception_try_enter(struct _objc_exception_data *); */ /* void objc_exception_try_exit(struct _objc_exception_data *); */ temp_type = build_function_type_list (void_type_node, build_pointer_type (objc_exception_data_template), NULL_TREE); objc_exception_try_enter_decl = add_builtin_function (TAG_EXCEPTIONTRYENTER, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); objc_exception_try_exit_decl = add_builtin_function (TAG_EXCEPTIONTRYEXIT, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); /* int objc_exception_match(id, id); */ temp_type = build_function_type_list (integer_type_node, objc_object_type, objc_object_type, NULL_TREE); objc_exception_match_decl = add_builtin_function (TAG_EXCEPTIONMATCH, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); /* id objc_assign_ivar (id, id, unsigned int); */ /* id objc_assign_ivar_Fast (id, id, unsigned int) __attribute__ ((hard_coded_address (OFFS_ASSIGNIVAR_FAST))); */ temp_type = build_function_type_list (objc_object_type, objc_object_type, objc_object_type, unsigned_type_node, NULL_TREE); objc_assign_ivar_decl = add_builtin_function (TAG_ASSIGNIVAR, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); #ifdef OFFS_ASSIGNIVAR_FAST objc_assign_ivar_fast_decl = add_builtin_function (TAG_ASSIGNIVAR_FAST, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); DECL_ATTRIBUTES (objc_assign_ivar_fast_decl) = tree_cons (get_identifier ("hard_coded_address"), build_int_cst (NULL_TREE, OFFS_ASSIGNIVAR_FAST), NULL_TREE); #else /* Default to slower ivar method. */ objc_assign_ivar_fast_decl = objc_assign_ivar_decl; #endif /* id objc_assign_global (id, id *); */ /* id objc_assign_strongCast (id, id *); */ temp_type = build_function_type_list (objc_object_type, objc_object_type, build_pointer_type (objc_object_type), NULL_TREE); objc_assign_global_decl = add_builtin_function (TAG_ASSIGNGLOBAL, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); objc_assign_strong_cast_decl = add_builtin_function (TAG_ASSIGNSTRONGCAST, temp_type, 0, NOT_BUILT_IN, NULL, NULL_TREE); } static void build_objc_exception_stuff (void) { tree noreturn_list, nothrow_list, temp_type; noreturn_list = tree_cons (get_identifier ("noreturn"), NULL, NULL); nothrow_list = tree_cons (get_identifier ("nothrow"), NULL, NULL); /* void objc_exception_throw(id) __attribute__((noreturn)); */ /* void objc_sync_enter(id); */ /* void objc_sync_exit(id); */ temp_type = build_function_type_list (void_type_node, objc_object_type, NULL_TREE); objc_exception_throw_decl = add_builtin_function (TAG_EXCEPTIONTHROW, temp_type, 0, NOT_BUILT_IN, NULL, noreturn_list); objc_sync_enter_decl = add_builtin_function (TAG_SYNCENTER, temp_type, 0, NOT_BUILT_IN, NULL, nothrow_list); objc_sync_exit_decl = add_builtin_function (TAG_SYNCEXIT, temp_type, 0, NOT_BUILT_IN, NULL, nothrow_list); } /* Construct a C struct corresponding to ObjC class CLASS, with the same name as the class: struct { struct _objc_class *isa; ... }; */ static void build_private_template (tree klass) { if (!CLASS_STATIC_TEMPLATE (klass)) { tree record = objc_build_struct (klass, get_class_ivars (klass, false), CLASS_SUPER_NAME (klass)); /* Set the TREE_USED bit for this struct, so that stab generator can emit stabs for this struct type. */ if (flag_debug_only_used_symbols && TYPE_STUB_DECL (record)) TREE_USED (TYPE_STUB_DECL (record)) = 1; /* Copy the attributes from the class to the type. */ if (TREE_DEPRECATED (klass)) TREE_DEPRECATED (record) = 1; } } /* Begin code generation for protocols... */ /* struct _objc_protocol { struct _objc_class *isa; char *protocol_name; struct _objc_protocol **protocol_list; struct _objc__method_prototype_list *instance_methods; struct _objc__method_prototype_list *class_methods; }; */ static void build_protocol_template (void) { tree ptype, decls, *chain = NULL; objc_protocol_template = objc_start_struct (get_identifier (UTAG_PROTOCOL)); /* struct _objc_class *isa; */ ptype = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (UTAG_CLASS))); decls = add_field_decl (ptype, "isa", &chain); /* char *protocol_name; */ add_field_decl (string_type_node, "protocol_name", &chain); /* struct _objc_protocol **protocol_list; */ ptype = build_pointer_type (build_pointer_type (objc_protocol_template)); add_field_decl (ptype, "protocol_list", &chain); /* struct _objc__method_prototype_list *instance_methods; */ add_field_decl (objc_method_proto_list_ptr, "instance_methods", &chain); /* struct _objc__method_prototype_list *class_methods; */ add_field_decl (objc_method_proto_list_ptr, "class_methods", &chain); objc_finish_struct (objc_protocol_template, decls); } static tree build_descriptor_table_initializer (tree type, tree entries) { VEC(constructor_elt,gc) *inits = NULL; do { VEC(constructor_elt,gc) *elts = NULL; CONSTRUCTOR_APPEND_ELT (elts, NULL_TREE, build_selector (METHOD_SEL_NAME (entries))); CONSTRUCTOR_APPEND_ELT (elts, NULL_TREE, add_objc_string (METHOD_ENCODING (entries), meth_var_types)); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, objc_build_constructor (type, elts)); entries = DECL_CHAIN (entries); } while (entries); return objc_build_constructor (build_array_type (type, 0), inits); } /* struct objc_method_prototype_list { int count; struct objc_method_prototype { SEL name; char *types; } list[1]; }; */ static tree build_method_prototype_list_template (tree list_type, int size) { tree objc_ivar_list_record; tree array_type, decls, *chain = NULL; /* Generate an unnamed struct definition. */ objc_ivar_list_record = objc_start_struct (NULL_TREE); /* int method_count; */ decls = add_field_decl (integer_type_node, "method_count", &chain); /* struct objc_method method_list[]; */ array_type = build_sized_array_type (list_type, size); add_field_decl (array_type, "method_list", &chain); objc_finish_struct (objc_ivar_list_record, decls); return objc_ivar_list_record; } static tree build_method_prototype_template (void) { tree proto_record; tree decls, *chain = NULL; proto_record = objc_start_struct (get_identifier (UTAG_METHOD_PROTOTYPE)); /* SEL _cmd; */ decls = add_field_decl (objc_selector_type, "_cmd", &chain); /* char *method_types; */ add_field_decl (string_type_node, "method_types", &chain); objc_finish_struct (proto_record, decls); return proto_record; } static tree objc_method_parm_type (tree type) { type = TREE_VALUE (TREE_TYPE (type)); if (TREE_CODE (type) == TYPE_DECL) type = TREE_TYPE (type); return type; } static int objc_encoded_type_size (tree type) { int sz = int_size_in_bytes (type); /* Make all integer and enum types at least as large as an int. */ if (sz > 0 && INTEGRAL_TYPE_P (type)) sz = MAX (sz, int_size_in_bytes (integer_type_node)); /* Treat arrays as pointers, since that's how they're passed in. */ else if (TREE_CODE (type) == ARRAY_TYPE) sz = int_size_in_bytes (ptr_type_node); return sz; } /* Encode a method prototype. The format is described in gcc/doc/objc.texi, section 'Method signatures'. */ static tree encode_method_prototype (tree method_decl) { tree parms; int parm_offset, i; char buf[40]; tree result; /* ONEWAY and BYCOPY, for remote object are the only method qualifiers. */ encode_type_qualifiers (TREE_PURPOSE (TREE_TYPE (method_decl))); /* Encode return type. */ encode_type (objc_method_parm_type (method_decl), obstack_object_size (&util_obstack), OBJC_ENCODE_INLINE_DEFS); /* Stack size. */ /* The first two arguments (self and _cmd) are pointers; account for their size. */ i = int_size_in_bytes (ptr_type_node); parm_offset = 2 * i; for (parms = METHOD_SEL_ARGS (method_decl); parms; parms = DECL_CHAIN (parms)) { tree type = objc_method_parm_type (parms); int sz = objc_encoded_type_size (type); /* If a type size is not known, bail out. */ if (sz < 0) { error_at (DECL_SOURCE_LOCATION (method_decl), "type %qT does not have a known size", type); /* Pretend that the encoding succeeded; the compilation will fail nevertheless. */ goto finish_encoding; } parm_offset += sz; } sprintf (buf, "%d@0:%d", parm_offset, i); obstack_grow (&util_obstack, buf, strlen (buf)); /* Argument types. */ parm_offset = 2 * i; for (parms = METHOD_SEL_ARGS (method_decl); parms; parms = DECL_CHAIN (parms)) { tree type = objc_method_parm_type (parms); /* Process argument qualifiers for user supplied arguments. */ encode_type_qualifiers (TREE_PURPOSE (TREE_TYPE (parms))); /* Type. */ encode_type (type, obstack_object_size (&util_obstack), OBJC_ENCODE_INLINE_DEFS); /* Compute offset. */ sprintf (buf, "%d", parm_offset); parm_offset += objc_encoded_type_size (type); obstack_grow (&util_obstack, buf, strlen (buf)); } finish_encoding: obstack_1grow (&util_obstack, '\0'); result = get_identifier (XOBFINISH (&util_obstack, char *)); obstack_free (&util_obstack, util_firstobj); return result; } static tree generate_descriptor_table (tree type, const char *name, int size, tree list, tree proto) { tree decl; VEC(constructor_elt,gc) *v = NULL; decl = start_var_decl (type, synth_id_with_class_suffix (name, proto)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, size)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, list); finish_var_decl (decl, objc_build_constructor (type, v)); return decl; } static void generate_method_descriptors (tree protocol) { tree initlist, chain, method_list_template; int size; if (!objc_method_prototype_template) objc_method_prototype_template = build_method_prototype_template (); chain = PROTOCOL_CLS_METHODS (protocol); if (chain) { size = list_length (chain); method_list_template = build_method_prototype_list_template (objc_method_prototype_template, size); initlist = build_descriptor_table_initializer (objc_method_prototype_template, chain); UOBJC_CLASS_METHODS_decl = generate_descriptor_table (method_list_template, "_OBJC_PROTOCOL_CLASS_METHODS", size, initlist, protocol); } else UOBJC_CLASS_METHODS_decl = 0; chain = PROTOCOL_NST_METHODS (protocol); if (chain) { size = list_length (chain); method_list_template = build_method_prototype_list_template (objc_method_prototype_template, size); initlist = build_descriptor_table_initializer (objc_method_prototype_template, chain); UOBJC_INSTANCE_METHODS_decl = generate_descriptor_table (method_list_template, "_OBJC_PROTOCOL_INSTANCE_METHODS", size, initlist, protocol); } else UOBJC_INSTANCE_METHODS_decl = 0; } static void generate_protocol_references (tree plist) { tree lproto; /* Forward declare protocols referenced. */ for (lproto = plist; lproto; lproto = TREE_CHAIN (lproto)) { tree proto = TREE_VALUE (lproto); if (TREE_CODE (proto) == PROTOCOL_INTERFACE_TYPE && PROTOCOL_NAME (proto)) { if (! PROTOCOL_FORWARD_DECL (proto)) build_protocol_reference (proto); if (PROTOCOL_LIST (proto)) generate_protocol_references (PROTOCOL_LIST (proto)); } } } /* Generate either '- .cxx_construct' or '- .cxx_destruct' for the current class. */ #ifdef OBJCPLUS static void objc_generate_cxx_ctor_or_dtor (bool dtor) { tree fn, body, compound_stmt, ivar; /* - (id) .cxx_construct { ... return self; } */ /* - (void) .cxx_construct { ... } */ objc_start_method_definition (false /* is_class_method */, objc_build_method_signature (false /* is_class_method */, build_tree_list (NULL_TREE, dtor ? void_type_node : objc_object_type), get_identifier (dtor ? TAG_CXX_DESTRUCT : TAG_CXX_CONSTRUCT), make_node (TREE_LIST), false), NULL); body = begin_function_body (); compound_stmt = begin_compound_stmt (0); ivar = CLASS_IVARS (implementation_template); /* Destroy ivars in reverse order. */ if (dtor) ivar = nreverse (copy_list (ivar)); for (; ivar; ivar = TREE_CHAIN (ivar)) { if (TREE_CODE (ivar) == FIELD_DECL) { tree type = TREE_TYPE (ivar); /* Call the ivar's default constructor or destructor. Do not call the destructor unless a corresponding constructor call has also been made (or is not needed). */ if (MAYBE_CLASS_TYPE_P (type) && (dtor ? (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) && (!TYPE_NEEDS_CONSTRUCTING (type) || TYPE_HAS_DEFAULT_CONSTRUCTOR (type))) : (TYPE_NEEDS_CONSTRUCTING (type) && TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))) finish_expr_stmt (build_special_member_call (build_ivar_reference (DECL_NAME (ivar)), dtor ? complete_dtor_identifier : complete_ctor_identifier, NULL, type, LOOKUP_NORMAL, tf_warning_or_error)); } } /* The constructor returns 'self'. */ if (!dtor) finish_return_stmt (self_decl); finish_compound_stmt (compound_stmt); finish_function_body (body); fn = current_function_decl; finish_function (); objc_finish_method_definition (fn); } /* The following routine will examine the current @interface for any non-POD C++ ivars requiring non-trivial construction and/or destruction, and then synthesize special '- .cxx_construct' and/or '- .cxx_destruct' methods which will run the appropriate construction or destruction code. Note that ivars inherited from super-classes are _not_ considered. */ static void objc_generate_cxx_cdtors (void) { bool need_ctor = false, need_dtor = false; tree ivar; /* Error case, due to possibly an extra @end. */ if (!objc_implementation_context) return; /* We do not want to do this for categories, since they do not have their own ivars. */ if (TREE_CODE (objc_implementation_context) != CLASS_IMPLEMENTATION_TYPE) return; /* First, determine if we even need a constructor and/or destructor. */ for (ivar = CLASS_IVARS (implementation_template); ivar; ivar = TREE_CHAIN (ivar)) { if (TREE_CODE (ivar) == FIELD_DECL) { tree type = TREE_TYPE (ivar); if (MAYBE_CLASS_TYPE_P (type)) { if (TYPE_NEEDS_CONSTRUCTING (type) && TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) /* NB: If a default constructor is not available, we will not be able to initialize this ivar; the add_instance_variable() routine will already have warned about this. */ need_ctor = true; if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) && (!TYPE_NEEDS_CONSTRUCTING (type) || TYPE_HAS_DEFAULT_CONSTRUCTOR (type))) /* NB: If a default constructor is not available, we will not call the destructor either, for symmetry. */ need_dtor = true; } } } /* Generate '- .cxx_construct' if needed. */ if (need_ctor) objc_generate_cxx_ctor_or_dtor (false); /* Generate '- .cxx_destruct' if needed. */ if (need_dtor) objc_generate_cxx_ctor_or_dtor (true); /* The 'imp_list' variable points at an imp_entry record for the current @implementation. Record the existence of '- .cxx_construct' and/or '- .cxx_destruct' methods therein; it will be included in the metadata for the class. */ if (flag_next_runtime) imp_list->has_cxx_cdtors = (need_ctor || need_dtor); } #endif /* For each protocol which was referenced either from a @protocol() expression, or because a class/category implements it (then a pointer to the protocol is stored in the struct describing the class/category), we create a statically allocated instance of the Protocol class. The code is written in such a way as to generate as few Protocol objects as possible; we generate a unique Protocol instance for each protocol, and we don't generate a Protocol instance if the protocol is never referenced (either from a @protocol() or from a class/category implementation). These statically allocated objects can be referred to via the static (that is, private to this module) symbols _OBJC_PROTOCOL_n. The statically allocated Protocol objects that we generate here need to be fixed up at runtime in order to be used: the 'isa' pointer of the objects need to be set up to point to the 'Protocol' class, as known at runtime. The NeXT runtime fixes up all protocols at program startup time, before main() is entered. It uses a low-level trick to look up all those symbols, then loops on them and fixes them up. The GNU runtime as well fixes up all protocols before user code from the module is executed; it requires pointers to those symbols to be put in the objc_symtab (which is then passed as argument to the function __objc_exec_class() which the compiler sets up to be executed automatically when the module is loaded); setup of those Protocol objects happen in two ways in the GNU runtime: all Protocol objects referred to by a class or category implementation are fixed up when the class/category is loaded; all Protocol objects referred to by a @protocol() expression are added by the compiler to the list of statically allocated instances to fixup (the same list holding the statically allocated constant string objects). Because, as explained above, the compiler generates as few Protocol objects as possible, some Protocol object might end up being referenced multiple times when compiled with the GNU runtime, and end up being fixed up multiple times at runtime initialization. But that doesn't hurt, it's just a little inefficient. */ static void generate_protocols (void) { tree p, encoding; tree decl; tree initlist, protocol_name_expr, refs_decl, refs_expr; /* If a protocol was directly referenced, pull in indirect references. */ for (p = protocol_chain; p; p = TREE_CHAIN (p)) if (PROTOCOL_FORWARD_DECL (p) && PROTOCOL_LIST (p)) generate_protocol_references (PROTOCOL_LIST (p)); for (p = protocol_chain; p; p = TREE_CHAIN (p)) { tree nst_methods = PROTOCOL_NST_METHODS (p); tree cls_methods = PROTOCOL_CLS_METHODS (p); /* If protocol wasn't referenced, don't generate any code. */ decl = PROTOCOL_FORWARD_DECL (p); if (!decl) continue; /* Make sure we link in the Protocol class. */ add_class_reference (get_identifier (PROTOCOL_OBJECT_CLASS_NAME)); while (nst_methods) { if (! METHOD_ENCODING (nst_methods)) { encoding = encode_method_prototype (nst_methods); METHOD_ENCODING (nst_methods) = encoding; } nst_methods = DECL_CHAIN (nst_methods); } while (cls_methods) { if (! METHOD_ENCODING (cls_methods)) { encoding = encode_method_prototype (cls_methods); METHOD_ENCODING (cls_methods) = encoding; } cls_methods = DECL_CHAIN (cls_methods); } generate_method_descriptors (p); if (PROTOCOL_LIST (p)) refs_decl = generate_protocol_list (p); else refs_decl = 0; /* static struct objc_protocol _OBJC_PROTOCOL_; */ protocol_name_expr = add_objc_string (PROTOCOL_NAME (p), class_names); if (refs_decl) refs_expr = convert (build_pointer_type (build_pointer_type (objc_protocol_template)), build_unary_op (input_location, ADDR_EXPR, refs_decl, 0)); else refs_expr = build_int_cst (NULL_TREE, 0); /* UOBJC_INSTANCE_METHODS_decl/UOBJC_CLASS_METHODS_decl are set by generate_method_descriptors, which is called above. */ initlist = build_protocol_initializer (TREE_TYPE (decl), protocol_name_expr, refs_expr, UOBJC_INSTANCE_METHODS_decl, UOBJC_CLASS_METHODS_decl); finish_var_decl (decl, initlist); } } static tree build_protocol_initializer (tree type, tree protocol_name, tree protocol_list, tree instance_methods, tree class_methods) { tree expr; tree cast_type = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (UTAG_CLASS))); VEC(constructor_elt,gc) *inits = NULL; /* Filling the "isa" in with one allows the runtime system to detect that the version change...should remove before final release. */ expr = build_int_cst (cast_type, PROTOCOL_VERSION); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, expr); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, protocol_name); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, protocol_list); if (!instance_methods) CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (objc_method_proto_list_ptr, build_unary_op (input_location, ADDR_EXPR, instance_methods, 0)); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, expr); } if (!class_methods) CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (objc_method_proto_list_ptr, build_unary_op (input_location, ADDR_EXPR, class_methods, 0)); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, expr); } return objc_build_constructor (type, inits); } /* struct _objc_category { char *category_name; char *class_name; struct _objc_method_list *instance_methods; struct _objc_method_list *class_methods; struct _objc_protocol_list *protocols; }; */ static void build_category_template (void) { tree ptype, decls, *chain = NULL; objc_category_template = objc_start_struct (get_identifier (UTAG_CATEGORY)); /* char *category_name; */ decls = add_field_decl (string_type_node, "category_name", &chain); /* char *class_name; */ add_field_decl (string_type_node, "class_name", &chain); /* struct _objc_method_list *instance_methods; */ add_field_decl (objc_method_list_ptr, "instance_methods", &chain); /* struct _objc_method_list *class_methods; */ add_field_decl (objc_method_list_ptr, "class_methods", &chain); /* struct _objc_protocol **protocol_list; */ ptype = build_pointer_type (build_pointer_type (objc_protocol_template)); add_field_decl (ptype, "protocol_list", &chain); objc_finish_struct (objc_category_template, decls); } /* struct _objc_selector { SEL sel_id; char *sel_type; }; */ static void build_selector_template (void) { tree decls, *chain = NULL; objc_selector_template = objc_start_struct (get_identifier (UTAG_SELECTOR)); /* SEL sel_id; */ decls = add_field_decl (objc_selector_type, "sel_id", &chain); /* char *sel_type; */ add_field_decl (string_type_node, "sel_type", &chain); objc_finish_struct (objc_selector_template, decls); } /* struct _objc_class { struct _objc_class *isa; struct _objc_class *super_class; char *name; long version; long info; long instance_size; struct _objc_ivar_list *ivars; struct _objc_method_list *methods; #ifdef __NEXT_RUNTIME__ struct objc_cache *cache; #else struct sarray *dtable; struct _objc_class *subclass_list; struct _objc_class *sibling_class; #endif struct _objc_protocol_list *protocols; #ifdef __NEXT_RUNTIME__ void *sel_id; #endif void *gc_object_type; }; */ /* NB: The 'sel_id' and 'gc_object_type' fields are not being used by the NeXT/Apple runtime; still, the compiler must generate them to maintain backward binary compatibility (and to allow for future expansion). */ static void build_class_template (void) { tree ptype, decls, *chain = NULL; objc_class_template = objc_start_struct (get_identifier (UTAG_CLASS)); /* struct _objc_class *isa; */ decls = add_field_decl (build_pointer_type (objc_class_template), "isa", &chain); /* struct _objc_class *super_class; */ add_field_decl (build_pointer_type (objc_class_template), "super_class", &chain); /* char *name; */ add_field_decl (string_type_node, "name", &chain); /* long version; */ add_field_decl (long_integer_type_node, "version", &chain); /* long info; */ add_field_decl (long_integer_type_node, "info", &chain); /* long instance_size; */ add_field_decl (long_integer_type_node, "instance_size", &chain); /* struct _objc_ivar_list *ivars; */ add_field_decl (objc_ivar_list_ptr,"ivars", &chain); /* struct _objc_method_list *methods; */ add_field_decl (objc_method_list_ptr, "methods", &chain); if (flag_next_runtime) { /* struct objc_cache *cache; */ ptype = build_pointer_type (xref_tag (RECORD_TYPE, get_identifier ("objc_cache"))); add_field_decl (ptype, "cache", &chain); } else { /* struct sarray *dtable; */ ptype = build_pointer_type(xref_tag (RECORD_TYPE, get_identifier ("sarray"))); add_field_decl (ptype, "dtable", &chain); /* struct objc_class *subclass_list; */ ptype = build_pointer_type (objc_class_template); add_field_decl (ptype, "subclass_list", &chain); /* struct objc_class *sibling_class; */ ptype = build_pointer_type (objc_class_template); add_field_decl (ptype, "sibling_class", &chain); } /* struct _objc_protocol **protocol_list; */ ptype = build_pointer_type (build_pointer_type (xref_tag (RECORD_TYPE, get_identifier (UTAG_PROTOCOL)))); add_field_decl (ptype, "protocol_list", &chain); if (flag_next_runtime) { /* void *sel_id; */ add_field_decl (build_pointer_type (void_type_node), "sel_id", &chain); } /* void *gc_object_type; */ add_field_decl (build_pointer_type (void_type_node), "gc_object_type", &chain); objc_finish_struct (objc_class_template, decls); } /* Generate appropriate forward declarations for an implementation. */ static void synth_forward_declarations (void) { tree an_id; /* static struct objc_class _OBJC_CLASS_; */ UOBJC_CLASS_decl = build_metadata_decl ("_OBJC_CLASS", objc_class_template); /* static struct objc_class _OBJC_METACLASS_; */ UOBJC_METACLASS_decl = build_metadata_decl ("_OBJC_METACLASS", objc_class_template); /* Pre-build the following entities - for speed/convenience. */ an_id = get_identifier ("super_class"); ucls_super_ref = objc_build_component_ref (UOBJC_CLASS_decl, an_id); uucls_super_ref = objc_build_component_ref (UOBJC_METACLASS_decl, an_id); } static void error_with_ivar (const char *message, tree decl) { error_at (DECL_SOURCE_LOCATION (decl), "%s %qs", message, identifier_to_locale (gen_declaration (decl))); } static void check_ivars (tree inter, tree imp) { tree intdecls = CLASS_RAW_IVARS (inter); tree impdecls = CLASS_RAW_IVARS (imp); while (1) { tree t1, t2; #ifdef OBJCPLUS if (intdecls && TREE_CODE (intdecls) == TYPE_DECL) intdecls = TREE_CHAIN (intdecls); #endif if (intdecls == 0 && impdecls == 0) break; if (intdecls == 0 || impdecls == 0) { error ("inconsistent instance variable specification"); break; } t1 = TREE_TYPE (intdecls); t2 = TREE_TYPE (impdecls); if (!comptypes (t1, t2) || !tree_int_cst_equal (DECL_INITIAL (intdecls), DECL_INITIAL (impdecls))) { if (DECL_NAME (intdecls) == DECL_NAME (impdecls)) { error_with_ivar ("conflicting instance variable type", impdecls); error_with_ivar ("previous declaration of", intdecls); } else /* both the type and the name don't match */ { error ("inconsistent instance variable specification"); break; } } else if (DECL_NAME (intdecls) != DECL_NAME (impdecls)) { error_with_ivar ("conflicting instance variable name", impdecls); error_with_ivar ("previous declaration of", intdecls); } intdecls = DECL_CHAIN (intdecls); impdecls = DECL_CHAIN (impdecls); } } /* Set 'objc_super_template' to the data type node for 'struct _objc_super'. This needs to be done just once per compilation. */ /* struct _objc_super { struct _objc_object *self; struct _objc_class *super_class; }; */ static void build_super_template (void) { tree decls, *chain = NULL; objc_super_template = objc_start_struct (get_identifier (UTAG_SUPER)); /* struct _objc_object *self; */ decls = add_field_decl (objc_object_type, "self", &chain); /* struct _objc_class *super_class; */ add_field_decl (build_pointer_type (objc_class_template), "super_class", &chain); objc_finish_struct (objc_super_template, decls); } /* struct _objc_ivar { char *ivar_name; char *ivar_type; int ivar_offset; }; */ static tree build_ivar_template (void) { tree objc_ivar_id, objc_ivar_record; tree decls, *chain = NULL; objc_ivar_id = get_identifier (UTAG_IVAR); objc_ivar_record = objc_start_struct (objc_ivar_id); /* char *ivar_name; */ decls = add_field_decl (string_type_node, "ivar_name", &chain); /* char *ivar_type; */ add_field_decl (string_type_node, "ivar_type", &chain); /* int ivar_offset; */ add_field_decl (integer_type_node, "ivar_offset", &chain); objc_finish_struct (objc_ivar_record, decls); return objc_ivar_record; } /* struct { int ivar_count; struct objc_ivar ivar_list[ivar_count]; }; */ static tree build_ivar_list_template (tree list_type, int size) { tree objc_ivar_list_record; tree array_type, decls, *chain = NULL; objc_ivar_list_record = objc_start_struct (NULL_TREE); /* int ivar_count; */ decls = add_field_decl (integer_type_node, "ivar_count", &chain); /* struct objc_ivar ivar_list[]; */ array_type = build_sized_array_type (list_type, size); add_field_decl (array_type, "ivar_list", &chain); objc_finish_struct (objc_ivar_list_record, decls); return objc_ivar_list_record; } /* struct { struct _objc__method_prototype_list *method_next; int method_count; struct objc_method method_list[method_count]; }; */ static tree build_method_list_template (tree list_type, int size) { tree objc_ivar_list_record; tree array_type, decls, *chain = NULL; objc_ivar_list_record = objc_start_struct (NULL_TREE); /* struct _objc__method_prototype_list *method_next; */ decls = add_field_decl (objc_method_proto_list_ptr, "method_next", &chain); /* int method_count; */ add_field_decl (integer_type_node, "method_count", &chain); /* struct objc_method method_list[]; */ array_type = build_sized_array_type (list_type, size); add_field_decl (array_type, "method_list", &chain); objc_finish_struct (objc_ivar_list_record, decls); return objc_ivar_list_record; } static tree build_ivar_list_initializer (tree type, tree field_decl) { VEC(constructor_elt,gc) *inits = NULL; do { VEC(constructor_elt,gc) *ivar = NULL; tree id; /* Set name. */ if (DECL_NAME (field_decl)) CONSTRUCTOR_APPEND_ELT (ivar, NULL_TREE, add_objc_string (DECL_NAME (field_decl), meth_var_names)); else /* Unnamed bit-field ivar (yuck). */ CONSTRUCTOR_APPEND_ELT (ivar, NULL_TREE, build_int_cst (NULL_TREE, 0)); /* Set type. */ encode_field_decl (field_decl, obstack_object_size (&util_obstack), OBJC_ENCODE_DONT_INLINE_DEFS); /* Null terminate string. */ obstack_1grow (&util_obstack, 0); id = add_objc_string (get_identifier (XOBFINISH (&util_obstack, char *)), meth_var_types); CONSTRUCTOR_APPEND_ELT (ivar, NULL_TREE, id); obstack_free (&util_obstack, util_firstobj); /* Set offset. */ CONSTRUCTOR_APPEND_ELT (ivar, NULL_TREE, byte_position (field_decl)); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, objc_build_constructor (type, ivar)); do field_decl = DECL_CHAIN (field_decl); while (field_decl && TREE_CODE (field_decl) != FIELD_DECL); } while (field_decl); return objc_build_constructor (build_array_type (type, 0), inits); } static tree generate_ivars_list (tree type, const char *name, int size, tree list) { tree decl; VEC(constructor_elt,gc) *inits = NULL; decl = start_var_decl (type, synth_id_with_class_suffix (name, objc_implementation_context)); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, build_int_cst (NULL_TREE, size)); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, list); finish_var_decl (decl, objc_build_constructor (TREE_TYPE (decl), inits)); return decl; } /* Count only the fields occurring in T. */ static int ivar_list_length (tree t) { int count = 0; for (; t; t = DECL_CHAIN (t)) if (TREE_CODE (t) == FIELD_DECL) ++count; return count; } static void generate_ivar_lists (void) { tree initlist, ivar_list_template, chain; int size; generating_instance_variables = 1; if (!objc_ivar_template) objc_ivar_template = build_ivar_template (); /* Only generate class variables for the root of the inheritance hierarchy since these will be the same for every class. */ if (CLASS_SUPER_NAME (implementation_template) == NULL_TREE && (chain = TYPE_FIELDS (objc_class_template))) { size = ivar_list_length (chain); ivar_list_template = build_ivar_list_template (objc_ivar_template, size); initlist = build_ivar_list_initializer (objc_ivar_template, chain); UOBJC_CLASS_VARIABLES_decl = generate_ivars_list (ivar_list_template, "_OBJC_CLASS_VARIABLES", size, initlist); } else UOBJC_CLASS_VARIABLES_decl = 0; chain = CLASS_IVARS (implementation_template); if (chain) { size = ivar_list_length (chain); ivar_list_template = build_ivar_list_template (objc_ivar_template, size); initlist = build_ivar_list_initializer (objc_ivar_template, chain); UOBJC_INSTANCE_VARIABLES_decl = generate_ivars_list (ivar_list_template, "_OBJC_INSTANCE_VARIABLES", size, initlist); } else UOBJC_INSTANCE_VARIABLES_decl = 0; generating_instance_variables = 0; } static tree build_dispatch_table_initializer (tree type, tree entries) { VEC(constructor_elt,gc) *inits = NULL; do { VEC(constructor_elt,gc) *elems = NULL; tree expr; CONSTRUCTOR_APPEND_ELT (elems, NULL_TREE, build_selector (METHOD_SEL_NAME (entries))); /* Generate the method encoding if we don't have one already. */ if (! METHOD_ENCODING (entries)) METHOD_ENCODING (entries) = encode_method_prototype (entries); CONSTRUCTOR_APPEND_ELT (elems, NULL_TREE, add_objc_string (METHOD_ENCODING (entries), meth_var_types)); expr = convert (ptr_type_node, build_unary_op (input_location, ADDR_EXPR, METHOD_DEFINITION (entries), 1)); CONSTRUCTOR_APPEND_ELT (elems, NULL_TREE, expr); CONSTRUCTOR_APPEND_ELT (inits, NULL_TREE, objc_build_constructor (type, elems)); entries = DECL_CHAIN (entries); } while (entries); return objc_build_constructor (build_array_type (type, 0), inits); } /* To accomplish method prototyping without generating all kinds of inane warnings, the definition of the dispatch table entries were changed from: struct objc_method { SEL _cmd; ...; id (*_imp)(); }; to: struct objc_method { SEL _cmd; ...; void *_imp; }; */ static tree build_method_template (void) { tree _SLT_record; tree decls, *chain = NULL; _SLT_record = objc_start_struct (get_identifier (UTAG_METHOD)); /* SEL _cmd; */ decls = add_field_decl (objc_selector_type, "_cmd", &chain); /* char *method_types; */ add_field_decl (string_type_node, "method_types", &chain); /* void *_imp; */ add_field_decl (build_pointer_type (void_type_node), "_imp", &chain); objc_finish_struct (_SLT_record, decls); return _SLT_record; } static tree generate_dispatch_table (tree type, const char *name, int size, tree list) { tree decl; VEC(constructor_elt,gc) *v = NULL; decl = start_var_decl (type, synth_id_with_class_suffix (name, objc_implementation_context)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, integer_zero_node); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (integer_type_node, size)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, list); finish_var_decl (decl, objc_build_constructor (TREE_TYPE (decl), v)); return decl; } static void mark_referenced_methods (void) { struct imp_entry *impent; tree chain; for (impent = imp_list; impent; impent = impent->next) { chain = CLASS_CLS_METHODS (impent->imp_context); while (chain) { cgraph_mark_needed_node (cgraph_node (METHOD_DEFINITION (chain))); chain = DECL_CHAIN (chain); } chain = CLASS_NST_METHODS (impent->imp_context); while (chain) { cgraph_mark_needed_node (cgraph_node (METHOD_DEFINITION (chain))); chain = DECL_CHAIN (chain); } } } static void generate_dispatch_tables (void) { tree initlist, chain, method_list_template; int size; if (!objc_method_template) objc_method_template = build_method_template (); chain = CLASS_CLS_METHODS (objc_implementation_context); if (chain) { size = list_length (chain); method_list_template = build_method_list_template (objc_method_template, size); initlist = build_dispatch_table_initializer (objc_method_template, chain); UOBJC_CLASS_METHODS_decl = generate_dispatch_table (method_list_template, ((TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE) ? "_OBJC_CLASS_METHODS" : "_OBJC_CATEGORY_CLASS_METHODS"), size, initlist); } else UOBJC_CLASS_METHODS_decl = 0; chain = CLASS_NST_METHODS (objc_implementation_context); if (chain) { size = list_length (chain); method_list_template = build_method_list_template (objc_method_template, size); initlist = build_dispatch_table_initializer (objc_method_template, chain); if (TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE) UOBJC_INSTANCE_METHODS_decl = generate_dispatch_table (method_list_template, "_OBJC_INSTANCE_METHODS", size, initlist); else /* We have a category. */ UOBJC_INSTANCE_METHODS_decl = generate_dispatch_table (method_list_template, "_OBJC_CATEGORY_INSTANCE_METHODS", size, initlist); } else UOBJC_INSTANCE_METHODS_decl = 0; } static tree generate_protocol_list (tree i_or_p) { tree array_type, ptype, refs_decl, lproto, e, plist; int size = 0; const char *ref_name; VEC(constructor_elt,gc) *v = NULL; switch (TREE_CODE (i_or_p)) { case CLASS_INTERFACE_TYPE: case CATEGORY_INTERFACE_TYPE: plist = CLASS_PROTOCOL_LIST (i_or_p); break; case PROTOCOL_INTERFACE_TYPE: plist = PROTOCOL_LIST (i_or_p); break; default: gcc_unreachable (); } /* Compute size. */ for (lproto = plist; lproto; lproto = TREE_CHAIN (lproto)) if (TREE_CODE (TREE_VALUE (lproto)) == PROTOCOL_INTERFACE_TYPE && PROTOCOL_FORWARD_DECL (TREE_VALUE (lproto))) size++; /* Build initializer. */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); e = build_int_cst (build_pointer_type (objc_protocol_template), size); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, e); for (lproto = plist; lproto; lproto = TREE_CHAIN (lproto)) { tree pval = TREE_VALUE (lproto); if (TREE_CODE (pval) == PROTOCOL_INTERFACE_TYPE && PROTOCOL_FORWARD_DECL (pval)) { e = build_unary_op (input_location, ADDR_EXPR, PROTOCOL_FORWARD_DECL (pval), 0); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, e); } } /* static struct objc_protocol *refs[n]; */ switch (TREE_CODE (i_or_p)) { case PROTOCOL_INTERFACE_TYPE: ref_name = synth_id_with_class_suffix ("_OBJC_PROTOCOL_REFS", i_or_p); break; case CLASS_INTERFACE_TYPE: ref_name = synth_id_with_class_suffix ("_OBJC_CLASS_PROTOCOLS", i_or_p); break; case CATEGORY_INTERFACE_TYPE: ref_name = synth_id_with_class_suffix ("_OBJC_CATEGORY_PROTOCOLS", i_or_p); break; default: gcc_unreachable (); } ptype = build_pointer_type (objc_protocol_template); array_type = build_sized_array_type (ptype, size + 3); refs_decl = start_var_decl (array_type, ref_name); finish_var_decl (refs_decl, objc_build_constructor (TREE_TYPE (refs_decl), v)); return refs_decl; } static tree build_category_initializer (tree type, tree cat_name, tree class_name, tree instance_methods, tree class_methods, tree protocol_list) { tree expr; VEC(constructor_elt,gc) *v = NULL; CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, cat_name); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, class_name); if (!instance_methods) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (objc_method_list_ptr, build_unary_op (input_location, ADDR_EXPR, instance_methods, 0)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } if (!class_methods) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (objc_method_list_ptr, build_unary_op (input_location, ADDR_EXPR, class_methods, 0)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } /* protocol_list = */ if (!protocol_list) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (build_pointer_type (build_pointer_type (objc_protocol_template)), build_unary_op (input_location, ADDR_EXPR, protocol_list, 0)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } return objc_build_constructor (type, v); } /* struct _objc_class { struct objc_class *isa; struct objc_class *super_class; char *name; long version; long info; long instance_size; struct objc_ivar_list *ivars; struct objc_method_list *methods; if (flag_next_runtime) struct objc_cache *cache; else { struct sarray *dtable; struct objc_class *subclass_list; struct objc_class *sibling_class; } struct objc_protocol_list *protocols; if (flag_next_runtime) void *sel_id; void *gc_object_type; }; */ static tree build_shared_structure_initializer (tree type, tree isa, tree super, tree name, tree size, int status, tree dispatch_table, tree ivar_list, tree protocol_list) { tree expr; VEC(constructor_elt,gc) *v = NULL; /* isa = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, isa); /* super_class = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, super); /* name = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, default_conversion (name)); /* version = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (long_integer_type_node, 0)); /* info = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (long_integer_type_node, status)); /* instance_size = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, convert (long_integer_type_node, size)); /* objc_ivar_list = */ if (!ivar_list) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (objc_ivar_list_ptr, build_unary_op (input_location, ADDR_EXPR, ivar_list, 0)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } /* objc_method_list = */ if (!dispatch_table) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (objc_method_list_ptr, build_unary_op (input_location, ADDR_EXPR, dispatch_table, 0)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } if (flag_next_runtime) /* method_cache = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { /* dtable = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); /* subclass_list = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); /* sibling_class = */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); } /* protocol_list = */ if (! protocol_list) CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); else { expr = convert (build_pointer_type (build_pointer_type (objc_protocol_template)), build_unary_op (input_location, ADDR_EXPR, protocol_list, 0)); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, expr); } if (flag_next_runtime) /* sel_id = NULL */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); /* gc_object_type = NULL */ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (NULL_TREE, 0)); return objc_build_constructor (type, v); } /* Retrieve category interface CAT_NAME (if any) associated with CLASS. */ static inline tree lookup_category (tree klass, tree cat_name) { tree category = CLASS_CATEGORY_LIST (klass); while (category && CLASS_SUPER_NAME (category) != cat_name) category = CLASS_CATEGORY_LIST (category); return category; } /* static struct objc_category _OBJC_CATEGORY_ = { ... }; */ static void generate_category (struct imp_entry *impent) { tree initlist, cat_name_expr, class_name_expr; tree protocol_decl, category; tree cat = impent->imp_context; implementation_template = impent->imp_template; UOBJC_CLASS_decl = impent->class_decl; UOBJC_METACLASS_decl = impent->meta_decl; add_class_reference (CLASS_NAME (cat)); cat_name_expr = add_objc_string (CLASS_SUPER_NAME (cat), class_names); class_name_expr = add_objc_string (CLASS_NAME (cat), class_names); category = lookup_category (implementation_template, CLASS_SUPER_NAME (cat)); if (category && CLASS_PROTOCOL_LIST (category)) { generate_protocol_references (CLASS_PROTOCOL_LIST (category)); protocol_decl = generate_protocol_list (category); } else protocol_decl = 0; initlist = build_category_initializer (TREE_TYPE (UOBJC_CLASS_decl), cat_name_expr, class_name_expr, UOBJC_INSTANCE_METHODS_decl, UOBJC_CLASS_METHODS_decl, protocol_decl); /* Finish and initialize the forward decl. */ finish_var_decl (UOBJC_CLASS_decl, initlist); } /* static struct objc_class _OBJC_METACLASS_Foo={ ... }; static struct objc_class _OBJC_CLASS_Foo={ ... }; */ static void generate_shared_structures (struct imp_entry *impent) { tree name_expr, super_expr, root_expr; tree my_root_id, my_super_id; tree cast_type, initlist, protocol_decl; int cls_flags; objc_implementation_context = impent->imp_context; implementation_template = impent->imp_template; UOBJC_CLASS_decl = impent->class_decl; UOBJC_METACLASS_decl = impent->meta_decl; cls_flags = impent->has_cxx_cdtors ? CLS_HAS_CXX_STRUCTORS : 0 ; my_super_id = CLASS_SUPER_NAME (implementation_template); if (my_super_id) { add_class_reference (my_super_id); /* Compute "my_root_id" - this is required for code generation. the "isa" for all meta class structures points to the root of the inheritance hierarchy (e.g. "__Object")... */ my_root_id = my_super_id; do { tree my_root_int = lookup_interface (my_root_id); if (my_root_int && CLASS_SUPER_NAME (my_root_int)) my_root_id = CLASS_SUPER_NAME (my_root_int); else break; } while (1); } else /* No super class. */ my_root_id = CLASS_NAME (implementation_template); cast_type = build_pointer_type (objc_class_template); name_expr = add_objc_string (CLASS_NAME (implementation_template), class_names); /* Install class `isa' and `super' pointers at runtime. */ if (my_super_id) super_expr = add_objc_string (my_super_id, class_names); else super_expr = integer_zero_node; super_expr = build_c_cast (input_location, cast_type, super_expr); /* cast! */ root_expr = add_objc_string (my_root_id, class_names); root_expr = build_c_cast (input_location, cast_type, root_expr); /* cast! */ if (CLASS_PROTOCOL_LIST (implementation_template)) { generate_protocol_references (CLASS_PROTOCOL_LIST (implementation_template)); protocol_decl = generate_protocol_list (implementation_template); } else protocol_decl = 0; /* static struct objc_class _OBJC_METACLASS_Foo = { ... }; */ initlist = build_shared_structure_initializer (TREE_TYPE (UOBJC_METACLASS_decl), root_expr, super_expr, name_expr, convert (integer_type_node, TYPE_SIZE_UNIT (objc_class_template)), 2 /*CLS_META*/, UOBJC_CLASS_METHODS_decl, UOBJC_CLASS_VARIABLES_decl, protocol_decl); finish_var_decl (UOBJC_METACLASS_decl, initlist); /* static struct objc_class _OBJC_CLASS_Foo={ ... }; */ initlist = build_shared_structure_initializer (TREE_TYPE (UOBJC_CLASS_decl), build_unary_op (input_location, ADDR_EXPR, UOBJC_METACLASS_decl, 0), super_expr, name_expr, convert (integer_type_node, TYPE_SIZE_UNIT (CLASS_STATIC_TEMPLATE (implementation_template))), 1 /*CLS_FACTORY*/ | cls_flags, UOBJC_INSTANCE_METHODS_decl, UOBJC_INSTANCE_VARIABLES_decl, protocol_decl); finish_var_decl (UOBJC_CLASS_decl, initlist); } static const char * synth_id_with_class_suffix (const char *preamble, tree ctxt) { static char string[BUFSIZE]; switch (TREE_CODE (ctxt)) { case CLASS_IMPLEMENTATION_TYPE: case CLASS_INTERFACE_TYPE: sprintf (string, "%s_%s", preamble, IDENTIFIER_POINTER (CLASS_NAME (ctxt))); break; case CATEGORY_IMPLEMENTATION_TYPE: case CATEGORY_INTERFACE_TYPE: { /* We have a category. */ const char *const class_name = IDENTIFIER_POINTER (CLASS_NAME (objc_implementation_context)); const char *const class_super_name = IDENTIFIER_POINTER (CLASS_SUPER_NAME (objc_implementation_context)); sprintf (string, "%s_%s_%s", preamble, class_name, class_super_name); break; } case PROTOCOL_INTERFACE_TYPE: { const char *protocol_name = IDENTIFIER_POINTER (PROTOCOL_NAME (ctxt)); sprintf (string, "%s_%s", preamble, protocol_name); break; } default: gcc_unreachable (); } return string; } /* If type is empty or only type qualifiers are present, add default type of id (otherwise grokdeclarator will default to int). */ static inline tree adjust_type_for_id_default (tree type) { if (!type) type = make_node (TREE_LIST); if (!TREE_VALUE (type)) TREE_VALUE (type) = objc_object_type; else if (TREE_CODE (TREE_VALUE (type)) == RECORD_TYPE && TYPED_OBJECT (TREE_VALUE (type))) error ("can not use an object as parameter to a method"); return type; } /* Return a KEYWORD_DECL built using the specified key_name, arg_type, arg_name and attributes. (TODO: Rename KEYWORD_DECL to OBJC_METHOD_PARM_DECL ?) A KEYWORD_DECL is a tree representing the declaration of a parameter of an Objective-C method. It is produced when parsing a fragment of Objective-C method declaration of the form keyworddecl: selector ':' '(' typename ')' identifier For example, take the Objective-C method -(NSString *)pathForResource:(NSString *)resource ofType:(NSString *)type; the two fragments "pathForResource:(NSString *)resource" and "ofType:(NSString *)type" will generate a KEYWORD_DECL each. The KEYWORD_DECL stores the 'key_name' (eg, identifier for "pathForResource"), the 'arg_type' (eg, tree representing a NSString *), the 'arg_name' (eg identifier for "resource") and potentially some attributes (for example, a tree representing __attribute__ ((unused)) if such an attribute was attached to a certain parameter). You can access this information using the TREE_TYPE (for arg_type), KEYWORD_ARG_NAME (for arg_name), KEYWORD_KEY_NAME (for key_name), DECL_ATTRIBUTES (for attributes). 'key_name' is an identifier node (and is optional as you can omit it in Objective-C methods). 'arg_type' is a tree list (and is optional too if no parameter type was specified). 'arg_name' is an identifier node and is required. 'attributes' is an optional tree containing parameter attributes. */ tree objc_build_keyword_decl (tree key_name, tree arg_type, tree arg_name, tree attributes) { tree keyword_decl; if (flag_objc1_only && attributes) error_at (input_location, "method argument attributes are not available in Objective-C 1.0"); /* If no type is specified, default to "id". */ arg_type = adjust_type_for_id_default (arg_type); keyword_decl = make_node (KEYWORD_DECL); TREE_TYPE (keyword_decl) = arg_type; KEYWORD_ARG_NAME (keyword_decl) = arg_name; KEYWORD_KEY_NAME (keyword_decl) = key_name; DECL_ATTRIBUTES (keyword_decl) = attributes; return keyword_decl; } /* Given a chain of keyword_decl's, synthesize the full keyword selector. */ static tree build_keyword_selector (tree selector) { int len = 0; tree key_chain, key_name; char *buf; /* Scan the selector to see how much space we'll need. */ for (key_chain = selector; key_chain; key_chain = TREE_CHAIN (key_chain)) { switch (TREE_CODE (selector)) { case KEYWORD_DECL: key_name = KEYWORD_KEY_NAME (key_chain); break; case TREE_LIST: key_name = TREE_PURPOSE (key_chain); break; default: gcc_unreachable (); } if (key_name) len += IDENTIFIER_LENGTH (key_name) + 1; else /* Just a ':' arg. */ len++; } buf = (char *) alloca (len + 1); /* Start the buffer out as an empty string. */ buf[0] = '\0'; for (key_chain = selector; key_chain; key_chain = TREE_CHAIN (key_chain)) { switch (TREE_CODE (selector)) { case KEYWORD_DECL: key_name = KEYWORD_KEY_NAME (key_chain); break; case TREE_LIST: key_name = TREE_PURPOSE (key_chain); /* The keyword decl chain will later be used as a function argument chain. Unhook the selector itself so as to not confuse other parts of the compiler. */ TREE_PURPOSE (key_chain) = NULL_TREE; break; default: gcc_unreachable (); } if (key_name) strcat (buf, IDENTIFIER_POINTER (key_name)); strcat (buf, ":"); } return get_identifier (buf); } /* Used for declarations and definitions. */ static tree build_method_decl (enum tree_code code, tree ret_type, tree selector, tree add_args, bool ellipsis) { tree method_decl; /* If no type is specified, default to "id". */ ret_type = adjust_type_for_id_default (ret_type); /* Note how a method_decl has a TREE_TYPE which is not the function type of the function implementing the method, but only the return type of the method. We may want to change this, and store the entire function type in there (eg, it may be used to simplify dealing with attributes below). */ method_decl = make_node (code); TREE_TYPE (method_decl) = ret_type; /* If we have a keyword selector, create an identifier_node that represents the full selector name (`:' included)... */ if (TREE_CODE (selector) == KEYWORD_DECL) { METHOD_SEL_NAME (method_decl) = build_keyword_selector (selector); METHOD_SEL_ARGS (method_decl) = selector; METHOD_ADD_ARGS (method_decl) = add_args; METHOD_ADD_ARGS_ELLIPSIS_P (method_decl) = ellipsis; } else { METHOD_SEL_NAME (method_decl) = selector; METHOD_SEL_ARGS (method_decl) = NULL_TREE; METHOD_ADD_ARGS (method_decl) = NULL_TREE; } return method_decl; } #define METHOD_DEF 0 #define METHOD_REF 1 /* This routine processes objective-c method attributes. */ static void objc_decl_method_attributes (tree *node, tree attributes, int flags) { /* TODO: Replace the hackery below. An idea would be to store the full function type in the method declaration (for example in TREE_TYPE) and then expose ObjC method declarations to c-family and they could deal with them by simply treating them as functions. */ /* Because of the dangers in the hackery below, we filter out any attribute that we do not know about. For the ones we know about, we know that they work with the hackery. For the other ones, there is no guarantee, so we have to filter them out. */ tree filtered_attributes = NULL_TREE; if (attributes) { tree attribute; for (attribute = attributes; attribute; attribute = TREE_CHAIN (attribute)) { tree name = TREE_PURPOSE (attribute); if (is_attribute_p ("deprecated", name) || is_attribute_p ("sentinel", name) || is_attribute_p ("noreturn", name)) { /* An attribute that we support; add it to the filtered attributes. */ filtered_attributes = chainon (filtered_attributes, copy_node (attribute)); } else if (is_attribute_p ("format", name)) { /* "format" is special because before adding it to the filtered attributes we need to adjust the specified format by adding the hidden function parameters for an Objective-C method (self, _cmd). */ tree new_attribute = copy_node (attribute); /* Check the arguments specified with the attribute, and modify them adding 2 for the two hidden arguments. Note how this differs from C++; according to the specs, C++ does not do it so you have to add the +1 yourself. For Objective-C, instead, the compiler adds the +2 for you. */ /* The attribute arguments have not been checked yet, so we need to be careful as they could be missing or invalid. If anything looks wrong, we skip the process and the compiler will complain about it later when it validates the attribute. */ /* Check that we have at least three arguments. */ if (TREE_VALUE (new_attribute) && TREE_CHAIN (TREE_VALUE (new_attribute)) && TREE_CHAIN (TREE_CHAIN (TREE_VALUE (new_attribute)))) { tree second_argument = TREE_CHAIN (TREE_VALUE (new_attribute)); tree third_argument = TREE_CHAIN (second_argument); tree number; /* This is the second argument, the "string-index", which specifies the index of the format string argument. Add 2. */ number = TREE_VALUE (second_argument); if (number && TREE_CODE (number) == INTEGER_CST && TREE_INT_CST_HIGH (number) == 0) { TREE_VALUE (second_argument) = build_int_cst (integer_type_node, TREE_INT_CST_LOW (number) + 2); } /* This is the third argument, the "first-to-check", which specifies the index of the first argument to check. This could be 0, meaning it is not available, in which case we don't need to add 2. Add 2 if not 0. */ number = TREE_VALUE (third_argument); if (number && TREE_CODE (number) == INTEGER_CST && TREE_INT_CST_HIGH (number) == 0 && TREE_INT_CST_LOW (number) != 0) { TREE_VALUE (third_argument) = build_int_cst (integer_type_node, TREE_INT_CST_LOW (number) + 2); } } filtered_attributes = chainon (filtered_attributes, new_attribute); } else warning (OPT_Wattributes, "%qE attribute directive ignored", name); } } if (filtered_attributes) { /* This hackery changes the TREE_TYPE of the ObjC method declaration to be a function type, so that decl_attributes will treat the ObjC method as if it was a function. Some attributes (sentinel, format) will be applied to the function type, changing it in place; so after calling decl_attributes, we extract the function type attributes and store them in METHOD_TYPE_ATTRIBUTES. Some other attributes (noreturn, deprecated) are applied directly to the method declaration (by setting TREE_DEPRECATED and TREE_THIS_VOLATILE) so there is nothing to do. */ tree saved_type = TREE_TYPE (*node); TREE_TYPE (*node) = build_function_type (TREE_VALUE (saved_type), get_arg_type_list (*node, METHOD_REF, 0)); decl_attributes (node, filtered_attributes, flags); METHOD_TYPE_ATTRIBUTES (*node) = TYPE_ATTRIBUTES (TREE_TYPE (*node)); TREE_TYPE (*node) = saved_type; } } bool objc_method_decl (enum tree_code opcode) { return opcode == INSTANCE_METHOD_DECL || opcode == CLASS_METHOD_DECL; } /* Used by `build_objc_method_call' and `comp_proto_with_proto'. Return an argument list for method METH. CONTEXT is either METHOD_DEF or METHOD_REF, saying whether we are trying to define a method or call one. SUPERFLAG says this is for a send to super; this makes a difference for the NeXT calling sequence in which the lookup and the method call are done together. If METH is null, user-defined arguments (i.e., beyond self and _cmd) shall be represented by `...'. */ static tree get_arg_type_list (tree meth, int context, int superflag) { tree arglist, akey; /* Receiver type. */ if (flag_next_runtime && superflag) arglist = build_tree_list (NULL_TREE, objc_super_type); else if (context == METHOD_DEF && TREE_CODE (meth) == INSTANCE_METHOD_DECL) arglist = build_tree_list (NULL_TREE, objc_instance_type); else arglist = build_tree_list (NULL_TREE, objc_object_type); /* Selector type - will eventually change to `int'. */ chainon (arglist, build_tree_list (NULL_TREE, objc_selector_type)); /* No actual method prototype given -- assume that remaining arguments are `...'. */ if (!meth) return arglist; /* Build a list of argument types. */ for (akey = METHOD_SEL_ARGS (meth); akey; akey = DECL_CHAIN (akey)) { tree arg_type = TREE_VALUE (TREE_TYPE (akey)); /* Decay argument types for the underlying C function as appropriate. */ arg_type = objc_decay_parm_type (arg_type); chainon (arglist, build_tree_list (NULL_TREE, arg_type)); } if (METHOD_ADD_ARGS (meth)) { for (akey = TREE_CHAIN (METHOD_ADD_ARGS (meth)); akey; akey = TREE_CHAIN (akey)) { tree arg_type = TREE_TYPE (TREE_VALUE (akey)); arg_type = objc_decay_parm_type (arg_type); chainon (arglist, build_tree_list (NULL_TREE, arg_type)); } if (!METHOD_ADD_ARGS_ELLIPSIS_P (meth)) goto lack_of_ellipsis; } else { lack_of_ellipsis: chainon (arglist, OBJC_VOID_AT_END); } return arglist; } static tree check_duplicates (hash hsh, int methods, int is_class) { tree meth = NULL_TREE; if (hsh) { meth = hsh->key; if (hsh->list) { /* We have two or more methods with the same name but different types. */ attr loop; /* But just how different are those types? If -Wno-strict-selector-match is specified, we shall not complain if the differences are solely among types with identical size and alignment. */ if (!warn_strict_selector_match) { for (loop = hsh->list; loop; loop = loop->next) if (!comp_proto_with_proto (meth, loop->value, 0)) goto issue_warning; return meth; } issue_warning: if (methods) { bool type = TREE_CODE (meth) == INSTANCE_METHOD_DECL; warning_at (input_location, 0, "multiple methods named %<%c%E%> found", (is_class ? '+' : '-'), METHOD_SEL_NAME (meth)); inform (DECL_SOURCE_LOCATION (meth), "using %<%c%s%>", (type ? '-' : '+'), identifier_to_locale (gen_method_decl (meth))); } else { bool type = TREE_CODE (meth) == INSTANCE_METHOD_DECL; warning_at (input_location, 0, "multiple selectors named %<%c%E%> found", (is_class ? '+' : '-'), METHOD_SEL_NAME (meth)); inform (DECL_SOURCE_LOCATION (meth), "found %<%c%s%>", (type ? '-' : '+'), identifier_to_locale (gen_method_decl (meth))); } for (loop = hsh->list; loop; loop = loop->next) { bool type = TREE_CODE (loop->value) == INSTANCE_METHOD_DECL; inform (DECL_SOURCE_LOCATION (loop->value), "also found %<%c%s%>", (type ? '-' : '+'), identifier_to_locale (gen_method_decl (loop->value))); } } } return meth; } /* If RECEIVER is a class reference, return the identifier node for the referenced class. RECEIVER is created by objc_get_class_reference, so we check the exact form created depending on which runtimes are used. */ static tree receiver_is_class_object (tree receiver, int self, int super) { tree chain, exp, arg; /* The receiver is 'self' or 'super' in the context of a class method. */ if (objc_method_context && TREE_CODE (objc_method_context) == CLASS_METHOD_DECL && (self || super)) return (super ? CLASS_SUPER_NAME (implementation_template) : CLASS_NAME (implementation_template)); if (flag_next_runtime) { /* The receiver is a variable created by build_class_reference_decl. */ if (TREE_CODE (receiver) == VAR_DECL && IS_CLASS (TREE_TYPE (receiver))) /* Look up the identifier. */ for (chain = cls_ref_chain; chain; chain = TREE_CHAIN (chain)) if (TREE_PURPOSE (chain) == receiver) return TREE_VALUE (chain); } /* The receiver is a function call that returns an id. Check if it is a call to objc_getClass, if so, pick up the class name. */ if (TREE_CODE (receiver) == CALL_EXPR && (exp = CALL_EXPR_FN (receiver)) && TREE_CODE (exp) == ADDR_EXPR && (exp = TREE_OPERAND (exp, 0)) && TREE_CODE (exp) == FUNCTION_DECL /* For some reason, we sometimes wind up with multiple FUNCTION_DECL prototypes for objc_get_class(). Thankfully, they seem to share the same function type. */ && TREE_TYPE (exp) == TREE_TYPE (objc_get_class_decl) && !strcmp (IDENTIFIER_POINTER (DECL_NAME (exp)), TAG_GETCLASS) /* We have a call to objc_get_class/objc_getClass! */ && (arg = CALL_EXPR_ARG (receiver, 0))) { STRIP_NOPS (arg); if (TREE_CODE (arg) == ADDR_EXPR && (arg = TREE_OPERAND (arg, 0)) && TREE_CODE (arg) == STRING_CST) /* Finally, we have the class name. */ return get_identifier (TREE_STRING_POINTER (arg)); } return 0; } /* If we are currently building a message expr, this holds the identifier of the selector of the message. This is used when printing warnings about argument mismatches. */ static tree current_objc_message_selector = 0; tree objc_message_selector (void) { return current_objc_message_selector; } /* Construct an expression for sending a message. MESS has the object to send to in TREE_PURPOSE and the argument list (including selector) in TREE_VALUE. (*((*)())_msg)(receiver, selTransTbl[n], ...); (*((*)())_msgSuper)(receiver, selTransTbl[n], ...); */ tree objc_build_message_expr (tree mess) { tree receiver = TREE_PURPOSE (mess); tree sel_name; #ifdef OBJCPLUS tree args = TREE_PURPOSE (TREE_VALUE (mess)); #else tree args = TREE_VALUE (mess); #endif tree method_params = NULL_TREE; if (TREE_CODE (receiver) == ERROR_MARK || TREE_CODE (args) == ERROR_MARK) return error_mark_node; /* Obtain the full selector name. */ switch (TREE_CODE (args)) { case IDENTIFIER_NODE: /* A unary selector. */ sel_name = args; break; case TREE_LIST: sel_name = build_keyword_selector (args); break; default: gcc_unreachable (); } /* Build the parameter list to give to the method. */ if (TREE_CODE (args) == TREE_LIST) #ifdef OBJCPLUS method_params = chainon (args, TREE_VALUE (TREE_VALUE (mess))); #else { tree chain = args, prev = NULL_TREE; /* We have a keyword selector--check for comma expressions. */ while (chain) { tree element = TREE_VALUE (chain); /* We have a comma expression, must collapse... */ if (TREE_CODE (element) == TREE_LIST) { if (prev) TREE_CHAIN (prev) = element; else args = element; } prev = chain; chain = TREE_CHAIN (chain); } method_params = args; } #endif #ifdef OBJCPLUS if (processing_template_decl) /* Must wait until template instantiation time. */ return build_min_nt (MESSAGE_SEND_EXPR, receiver, sel_name, method_params); #endif return objc_finish_message_expr (receiver, sel_name, method_params, NULL); } /* Look up method SEL_NAME that would be suitable for receiver of type 'id' (if IS_CLASS is zero) or 'Class' (if IS_CLASS is nonzero), and report on any duplicates. */ static tree lookup_method_in_hash_lists (tree sel_name, int is_class) { hash method_prototype = NULL; if (!is_class) method_prototype = hash_lookup (nst_method_hash_list, sel_name); if (!method_prototype) { method_prototype = hash_lookup (cls_method_hash_list, sel_name); is_class = 1; } return check_duplicates (method_prototype, 1, is_class); } /* The 'objc_finish_message_expr' routine is called from within 'objc_build_message_expr' for non-template functions. In the case of C++ template functions, it is called from 'build_expr_from_tree' (in decl2.c) after RECEIVER and METHOD_PARAMS have been expanded. If the DEPRECATED_METHOD_PROTOTYPE argument is NULL, then we warn if the method being used is deprecated. If it is not NULL, instead of deprecating, we set *DEPRECATED_METHOD_PROTOTYPE to the method prototype that was used and is deprecated. This is useful for getter calls that are always generated when compiling dot-syntax expressions, even if they may not be used. In that case, we don't want the warning immediately; we produce it (if needed) at gimplify stage when we are sure that the deprecated getter is being used. */ tree objc_finish_message_expr (tree receiver, tree sel_name, tree method_params, tree *deprecated_method_prototype) { tree method_prototype = NULL_TREE, rprotos = NULL_TREE, rtype; tree selector, retval, class_tree; int self, super, have_cast; /* We have used the receiver, so mark it as read. */ mark_exp_read (receiver); /* Extract the receiver of the message, as well as its type (where the latter may take the form of a cast or be inferred from the implementation context). */ rtype = receiver; while (TREE_CODE (rtype) == COMPOUND_EXPR || TREE_CODE (rtype) == MODIFY_EXPR || CONVERT_EXPR_P (rtype) || TREE_CODE (rtype) == COMPONENT_REF) rtype = TREE_OPERAND (rtype, 0); self = (rtype == self_decl); super = (rtype == UOBJC_SUPER_decl); rtype = TREE_TYPE (receiver); have_cast = (TREE_CODE (receiver) == NOP_EXPR || (TREE_CODE (receiver) == COMPOUND_EXPR && !IS_SUPER (rtype))); /* If we are calling [super dealloc], reset our warning flag. */ if (super && !strcmp ("dealloc", IDENTIFIER_POINTER (sel_name))) should_call_super_dealloc = 0; /* If the receiver is a class object, retrieve the corresponding @interface, if one exists. */ class_tree = receiver_is_class_object (receiver, self, super); /* Now determine the receiver type (if an explicit cast has not been provided). */ if (!have_cast) { if (class_tree) rtype = lookup_interface (class_tree); /* Handle `self' and `super'. */ else if (super) { if (!CLASS_SUPER_NAME (implementation_template)) { error ("no super class declared in @interface for %qE", CLASS_NAME (implementation_template)); return error_mark_node; } rtype = lookup_interface (CLASS_SUPER_NAME (implementation_template)); } else if (self) rtype = lookup_interface (CLASS_NAME (implementation_template)); } /* If receiver is of type `id' or `Class' (or if the @interface for a class is not visible), we shall be satisfied with the existence of any instance or class method. */ if (objc_is_id (rtype)) { class_tree = (IS_CLASS (rtype) ? objc_class_name : NULL_TREE); rprotos = (TYPE_HAS_OBJC_INFO (TREE_TYPE (rtype)) ? TYPE_OBJC_PROTOCOL_LIST (TREE_TYPE (rtype)) : NULL_TREE); rtype = NULL_TREE; if (rprotos) { /* If messaging 'id ' or 'Class ', first search in protocols themselves for the method prototype. */ method_prototype = lookup_method_in_protocol_list (rprotos, sel_name, class_tree != NULL_TREE); /* If messaging 'Class ' but did not find a class method prototype, search for an instance method instead, and warn about having done so. */ if (!method_prototype && !rtype && class_tree != NULL_TREE) { method_prototype = lookup_method_in_protocol_list (rprotos, sel_name, 0); if (method_prototype) warning (0, "found %<-%E%> instead of %<+%E%> in protocol(s)", sel_name, sel_name); } } } else if (rtype) { tree orig_rtype = rtype; if (TREE_CODE (rtype) == POINTER_TYPE) rtype = TREE_TYPE (rtype); /* Traverse typedef aliases */ while (TREE_CODE (rtype) == RECORD_TYPE && OBJC_TYPE_NAME (rtype) && TREE_CODE (OBJC_TYPE_NAME (rtype)) == TYPE_DECL && DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (rtype))) rtype = DECL_ORIGINAL_TYPE (OBJC_TYPE_NAME (rtype)); if (TYPED_OBJECT (rtype)) { rprotos = TYPE_OBJC_PROTOCOL_LIST (rtype); rtype = TYPE_OBJC_INTERFACE (rtype); } /* If we could not find an @interface declaration, we must have only seen a @class declaration; so, we cannot say anything more intelligent about which methods the receiver will understand. */ if (!rtype || TREE_CODE (rtype) == IDENTIFIER_NODE) { rtype = NULL_TREE; /* We could not find an @interface declaration, yet Message maybe in a @class's protocol. */ if (!method_prototype && rprotos) method_prototype = lookup_method_in_protocol_list (rprotos, sel_name, 0); } else if (TREE_CODE (rtype) == CLASS_INTERFACE_TYPE || TREE_CODE (rtype) == CLASS_IMPLEMENTATION_TYPE) { /* We have a valid ObjC class name. Look up the method name in the published @interface for the class (and its superclasses). */ method_prototype = lookup_method_static (rtype, sel_name, class_tree != NULL_TREE); /* If the method was not found in the @interface, it may still exist locally as part of the @implementation. */ if (!method_prototype && objc_implementation_context && CLASS_NAME (objc_implementation_context) == OBJC_TYPE_NAME (rtype)) method_prototype = lookup_method ((class_tree ? CLASS_CLS_METHODS (objc_implementation_context) : CLASS_NST_METHODS (objc_implementation_context)), sel_name); /* If we haven't found a candidate method by now, try looking for it in the protocol list. */ if (!method_prototype && rprotos) method_prototype = lookup_method_in_protocol_list (rprotos, sel_name, class_tree != NULL_TREE); } else { warning (0, "invalid receiver type %qs", identifier_to_locale (gen_type_name (orig_rtype))); /* After issuing the "invalid receiver" warning, perform method lookup as if we were messaging 'id'. */ rtype = rprotos = NULL_TREE; } } /* For 'id' or 'Class' receivers, search in the global hash table as a last resort. For all receivers, warn if protocol searches have failed. */ if (!method_prototype) { if (rprotos) warning (0, "%<%c%E%> not found in protocol(s)", (class_tree ? '+' : '-'), sel_name); if (!rtype) method_prototype = lookup_method_in_hash_lists (sel_name, class_tree != NULL_TREE); } if (!method_prototype) { static bool warn_missing_methods = false; if (rtype) warning (0, "%qE may not respond to %<%c%E%>", OBJC_TYPE_NAME (rtype), (class_tree ? '+' : '-'), sel_name); /* If we are messaging an 'id' or 'Class' object and made it here, then we have failed to find _any_ instance or class method, respectively. */ else warning (0, "no %<%c%E%> method found", (class_tree ? '+' : '-'), sel_name); if (!warn_missing_methods) { warning_at (input_location, 0, "(Messages without a matching method signature"); warning_at (input_location, 0, "will be assumed to return % and accept"); warning_at (input_location, 0, "%<...%> as arguments.)"); warn_missing_methods = true; } } else { /* Warn if the method is deprecated, but not if the receiver is a generic 'id'. 'id' is used to cast an object to a generic object of an unspecified class; in that case, we'll use whatever method prototype we can find to get the method argument and return types, but it is not appropriate to produce deprecation warnings since we don't know the class that the object will be of at runtime. The @interface(s) for that class may not even be available to the compiler right now, and it is perfectly possible that the method is marked as non-deprecated in such @interface(s). In practice this makes sense since casting an object to 'id' is often used precisely to turn off warnings associated with the object being of a particular class. */ if (TREE_DEPRECATED (method_prototype) && rtype != NULL_TREE) { if (deprecated_method_prototype) *deprecated_method_prototype = method_prototype; else warn_deprecated_use (method_prototype, NULL_TREE); } } /* Save the selector name for printing error messages. */ current_objc_message_selector = sel_name; /* Build the parameters list for looking up the method. These are the object itself and the selector. */ if (flag_typed_selectors) selector = build_typed_selector_reference (input_location, sel_name, method_prototype); else selector = build_selector_reference (input_location, sel_name); retval = build_objc_method_call (input_location, super, method_prototype, receiver, selector, method_params); current_objc_message_selector = 0; return retval; } /* Build a tree expression to send OBJECT the operation SELECTOR, looking up the method on object LOOKUP_OBJECT (often same as OBJECT), assuming the method has prototype METHOD_PROTOTYPE. (That is an INSTANCE_METHOD_DECL or CLASS_METHOD_DECL.) LOC is the location of the expression to build. Use METHOD_PARAMS as list of args to pass to the method. If SUPER_FLAG is nonzero, we look up the superclass's method. */ static tree build_objc_method_call (location_t loc, int super_flag, tree method_prototype, tree lookup_object, tree selector, tree method_params) { tree sender = (super_flag ? umsg_super_decl : (!flag_next_runtime || flag_nil_receivers ? (flag_objc_direct_dispatch ? umsg_fast_decl : umsg_decl) : umsg_nonnil_decl)); tree rcv_p = (super_flag ? objc_super_type : objc_object_type); VEC(tree, gc) *parms = NULL; unsigned nparm = (method_params ? list_length (method_params) : 0); /* If a prototype for the method to be called exists, then cast the sender's return type and arguments to match that of the method. Otherwise, leave sender as is. */ tree ret_type = (method_prototype ? TREE_VALUE (TREE_TYPE (method_prototype)) : objc_object_type); tree method_param_types = get_arg_type_list (method_prototype, METHOD_REF, super_flag); tree ftype = build_function_type (ret_type, method_param_types); tree sender_cast; tree method, t; if (method_prototype && METHOD_TYPE_ATTRIBUTES (method_prototype)) ftype = build_type_attribute_variant (ftype, METHOD_TYPE_ATTRIBUTES (method_prototype)); sender_cast = build_pointer_type (ftype); lookup_object = build_c_cast (loc, rcv_p, lookup_object); /* Use SAVE_EXPR to avoid evaluating the receiver twice. */ lookup_object = save_expr (lookup_object); /* Param list + 2 slots for object and selector. */ parms = VEC_alloc (tree, gc, nparm + 2); if (flag_next_runtime) { /* If we are returning a struct in memory, and the address of that memory location is passed as a hidden first argument, then change which messenger entry point this expr will call. NB: Note that sender_cast remains unchanged (it already has a struct return type). */ if (!targetm.calls.struct_value_rtx (0, 0) && (TREE_CODE (ret_type) == RECORD_TYPE || TREE_CODE (ret_type) == UNION_TYPE) && targetm.calls.return_in_memory (ret_type, 0)) sender = (super_flag ? umsg_super_stret_decl : flag_nil_receivers ? umsg_stret_decl : umsg_nonnil_stret_decl); method = build_fold_addr_expr_loc (input_location, sender); /* Pass the object to the method. */ VEC_quick_push (tree, parms, lookup_object); } else { /* This is the portable (GNU) way. */ /* First, call the lookup function to get a pointer to the method, then cast the pointer, then call it with the method arguments. */ VEC(tree, gc) *tv = VEC_alloc (tree, gc, 2); VEC_quick_push (tree, tv, lookup_object); VEC_quick_push (tree, tv, selector); method = build_function_call_vec (loc, sender, tv, NULL); VEC_free (tree, gc, tv); /* Pass the appropriate object to the method. */ VEC_quick_push (tree, parms, (super_flag ? self_decl : lookup_object)); } /* Pass the selector to the method. */ VEC_quick_push (tree, parms, selector); /* Now append the remainder of the parms. */ if (nparm) for (; method_params; method_params = TREE_CHAIN (method_params)) VEC_quick_push (tree, parms, TREE_VALUE (method_params)); /* Build an obj_type_ref, with the correct cast for the method call. */ t = build3 (OBJ_TYPE_REF, sender_cast, method, lookup_object, size_zero_node); t = build_function_call_vec (loc, t, parms, NULL);\ VEC_free (tree, gc, parms); return t; } static void build_protocol_reference (tree p) { tree decl; const char *proto_name; /* static struct _objc_protocol _OBJC_PROTOCOL_; */ proto_name = synth_id_with_class_suffix ("_OBJC_PROTOCOL", p); decl = start_var_decl (objc_protocol_template, proto_name); PROTOCOL_FORWARD_DECL (p) = decl; } /* This function is called by the parser when (and only when) a @protocol() expression is found, in order to compile it. */ tree objc_build_protocol_expr (tree protoname) { tree expr; tree p = lookup_protocol (protoname, /* warn if deprecated */ true, /* definition_required */ false); if (!p) { error ("cannot find protocol declaration for %qE", protoname); return error_mark_node; } if (!PROTOCOL_FORWARD_DECL (p)) build_protocol_reference (p); expr = build_unary_op (input_location, ADDR_EXPR, PROTOCOL_FORWARD_DECL (p), 0); /* ??? Ideally we'd build the reference with objc_protocol_type directly, if we have it, rather than converting it here. */ expr = convert (objc_protocol_type, expr); /* The @protocol() expression is being compiled into a pointer to a statically allocated instance of the Protocol class. To become usable at runtime, the 'isa' pointer of the instance need to be fixed up at runtime by the runtime library, to point to the actual 'Protocol' class. */ /* For the GNU runtime, put the static Protocol instance in the list of statically allocated instances, so that we make sure that its 'isa' pointer is fixed up at runtime by the GNU runtime library to point to the Protocol class (at runtime, when loading the module, the GNU runtime library loops on the statically allocated instances (as found in the defs field in objc_symtab) and fixups all the 'isa' pointers of those objects). */ if (! flag_next_runtime) { /* This type is a struct containing the fields of a Protocol object. (Cfr. objc_protocol_type instead is the type of a pointer to such a struct). */ tree protocol_struct_type = xref_tag (RECORD_TYPE, get_identifier (PROTOCOL_OBJECT_CLASS_NAME)); tree *chain; /* Look for the list of Protocol statically allocated instances to fixup at runtime. Create a new list to hold Protocol statically allocated instances, if the list is not found. At present there is only another list, holding NSConstantString static instances to be fixed up at runtime. */ for (chain = &objc_static_instances; *chain && TREE_VALUE (*chain) != protocol_struct_type; chain = &TREE_CHAIN (*chain)); if (!*chain) { *chain = tree_cons (NULL_TREE, protocol_struct_type, NULL_TREE); add_objc_string (OBJC_TYPE_NAME (protocol_struct_type), class_names); } /* Add this statically allocated instance to the Protocol list. */ TREE_PURPOSE (*chain) = tree_cons (NULL_TREE, PROTOCOL_FORWARD_DECL (p), TREE_PURPOSE (*chain)); } return expr; } /* This function is called by the parser when a @selector() expression is found, in order to compile it. It is only called by the parser and only to compile a @selector(). LOC is the location of the @selector. */ tree objc_build_selector_expr (location_t loc, tree selnamelist) { tree selname; /* Obtain the full selector name. */ switch (TREE_CODE (selnamelist)) { case IDENTIFIER_NODE: /* A unary selector. */ selname = selnamelist; break; case TREE_LIST: selname = build_keyword_selector (selnamelist); break; default: gcc_unreachable (); } /* If we are required to check @selector() expressions as they are found, check that the selector has been declared. */ if (warn_undeclared_selector) { /* Look the selector up in the list of all known class and instance methods (up to this line) to check that the selector exists. */ hash hsh; /* First try with instance methods. */ hsh = hash_lookup (nst_method_hash_list, selname); /* If not found, try with class methods. */ if (!hsh) { hsh = hash_lookup (cls_method_hash_list, selname); } /* If still not found, print out a warning. */ if (!hsh) { warning (0, "undeclared selector %qE", selname); } } if (flag_typed_selectors) return build_typed_selector_reference (loc, selname, 0); else return build_selector_reference (loc, selname); } /* This is used to implement @encode(). See gcc/doc/objc.texi, section '@encode'. */ tree objc_build_encode_expr (tree type) { tree result; const char *string; encode_type (type, obstack_object_size (&util_obstack), OBJC_ENCODE_INLINE_DEFS); obstack_1grow (&util_obstack, 0); /* null terminate string */ string = XOBFINISH (&util_obstack, const char *); /* Synthesize a string that represents the encoded struct/union. */ result = my_build_string (strlen (string) + 1, string); obstack_free (&util_obstack, util_firstobj); return result; } static tree build_ivar_reference (tree id) { if (TREE_CODE (objc_method_context) == CLASS_METHOD_DECL) { /* Historically, a class method that produced objects (factory method) would assign `self' to the instance that it allocated. This would effectively turn the class method into an instance method. Following this assignment, the instance variables could be accessed. That practice, while safe, violates the simple rule that a class method should not refer to an instance variable. It's better to catch the cases where this is done unknowingly than to support the above paradigm. */ warning (0, "instance variable %qE accessed in class method", id); self_decl = convert (objc_instance_type, self_decl); /* cast */ } return objc_build_component_ref (build_indirect_ref (input_location, self_decl, RO_ARROW), id); } /* Compute a hash value for a given method SEL_NAME. */ static size_t hash_func (tree sel_name) { const unsigned char *s = (const unsigned char *)IDENTIFIER_POINTER (sel_name); size_t h = 0; while (*s) h = h * 67 + *s++ - 113; return h; } static void hash_init (void) { nst_method_hash_list = ggc_alloc_cleared_vec_hash (SIZEHASHTABLE); cls_method_hash_list = ggc_alloc_cleared_vec_hash (SIZEHASHTABLE); cls_name_hash_list = ggc_alloc_cleared_vec_hash (SIZEHASHTABLE); als_name_hash_list = ggc_alloc_cleared_vec_hash (SIZEHASHTABLE); /* Initialize the hash table used to hold the constant string objects. */ string_htab = htab_create_ggc (31, string_hash, string_eq, NULL); } /* This routine adds sel_name to the hash list. sel_name is a class or alias name for the class. If alias name, then value is its underlying class. If class, the value is NULL_TREE. */ static void hash_class_name_enter (hash *hashlist, tree sel_name, tree value) { hash obj; int slot = hash_func (sel_name) % SIZEHASHTABLE; obj = ggc_alloc_hashed_entry (); if (value != NULL_TREE) { /* Save the underlying class for the 'alias' in the hash table */ attr obj_attr = ggc_alloc_hashed_attribute (); obj_attr->value = value; obj->list = obj_attr; } else obj->list = 0; obj->next = hashlist[slot]; obj->key = sel_name; hashlist[slot] = obj; /* append to front */ } /* Searches in the hash table looking for a match for class or alias name. */ static hash hash_class_name_lookup (hash *hashlist, tree sel_name) { hash target; target = hashlist[hash_func (sel_name) % SIZEHASHTABLE]; while (target) { if (sel_name == target->key) return target; target = target->next; } return 0; } /* WARNING!!!! hash_enter is called with a method, and will peek inside to find its selector! But hash_lookup is given a selector directly, and looks for the selector that's inside the found entry's key (method) for comparison. */ static void hash_enter (hash *hashlist, tree method) { hash obj; int slot = hash_func (METHOD_SEL_NAME (method)) % SIZEHASHTABLE; obj = ggc_alloc_hashed_entry (); obj->list = 0; obj->next = hashlist[slot]; obj->key = method; hashlist[slot] = obj; /* append to front */ } static hash hash_lookup (hash *hashlist, tree sel_name) { hash target; target = hashlist[hash_func (sel_name) % SIZEHASHTABLE]; while (target) { if (sel_name == METHOD_SEL_NAME (target->key)) return target; target = target->next; } return 0; } static void hash_add_attr (hash entry, tree value) { attr obj; obj = ggc_alloc_hashed_attribute (); obj->next = entry->list; obj->value = value; entry->list = obj; /* append to front */ } static tree lookup_method (tree mchain, tree method) { tree key; if (TREE_CODE (method) == IDENTIFIER_NODE) key = method; else key = METHOD_SEL_NAME (method); while (mchain) { if (METHOD_SEL_NAME (mchain) == key) return mchain; mchain = DECL_CHAIN (mchain); } return NULL_TREE; } /* Look up a class (if OBJC_LOOKUP_CLASS is set in FLAGS) or instance method in INTERFACE, along with any categories and protocols attached thereto. If method is not found, and the OBJC_LOOKUP_NO_SUPER is _not_ set in FLAGS, recursively examine the INTERFACE's superclass. If OBJC_LOOKUP_CLASS is set, OBJC_LOOKUP_NO_SUPER is clear, and no suitable class method could be found in INTERFACE or any of its superclasses, look for an _instance_ method of the same name in the root class as a last resort. This behaviour can be turned off by using OBJC_LOOKUP_NO_INSTANCE_METHODS_OF_ROOT_CLASS. If a suitable method cannot be found, return NULL_TREE. */ static tree lookup_method_static (tree interface, tree ident, int flags) { tree meth = NULL_TREE, root_inter = NULL_TREE; tree inter = interface; int is_class = (flags & OBJC_LOOKUP_CLASS); int no_superclasses = (flags & OBJC_LOOKUP_NO_SUPER); int no_instance_methods_of_root_class = (flags & OBJC_LOOKUP_NO_INSTANCE_METHODS_OF_ROOT_CLASS); while (inter) { tree chain = is_class ? CLASS_CLS_METHODS (inter) : CLASS_NST_METHODS (inter); tree category = inter; /* First, look up the method in the class itself. */ if ((meth = lookup_method (chain, ident))) return meth; /* Failing that, look for the method in each category of the class. */ while ((category = CLASS_CATEGORY_LIST (category))) { chain = is_class ? CLASS_CLS_METHODS (category) : CLASS_NST_METHODS (category); /* Check directly in each category. */ if ((meth = lookup_method (chain, ident))) return meth; /* Failing that, check in each category's protocols. */ if (CLASS_PROTOCOL_LIST (category)) { if ((meth = (lookup_method_in_protocol_list (CLASS_PROTOCOL_LIST (category), ident, is_class)))) return meth; } } /* If not found in categories, check in protocols of the main class. */ if (CLASS_PROTOCOL_LIST (inter)) { if ((meth = (lookup_method_in_protocol_list (CLASS_PROTOCOL_LIST (inter), ident, is_class)))) return meth; } /* If we were instructed not to look in superclasses, don't. */ if (no_superclasses) return NULL_TREE; /* Failing that, climb up the inheritance hierarchy. */ root_inter = inter; inter = lookup_interface (CLASS_SUPER_NAME (inter)); } while (inter); if (is_class && !no_instance_methods_of_root_class) { /* If no class (factory) method was found, check if an _instance_ method of the same name exists in the root class. This is what the Objective-C runtime will do. */ return lookup_method_static (root_inter, ident, 0); } else { /* If an instance method was not found, return 0. */ return NULL_TREE; } } /* Add the method to the hash list if it doesn't contain an identical method already. */ static void add_method_to_hash_list (hash *hash_list, tree method) { hash hsh; if (!(hsh = hash_lookup (hash_list, METHOD_SEL_NAME (method)))) { /* Install on a global chain. */ hash_enter (hash_list, method); } else { /* Check types against those; if different, add to a list. */ attr loop; int already_there = comp_proto_with_proto (method, hsh->key, 1); for (loop = hsh->list; !already_there && loop; loop = loop->next) already_there |= comp_proto_with_proto (method, loop->value, 1); if (!already_there) hash_add_attr (hsh, method); } } static tree objc_add_method (tree klass, tree method, int is_class, bool is_optional) { tree existing_method = NULL_TREE; /* The first thing we do is look up the method in the list of methods already defined in the interface (or implementation). */ if (is_class) existing_method = lookup_method (CLASS_CLS_METHODS (klass), method); else existing_method = lookup_method (CLASS_NST_METHODS (klass), method); /* In the case of protocols, we have a second list of methods to consider, the list of optional ones. */ if (TREE_CODE (klass) == PROTOCOL_INTERFACE_TYPE) { /* @required methods are added to the protocol's normal list. @optional methods are added to the protocol's OPTIONAL lists. Note that adding the methods to the optional lists disables checking that the methods are implemented by classes implementing the protocol, since these checks only use the CLASS_CLS_METHODS and CLASS_NST_METHODS. */ /* First of all, if the method to add is @optional, and we found it already existing as @required, emit an error. */ if (is_optional && existing_method) { error ("method %<%c%E%> declared %<@optional%> and %<@required%> at the same time", (is_class ? '+' : '-'), METHOD_SEL_NAME (existing_method)); inform (DECL_SOURCE_LOCATION (existing_method), "previous declaration of %<%c%E%> as %<@required%>", (is_class ? '+' : '-'), METHOD_SEL_NAME (existing_method)); } /* Now check the list of @optional methods if we didn't find the method in the @required list. */ if (!existing_method) { if (is_class) existing_method = lookup_method (PROTOCOL_OPTIONAL_CLS_METHODS (klass), method); else existing_method = lookup_method (PROTOCOL_OPTIONAL_NST_METHODS (klass), method); if (!is_optional && existing_method) { error ("method %<%c%E%> declared %<@optional%> and %<@required%> at the same time", (is_class ? '+' : '-'), METHOD_SEL_NAME (existing_method)); inform (DECL_SOURCE_LOCATION (existing_method), "previous declaration of %<%c%E%> as %<@optional%>", (is_class ? '+' : '-'), METHOD_SEL_NAME (existing_method)); } } } /* If the method didn't exist already, add it. */ if (!existing_method) { if (is_optional) { if (is_class) { /* Put the method on the list in reverse order. */ TREE_CHAIN (method) = PROTOCOL_OPTIONAL_CLS_METHODS (klass); PROTOCOL_OPTIONAL_CLS_METHODS (klass) = method; } else { TREE_CHAIN (method) = PROTOCOL_OPTIONAL_NST_METHODS (klass); PROTOCOL_OPTIONAL_NST_METHODS (klass) = method; } } else { if (is_class) { DECL_CHAIN (method) = CLASS_CLS_METHODS (klass); CLASS_CLS_METHODS (klass) = method; } else { DECL_CHAIN (method) = CLASS_NST_METHODS (klass); CLASS_NST_METHODS (klass) = method; } } } else { /* The method was already defined. Check that the types match for an @interface for a class or category, or for a @protocol. Give hard errors on methods with identical selectors but differing argument and/or return types. We do not do this for @implementations, because C/C++ will do it for us (i.e., there will be duplicate function definition errors). */ if ((TREE_CODE (klass) == CLASS_INTERFACE_TYPE || TREE_CODE (klass) == CATEGORY_INTERFACE_TYPE /* Starting with GCC 4.6, we emit the same error for protocols too. The situation is identical to @interfaces as there is no possible meaningful reason for defining the same method with different signatures in the very same @protocol. If that was allowed, whenever the protocol is used (both at compile and run time) there wouldn't be any meaningful way to decide which of the two method signatures should be used. */ || TREE_CODE (klass) == PROTOCOL_INTERFACE_TYPE) && !comp_proto_with_proto (method, existing_method, 1)) { error ("duplicate declaration of method %<%c%E%> with conflicting types", (is_class ? '+' : '-'), METHOD_SEL_NAME (existing_method)); inform (DECL_SOURCE_LOCATION (existing_method), "previous declaration of %<%c%E%>", (is_class ? '+' : '-'), METHOD_SEL_NAME (existing_method)); } } if (is_class) add_method_to_hash_list (cls_method_hash_list, method); else { add_method_to_hash_list (nst_method_hash_list, method); /* Instance methods in root classes (and categories thereof) may act as class methods as a last resort. We also add instance methods listed in @protocol declarations to the class hash table, on the assumption that @protocols may be adopted by root classes or categories. */ if (TREE_CODE (klass) == CATEGORY_INTERFACE_TYPE || TREE_CODE (klass) == CATEGORY_IMPLEMENTATION_TYPE) klass = lookup_interface (CLASS_NAME (klass)); if (TREE_CODE (klass) == PROTOCOL_INTERFACE_TYPE || !CLASS_SUPER_NAME (klass)) add_method_to_hash_list (cls_method_hash_list, method); } return method; } static tree add_class (tree class_name, tree name) { struct interface_tuple **slot; /* Put interfaces on list in reverse order. */ TREE_CHAIN (class_name) = interface_chain; interface_chain = class_name; if (interface_htab == NULL) interface_htab = htab_create_ggc (31, hash_interface, eq_interface, NULL); slot = (struct interface_tuple **) htab_find_slot_with_hash (interface_htab, name, IDENTIFIER_HASH_VALUE (name), INSERT); if (!*slot) { *slot = ggc_alloc_cleared_interface_tuple (); (*slot)->id = name; } (*slot)->class_name = class_name; return interface_chain; } static void add_category (tree klass, tree category) { /* Put categories on list in reverse order. */ tree cat = lookup_category (klass, CLASS_SUPER_NAME (category)); if (cat) { warning (0, "duplicate interface declaration for category %<%E(%E)%>", CLASS_NAME (klass), CLASS_SUPER_NAME (category)); } else { CLASS_CATEGORY_LIST (category) = CLASS_CATEGORY_LIST (klass); CLASS_CATEGORY_LIST (klass) = category; } } /* Called after parsing each instance variable declaration. Necessary to preserve typedefs and implement public/private... VISIBILITY is 1 for public, 0 for protected, and 2 for private. */ static tree add_instance_variable (tree klass, objc_ivar_visibility_kind visibility, tree field_decl) { tree field_type = TREE_TYPE (field_decl); const char *ivar_name = DECL_NAME (field_decl) ? identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (field_decl))) : _(""); #ifdef OBJCPLUS if (TREE_CODE (field_type) == REFERENCE_TYPE) { error ("illegal reference type specified for instance variable %qs", ivar_name); /* Return class as is without adding this ivar. */ return klass; } #endif if (field_type == error_mark_node || !TYPE_SIZE (field_type) || TYPE_SIZE (field_type) == error_mark_node) /* 'type[0]' is allowed, but 'type[]' is not! */ { error ("instance variable %qs has unknown size", ivar_name); /* Return class as is without adding this ivar. */ return klass; } #ifdef OBJCPLUS /* Check if the ivar being added has a non-POD C++ type. If so, we will need to either (1) warn the user about it or (2) generate suitable constructor/destructor call from '- .cxx_construct' or '- .cxx_destruct' methods (if '-fobjc-call-cxx-cdtors' was specified). */ if (MAYBE_CLASS_TYPE_P (field_type) && (TYPE_NEEDS_CONSTRUCTING (field_type) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (field_type) || TYPE_POLYMORPHIC_P (field_type))) { tree type_name = OBJC_TYPE_NAME (field_type); if (flag_objc_call_cxx_cdtors) { /* Since the ObjC runtime will be calling the constructors and destructors for us, the only thing we can't handle is the lack of a default constructor. */ if (TYPE_NEEDS_CONSTRUCTING (field_type) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (field_type)) { warning (0, "type %qE has no default constructor to call", type_name); /* If we cannot call a constructor, we should also avoid calling the destructor, for symmetry. */ if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (field_type)) warning (0, "destructor for %qE shall not be run either", type_name); } } else { static bool warn_cxx_ivars = false; if (TYPE_POLYMORPHIC_P (field_type)) { /* Vtable pointers are Real Bad(tm), since Obj-C cannot initialize them. */ error ("type %qE has virtual member functions", type_name); error ("illegal aggregate type %qE specified " "for instance variable %qs", type_name, ivar_name); /* Return class as is without adding this ivar. */ return klass; } /* User-defined constructors and destructors are not known to Obj-C and hence will not be called. This may or may not be a problem. */ if (TYPE_NEEDS_CONSTRUCTING (field_type)) warning (0, "type %qE has a user-defined constructor", type_name); if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (field_type)) warning (0, "type %qE has a user-defined destructor", type_name); if (!warn_cxx_ivars) { warning (0, "C++ constructors and destructors will not " "be invoked for Objective-C fields"); warn_cxx_ivars = true; } } } #endif /* Overload the public attribute, it is not used for FIELD_DECLs. */ switch (visibility) { case OBJC_IVAR_VIS_PROTECTED: TREE_PUBLIC (field_decl) = 0; TREE_PRIVATE (field_decl) = 0; TREE_PROTECTED (field_decl) = 1; break; case OBJC_IVAR_VIS_PACKAGE: /* TODO: Implement the package variant. */ case OBJC_IVAR_VIS_PUBLIC: TREE_PUBLIC (field_decl) = 1; TREE_PRIVATE (field_decl) = 0; TREE_PROTECTED (field_decl) = 0; break; case OBJC_IVAR_VIS_PRIVATE: TREE_PUBLIC (field_decl) = 0; TREE_PRIVATE (field_decl) = 1; TREE_PROTECTED (field_decl) = 0; break; } CLASS_RAW_IVARS (klass) = chainon (CLASS_RAW_IVARS (klass), field_decl); return klass; } static tree is_ivar (tree decl_chain, tree ident) { for ( ; decl_chain; decl_chain = DECL_CHAIN (decl_chain)) if (DECL_NAME (decl_chain) == ident) return decl_chain; return NULL_TREE; } /* True if the ivar is private and we are not in its implementation. */ static int is_private (tree decl) { return (TREE_PRIVATE (decl) && ! is_ivar (CLASS_IVARS (implementation_template), DECL_NAME (decl))); } /* We have an instance variable reference;, check to see if it is public. */ int objc_is_public (tree expr, tree identifier) { tree basetype, decl; #ifdef OBJCPLUS if (processing_template_decl) return 1; #endif if (TREE_TYPE (expr) == error_mark_node) return 1; basetype = TYPE_MAIN_VARIANT (TREE_TYPE (expr)); if (basetype && TREE_CODE (basetype) == RECORD_TYPE) { if (TYPE_HAS_OBJC_INFO (basetype) && TYPE_OBJC_INTERFACE (basetype)) { tree klass = lookup_interface (OBJC_TYPE_NAME (basetype)); if (!klass) { error ("cannot find interface declaration for %qE", OBJC_TYPE_NAME (basetype)); return 0; } if ((decl = is_ivar (get_class_ivars (klass, true), identifier))) { if (TREE_PUBLIC (decl)) return 1; /* Important difference between the Stepstone translator: all instance variables should be public within the context of the implementation. */ if (objc_implementation_context && ((TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE) || (TREE_CODE (objc_implementation_context) == CATEGORY_IMPLEMENTATION_TYPE))) { tree curtype = TYPE_MAIN_VARIANT (CLASS_STATIC_TEMPLATE (implementation_template)); if (basetype == curtype || DERIVED_FROM_P (basetype, curtype)) { int priv = is_private (decl); if (priv) error ("instance variable %qE is declared private", DECL_NAME (decl)); return !priv; } } /* The 2.95.2 compiler sometimes allowed C functions to access non-@public ivars. We will let this slide for now... */ if (!objc_method_context) { warning (0, "instance variable %qE is %s; " "this will be a hard error in the future", identifier, TREE_PRIVATE (decl) ? "@private" : "@protected"); return 1; } error ("instance variable %qE is declared %s", identifier, TREE_PRIVATE (decl) ? "private" : "protected"); return 0; } } } return 1; } /* Make sure all methods in CHAIN (a list of method declarations from an @interface or a @protocol) are in IMPLEMENTATION (the implementation context). This is used to check for example that all methods declared in an @interface were implemented in an @implementation. Some special methods (property setters/getters) are special and if they are not found in IMPLEMENTATION, we look them up in its superclasses. */ static int check_methods (tree chain, tree implementation, int mtype) { int first = 1; tree list; if (mtype == (int)'+') list = CLASS_CLS_METHODS (implementation); else list = CLASS_NST_METHODS (implementation); while (chain) { /* If the method is associated with a dynamic property, then it is Ok not to have the method implementation, as it will be generated dynamically at runtime. To decide if the method is associated with a @dynamic property, we search the list of @synthesize and @dynamic for this implementation, and look for any @dynamic property with the same setter or getter name as this method. */ tree x; for (x = IMPL_PROPERTY_DECL (implementation); x; x = TREE_CHAIN (x)) if (PROPERTY_DYNAMIC (x) && (PROPERTY_GETTER_NAME (x) == METHOD_SEL_NAME (chain) || PROPERTY_SETTER_NAME (x) == METHOD_SEL_NAME (chain))) break; if (x != NULL_TREE) { chain = TREE_CHAIN (chain); /* next method... */ continue; } if (!lookup_method (list, chain)) { /* If the method is a property setter/getter, we'll still allow it to be missing if it is implemented by 'interface' or any of its superclasses. */ tree property = METHOD_PROPERTY_CONTEXT (chain); if (property) { /* Note that since this is a property getter/setter, it is obviously an instance method. */ tree interface = NULL_TREE; /* For a category, first check the main class @interface. */ if (TREE_CODE (implementation) == CATEGORY_IMPLEMENTATION_TYPE) { interface = lookup_interface (CLASS_NAME (implementation)); /* If the method is found in the main class, it's Ok. */ if (lookup_method (CLASS_NST_METHODS (interface), chain)) { chain = DECL_CHAIN (chain); continue; } /* Else, get the superclass. */ if (CLASS_SUPER_NAME (interface)) interface = lookup_interface (CLASS_SUPER_NAME (interface)); else interface = NULL_TREE; } /* Get the superclass for classes. */ if (TREE_CODE (implementation) == CLASS_IMPLEMENTATION_TYPE) { if (CLASS_SUPER_NAME (implementation)) interface = lookup_interface (CLASS_SUPER_NAME (implementation)); else interface = NULL_TREE; } /* Now, interface is the superclass, if any; go check it. */ if (interface) { if (lookup_method_static (interface, chain, 0)) { chain = DECL_CHAIN (chain); continue; } } /* Else, fall through - warn. */ } if (first) { switch (TREE_CODE (implementation)) { case CLASS_IMPLEMENTATION_TYPE: warning (0, "incomplete implementation of class %qE", CLASS_NAME (implementation)); break; case CATEGORY_IMPLEMENTATION_TYPE: warning (0, "incomplete implementation of category %qE", CLASS_SUPER_NAME (implementation)); break; default: gcc_unreachable (); } first = 0; } warning (0, "method definition for %<%c%E%> not found", mtype, METHOD_SEL_NAME (chain)); } chain = DECL_CHAIN (chain); } return first; } /* Check if KLASS, or its superclasses, explicitly conforms to PROTOCOL. */ static int conforms_to_protocol (tree klass, tree protocol) { if (TREE_CODE (protocol) == PROTOCOL_INTERFACE_TYPE) { tree p = CLASS_PROTOCOL_LIST (klass); while (p && TREE_VALUE (p) != protocol) p = TREE_CHAIN (p); if (!p) { tree super = (CLASS_SUPER_NAME (klass) ? lookup_interface (CLASS_SUPER_NAME (klass)) : NULL_TREE); int tmp = super ? conforms_to_protocol (super, protocol) : 0; if (!tmp) return 0; } } return 1; } /* Make sure all methods in CHAIN are accessible as MTYPE methods in CONTEXT. This is one of two mechanisms to check protocol integrity. */ static int check_methods_accessible (tree chain, tree context, int mtype) { int first = 1; tree list; tree base_context = context; while (chain) { /* If the method is associated with a dynamic property, then it is Ok not to have the method implementation, as it will be generated dynamically at runtime. Search for any @dynamic property with the same setter or getter name as this method. TODO: Use a hashtable lookup. */ tree x; for (x = IMPL_PROPERTY_DECL (base_context); x; x = TREE_CHAIN (x)) if (PROPERTY_DYNAMIC (x) && (PROPERTY_GETTER_NAME (x) == METHOD_SEL_NAME (chain) || PROPERTY_SETTER_NAME (x) == METHOD_SEL_NAME (chain))) break; if (x != NULL_TREE) { chain = TREE_CHAIN (chain); /* next method... */ continue; } context = base_context; while (context) { if (mtype == '+') list = CLASS_CLS_METHODS (context); else list = CLASS_NST_METHODS (context); if (lookup_method (list, chain)) break; switch (TREE_CODE (context)) { case CLASS_IMPLEMENTATION_TYPE: case CLASS_INTERFACE_TYPE: context = (CLASS_SUPER_NAME (context) ? lookup_interface (CLASS_SUPER_NAME (context)) : NULL_TREE); break; case CATEGORY_IMPLEMENTATION_TYPE: case CATEGORY_INTERFACE_TYPE: context = (CLASS_NAME (context) ? lookup_interface (CLASS_NAME (context)) : NULL_TREE); break; default: gcc_unreachable (); } } if (context == NULL_TREE) { if (first) { switch (TREE_CODE (objc_implementation_context)) { case CLASS_IMPLEMENTATION_TYPE: warning (0, "incomplete implementation of class %qE", CLASS_NAME (objc_implementation_context)); break; case CATEGORY_IMPLEMENTATION_TYPE: warning (0, "incomplete implementation of category %qE", CLASS_SUPER_NAME (objc_implementation_context)); break; default: gcc_unreachable (); } first = 0; } warning (0, "method definition for %<%c%E%> not found", mtype, METHOD_SEL_NAME (chain)); } chain = TREE_CHAIN (chain); /* next method... */ } return first; } /* Check whether the current interface (accessible via 'objc_implementation_context') actually implements protocol P, along with any protocols that P inherits. */ static void check_protocol (tree p, const char *type, tree name) { if (TREE_CODE (p) == PROTOCOL_INTERFACE_TYPE) { int f1, f2; /* Ensure that all protocols have bodies! */ if (warn_protocol) { f1 = check_methods (PROTOCOL_CLS_METHODS (p), objc_implementation_context, '+'); f2 = check_methods (PROTOCOL_NST_METHODS (p), objc_implementation_context, '-'); } else { f1 = check_methods_accessible (PROTOCOL_CLS_METHODS (p), objc_implementation_context, '+'); f2 = check_methods_accessible (PROTOCOL_NST_METHODS (p), objc_implementation_context, '-'); } if (!f1 || !f2) warning (0, "%s %qE does not fully implement the %qE protocol", type, name, PROTOCOL_NAME (p)); } /* Check protocols recursively. */ if (PROTOCOL_LIST (p)) { tree subs = PROTOCOL_LIST (p); tree super_class = lookup_interface (CLASS_SUPER_NAME (implementation_template)); while (subs) { tree sub = TREE_VALUE (subs); /* If the superclass does not conform to the protocols inherited by P, then we must! */ if (!super_class || !conforms_to_protocol (super_class, sub)) check_protocol (sub, type, name); subs = TREE_CHAIN (subs); } } } /* Check whether the current interface (accessible via 'objc_implementation_context') actually implements the protocols listed in PROTO_LIST. */ static void check_protocols (tree proto_list, const char *type, tree name) { for ( ; proto_list; proto_list = TREE_CHAIN (proto_list)) { tree p = TREE_VALUE (proto_list); check_protocol (p, type, name); } } /* Make sure that the class CLASS_NAME is defined CODE says which kind of thing CLASS_NAME ought to be. It can be CLASS_INTERFACE_TYPE, CLASS_IMPLEMENTATION_TYPE, CATEGORY_INTERFACE_TYPE, or CATEGORY_IMPLEMENTATION_TYPE. For a CATEGORY_INTERFACE_TYPE, SUPER_NAME is the name of the category. For a class extension, CODE is CATEGORY_INTERFACE_TYPE and SUPER_NAME is NULL_TREE. */ static tree start_class (enum tree_code code, tree class_name, tree super_name, tree protocol_list, tree attributes) { tree klass = NULL_TREE; tree decl; #ifdef OBJCPLUS if (current_namespace != global_namespace) { error ("Objective-C declarations may only appear in global scope"); } #endif /* OBJCPLUS */ if (objc_implementation_context) { warning (0, "%<@end%> missing in implementation context"); finish_class (objc_implementation_context); objc_ivar_chain = NULL_TREE; objc_implementation_context = NULL_TREE; } /* If this is a class extension, we'll be "reopening" the existing CLASS_INTERFACE_TYPE, so in that case there is no need to create a new node. */ if (code != CATEGORY_INTERFACE_TYPE || super_name != NULL_TREE) { klass = make_node (code); TYPE_LANG_SLOT_1 (klass) = make_tree_vec (CLASS_LANG_SLOT_ELTS); } /* Check for existence of the super class, if one was specified. Note that we must have seen an @interface, not just a @class. If we are looking at a @compatibility_alias, traverse it first. */ if ((code == CLASS_INTERFACE_TYPE || code == CLASS_IMPLEMENTATION_TYPE) && super_name) { tree super = objc_is_class_name (super_name); tree super_interface = NULL_TREE; if (super) super_interface = lookup_interface (super); if (!super_interface) { error ("cannot find interface declaration for %qE, superclass of %qE", super ? super : super_name, class_name); super_name = NULL_TREE; } else { if (TREE_DEPRECATED (super_interface)) warning (OPT_Wdeprecated_declarations, "class %qE is deprecated", super); super_name = super; } } if (code != CATEGORY_INTERFACE_TYPE || super_name != NULL_TREE) { CLASS_NAME (klass) = class_name; CLASS_SUPER_NAME (klass) = super_name; CLASS_CLS_METHODS (klass) = NULL_TREE; } if (! objc_is_class_name (class_name) && (decl = lookup_name (class_name))) { error ("%qE redeclared as different kind of symbol", class_name); error ("previous declaration of %q+D", decl); } switch (code) { case CLASS_IMPLEMENTATION_TYPE: { tree chain; for (chain = implemented_classes; chain; chain = TREE_CHAIN (chain)) if (TREE_VALUE (chain) == class_name) { error ("reimplementation of class %qE", class_name); /* TODO: error message saying where it was previously implemented. */ break; } if (chain == NULL_TREE) implemented_classes = tree_cons (NULL_TREE, class_name, implemented_classes); } /* Reset for multiple classes per file. */ method_slot = 0; objc_implementation_context = klass; /* Lookup the interface for this implementation. */ if (!(implementation_template = lookup_interface (class_name))) { warning (0, "cannot find interface declaration for %qE", class_name); add_class (implementation_template = objc_implementation_context, class_name); } /* If a super class has been specified in the implementation, insure it conforms to the one specified in the interface. */ if (super_name && (super_name != CLASS_SUPER_NAME (implementation_template))) { tree previous_name = CLASS_SUPER_NAME (implementation_template); error ("conflicting super class name %qE", super_name); if (previous_name) error ("previous declaration of %qE", previous_name); else error ("previous declaration"); } else if (! super_name) { CLASS_SUPER_NAME (objc_implementation_context) = CLASS_SUPER_NAME (implementation_template); } break; case CLASS_INTERFACE_TYPE: if (lookup_interface (class_name)) #ifdef OBJCPLUS error ("duplicate interface declaration for class %qE", class_name); #else warning (0, "duplicate interface declaration for class %qE", class_name); #endif else add_class (klass, class_name); if (protocol_list) CLASS_PROTOCOL_LIST (klass) = lookup_and_install_protocols (protocol_list, /* definition_required */ true); /* Determine if 'deprecated', the only attribute we recognize for classes, was used. Ignore all other attributes for now, but store them in the klass. */ if (attributes) { tree attribute; for (attribute = attributes; attribute; attribute = TREE_CHAIN (attribute)) { tree name = TREE_PURPOSE (attribute); if (is_attribute_p ("deprecated", name)) TREE_DEPRECATED (klass) = 1; else warning (OPT_Wattributes, "%qE attribute directive ignored", name); } TYPE_ATTRIBUTES (klass) = attributes; } break; case CATEGORY_INTERFACE_TYPE: { tree class_category_is_assoc_with; /* For a category, class_name is really the name of the class that the following set of methods will be associated with. We must find the interface so that can derive the objects template. */ if (!(class_category_is_assoc_with = lookup_interface (class_name))) { error ("cannot find interface declaration for %qE", class_name); exit (FATAL_EXIT_CODE); } else { if (TREE_DEPRECATED (class_category_is_assoc_with)) warning (OPT_Wdeprecated_declarations, "class %qE is deprecated", class_name); if (super_name == NULL_TREE) { /* This is a class extension. Get the original interface, and continue working on it. */ objc_in_class_extension = true; klass = class_category_is_assoc_with; if (protocol_list) { /* Append protocols to the original protocol list. */ CLASS_PROTOCOL_LIST (klass) = chainon (CLASS_PROTOCOL_LIST (klass), lookup_and_install_protocols (protocol_list, /* definition_required */ true)); } } else { add_category (class_category_is_assoc_with, klass); if (protocol_list) CLASS_PROTOCOL_LIST (klass) = lookup_and_install_protocols (protocol_list, /* definition_required */ true); } } } break; case CATEGORY_IMPLEMENTATION_TYPE: /* Reset for multiple classes per file. */ method_slot = 0; objc_implementation_context = klass; /* For a category, class_name is really the name of the class that the following set of methods will be associated with. We must find the interface so that can derive the objects template. */ if (!(implementation_template = lookup_interface (class_name))) { error ("cannot find interface declaration for %qE", class_name); exit (FATAL_EXIT_CODE); } break; default: gcc_unreachable (); } return klass; } static tree continue_class (tree klass) { switch (TREE_CODE (klass)) { case CLASS_IMPLEMENTATION_TYPE: case CATEGORY_IMPLEMENTATION_TYPE: { struct imp_entry *imp_entry; /* Check consistency of the instance variables. */ if (CLASS_RAW_IVARS (klass)) check_ivars (implementation_template, klass); /* code generation */ #ifdef OBJCPLUS push_lang_context (lang_name_c); #endif build_private_template (implementation_template); uprivate_record = CLASS_STATIC_TEMPLATE (implementation_template); objc_instance_type = build_pointer_type (uprivate_record); imp_entry = ggc_alloc_imp_entry (); imp_entry->next = imp_list; imp_entry->imp_context = klass; imp_entry->imp_template = implementation_template; synth_forward_declarations (); imp_entry->class_decl = UOBJC_CLASS_decl; imp_entry->meta_decl = UOBJC_METACLASS_decl; imp_entry->has_cxx_cdtors = 0; /* Append to front and increment count. */ imp_list = imp_entry; if (TREE_CODE (klass) == CLASS_IMPLEMENTATION_TYPE) imp_count++; else cat_count++; #ifdef OBJCPLUS pop_lang_context (); #endif /* OBJCPLUS */ return get_class_ivars (implementation_template, true); break; } case CLASS_INTERFACE_TYPE: { if (objc_in_class_extension) return NULL_TREE; #ifdef OBJCPLUS push_lang_context (lang_name_c); #endif /* OBJCPLUS */ objc_collecting_ivars = 1; build_private_template (klass); objc_collecting_ivars = 0; #ifdef OBJCPLUS pop_lang_context (); #endif /* OBJCPLUS */ return NULL_TREE; break; } default: return error_mark_node; } } /* This routine builds name of the setter synthesized function. */ static char * objc_build_property_setter_name (tree ident) { /* TODO: Use alloca to allocate buffer of appropriate size. */ static char string[BUFSIZE]; sprintf (string, "set%s:", IDENTIFIER_POINTER (ident)); string[3] = TOUPPER (string[3]); return string; } /* This routine prepares the declarations of the property accessor helper functions (objc_getProperty(), etc) that are used when @synthesize is used. */ static void build_objc_property_accessor_helpers (void) { tree type; /* Declare the following function: id objc_getProperty (id self, SEL _cmd, ptrdiff_t offset, BOOL is_atomic); */ type = build_function_type_list (objc_object_type, objc_object_type, objc_selector_type, ptrdiff_type_node, boolean_type_node, NULL_TREE); objc_getProperty_decl = add_builtin_function ("objc_getProperty", type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (objc_getProperty_decl) = 0; /* Declare the following function: void objc_setProperty (id self, SEL _cmd, ptrdiff_t offset, id new_value, BOOL is_atomic, BOOL should_copy); */ type = build_function_type_list (void_type_node, objc_object_type, objc_selector_type, ptrdiff_type_node, objc_object_type, boolean_type_node, boolean_type_node, NULL_TREE); objc_setProperty_decl = add_builtin_function ("objc_setProperty", type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (objc_setProperty_decl) = 0; /* This is the type of all of the following functions (objc_copyStruct(), objc_getPropertyStruct() and objc_setPropertyStruct()). */ type = build_function_type_list (void_type_node, ptr_type_node, const_ptr_type_node, ptrdiff_type_node, boolean_type_node, boolean_type_node, NULL_TREE); if (flag_next_runtime) { /* Declare the following function: void objc_copyStruct (void *destination, const void *source, ptrdiff_t size, BOOL is_atomic, BOOL has_strong); */ objc_copyStruct_decl = add_builtin_function ("objc_copyStruct", type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (objc_copyStruct_decl) = 0; objc_getPropertyStruct_decl = NULL_TREE; objc_setPropertyStruct_decl = NULL_TREE; } else { objc_copyStruct_decl = NULL_TREE; /* Declare the following function: void objc_getPropertyStruct (void *destination, const void *source, ptrdiff_t size, BOOL is_atomic, BOOL has_strong); */ objc_getPropertyStruct_decl = add_builtin_function ("objc_getPropertyStruct", type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (objc_getPropertyStruct_decl) = 0; /* Declare the following function: void objc_setPropertyStruct (void *destination, const void *source, ptrdiff_t size, BOOL is_atomic, BOOL has_strong); */ objc_setPropertyStruct_decl = add_builtin_function ("objc_setPropertyStruct", type, 0, NOT_BUILT_IN, NULL, NULL_TREE); TREE_NOTHROW (objc_setPropertyStruct_decl) = 0; } } /* This looks up an ivar in a class (including superclasses). */ static tree lookup_ivar (tree interface, tree instance_variable_name) { while (interface) { tree decl_chain; for (decl_chain = CLASS_IVARS (interface); decl_chain; decl_chain = DECL_CHAIN (decl_chain)) if (DECL_NAME (decl_chain) == instance_variable_name) return decl_chain; /* Not found. Search superclass if any. */ if (CLASS_SUPER_NAME (interface)) interface = lookup_interface (CLASS_SUPER_NAME (interface)); } return NULL_TREE; } /* This routine synthesizes a 'getter' method. This is only called for @synthesize properties. */ static void objc_synthesize_getter (tree klass, tree class_methods ATTRIBUTE_UNUSED, tree property) { location_t location = DECL_SOURCE_LOCATION (property); tree fn, decl; tree body; tree ret_val; /* If user has implemented a getter with same name then do nothing. */ if (lookup_method (CLASS_NST_METHODS (objc_implementation_context), PROPERTY_GETTER_NAME (property))) return; /* Find declaration of the property getter in the interface (or superclass, or protocol). There must be one. */ decl = lookup_method_static (klass, PROPERTY_GETTER_NAME (property), 0); /* If one not declared in the interface, this condition has already been reported as user error (because property was not declared in the interface). */ if (!decl) return; /* Adapt the 'decl'. Use the source location of the @synthesize statement for error messages. */ decl = copy_node (decl); DECL_SOURCE_LOCATION (decl) = location; objc_start_method_definition (false /* is_class_method */, decl, NULL_TREE); body = c_begin_compound_stmt (true); /* Now we need to decide how we build the getter. There are three cases: for 'copy' or 'retain' properties we need to use the objc_getProperty() accessor helper which knows about retain and copy. It supports both 'nonatomic' and 'atomic' access. for 'nonatomic, assign' properties we can access the instance variable directly. 'nonatomic' means we don't have to use locks, and 'assign' means we don't have to worry about retain or copy. If you combine the two, it means we can just access the instance variable directly. for 'atomic, assign' properties we use objc_copyStruct() (for the next runtime) or objc_getPropertyStruct() (for the GNU runtime). */ switch (PROPERTY_ASSIGN_SEMANTICS (property)) { case OBJC_PROPERTY_RETAIN: case OBJC_PROPERTY_COPY: { /* We build "return objc_getProperty (self, _cmd, offset, is_atomic);" */ tree cmd, ivar, offset, is_atomic; cmd = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl)); /* Find the ivar to compute the offset. */ ivar = lookup_ivar (klass, PROPERTY_IVAR_NAME (property)); if (!ivar || is_private (ivar)) { /* This should never happen. */ error_at (location, "can not find instance variable associated with property"); ret_val = error_mark_node; break; } offset = byte_position (ivar); if (PROPERTY_NONATOMIC (property)) is_atomic = boolean_false_node; else is_atomic = boolean_true_node; ret_val = build_function_call (location, /* Function prototype. */ objc_getProperty_decl, /* Parameters. */ tree_cons /* self */ (NULL_TREE, self_decl, tree_cons /* _cmd */ (NULL_TREE, cmd, tree_cons /* offset */ (NULL_TREE, offset, tree_cons /* is_atomic */ (NULL_TREE, is_atomic, NULL_TREE))))); } break; case OBJC_PROPERTY_ASSIGN: if (PROPERTY_NONATOMIC (property)) { /* We build "return self->PROPERTY_IVAR_NAME;" */ ret_val = objc_lookup_ivar (NULL_TREE, PROPERTY_IVAR_NAME (property)); break; } else { /* We build __objc_property_temp; objc_getPropertyStruct (&__objc_property_temp, &(self->PROPERTY_IVAR_NAME), sizeof (type of self->PROPERTY_IVAR_NAME), is_atomic, false) return __objc_property_temp; For the NeXT runtime, we need to use objc_copyStruct instead of objc_getPropertyStruct. */ tree objc_property_temp_decl, function_decl, function_call; tree size_of, is_atomic; objc_property_temp_decl = objc_create_temporary_var (TREE_TYPE (property), "__objc_property_temp"); DECL_SOURCE_LOCATION (objc_property_temp_decl) = location; objc_property_temp_decl = lang_hooks.decls.pushdecl (objc_property_temp_decl); /* sizeof (ivar type). Since the ivar and the property have the same type, there is no need to lookup the ivar. */ size_of = c_sizeof_or_alignof_type (location, TREE_TYPE (property), true /* is_sizeof */, false /* complain */); if (PROPERTY_NONATOMIC (property)) is_atomic = boolean_false_node; else is_atomic = boolean_true_node; if (flag_next_runtime) function_decl = objc_copyStruct_decl; else function_decl = objc_getPropertyStruct_decl; function_call = build_function_call (location, /* Function prototype. */ function_decl, /* Parameters. */ tree_cons /* &__objc_property_temp_decl */ /* Warning: note that using build_fold_addr_expr_loc() here causes invalid code to be generated. */ (NULL_TREE, build_unary_op (location, ADDR_EXPR, objc_property_temp_decl, 0), tree_cons /* &(self->PROPERTY_IVAR_NAME); */ (NULL_TREE, build_fold_addr_expr_loc (location, objc_lookup_ivar (NULL_TREE, PROPERTY_IVAR_NAME (property))), tree_cons /* sizeof (PROPERTY_IVAR) */ (NULL_TREE, size_of, tree_cons /* is_atomic */ (NULL_TREE, is_atomic, /* TODO: This is currently ignored by the GNU runtime, but what about the next one ? */ tree_cons /* has_strong */ (NULL_TREE, boolean_true_node, NULL_TREE)))))); add_stmt (function_call); ret_val = objc_property_temp_decl; } break; default: gcc_unreachable (); } gcc_assert (ret_val); #ifdef OBJCPLUS finish_return_stmt (ret_val); #else c_finish_return (location, ret_val, NULL_TREE); #endif add_stmt (c_end_compound_stmt (location, body, true)); fn = current_function_decl; #ifdef OBJCPLUS finish_function (); #endif objc_finish_method_definition (fn); } /* This routine synthesizes a 'setter' method. */ static void objc_synthesize_setter (tree klass, tree class_methods ATTRIBUTE_UNUSED, tree property) { location_t location = DECL_SOURCE_LOCATION (property); tree fn, decl; tree body; tree new_value, statement; /* If user has implemented a setter with same name then do nothing. */ if (lookup_method (CLASS_NST_METHODS (objc_implementation_context), PROPERTY_SETTER_NAME (property))) return; /* Find declaration of the property setter in the interface (or superclass, or protocol). There must be one. */ decl = lookup_method_static (klass, PROPERTY_SETTER_NAME (property), 0); /* If one not declared in the interface, this condition has already been reported as user error (because property was not declared in the interface). */ if (!decl) return; /* Adapt the 'decl'. Use the source location of the @synthesize statement for error messages. */ decl = copy_node (decl); DECL_SOURCE_LOCATION (decl) = DECL_SOURCE_LOCATION (property); objc_start_method_definition (false /* is_class_method */, decl, NULL_TREE); body = c_begin_compound_stmt (true); /* The 'new_value' is the only argument to the method, which is the 3rd argument of the function, after self and _cmd. We use twice TREE_CHAIN to move forward two arguments. */ new_value = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (current_function_decl))); /* This would presumably happen if the user has specified a prototype for the setter that does not have an argument! */ if (new_value == NULL_TREE) { /* TODO: This should be caught much earlier than this. */ error_at (DECL_SOURCE_LOCATION (decl), "invalid setter, it must have one argument"); /* Try to recover somehow. */ new_value = error_mark_node; } /* Now we need to decide how we build the setter. There are three cases: for 'copy' or 'retain' properties we need to use the objc_setProperty() accessor helper which knows about retain and copy. It supports both 'nonatomic' and 'atomic' access. for 'nonatomic, assign' properties we can access the instance variable directly. 'nonatomic' means we don't have to use locks, and 'assign' means we don't have to worry about retain or copy. If you combine the two, it means we can just access the instance variable directly. for 'atomic, assign' properties we use objc_copyStruct() (for the next runtime) or objc_setPropertyStruct() (for the GNU runtime). */ switch (PROPERTY_ASSIGN_SEMANTICS (property)) { case OBJC_PROPERTY_RETAIN: case OBJC_PROPERTY_COPY: { /* We build "objc_setProperty (self, _cmd, new_value, offset, is_atomic, should_copy);" */ tree cmd, ivar, offset, is_atomic, should_copy; cmd = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl)); /* Find the ivar to compute the offset. */ ivar = lookup_ivar (klass, PROPERTY_IVAR_NAME (property)); if (!ivar || is_private (ivar)) { error_at (location, "can not find instance variable associated with property"); statement = error_mark_node; break; } offset = byte_position (ivar); if (PROPERTY_NONATOMIC (property)) is_atomic = boolean_false_node; else is_atomic = boolean_true_node; if (PROPERTY_ASSIGN_SEMANTICS (property) == OBJC_PROPERTY_COPY) should_copy = boolean_true_node; else should_copy = boolean_false_node; statement = build_function_call (location, /* Function prototype. */ objc_setProperty_decl, /* Parameters. */ tree_cons /* self */ (NULL_TREE, self_decl, tree_cons /* _cmd */ (NULL_TREE, cmd, tree_cons /* offset */ (NULL_TREE, offset, tree_cons /* new_value */ (NULL_TREE, new_value, tree_cons /* is_atomic */ (NULL_TREE, is_atomic, tree_cons /* should_copy */ (NULL_TREE, should_copy, NULL_TREE))))))); } break; case OBJC_PROPERTY_ASSIGN: if (PROPERTY_NONATOMIC (property)) { /* We build "self->PROPERTY_IVAR_NAME = new_value;" */ statement = build_modify_expr (location, objc_lookup_ivar (NULL_TREE, PROPERTY_IVAR_NAME (property)), NULL_TREE, NOP_EXPR, location, new_value, NULL_TREE); break; } else { /* We build objc_setPropertyStruct (&(self->PROPERTY_IVAR_NAME), &new_value, sizeof (type of self->PROPERTY_IVAR_NAME), is_atomic, false) For the NeXT runtime, we need to use objc_copyStruct instead of objc_getPropertyStruct. */ tree function_decl, size_of, is_atomic; /* sizeof (ivar type). Since the ivar and the property have the same type, there is no need to lookup the ivar. */ size_of = c_sizeof_or_alignof_type (location, TREE_TYPE (property), true /* is_sizeof */, false /* complain */); if (PROPERTY_NONATOMIC (property)) is_atomic = boolean_false_node; else is_atomic = boolean_true_node; if (flag_next_runtime) function_decl = objc_copyStruct_decl; else function_decl = objc_setPropertyStruct_decl; statement = build_function_call (location, /* Function prototype. */ function_decl, /* Parameters. */ tree_cons /* &(self->PROPERTY_IVAR_NAME); */ (NULL_TREE, build_fold_addr_expr_loc (location, objc_lookup_ivar (NULL_TREE, PROPERTY_IVAR_NAME (property))), tree_cons /* &new_value */ (NULL_TREE, build_fold_addr_expr_loc (location, new_value), tree_cons /* sizeof (PROPERTY_IVAR) */ (NULL_TREE, size_of, tree_cons /* is_atomic */ (NULL_TREE, is_atomic, /* TODO: This is currently ignored by the GNU runtime, but what about the next one ? */ tree_cons /* has_strong */ (NULL_TREE, boolean_true_node, NULL_TREE)))))); } break; default: gcc_unreachable (); } gcc_assert (statement); add_stmt (statement); add_stmt (c_end_compound_stmt (location, body, true)); fn = current_function_decl; #ifdef OBJCPLUS finish_function (); #endif objc_finish_method_definition (fn); } /* This function is a sub-routine of objc_add_synthesize_declaration. It is called for each property to synthesize once we have determined that the context is Ok. */ static void objc_add_synthesize_declaration_for_property (location_t location, tree interface, tree property_name, tree ivar_name) { /* Find the @property declaration. */ tree property; tree x; /* Check that synthesize or dynamic has not already been used for the same property. */ for (property = IMPL_PROPERTY_DECL (objc_implementation_context); property; property = TREE_CHAIN (property)) if (PROPERTY_NAME (property) == property_name) { location_t original_location = DECL_SOURCE_LOCATION (property); if (PROPERTY_DYNAMIC (property)) error_at (location, "property %qs already specified in %<@dynamic%>", IDENTIFIER_POINTER (property_name)); else error_at (location, "property %qs already specified in %<@synthesize%>", IDENTIFIER_POINTER (property_name)); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } /* Check that the property is declared in the interface. It could also be declared in a superclass or protocol. */ property = lookup_property (interface, property_name); if (!property) { error_at (location, "no declaration of property %qs found in the interface", IDENTIFIER_POINTER (property_name)); return; } else { /* We have to copy the property, because we want to chain it to the implementation context, and we want to store the source location of the @synthesize, not of the original @property. */ property = copy_node (property); DECL_SOURCE_LOCATION (property) = location; } /* Determine PROPERTY_IVAR_NAME. */ if (ivar_name == NULL_TREE) ivar_name = property_name; /* Check that the instance variable exists. You can only use an instance variable from the same class, not one from the superclass (this makes sense as it allows us to check that an instance variable is only used in one synthesized property). */ { tree ivar = is_ivar (CLASS_IVARS (interface), ivar_name); tree type_of_ivar; if (!ivar) { error_at (location, "ivar %qs used by %<@synthesize%> declaration must be an existing ivar", IDENTIFIER_POINTER (property_name)); return; } if (DECL_BIT_FIELD_TYPE (ivar)) type_of_ivar = DECL_BIT_FIELD_TYPE (ivar); else type_of_ivar = TREE_TYPE (ivar); /* If the instance variable has a different C type, we throw an error ... */ if (!comptypes (TREE_TYPE (property), type_of_ivar) /* ... unless the property is readonly, in which case we allow the instance variable to be more specialized (this means we can generate the getter all right and it works). */ && (!PROPERTY_READONLY (property) || !objc_compare_types (TREE_TYPE (property), type_of_ivar, -5, NULL_TREE))) { location_t original_location = DECL_SOURCE_LOCATION (ivar); error_at (location, "property %qs is using instance variable %qs of incompatible type", IDENTIFIER_POINTER (property_name), IDENTIFIER_POINTER (ivar_name)); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); } /* If the instance variable is a bitfield, the property must be 'assign', 'nonatomic' because the runtime getter/setter helper do not work with bitfield instance variables. */ if (DECL_BIT_FIELD_TYPE (ivar)) { /* If there is an error, we return and not generate any getter/setter because trying to set up the runtime getter/setter helper calls with bitfields is at high risk of ICE. */ if (PROPERTY_ASSIGN_SEMANTICS (property) != OBJC_PROPERTY_ASSIGN) { location_t original_location = DECL_SOURCE_LOCATION (ivar); error_at (location, "'assign' property %qs is using bit-field instance variable %qs", IDENTIFIER_POINTER (property_name), IDENTIFIER_POINTER (ivar_name)); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } if (!PROPERTY_NONATOMIC (property)) { location_t original_location = DECL_SOURCE_LOCATION (ivar); error_at (location, "'atomic' property %qs is using bit-field instance variable %qs", IDENTIFIER_POINTER (property_name), IDENTIFIER_POINTER (ivar_name)); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } } } /* Check that no other property is using the same instance variable. */ for (x = IMPL_PROPERTY_DECL (objc_implementation_context); x; x = TREE_CHAIN (x)) if (PROPERTY_IVAR_NAME (x) == ivar_name) { location_t original_location = DECL_SOURCE_LOCATION (x); error_at (location, "property %qs is using the same instance variable as property %qs", IDENTIFIER_POINTER (property_name), IDENTIFIER_POINTER (PROPERTY_NAME (x))); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); /* We keep going on. This won't cause the compiler to fail; the failure would most likely be at runtime. */ } /* Note that a @synthesize (and only a @synthesize) always sets PROPERTY_IVAR_NAME to a non-NULL_TREE. You can recognize a @synthesize by that. */ PROPERTY_IVAR_NAME (property) = ivar_name; /* PROPERTY_SETTER_NAME and PROPERTY_GETTER_NAME are copied from the original declaration; they are always set (with the exception of PROPERTY_SETTER_NAME not being set if PROPERTY_READONLY == 1). */ /* Add the property to the list of properties for current implementation. */ TREE_CHAIN (property) = IMPL_PROPERTY_DECL (objc_implementation_context); IMPL_PROPERTY_DECL (objc_implementation_context) = property; /* Note how we don't actually synthesize the getter/setter here; it would be very natural, but we may miss the fact that the user has implemented his own getter/setter later on in the @implementation (in which case we shouldn't generate getter/setter). We wait until we have parsed it all before generating the code. */ } /* This function is called by the parser after a @synthesize expression is parsed. 'location' is the location of the @synthesize expression, and 'property_and_ivar_list' is a chained list of the property and ivar names. */ void objc_add_synthesize_declaration (location_t location, tree property_and_ivar_list) { tree interface, chain; if (flag_objc1_only) error_at (input_location, "%<@synthesize%> is not available in Objective-C 1.0"); if (property_and_ivar_list == error_mark_node) return; if (!objc_implementation_context) { /* We can get here only in Objective-C; the Objective-C++ parser detects the problem while parsing, outputs the error "misplaced '@synthesize' Objective-C++ construct" and skips the declaration. */ error_at (location, "%<@synthesize%> not in @implementation context"); return; } if (TREE_CODE (objc_implementation_context) == CATEGORY_IMPLEMENTATION_TYPE) { error_at (location, "%<@synthesize%> can not be used in categories"); return; } interface = lookup_interface (CLASS_NAME (objc_implementation_context)); if (!interface) { /* I can't see how this could happen, but it is good as a safety check. */ error_at (location, "%<@synthesize%> requires the @interface of the class to be available"); return; } /* Now, iterate over the properties and do each of them. */ for (chain = property_and_ivar_list; chain; chain = TREE_CHAIN (chain)) { objc_add_synthesize_declaration_for_property (location, interface, TREE_VALUE (chain), TREE_PURPOSE (chain)); } } /* This function is a sub-routine of objc_add_dynamic_declaration. It is called for each property to mark as dynamic once we have determined that the context is Ok. */ static void objc_add_dynamic_declaration_for_property (location_t location, tree interface, tree property_name) { /* Find the @property declaration. */ tree property; /* Check that synthesize or dynamic has not already been used for the same property. */ for (property = IMPL_PROPERTY_DECL (objc_implementation_context); property; property = TREE_CHAIN (property)) if (PROPERTY_NAME (property) == property_name) { location_t original_location = DECL_SOURCE_LOCATION (property); if (PROPERTY_DYNAMIC (property)) error_at (location, "property %qs already specified in %<@dynamic%>", IDENTIFIER_POINTER (property_name)); else error_at (location, "property %qs already specified in %<@synthesize%>", IDENTIFIER_POINTER (property_name)); if (original_location != UNKNOWN_LOCATION) inform (original_location, "originally specified here"); return; } /* Check that the property is declared in the interface. It could also be declared in a superclass or protocol. */ property = lookup_property (interface, property_name); if (!property) { error_at (location, "no declaration of property %qs found in the interface", IDENTIFIER_POINTER (property_name)); return; } else { /* We have to copy the property, because we want to chain it to the implementation context, and we want to store the source location of the @synthesize, not of the original @property. */ property = copy_node (property); DECL_SOURCE_LOCATION (property) = location; } /* Note that a @dynamic (and only a @dynamic) always sets PROPERTY_DYNAMIC to 1. You can recognize a @dynamic by that. (actually, as explained above, PROPERTY_DECL generated by @property and associated with a @dynamic property are also marked as PROPERTY_DYNAMIC). */ PROPERTY_DYNAMIC (property) = 1; /* Add the property to the list of properties for current implementation. */ TREE_CHAIN (property) = IMPL_PROPERTY_DECL (objc_implementation_context); IMPL_PROPERTY_DECL (objc_implementation_context) = property; } /* This function is called by the parser after a @dynamic expression is parsed. 'location' is the location of the @dynamic expression, and 'property_list' is a chained list of all the property names. */ void objc_add_dynamic_declaration (location_t location, tree property_list) { tree interface, chain; if (flag_objc1_only) error_at (input_location, "%<@dynamic%> is not available in Objective-C 1.0"); if (property_list == error_mark_node) return; if (!objc_implementation_context) { /* We can get here only in Objective-C; the Objective-C++ parser detects the problem while parsing, outputs the error "misplaced '@dynamic' Objective-C++ construct" and skips the declaration. */ error_at (location, "%<@dynamic%> not in @implementation context"); return; } /* @dynamic is allowed in categories. */ switch (TREE_CODE (objc_implementation_context)) { case CLASS_IMPLEMENTATION_TYPE: interface = lookup_interface (CLASS_NAME (objc_implementation_context)); break; case CATEGORY_IMPLEMENTATION_TYPE: interface = lookup_category (implementation_template, CLASS_SUPER_NAME (objc_implementation_context)); break; default: gcc_unreachable (); } if (!interface) { /* I can't see how this could happen, but it is good as a safety check. */ error_at (location, "%<@dynamic%> requires the @interface of the class to be available"); return; } /* Now, iterate over the properties and do each of them. */ for (chain = property_list; chain; chain = TREE_CHAIN (chain)) { objc_add_dynamic_declaration_for_property (location, interface, TREE_VALUE (chain)); } } /* Main routine to generate code/data for all the property information for current implementation (class or category). CLASS is the interface where ivars are declared. CLASS_METHODS is where methods are found which could be a class or a category depending on whether we are implementing property of a class or a category. */ static void objc_gen_property_data (tree klass, tree class_methods) { tree x; for (x = IMPL_PROPERTY_DECL (objc_implementation_context); x; x = TREE_CHAIN (x)) { /* @dynamic property - nothing to check or synthesize. */ if (PROPERTY_DYNAMIC (x)) continue; /* @synthesize property - need to synthesize the accessors. */ if (PROPERTY_IVAR_NAME (x)) { objc_synthesize_getter (klass, class_methods, x); if (PROPERTY_READONLY (x) == 0) objc_synthesize_setter (klass, class_methods, x); continue; } gcc_unreachable (); } } /* This is called once we see the "@end" in an interface/implementation. */ static void finish_class (tree klass) { switch (TREE_CODE (klass)) { case CLASS_IMPLEMENTATION_TYPE: { /* All code generation is done in finish_objc. */ /* Generate what needed for property; setters, getters, etc. */ objc_gen_property_data (implementation_template, implementation_template); if (implementation_template != objc_implementation_context) { /* Ensure that all method listed in the interface contain bodies. */ check_methods (CLASS_CLS_METHODS (implementation_template), objc_implementation_context, '+'); check_methods (CLASS_NST_METHODS (implementation_template), objc_implementation_context, '-'); if (CLASS_PROTOCOL_LIST (implementation_template)) check_protocols (CLASS_PROTOCOL_LIST (implementation_template), "class", CLASS_NAME (objc_implementation_context)); } break; } case CATEGORY_IMPLEMENTATION_TYPE: { tree category = lookup_category (implementation_template, CLASS_SUPER_NAME (klass)); if (category) { /* Generate what needed for property; setters, getters, etc. */ objc_gen_property_data (implementation_template, category); /* Ensure all method listed in the interface contain bodies. */ check_methods (CLASS_CLS_METHODS (category), objc_implementation_context, '+'); check_methods (CLASS_NST_METHODS (category), objc_implementation_context, '-'); if (CLASS_PROTOCOL_LIST (category)) check_protocols (CLASS_PROTOCOL_LIST (category), "category", CLASS_SUPER_NAME (objc_implementation_context)); } break; } case CLASS_INTERFACE_TYPE: case CATEGORY_INTERFACE_TYPE: case PROTOCOL_INTERFACE_TYPE: { /* Process properties of the class. */ tree x; for (x = CLASS_PROPERTY_DECL (objc_interface_context); x; x = TREE_CHAIN (x)) { /* Now we check that the appropriate getter is declared, and if not, we declare one ourselves. */ tree getter_decl = lookup_method (CLASS_NST_METHODS (klass), PROPERTY_GETTER_NAME (x)); if (getter_decl) { /* TODO: Check that the declaration is consistent with the property. */ ; } else { /* Generate an instance method declaration for the getter; for example "- (id) name;". In general it will be of the form -(type)property_getter_name; */ tree rettype = build_tree_list (NULL_TREE, TREE_TYPE (x)); getter_decl = build_method_decl (INSTANCE_METHOD_DECL, rettype, PROPERTY_GETTER_NAME (x), NULL_TREE, false); if (PROPERTY_OPTIONAL (x)) objc_add_method (objc_interface_context, getter_decl, false, true); else objc_add_method (objc_interface_context, getter_decl, false, false); TREE_DEPRECATED (getter_decl) = TREE_DEPRECATED (x); METHOD_PROPERTY_CONTEXT (getter_decl) = x; } if (PROPERTY_READONLY (x) == 0) { /* Now we check that the appropriate setter is declared, and if not, we declare on ourselves. */ tree setter_decl = lookup_method (CLASS_NST_METHODS (klass), PROPERTY_SETTER_NAME (x)); if (setter_decl) { /* TODO: Check that the declaration is consistent with the property. */ ; } else { /* The setter name is something like 'setName:'. We need the substring 'setName' to build the method declaration due to how the declaration works. TODO: build_method_decl() will then generate back 'setName:' from 'setName'; it would be more efficient to hook into there. */ const char *full_setter_name = IDENTIFIER_POINTER (PROPERTY_SETTER_NAME (x)); size_t length = strlen (full_setter_name); char *setter_name = (char *) alloca (length); tree ret_type, selector, arg_type, arg_name; strcpy (setter_name, full_setter_name); setter_name[length - 1] = '\0'; ret_type = build_tree_list (NULL_TREE, void_type_node); arg_type = build_tree_list (NULL_TREE, TREE_TYPE (x)); arg_name = get_identifier ("_value"); selector = objc_build_keyword_decl (get_identifier (setter_name), arg_type, arg_name, NULL); setter_decl = build_method_decl (INSTANCE_METHOD_DECL, ret_type, selector, build_tree_list (NULL_TREE, NULL_TREE), false); if (PROPERTY_OPTIONAL (x)) objc_add_method (objc_interface_context, setter_decl, false, true); else objc_add_method (objc_interface_context, setter_decl, false, false); TREE_DEPRECATED (setter_decl) = TREE_DEPRECATED (x); METHOD_PROPERTY_CONTEXT (setter_decl) = x; } } } break; } default: gcc_unreachable (); break; } } static tree add_protocol (tree protocol) { /* Put protocol on list in reverse order. */ TREE_CHAIN (protocol) = protocol_chain; protocol_chain = protocol; return protocol_chain; } /* Check that a protocol is defined, and, recursively, that all protocols that this protocol conforms to are defined too. */ static void check_that_protocol_is_defined (tree protocol) { if (!PROTOCOL_DEFINED (protocol)) warning (0, "definition of protocol %qE not found", PROTOCOL_NAME (protocol)); /* If the protocol itself conforms to other protocols, check them too, recursively. */ if (PROTOCOL_LIST (protocol)) { tree p; for (p = PROTOCOL_LIST (protocol); p; p = TREE_CHAIN (p)) check_that_protocol_is_defined (TREE_VALUE (p)); } } /* Looks up a protocol. If 'warn_if_deprecated' is true, a warning is emitted if the protocol is deprecated. If 'definition_required' is true, a warning is emitted if a full @protocol definition has not been seen. */ static tree lookup_protocol (tree ident, bool warn_if_deprecated, bool definition_required) { tree chain; for (chain = protocol_chain; chain; chain = TREE_CHAIN (chain)) if (ident == PROTOCOL_NAME (chain)) { if (warn_if_deprecated && TREE_DEPRECATED (chain)) { /* It would be nice to use warn_deprecated_use() here, but we are using TREE_CHAIN (which is supposed to be the TYPE_STUB_DECL for a TYPE) for something different. */ warning (OPT_Wdeprecated_declarations, "protocol %qE is deprecated", PROTOCOL_NAME (chain)); } if (definition_required) check_that_protocol_is_defined (chain); return chain; } return NULL_TREE; } /* This function forward declares the protocols named by NAMES. If they are already declared or defined, the function has no effect. */ void objc_declare_protocols (tree names, tree attributes) { tree list; bool deprecated = false; #ifdef OBJCPLUS if (current_namespace != global_namespace) { error ("Objective-C declarations may only appear in global scope"); } #endif /* OBJCPLUS */ /* Determine if 'deprecated', the only attribute we recognize for protocols, was used. Ignore all other attributes. */ if (attributes) { tree attribute; for (attribute = attributes; attribute; attribute = TREE_CHAIN (attribute)) { tree name = TREE_PURPOSE (attribute); if (is_attribute_p ("deprecated", name)) deprecated = true; else warning (OPT_Wattributes, "%qE attribute directive ignored", name); } } for (list = names; list; list = TREE_CHAIN (list)) { tree name = TREE_VALUE (list); if (lookup_protocol (name, /* warn if deprecated */ false, /* definition_required */ false) == NULL_TREE) { tree protocol = make_node (PROTOCOL_INTERFACE_TYPE); TYPE_LANG_SLOT_1 (protocol) = make_tree_vec (PROTOCOL_LANG_SLOT_ELTS); PROTOCOL_NAME (protocol) = name; PROTOCOL_LIST (protocol) = NULL_TREE; add_protocol (protocol); PROTOCOL_DEFINED (protocol) = 0; PROTOCOL_FORWARD_DECL (protocol) = NULL_TREE; if (attributes) { TYPE_ATTRIBUTES (protocol) = attributes; if (deprecated) TREE_DEPRECATED (protocol) = 1; } } } } static tree start_protocol (enum tree_code code, tree name, tree list, tree attributes) { tree protocol; bool deprecated = false; #ifdef OBJCPLUS if (current_namespace != global_namespace) { error ("Objective-C declarations may only appear in global scope"); } #endif /* OBJCPLUS */ /* Determine if 'deprecated', the only attribute we recognize for protocols, was used. Ignore all other attributes. */ if (attributes) { tree attribute; for (attribute = attributes; attribute; attribute = TREE_CHAIN (attribute)) { tree name = TREE_PURPOSE (attribute); if (is_attribute_p ("deprecated", name)) deprecated = true; else warning (OPT_Wattributes, "%qE attribute directive ignored", name); } } protocol = lookup_protocol (name, /* warn_if_deprecated */ false, /* definition_required */ false); if (!protocol) { protocol = make_node (code); TYPE_LANG_SLOT_1 (protocol) = make_tree_vec (PROTOCOL_LANG_SLOT_ELTS); PROTOCOL_NAME (protocol) = name; PROTOCOL_LIST (protocol) = lookup_and_install_protocols (list, /* definition_required */ false); add_protocol (protocol); PROTOCOL_DEFINED (protocol) = 1; PROTOCOL_FORWARD_DECL (protocol) = NULL_TREE; check_protocol_recursively (protocol, list); } else if (! PROTOCOL_DEFINED (protocol)) { PROTOCOL_DEFINED (protocol) = 1; PROTOCOL_LIST (protocol) = lookup_and_install_protocols (list, /* definition_required */ false); check_protocol_recursively (protocol, list); } else { warning (0, "duplicate declaration for protocol %qE", name); } if (attributes) { TYPE_ATTRIBUTES (protocol) = attributes; if (deprecated) TREE_DEPRECATED (protocol) = 1; } return protocol; } /* "Encode" a data type into a string, which grows in util_obstack. The format is described in gcc/doc/objc.texi, section 'Type encoding'. Most of the encode_xxx functions have a 'type' argument, which is the type to encode, and an integer 'curtype' argument, which is the index in the encoding string of the beginning of the encoding of the current type, and allows you to find what characters have already been written for the current type (they are the ones in the current encoding string starting from 'curtype'). For example, if we are encoding a method which returns 'int' and takes a 'char **' argument, then when we get to the point of encoding the 'char **' argument, the encoded string already contains 'i12@0:4' (assuming a pointer size of 4 bytes). So, 'curtype' will be set to 7 when starting to encode 'char **'. During the whole of the encoding of 'char **', 'curtype' will be fixed at 7, so the routine encoding the second pointer can find out that it's actually encoding a pointer to a pointer by looking backwards at what has already been encoded for the current type, and seeing there is a "^" (meaning a pointer) in there. */ /* Encode type qualifiers encodes one of the "PQ" Objective-C keywords, ie 'in', 'out', 'inout', 'bycopy', 'byref', 'oneway'. 'const', instead, is encoded directly as part of the type. */ static void encode_type_qualifiers (tree declspecs) { tree spec; for (spec = declspecs; spec; spec = TREE_CHAIN (spec)) { /* FIXME: Shouldn't we use token->keyword here ? */ if (ridpointers[(int) RID_IN] == TREE_VALUE (spec)) obstack_1grow (&util_obstack, 'n'); else if (ridpointers[(int) RID_INOUT] == TREE_VALUE (spec)) obstack_1grow (&util_obstack, 'N'); else if (ridpointers[(int) RID_OUT] == TREE_VALUE (spec)) obstack_1grow (&util_obstack, 'o'); else if (ridpointers[(int) RID_BYCOPY] == TREE_VALUE (spec)) obstack_1grow (&util_obstack, 'O'); else if (ridpointers[(int) RID_BYREF] == TREE_VALUE (spec)) obstack_1grow (&util_obstack, 'R'); else if (ridpointers[(int) RID_ONEWAY] == TREE_VALUE (spec)) obstack_1grow (&util_obstack, 'V'); else gcc_unreachable (); } } /* Determine if a pointee is marked read-only. Only used by the NeXT runtime to be compatible with gcc-3.3. */ static bool pointee_is_readonly (tree pointee) { while (POINTER_TYPE_P (pointee)) pointee = TREE_TYPE (pointee); return TYPE_READONLY (pointee); } /* Encode a pointer type. */ static void encode_pointer (tree type, int curtype, int format) { tree pointer_to = TREE_TYPE (type); if (flag_next_runtime) { /* This code is used to be compatible with gcc-3.3. */ /* For historical/compatibility reasons, the read-only qualifier of the pointee gets emitted _before_ the '^'. The read-only qualifier of the pointer itself gets ignored, _unless_ we are looking at a typedef! Also, do not emit the 'r' for anything but the outermost type! */ if (!generating_instance_variables && (obstack_object_size (&util_obstack) - curtype <= 1) && (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL ? TYPE_READONLY (type) : pointee_is_readonly (pointer_to))) obstack_1grow (&util_obstack, 'r'); } if (TREE_CODE (pointer_to) == RECORD_TYPE) { if (OBJC_TYPE_NAME (pointer_to) && TREE_CODE (OBJC_TYPE_NAME (pointer_to)) == IDENTIFIER_NODE) { const char *name = IDENTIFIER_POINTER (OBJC_TYPE_NAME (pointer_to)); if (strcmp (name, TAG_OBJECT) == 0) /* '@' */ { obstack_1grow (&util_obstack, '@'); return; } else if (TYPE_HAS_OBJC_INFO (pointer_to) && TYPE_OBJC_INTERFACE (pointer_to)) { if (generating_instance_variables) { obstack_1grow (&util_obstack, '@'); obstack_1grow (&util_obstack, '"'); obstack_grow (&util_obstack, name, strlen (name)); obstack_1grow (&util_obstack, '"'); return; } else { obstack_1grow (&util_obstack, '@'); return; } } else if (strcmp (name, TAG_CLASS) == 0) /* '#' */ { obstack_1grow (&util_obstack, '#'); return; } else if (strcmp (name, TAG_SELECTOR) == 0) /* ':' */ { obstack_1grow (&util_obstack, ':'); return; } } } else if (TREE_CODE (pointer_to) == INTEGER_TYPE && TYPE_MODE (pointer_to) == QImode) { tree pname = TREE_CODE (OBJC_TYPE_NAME (pointer_to)) == IDENTIFIER_NODE ? OBJC_TYPE_NAME (pointer_to) : DECL_NAME (OBJC_TYPE_NAME (pointer_to)); /* (BOOL *) are an exception and are encoded as ^c, while all other pointers to char are encoded as *. */ if (strcmp (IDENTIFIER_POINTER (pname), "BOOL")) { if (!flag_next_runtime) { /* The NeXT runtime adds the 'r' before getting here. */ /* It appears that "r*" means "const char *" rather than "char *const". "char *const" is encoded as "*", which is identical to "char *", so the "const" is unfortunately lost. */ if (TYPE_READONLY (pointer_to)) obstack_1grow (&util_obstack, 'r'); } obstack_1grow (&util_obstack, '*'); return; } } /* We have a normal pointer type that does not get special treatment. */ obstack_1grow (&util_obstack, '^'); encode_type (pointer_to, curtype, format); } static void encode_array (tree type, int curtype, int format) { tree an_int_cst = TYPE_SIZE (type); tree array_of = TREE_TYPE (type); char buffer[40]; if (an_int_cst == NULL) { /* We are trying to encode an incomplete array. An incomplete array is forbidden as part of an instance variable. */ if (generating_instance_variables) { /* TODO: Detect this error earlier. */ error ("instance variable has unknown size"); return; } /* So the only case in which an incomplete array could occur is if we are encoding the arguments or return value of a method. In that case, an incomplete array argument or return value (eg, -(void)display: (char[])string) is treated like a pointer because that is how the compiler does the function call. A special, more complicated case, is when the incomplete array is the last member of a struct (eg, if we are encoding "struct { unsigned long int a;double b[];}"), which is again part of a method argument/return value. In that case, we really need to communicate to the runtime that there is an incomplete array (not a pointer!) there. So, we detect that special case and encode it as a zero-length array. Try to detect that we are part of a struct. We do this by searching for '=' in the type encoding for the current type. NB: This hack assumes that you can't use '=' as part of a C identifier. */ { char *enc = obstack_base (&util_obstack) + curtype; if (memchr (enc, '=', obstack_object_size (&util_obstack) - curtype) == NULL) { /* We are not inside a struct. Encode the array as a pointer. */ encode_pointer (type, curtype, format); return; } } /* Else, we are in a struct, and we encode it as a zero-length array. */ sprintf (buffer, "[" HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)0); } else if (TREE_INT_CST_LOW (TYPE_SIZE (array_of)) == 0) sprintf (buffer, "[" HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)0); else sprintf (buffer, "[" HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (an_int_cst) / TREE_INT_CST_LOW (TYPE_SIZE (array_of))); obstack_grow (&util_obstack, buffer, strlen (buffer)); encode_type (array_of, curtype, format); obstack_1grow (&util_obstack, ']'); return; } /* Encode a vector. The vector type is a GCC extension to C. */ static void encode_vector (tree type, int curtype, int format) { tree vector_of = TREE_TYPE (type); char buffer[40]; /* Vectors are like simple fixed-size arrays. */ /* Output ![xx,yy,] where xx is the vector_size, yy is the alignment of the vector, and is the base type. Eg, int __attribute__ ((vector_size (16))) gets encoded as ![16,32,i] assuming that the alignment is 32 bytes. We include size and alignment in bytes so that the runtime does not have to have any knowledge of the actual types. */ sprintf (buffer, "![" HOST_WIDE_INT_PRINT_DEC ",%d", /* We want to compute the equivalent of sizeof (). Code inspired by c_sizeof_or_alignof_type. */ ((TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type)) / (TYPE_PRECISION (char_type_node) / BITS_PER_UNIT))), /* We want to compute the equivalent of __alignof__ (). Code inspired by c_sizeof_or_alignof_type. */ TYPE_ALIGN_UNIT (type)); obstack_grow (&util_obstack, buffer, strlen (buffer)); encode_type (vector_of, curtype, format); obstack_1grow (&util_obstack, ']'); return; } static void encode_aggregate_fields (tree type, bool pointed_to, int curtype, int format) { tree field = TYPE_FIELDS (type); for (; field; field = DECL_CHAIN (field)) { #ifdef OBJCPLUS /* C++ static members, and things that are not field at all, should not appear in the encoding. */ if (TREE_CODE (field) != FIELD_DECL || TREE_STATIC (field)) continue; #endif /* Recursively encode fields of embedded base classes. */ if (DECL_ARTIFICIAL (field) && !DECL_NAME (field) && TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) { encode_aggregate_fields (TREE_TYPE (field), pointed_to, curtype, format); continue; } if (generating_instance_variables && !pointed_to) { tree fname = DECL_NAME (field); obstack_1grow (&util_obstack, '"'); if (fname && TREE_CODE (fname) == IDENTIFIER_NODE) obstack_grow (&util_obstack, IDENTIFIER_POINTER (fname), strlen (IDENTIFIER_POINTER (fname))); obstack_1grow (&util_obstack, '"'); } encode_field_decl (field, curtype, format); } } static void encode_aggregate_within (tree type, int curtype, int format, int left, int right) { tree name; /* NB: aggregates that are pointed to have slightly different encoding rules in that you never encode the names of instance variables. */ int ob_size = obstack_object_size (&util_obstack); bool inline_contents = false; bool pointed_to = false; if (flag_next_runtime) { if (ob_size > 0 && *(obstack_next_free (&util_obstack) - 1) == '^') pointed_to = true; if ((format == OBJC_ENCODE_INLINE_DEFS || generating_instance_variables) && (!pointed_to || ob_size - curtype == 1 || (ob_size - curtype == 2 && *(obstack_next_free (&util_obstack) - 2) == 'r'))) inline_contents = true; } else { /* c0 and c1 are the last two characters in the encoding of the current type; if the last two characters were '^' or '^r', then we are encoding an aggregate that is "pointed to". The comment above applies: in that case we should avoid encoding the names of instance variables. */ char c1 = ob_size > 1 ? *(obstack_next_free (&util_obstack) - 2) : 0; char c0 = ob_size > 0 ? *(obstack_next_free (&util_obstack) - 1) : 0; if (c0 == '^' || (c1 == '^' && c0 == 'r')) pointed_to = true; if (format == OBJC_ENCODE_INLINE_DEFS || generating_instance_variables) { if (!pointed_to) inline_contents = true; else { /* Note that the check (ob_size - curtype < 2) prevents infinite recursion when encoding a structure which is a linked list (eg, struct node { struct node *next; }). Each time we follow a pointer, we add one character to ob_size, and curtype is fixed, so after at most two pointers we stop inlining contents and break the loop. The other case where we don't inline is "^r", which is a pointer to a constant struct. */ if ((ob_size - curtype <= 2) && !(c0 == 'r')) inline_contents = true; } } } /* Traverse struct aliases; it is important to get the original struct and its tag name (if any). */ type = TYPE_MAIN_VARIANT (type); name = OBJC_TYPE_NAME (type); /* Open parenth/bracket. */ obstack_1grow (&util_obstack, left); /* Encode the struct/union tag name, or '?' if a tag was not provided. Typedef aliases do not qualify. */ #ifdef OBJCPLUS /* For compatibility with the NeXT runtime, ObjC++ encodes template args as a composite struct tag name. */ if (name && TREE_CODE (name) == IDENTIFIER_NODE /* Did this struct have a tag? */ && !TYPE_WAS_ANONYMOUS (type)) obstack_grow (&util_obstack, decl_as_string (type, TFF_DECL_SPECIFIERS | TFF_UNQUALIFIED_NAME), strlen (decl_as_string (type, TFF_DECL_SPECIFIERS | TFF_UNQUALIFIED_NAME))); #else if (name && TREE_CODE (name) == IDENTIFIER_NODE) obstack_grow (&util_obstack, IDENTIFIER_POINTER (name), strlen (IDENTIFIER_POINTER (name))); #endif else obstack_1grow (&util_obstack, '?'); /* Encode the types (and possibly names) of the inner fields, if required. */ if (inline_contents) { obstack_1grow (&util_obstack, '='); encode_aggregate_fields (type, pointed_to, curtype, format); } /* Close parenth/bracket. */ obstack_1grow (&util_obstack, right); } /* Encode a bitfield NeXT-style (i.e., without a bit offset or the underlying field type. */ static void encode_next_bitfield (int width) { char buffer[40]; sprintf (buffer, "b%d", width); obstack_grow (&util_obstack, buffer, strlen (buffer)); } /* Encodes 'type', ignoring type qualifiers (which you should encode beforehand if needed) with the exception of 'const', which is encoded by encode_type. See above for the explanation of 'curtype'. 'format' can be OBJC_ENCODE_INLINE_DEFS or OBJC_ENCODE_DONT_INLINE_DEFS. */ static void encode_type (tree type, int curtype, int format) { enum tree_code code = TREE_CODE (type); /* Ignore type qualifiers other than 'const' when encoding a type. */ if (type == error_mark_node) return; if (!flag_next_runtime) { if (TYPE_READONLY (type)) obstack_1grow (&util_obstack, 'r'); } switch (code) { case ENUMERAL_TYPE: if (flag_next_runtime) { /* Kludge for backwards-compatibility with gcc-3.3: enums are always encoded as 'i' no matter what type they actually are (!). */ obstack_1grow (&util_obstack, 'i'); break; } /* Else, they are encoded exactly like the integer type that is used by the compiler to store them. */ case INTEGER_TYPE: { char c; switch (GET_MODE_BITSIZE (TYPE_MODE (type))) { case 8: c = TYPE_UNSIGNED (type) ? 'C' : 'c'; break; case 16: c = TYPE_UNSIGNED (type) ? 'S' : 's'; break; case 32: { tree int_type = type; if (flag_next_runtime) { /* Another legacy kludge for compatiblity with gcc-3.3: 32-bit longs are encoded as 'l' or 'L', but not always. For typedefs, we need to use 'i' or 'I' instead if encoding a struct field, or a pointer! */ int_type = ((!generating_instance_variables && (obstack_object_size (&util_obstack) == (unsigned) curtype)) ? TYPE_MAIN_VARIANT (type) : type); } if (int_type == long_unsigned_type_node || int_type == long_integer_type_node) c = TYPE_UNSIGNED (type) ? 'L' : 'l'; else c = TYPE_UNSIGNED (type) ? 'I' : 'i'; } break; case 64: c = TYPE_UNSIGNED (type) ? 'Q' : 'q'; break; case 128: c = TYPE_UNSIGNED (type) ? 'T' : 't'; break; default: gcc_unreachable (); } obstack_1grow (&util_obstack, c); break; } case REAL_TYPE: { char c; /* Floating point types. */ switch (GET_MODE_BITSIZE (TYPE_MODE (type))) { case 32: c = 'f'; break; case 64: c = 'd'; break; case 96: case 128: c = 'D'; break; default: gcc_unreachable (); } obstack_1grow (&util_obstack, c); break; } case VOID_TYPE: obstack_1grow (&util_obstack, 'v'); break; case BOOLEAN_TYPE: obstack_1grow (&util_obstack, 'B'); break; case ARRAY_TYPE: encode_array (type, curtype, format); break; case POINTER_TYPE: #ifdef OBJCPLUS case REFERENCE_TYPE: #endif encode_pointer (type, curtype, format); break; case RECORD_TYPE: encode_aggregate_within (type, curtype, format, '{', '}'); break; case UNION_TYPE: encode_aggregate_within (type, curtype, format, '(', ')'); break; case FUNCTION_TYPE: /* '?' means an unknown type. */ obstack_1grow (&util_obstack, '?'); break; case COMPLEX_TYPE: /* A complex is encoded as 'j' followed by the inner type (eg, "_Complex int" is encoded as 'ji'). */ obstack_1grow (&util_obstack, 'j'); encode_type (TREE_TYPE (type), curtype, format); break; case VECTOR_TYPE: encode_vector (type, curtype, format); break; default: warning (0, "unknown type %s found during Objective-C encoding", gen_type_name (type)); obstack_1grow (&util_obstack, '?'); break; } if (flag_next_runtime) { /* Super-kludge. Some ObjC qualifier and type combinations need to be rearranged for compatibility with gcc-3.3. */ if (code == POINTER_TYPE && obstack_object_size (&util_obstack) >= 3) { char *enc = obstack_base (&util_obstack) + curtype; /* Rewrite "in const" from "nr" to "rn". */ if (curtype >= 1 && !strncmp (enc - 1, "nr", 2)) strncpy (enc - 1, "rn", 2); } } } static void encode_gnu_bitfield (int position, tree type, int size) { enum tree_code code = TREE_CODE (type); char buffer[40]; char charType = '?'; /* This code is only executed for the GNU runtime, so we can ignore the NeXT runtime kludge of always encoding enums as 'i' no matter what integers they actually are. */ if (code == INTEGER_TYPE || code == ENUMERAL_TYPE) { if (integer_zerop (TYPE_MIN_VALUE (type))) /* Unsigned integer types. */ { switch (TYPE_MODE (type)) { case QImode: charType = 'C'; break; case HImode: charType = 'S'; break; case SImode: { if (type == long_unsigned_type_node) charType = 'L'; else charType = 'I'; break; } case DImode: charType = 'Q'; break; default: gcc_unreachable (); } } else /* Signed integer types. */ { switch (TYPE_MODE (type)) { case QImode: charType = 'c'; break; case HImode: charType = 's'; break; case SImode: { if (type == long_integer_type_node) charType = 'l'; else charType = 'i'; break; } case DImode: charType = 'q'; break; default: gcc_unreachable (); } } } else { /* Do not do any encoding, produce an error and keep going. */ error ("trying to encode non-integer type as a bitfield"); return; } sprintf (buffer, "b%d%c%d", position, charType, size); obstack_grow (&util_obstack, buffer, strlen (buffer)); } static void encode_field_decl (tree field_decl, int curtype, int format) { #ifdef OBJCPLUS /* C++ static members, and things that are not fields at all, should not appear in the encoding. */ if (TREE_CODE (field_decl) != FIELD_DECL || TREE_STATIC (field_decl)) return; #endif /* Generate the bitfield typing information, if needed. Note the difference between GNU and NeXT runtimes. */ if (DECL_BIT_FIELD_TYPE (field_decl)) { int size = tree_low_cst (DECL_SIZE (field_decl), 1); if (flag_next_runtime) encode_next_bitfield (size); else encode_gnu_bitfield (int_bit_position (field_decl), DECL_BIT_FIELD_TYPE (field_decl), size); } else encode_type (TREE_TYPE (field_decl), curtype, format); } /* Decay array and function parameters into pointers. */ static tree objc_decay_parm_type (tree type) { if (TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == FUNCTION_TYPE) type = build_pointer_type (TREE_CODE (type) == ARRAY_TYPE ? TREE_TYPE (type) : type); return type; } static GTY(()) tree objc_parmlist = NULL_TREE; /* Append PARM to a list of formal parameters of a method, making a necessary array-to-pointer adjustment along the way. */ static void objc_push_parm (tree parm) { tree type; if (TREE_TYPE (parm) == error_mark_node) { objc_parmlist = chainon (objc_parmlist, parm); return; } /* Decay arrays and functions into pointers. */ type = objc_decay_parm_type (TREE_TYPE (parm)); /* If the parameter type has been decayed, a new PARM_DECL needs to be built as well. */ if (type != TREE_TYPE (parm)) parm = build_decl (input_location, PARM_DECL, DECL_NAME (parm), type); DECL_ARG_TYPE (parm) = lang_hooks.types.type_promotes_to (TREE_TYPE (parm)); /* Record constancy and volatility. */ c_apply_type_quals_to_decl ((TYPE_READONLY (TREE_TYPE (parm)) ? TYPE_QUAL_CONST : 0) | (TYPE_RESTRICT (TREE_TYPE (parm)) ? TYPE_QUAL_RESTRICT : 0) | (TYPE_VOLATILE (TREE_TYPE (parm)) ? TYPE_QUAL_VOLATILE : 0), parm); objc_parmlist = chainon (objc_parmlist, parm); } /* Retrieve the formal parameter list constructed via preceding calls to objc_push_parm(). */ #ifdef OBJCPLUS static tree objc_get_parm_info (int have_ellipsis ATTRIBUTE_UNUSED) #else static struct c_arg_info * objc_get_parm_info (int have_ellipsis) #endif { #ifdef OBJCPLUS tree parm_info = objc_parmlist; objc_parmlist = NULL_TREE; return parm_info; #else tree parm_info = objc_parmlist; struct c_arg_info *arg_info; /* The C front-end requires an elaborate song and dance at this point. */ push_scope (); declare_parm_level (); while (parm_info) { tree next = DECL_CHAIN (parm_info); DECL_CHAIN (parm_info) = NULL_TREE; parm_info = pushdecl (parm_info); finish_decl (parm_info, input_location, NULL_TREE, NULL_TREE, NULL_TREE); parm_info = next; } arg_info = get_parm_info (have_ellipsis); pop_scope (); objc_parmlist = NULL_TREE; return arg_info; #endif } /* Synthesize the formal parameters 'id self' and 'SEL _cmd' needed for ObjC method definitions. In the case of instance methods, we can be more specific as to the type of 'self'. */ static void synth_self_and_ucmd_args (void) { tree self_type; if (objc_method_context && TREE_CODE (objc_method_context) == INSTANCE_METHOD_DECL) self_type = objc_instance_type; else /* Really a `struct objc_class *'. However, we allow people to assign to self, which changes its type midstream. */ self_type = objc_object_type; /* id self; */ objc_push_parm (build_decl (input_location, PARM_DECL, self_id, self_type)); /* SEL _cmd; */ objc_push_parm (build_decl (input_location, PARM_DECL, ucmd_id, objc_selector_type)); } /* Transform an Objective-C method definition into a static C function definition, synthesizing the first two arguments, "self" and "_cmd", in the process. */ static void start_method_def (tree method) { tree parmlist; #ifdef OBJCPLUS tree parm_info; #else struct c_arg_info *parm_info; #endif int have_ellipsis = 0; /* If we are defining a "dealloc" method in a non-root class, we will need to check if a [super dealloc] is missing, and warn if it is. */ if(CLASS_SUPER_NAME (objc_implementation_context) && !strcmp ("dealloc", IDENTIFIER_POINTER (METHOD_SEL_NAME (method)))) should_call_super_dealloc = 1; else should_call_super_dealloc = 0; /* Required to implement _msgSuper. */ objc_method_context = method; UOBJC_SUPER_decl = NULL_TREE; /* Generate prototype declarations for arguments..."new-style". */ synth_self_and_ucmd_args (); /* Generate argument declarations if a keyword_decl. */ parmlist = METHOD_SEL_ARGS (method); while (parmlist) { /* parmlist is a KEYWORD_DECL. */ tree type = TREE_VALUE (TREE_TYPE (parmlist)); tree parm; parm = build_decl (input_location, PARM_DECL, KEYWORD_ARG_NAME (parmlist), type); decl_attributes (&parm, DECL_ATTRIBUTES (parmlist), 0); objc_push_parm (parm); parmlist = DECL_CHAIN (parmlist); } if (METHOD_ADD_ARGS (method)) { tree akey; for (akey = TREE_CHAIN (METHOD_ADD_ARGS (method)); akey; akey = TREE_CHAIN (akey)) { objc_push_parm (TREE_VALUE (akey)); } if (METHOD_ADD_ARGS_ELLIPSIS_P (method)) have_ellipsis = 1; } parm_info = objc_get_parm_info (have_ellipsis); really_start_method (objc_method_context, parm_info); } /* Return 1 if TYPE1 is equivalent to TYPE2 for purposes of method overloading. */ static int objc_types_are_equivalent (tree type1, tree type2) { if (type1 == type2) return 1; /* Strip away indirections. */ while ((TREE_CODE (type1) == ARRAY_TYPE || TREE_CODE (type1) == POINTER_TYPE) && (TREE_CODE (type1) == TREE_CODE (type2))) type1 = TREE_TYPE (type1), type2 = TREE_TYPE (type2); if (TYPE_MAIN_VARIANT (type1) != TYPE_MAIN_VARIANT (type2)) return 0; /* Compare the protocol lists. */ type1 = (TYPE_HAS_OBJC_INFO (type1) ? TYPE_OBJC_PROTOCOL_LIST (type1) : NULL_TREE); type2 = (TYPE_HAS_OBJC_INFO (type2) ? TYPE_OBJC_PROTOCOL_LIST (type2) : NULL_TREE); /* If there are no protocols (most common case), the types are identical. */ if (type1 == NULL_TREE && type2 == NULL_TREE) return 1; /* If one has protocols, and the other one hasn't, they are not identical. */ if ((type1 == NULL_TREE && type2 != NULL_TREE) || (type1 != NULL_TREE && type2 == NULL_TREE)) return 0; else { /* Else, both have protocols, and we need to do the full comparison. It is possible that either type1 or type2 contain some duplicate protocols in the list, so we can't even just compare list_length as a first check. */ tree t; for (t = type2; t; t = TREE_CHAIN (t)) if (!lookup_protocol_in_reflist (type1, TREE_VALUE (t))) return 0; for (t = type1; t; t = TREE_CHAIN (t)) if (!lookup_protocol_in_reflist (type2, TREE_VALUE (t))) return 0; return 1; } } /* Return 1 if TYPE1 has the same size and alignment as TYPE2. */ static int objc_types_share_size_and_alignment (tree type1, tree type2) { return (simple_cst_equal (TYPE_SIZE (type1), TYPE_SIZE (type2)) && TYPE_ALIGN (type1) == TYPE_ALIGN (type2)); } /* Return 1 if PROTO1 is equivalent to PROTO2 for purposes of method overloading. Ordinarily, the type signatures should match up exactly, unless STRICT is zero, in which case we shall allow differences in which the size and alignment of a type is the same. */ static int comp_proto_with_proto (tree proto1, tree proto2, int strict) { /* The following test is needed in case there are hashing collisions. */ if (METHOD_SEL_NAME (proto1) != METHOD_SEL_NAME (proto2)) return 0; return match_proto_with_proto (proto1, proto2, strict); } static int match_proto_with_proto (tree proto1, tree proto2, int strict) { tree type1, type2; /* Compare return types. */ type1 = TREE_VALUE (TREE_TYPE (proto1)); type2 = TREE_VALUE (TREE_TYPE (proto2)); if (!objc_types_are_equivalent (type1, type2) && (strict || !objc_types_share_size_and_alignment (type1, type2))) return 0; /* Compare argument types. */ for (type1 = get_arg_type_list (proto1, METHOD_REF, 0), type2 = get_arg_type_list (proto2, METHOD_REF, 0); type1 && type2; type1 = TREE_CHAIN (type1), type2 = TREE_CHAIN (type2)) { if (!objc_types_are_equivalent (TREE_VALUE (type1), TREE_VALUE (type2)) && (strict || !objc_types_share_size_and_alignment (TREE_VALUE (type1), TREE_VALUE (type2)))) return 0; } return (!type1 && !type2); } /* Fold an OBJ_TYPE_REF expression for ObjC method dispatches, where this occurs. ObjC method dispatches are _not_ like C++ virtual member function dispatches, and we account for the difference here. */ tree #ifdef OBJCPLUS objc_fold_obj_type_ref (tree ref, tree known_type) #else objc_fold_obj_type_ref (tree ref ATTRIBUTE_UNUSED, tree known_type ATTRIBUTE_UNUSED) #endif { #ifdef OBJCPLUS tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type)); /* If the receiver does not have virtual member functions, there is nothing we can (or need to) do here. */ if (!v) return NULL_TREE; /* Let C++ handle C++ virtual functions. */ return cp_fold_obj_type_ref (ref, known_type); #else /* For plain ObjC, we currently do not need to do anything. */ return NULL_TREE; #endif } static void objc_start_function (tree name, tree type, tree attrs, #ifdef OBJCPLUS tree params #else struct c_arg_info *params #endif ) { tree fndecl = build_decl (input_location, FUNCTION_DECL, name, type); #ifdef OBJCPLUS DECL_ARGUMENTS (fndecl) = params; DECL_INITIAL (fndecl) = error_mark_node; DECL_EXTERNAL (fndecl) = 0; TREE_STATIC (fndecl) = 1; retrofit_lang_decl (fndecl); cplus_decl_attributes (&fndecl, attrs, 0); start_preparsed_function (fndecl, attrs, /*flags=*/SF_DEFAULT); #else current_function_returns_value = 0; /* Assume, until we see it does. */ current_function_returns_null = 0; decl_attributes (&fndecl, attrs, 0); announce_function (fndecl); DECL_INITIAL (fndecl) = error_mark_node; DECL_EXTERNAL (fndecl) = 0; TREE_STATIC (fndecl) = 1; current_function_decl = pushdecl (fndecl); push_scope (); declare_parm_level (); DECL_RESULT (current_function_decl) = build_decl (input_location, RESULT_DECL, NULL_TREE, TREE_TYPE (TREE_TYPE (current_function_decl))); DECL_ARTIFICIAL (DECL_RESULT (current_function_decl)) = 1; DECL_IGNORED_P (DECL_RESULT (current_function_decl)) = 1; start_fname_decls (); store_parm_decls_from (params); #endif TREE_USED (current_function_decl) = 1; } /* - Generate an identifier for the function. the format is "_n_cls", where 1 <= n <= nMethods, and cls is the name the implementation we are processing. - Install the return type from the method declaration. - If we have a prototype, check for type consistency. */ static void really_start_method (tree method, #ifdef OBJCPLUS tree parmlist #else struct c_arg_info *parmlist #endif ) { tree ret_type, meth_type; tree method_id; const char *sel_name, *class_name, *cat_name; char *buf; /* Synth the storage class & assemble the return type. */ ret_type = TREE_VALUE (TREE_TYPE (method)); sel_name = IDENTIFIER_POINTER (METHOD_SEL_NAME (method)); class_name = IDENTIFIER_POINTER (CLASS_NAME (objc_implementation_context)); cat_name = ((TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE) ? NULL : IDENTIFIER_POINTER (CLASS_SUPER_NAME (objc_implementation_context))); method_slot++; /* Make sure this is big enough for any plausible method label. */ buf = (char *) alloca (50 + strlen (sel_name) + strlen (class_name) + (cat_name ? strlen (cat_name) : 0)); OBJC_GEN_METHOD_LABEL (buf, TREE_CODE (method) == INSTANCE_METHOD_DECL, class_name, cat_name, sel_name, method_slot); method_id = get_identifier (buf); #ifdef OBJCPLUS /* Objective-C methods cannot be overloaded, so we don't need the type encoding appended. It looks bad anyway... */ push_lang_context (lang_name_c); #endif meth_type = build_function_type (ret_type, get_arg_type_list (method, METHOD_DEF, 0)); objc_start_function (method_id, meth_type, NULL_TREE, parmlist); /* Set self_decl from the first argument. */ self_decl = DECL_ARGUMENTS (current_function_decl); /* Suppress unused warnings. */ TREE_USED (self_decl) = 1; DECL_READ_P (self_decl) = 1; TREE_USED (DECL_CHAIN (self_decl)) = 1; DECL_READ_P (DECL_CHAIN (self_decl)) = 1; #ifdef OBJCPLUS pop_lang_context (); #endif METHOD_DEFINITION (method) = current_function_decl; /* Check consistency...start_function, pushdecl, duplicate_decls. */ if (implementation_template != objc_implementation_context) { tree proto = lookup_method_static (implementation_template, METHOD_SEL_NAME (method), ((TREE_CODE (method) == CLASS_METHOD_DECL) | OBJC_LOOKUP_NO_SUPER)); if (proto) { if (!comp_proto_with_proto (method, proto, 1)) { bool type = TREE_CODE (method) == INSTANCE_METHOD_DECL; warning_at (DECL_SOURCE_LOCATION (method), 0, "conflicting types for %<%c%s%>", (type ? '-' : '+'), identifier_to_locale (gen_method_decl (method))); inform (DECL_SOURCE_LOCATION (proto), "previous declaration of %<%c%s%>", (type ? '-' : '+'), identifier_to_locale (gen_method_decl (proto))); } else { /* If the method in the @interface was deprecated, mark the implemented method as deprecated too. It should never be used for messaging (when the deprecation warnings are produced), but just in case. */ if (TREE_DEPRECATED (proto)) TREE_DEPRECATED (method) = 1; /* If the method in the @interface was marked as 'noreturn', mark the function implementing the method as 'noreturn' too. */ TREE_THIS_VOLATILE (current_function_decl) = TREE_THIS_VOLATILE (proto); } } else { /* We have a method @implementation even though we did not see a corresponding @interface declaration (which is allowed by Objective-C rules). Go ahead and place the method in the @interface anyway, so that message dispatch lookups will see it. */ tree interface = implementation_template; if (TREE_CODE (objc_implementation_context) == CATEGORY_IMPLEMENTATION_TYPE) interface = lookup_category (interface, CLASS_SUPER_NAME (objc_implementation_context)); if (interface) objc_add_method (interface, copy_node (method), TREE_CODE (method) == CLASS_METHOD_DECL, /* is_optional= */ false); } } } static void *UOBJC_SUPER_scope = 0; /* _n_Method (id self, SEL sel, ...) { struct objc_super _S; _msgSuper ((_S.self = self, _S.class = _cls, &_S), ...); } */ static tree get_super_receiver (void) { if (objc_method_context) { tree super_expr, super_expr_list; if (!UOBJC_SUPER_decl) { UOBJC_SUPER_decl = build_decl (input_location, VAR_DECL, get_identifier (TAG_SUPER), objc_super_template); /* This prevents `unused variable' warnings when compiling with -Wall. */ TREE_USED (UOBJC_SUPER_decl) = 1; DECL_READ_P (UOBJC_SUPER_decl) = 1; lang_hooks.decls.pushdecl (UOBJC_SUPER_decl); finish_decl (UOBJC_SUPER_decl, input_location, NULL_TREE, NULL_TREE, NULL_TREE); UOBJC_SUPER_scope = objc_get_current_scope (); } /* Set receiver to self. */ super_expr = objc_build_component_ref (UOBJC_SUPER_decl, self_id); super_expr = build_modify_expr (input_location, super_expr, NULL_TREE, NOP_EXPR, input_location, self_decl, NULL_TREE); super_expr_list = super_expr; /* Set class to begin searching. */ super_expr = objc_build_component_ref (UOBJC_SUPER_decl, get_identifier ("super_class")); if (TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE) { /* [_cls, __cls]Super are "pre-built" in synth_forward_declarations. */ super_expr = build_modify_expr (input_location, super_expr, NULL_TREE, NOP_EXPR, input_location, ((TREE_CODE (objc_method_context) == INSTANCE_METHOD_DECL) ? ucls_super_ref : uucls_super_ref), NULL_TREE); } else /* We have a category. */ { tree super_name = CLASS_SUPER_NAME (implementation_template); tree super_class; /* Barf if super used in a category of Object. */ if (!super_name) { error ("no super class declared in interface for %qE", CLASS_NAME (implementation_template)); return error_mark_node; } if (flag_next_runtime && !flag_zero_link) { super_class = objc_get_class_reference (super_name); if (TREE_CODE (objc_method_context) == CLASS_METHOD_DECL) /* If we are in a class method, we must retrieve the _metaclass_ for the current class, pointed at by the class's "isa" pointer. The following assumes that "isa" is the first ivar in a class (which it must be). */ super_class = build_indirect_ref (input_location, build_c_cast (input_location, build_pointer_type (objc_class_type), super_class), RO_UNARY_STAR); } else { add_class_reference (super_name); super_class = (TREE_CODE (objc_method_context) == INSTANCE_METHOD_DECL ? objc_get_class_decl : objc_get_meta_class_decl); assemble_external (super_class); super_class = build_function_call (input_location, super_class, build_tree_list (NULL_TREE, my_build_string_pointer (IDENTIFIER_LENGTH (super_name) + 1, IDENTIFIER_POINTER (super_name)))); } super_expr = build_modify_expr (input_location, super_expr, NULL_TREE, NOP_EXPR, input_location, build_c_cast (input_location, TREE_TYPE (super_expr), super_class), NULL_TREE); } super_expr_list = build_compound_expr (input_location, super_expr_list, super_expr); super_expr = build_unary_op (input_location, ADDR_EXPR, UOBJC_SUPER_decl, 0); super_expr_list = build_compound_expr (input_location, super_expr_list, super_expr); return super_expr_list; } else { error ("[super ...] must appear in a method context"); return error_mark_node; } } /* When exiting a scope, sever links to a 'super' declaration (if any) therein contained. */ void objc_clear_super_receiver (void) { if (objc_method_context && UOBJC_SUPER_scope == objc_get_current_scope ()) { UOBJC_SUPER_decl = 0; UOBJC_SUPER_scope = 0; } } void objc_finish_method_definition (tree fndecl) { /* We cannot validly inline ObjC methods, at least not without a language extension to declare that a method need not be dynamically dispatched, so suppress all thoughts of doing so. */ DECL_UNINLINABLE (fndecl) = 1; #ifndef OBJCPLUS /* The C++ front-end will have called finish_function() for us. */ finish_function (); #endif METHOD_ENCODING (objc_method_context) = encode_method_prototype (objc_method_context); /* Required to implement _msgSuper. This must be done AFTER finish_function, since the optimizer may find "may be used before set" errors. */ objc_method_context = NULL_TREE; if (should_call_super_dealloc) warning (0, "method possibly missing a [super dealloc] call"); } /* Given a tree DECL node, produce a printable description of it in the given buffer, overwriting the buffer. */ static char * gen_declaration (tree decl) { errbuf[0] = '\0'; if (DECL_P (decl)) { gen_type_name_0 (TREE_TYPE (decl)); if (DECL_NAME (decl)) { if (!POINTER_TYPE_P (TREE_TYPE (decl))) strcat (errbuf, " "); strcat (errbuf, IDENTIFIER_POINTER (DECL_NAME (decl))); } if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST) sprintf (errbuf + strlen (errbuf), ": " HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (DECL_INITIAL (decl))); } return errbuf; } /* Given a tree TYPE node, produce a printable description of it in the given buffer, overwriting the buffer. */ static char * gen_type_name_0 (tree type) { tree orig = type, proto; if (TYPE_P (type) && TYPE_NAME (type)) type = TYPE_NAME (type); else if (POINTER_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE) { tree inner = TREE_TYPE (type); while (TREE_CODE (inner) == ARRAY_TYPE) inner = TREE_TYPE (inner); gen_type_name_0 (inner); if (!POINTER_TYPE_P (inner)) strcat (errbuf, " "); if (POINTER_TYPE_P (type)) strcat (errbuf, "*"); else while (type != inner) { strcat (errbuf, "["); if (TYPE_DOMAIN (type)) { char sz[20]; sprintf (sz, HOST_WIDE_INT_PRINT_DEC, (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) + 1)); strcat (errbuf, sz); } strcat (errbuf, "]"); type = TREE_TYPE (type); } goto exit_function; } if (TREE_CODE (type) == TYPE_DECL && DECL_NAME (type)) type = DECL_NAME (type); strcat (errbuf, TREE_CODE (type) == IDENTIFIER_NODE ? IDENTIFIER_POINTER (type) : ""); /* For 'id' and 'Class', adopted protocols are stored in the pointee. */ if (objc_is_id (orig)) orig = TREE_TYPE (orig); proto = TYPE_HAS_OBJC_INFO (orig) ? TYPE_OBJC_PROTOCOL_LIST (orig) : NULL_TREE; if (proto) { strcat (errbuf, " <"); while (proto) { strcat (errbuf, IDENTIFIER_POINTER (PROTOCOL_NAME (TREE_VALUE (proto)))); proto = TREE_CHAIN (proto); strcat (errbuf, proto ? ", " : ">"); } } exit_function: return errbuf; } static char * gen_type_name (tree type) { errbuf[0] = '\0'; return gen_type_name_0 (type); } /* Given a method tree, put a printable description into the given buffer (overwriting) and return a pointer to the buffer. */ static char * gen_method_decl (tree method) { tree chain; strcpy (errbuf, "("); /* NB: Do _not_ call strcat() here. */ gen_type_name_0 (TREE_VALUE (TREE_TYPE (method))); strcat (errbuf, ")"); chain = METHOD_SEL_ARGS (method); if (chain) { /* We have a chain of keyword_decls. */ do { if (KEYWORD_KEY_NAME (chain)) strcat (errbuf, IDENTIFIER_POINTER (KEYWORD_KEY_NAME (chain))); strcat (errbuf, ":("); gen_type_name_0 (TREE_VALUE (TREE_TYPE (chain))); strcat (errbuf, ")"); strcat (errbuf, IDENTIFIER_POINTER (KEYWORD_ARG_NAME (chain))); if ((chain = DECL_CHAIN (chain))) strcat (errbuf, " "); } while (chain); if (METHOD_ADD_ARGS (method)) { chain = TREE_CHAIN (METHOD_ADD_ARGS (method)); /* Know we have a chain of parm_decls. */ while (chain) { strcat (errbuf, ", "); gen_type_name_0 (TREE_TYPE (TREE_VALUE (chain))); chain = TREE_CHAIN (chain); } if (METHOD_ADD_ARGS_ELLIPSIS_P (method)) strcat (errbuf, ", ..."); } } else /* We have a unary selector. */ strcat (errbuf, IDENTIFIER_POINTER (METHOD_SEL_NAME (method))); return errbuf; } /* Debug info. */ /* Dump an @interface declaration of the supplied class CHAIN to the supplied file FP. Used to implement the -gen-decls option (which prints out an @interface declaration of all classes compiled in this run); potentially useful for debugging the compiler too. */ static void dump_interface (FILE *fp, tree chain) { /* FIXME: A heap overflow here whenever a method (or ivar) declaration is so long that it doesn't fit in the buffer. The code and all the related functions should be rewritten to avoid using fixed size buffers. */ const char *my_name = IDENTIFIER_POINTER (CLASS_NAME (chain)); tree ivar_decls = CLASS_RAW_IVARS (chain); tree nst_methods = CLASS_NST_METHODS (chain); tree cls_methods = CLASS_CLS_METHODS (chain); fprintf (fp, "\n@interface %s", my_name); /* CLASS_SUPER_NAME is used to store the superclass name for classes, and the category name for categories. */ if (CLASS_SUPER_NAME (chain)) { const char *name = IDENTIFIER_POINTER (CLASS_SUPER_NAME (chain)); switch (TREE_CODE (chain)) { case CATEGORY_IMPLEMENTATION_TYPE: case CATEGORY_INTERFACE_TYPE: fprintf (fp, " (%s)\n", name); break; default: fprintf (fp, " : %s\n", name); break; } } else fprintf (fp, "\n"); /* FIXME - the following doesn't seem to work at the moment. */ if (ivar_decls) { fprintf (fp, "{\n"); do { fprintf (fp, "\t%s;\n", gen_declaration (ivar_decls)); ivar_decls = TREE_CHAIN (ivar_decls); } while (ivar_decls); fprintf (fp, "}\n"); } while (nst_methods) { fprintf (fp, "- %s;\n", gen_method_decl (nst_methods)); nst_methods = TREE_CHAIN (nst_methods); } while (cls_methods) { fprintf (fp, "+ %s;\n", gen_method_decl (cls_methods)); cls_methods = TREE_CHAIN (cls_methods); } fprintf (fp, "@end\n"); } #if 0 /* Produce the pretty printing for an Objective-C method. This is currently unused, but could be handy while reorganizing the pretty printing to be more robust. */ static const char * objc_pretty_print_method (bool is_class_method, const char *class_name, const char *category_name, const char *selector) { if (category_name) { char *result = XNEWVEC (char, strlen (class_name) + strlen (category_name) + strlen (selector) + 7); if (is_class_method) sprintf (result, "+[%s(%s) %s]", class_name, category_name, selector); else sprintf (result, "-[%s(%s) %s]", class_name, category_name, selector); return result; } else { char *result = XNEWVEC (char, strlen (class_name) + strlen (selector) + 5); if (is_class_method) sprintf (result, "+[%s %s]", class_name, selector); else sprintf (result, "-[%s %s]", class_name, selector); return result; } } #endif /* Demangle function for Objective-C. Attempt to demangle the function name associated with a method (eg, going from "_i_NSObject__class" to "-[NSObject class]"); usually for the purpose of pretty printing or error messages. Return the demangled name, or NULL if the string is not an Objective-C mangled method name. Because of how the mangling is done, any method that has a '_' in its original name is at risk of being demangled incorrectly. In some cases there are multiple valid ways to demangle a method name and there is no way we can decide. TODO: objc_demangle() can't always get it right; the right way to get this correct for all method names would be to store the Objective-C method name somewhere in the function decl. Then, there is no demangling to do; we'd just pull the method name out of the decl. As an additional bonus, when printing error messages we could check for such a method name, and if we find it, we know the function is actually an Objective-C method and we could print error messages saying "In method '+[NSObject class]" instead of "In function '+[NSObject class]" as we do now. */ static const char * objc_demangle (const char *mangled) { char *demangled, *cp; /* First of all, if the name is too short it can't be an Objective-C mangled method name. */ if (mangled[0] == '\0' || mangled[1] == '\0' || mangled[2] == '\0') return NULL; /* If the name looks like an already demangled one, return it unchanged. This should only happen on Darwin, where method names are mangled differently into a pretty-print form (such as '+[NSObject class]', see darwin.h). In that case, demangling is a no-op, but we need to return the demangled name if it was an ObjC one, and return NULL if not. We should be safe as no C/C++ function can start with "-[" or "+[". */ if ((mangled[0] == '-' || mangled[0] == '+') && (mangled[1] == '[')) return mangled; if (mangled[0] == '_' && (mangled[1] == 'i' || mangled[1] == 'c') && mangled[2] == '_') { cp = demangled = XNEWVEC (char, strlen(mangled) + 2); if (mangled[1] == 'i') *cp++ = '-'; /* for instance method */ else *cp++ = '+'; /* for class method */ *cp++ = '['; /* opening left brace */ strcpy(cp, mangled+3); /* tack on the rest of the mangled name */ while (*cp && *cp == '_') cp++; /* skip any initial underbars in class name */ cp = strchr(cp, '_'); /* find first non-initial underbar */ if (cp == NULL) { free(demangled); /* not mangled name */ return NULL; } if (cp[1] == '_') /* easy case: no category name */ { *cp++ = ' '; /* replace two '_' with one ' ' */ strcpy(cp, mangled + (cp - demangled) + 2); } else { *cp++ = '('; /* less easy case: category name */ cp = strchr(cp, '_'); if (cp == 0) { free(demangled); /* not mangled name */ return NULL; } *cp++ = ')'; *cp++ = ' '; /* overwriting 1st char of method name... */ strcpy(cp, mangled + (cp - demangled)); /* get it back */ } /* Now we have the method name. We need to generally replace '_' with ':' but trying to preserve '_' if it could only have been in the mangled string because it was already in the original name. In cases where it's ambiguous, we assume that any '_' originated from a ':'. */ /* Initial '_'s in method name can't have been generating by converting ':'s. Skip them. */ while (*cp && *cp == '_') cp++; /* If the method name does not end with '_', then it has no arguments and there was no replacement of ':'s with '_'s during mangling. Check for that case, and skip any replacement if so. This at least guarantees that methods with no arguments are always demangled correctly (unless the original name ends with '_'). */ if (*(mangled + strlen (mangled) - 1) != '_') { /* Skip to the end. */ for (; *cp; cp++) ; } else { /* Replace remaining '_' with ':'. This may get it wrong if there were '_'s in the original name. In most cases it is impossible to disambiguate. */ for (; *cp; cp++) if (*cp == '_') *cp = ':'; } *cp++ = ']'; /* closing right brace */ *cp++ = 0; /* string terminator */ return demangled; } else return NULL; /* not an objc mangled name */ } /* Try to pretty-print a decl. If the 'decl' is an Objective-C specific decl, return the printable name for it. If not, return NULL. */ const char * objc_maybe_printable_name (tree decl, int v ATTRIBUTE_UNUSED) { switch (TREE_CODE (decl)) { case FUNCTION_DECL: return objc_demangle (IDENTIFIER_POINTER (DECL_NAME (decl))); break; /* The following happens when we are printing a deprecation warning for a method. The warn_deprecation() will end up trying to print the decl for INSTANCE_METHOD_DECL or CLASS_METHOD_DECL. It would be nice to be able to print "-[NSObject autorelease] is deprecated", but to do that, we'd need to store the class and method name in the method decl, which we currently don't do. For now, just return the name of the method. We don't return NULL, because that may trigger further attempts to pretty-print the decl in C/C++, but they wouldn't know how to pretty-print it. */ case INSTANCE_METHOD_DECL: case CLASS_METHOD_DECL: return IDENTIFIER_POINTER (DECL_NAME (decl)); break; /* This happens when printing a deprecation warning for a property. We may want to consider some sort of pretty printing (eg, include the class name where it was declared ?). */ case PROPERTY_DECL: return IDENTIFIER_POINTER (PROPERTY_NAME (decl)); break; default: return NULL; break; } } /* Return a printable name for 'decl'. This first tries objc_maybe_printable_name(), and if that fails, it returns the name in the decl. This is used as LANG_HOOKS_DECL_PRINTABLE_NAME for Objective-C; in Objective-C++, setting the hook is not enough because lots of C++ Front-End code calls cxx_printable_name, dump_decl and other C++ functions directly. So instead we have modified dump_decl to call objc_maybe_printable_name directly. */ const char * objc_printable_name (tree decl, int v) { const char *demangled_name = objc_maybe_printable_name (decl, v); if (demangled_name != NULL) return demangled_name; else return IDENTIFIER_POINTER (DECL_NAME (decl)); } static void init_objc (void) { gcc_obstack_init (&util_obstack); util_firstobj = (char *) obstack_finish (&util_obstack); errbuf = XNEWVEC (char, 1024 * 10); hash_init (); synth_module_prologue (); } static void finish_objc (void) { struct imp_entry *impent; tree chain; /* The internally generated initializers appear to have missing braces. Don't warn about this. */ int save_warn_missing_braces = warn_missing_braces; warn_missing_braces = 0; /* A missing @end may not be detected by the parser. */ if (objc_implementation_context) { warning (0, "%<@end%> missing in implementation context"); finish_class (objc_implementation_context); objc_ivar_chain = NULL_TREE; objc_implementation_context = NULL_TREE; } /* Process the static instances here because initialization of objc_symtab depends on them. */ if (objc_static_instances) generate_static_references (); /* forward declare categories */ if (cat_count) forward_declare_categories (); for (impent = imp_list; impent; impent = impent->next) { objc_implementation_context = impent->imp_context; implementation_template = impent->imp_template; /* FIXME: This needs reworking to be more obvious. */ UOBJC_CLASS_decl = impent->class_decl; UOBJC_METACLASS_decl = impent->meta_decl; /* Dump the @interface of each class as we compile it, if the -gen-decls option is in use. TODO: Dump the classes in the order they were found, rather than in reverse order as we are doing now. */ if (flag_gen_declaration) { dump_interface (gen_declaration_file, objc_implementation_context); } if (TREE_CODE (objc_implementation_context) == CLASS_IMPLEMENTATION_TYPE) { /* all of the following reference the string pool... */ generate_ivar_lists (); generate_dispatch_tables (); generate_shared_structures (impent); } else { generate_dispatch_tables (); generate_category (impent); } impent->class_decl = UOBJC_CLASS_decl; impent->meta_decl = UOBJC_METACLASS_decl; } /* If we are using an array of selectors, we must always finish up the array decl even if no selectors were used. */ if (flag_next_runtime) build_next_selector_translation_table (); else build_gnu_selector_translation_table (); if (protocol_chain) generate_protocols (); if (flag_next_runtime) generate_objc_image_info (); if (imp_list || class_names_chain || meth_var_names_chain || meth_var_types_chain || sel_ref_chain) generate_objc_symtab_decl (); /* Arrange for ObjC data structures to be initialized at run time. */ if (objc_implementation_context || class_names_chain || objc_static_instances || meth_var_names_chain || meth_var_types_chain || sel_ref_chain) { build_module_descriptor (); if (!flag_next_runtime) build_module_initializer_routine (); } /* Dump the class references. This forces the appropriate classes to be linked into the executable image, preserving unix archive semantics. This can be removed when we move to a more dynamically linked environment. */ for (chain = cls_ref_chain; chain; chain = TREE_CHAIN (chain)) { handle_class_ref (chain); if (TREE_PURPOSE (chain)) generate_classref_translation_entry (chain); } for (impent = imp_list; impent; impent = impent->next) handle_impent (impent); if (warn_selector) { int slot; hash hsh; /* Run through the selector hash tables and print a warning for any selector which has multiple methods. */ for (slot = 0; slot < SIZEHASHTABLE; slot++) { for (hsh = cls_method_hash_list[slot]; hsh; hsh = hsh->next) check_duplicates (hsh, 0, 1); for (hsh = nst_method_hash_list[slot]; hsh; hsh = hsh->next) check_duplicates (hsh, 0, 0); } } warn_missing_braces = save_warn_missing_braces; } /* Subroutines of finish_objc. */ static void generate_classref_translation_entry (tree chain) { tree expr, decl, type; decl = TREE_PURPOSE (chain); type = TREE_TYPE (decl); expr = add_objc_string (TREE_VALUE (chain), class_names); expr = convert (type, expr); /* cast! */ /* This is a class reference. It is re-written by the runtime, but will be optimized away unless we force it. */ DECL_PRESERVE_P (decl) = 1; finish_var_decl (decl, expr); return; } static void handle_class_ref (tree chain) { const char *name = IDENTIFIER_POINTER (TREE_VALUE (chain)); char *string = (char *) alloca (strlen (name) + 30); tree decl; tree exp; sprintf (string, "%sobjc_class_name_%s", (flag_next_runtime ? "." : "__"), name); #ifdef ASM_DECLARE_UNRESOLVED_REFERENCE if (flag_next_runtime) { ASM_DECLARE_UNRESOLVED_REFERENCE (asm_out_file, string); return; } #endif /* Make a decl for this name, so we can use its address in a tree. */ decl = build_decl (input_location, VAR_DECL, get_identifier (string), TREE_TYPE (integer_zero_node)); DECL_EXTERNAL (decl) = 1; TREE_PUBLIC (decl) = 1; pushdecl (decl); finish_var_decl (decl, 0); /* Make a decl for the address. */ sprintf (string, "%sobjc_class_ref_%s", (flag_next_runtime ? "." : "__"), name); exp = build1 (ADDR_EXPR, string_type_node, decl); decl = build_decl (input_location, VAR_DECL, get_identifier (string), string_type_node); TREE_STATIC (decl) = 1; TREE_USED (decl) = 1; DECL_READ_P (decl) = 1; DECL_ARTIFICIAL (decl) = 1; DECL_INITIAL (decl) = error_mark_node; /* We must force the reference. */ DECL_PRESERVE_P (decl) = 1; pushdecl (decl); finish_var_decl (decl, exp); } static void handle_impent (struct imp_entry *impent) { char *string; objc_implementation_context = impent->imp_context; implementation_template = impent->imp_template; switch (TREE_CODE (impent->imp_context)) { case CLASS_IMPLEMENTATION_TYPE: { const char *const class_name = IDENTIFIER_POINTER (CLASS_NAME (impent->imp_context)); string = (char *) alloca (strlen (class_name) + 30); sprintf (string, "%sobjc_class_name_%s", (flag_next_runtime ? "." : "__"), class_name); break; } case CATEGORY_IMPLEMENTATION_TYPE: { const char *const class_name = IDENTIFIER_POINTER (CLASS_NAME (impent->imp_context)); const char *const class_super_name = IDENTIFIER_POINTER (CLASS_SUPER_NAME (impent->imp_context)); string = (char *) alloca (strlen (class_name) + strlen (class_super_name) + 30); /* Do the same for categories. Even though no references to these symbols are generated automatically by the compiler, it gives you a handle to pull them into an archive by hand. */ sprintf (string, "*%sobjc_category_name_%s_%s", (flag_next_runtime ? "." : "__"), class_name, class_super_name); break; } default: return; } #ifdef ASM_DECLARE_CLASS_REFERENCE if (flag_next_runtime) { ASM_DECLARE_CLASS_REFERENCE (asm_out_file, string); return; } else #endif { tree decl, init; init = integer_zero_node; decl = build_decl (input_location, VAR_DECL, get_identifier (string), TREE_TYPE (init)); TREE_PUBLIC (decl) = 1; TREE_READONLY (decl) = 1; TREE_USED (decl) = 1; TREE_CONSTANT (decl) = 1; DECL_CONTEXT (decl) = NULL_TREE; DECL_ARTIFICIAL (decl) = 1; TREE_STATIC (decl) = 1; DECL_INITIAL (decl) = error_mark_node; /* A real initializer is coming... */ /* We must force the reference. */ DECL_PRESERVE_P (decl) = 1; finish_var_decl(decl, init) ; } } /* The Fix-and-Continue functionality available in Mac OS X 10.3 and later requires that ObjC translation units participating in F&C be specially marked. The following routine accomplishes this. */ /* static int _OBJC_IMAGE_INFO[2] = { 0, 1 }; */ static void generate_objc_image_info (void) { tree decl; int flags = ((flag_replace_objc_classes && imp_count ? 1 : 0) | (flag_objc_gc ? 2 : 0)); VEC(constructor_elt,gc) *v = NULL; tree array_type; if (!flags) return; /* No need for an image_info entry. */ array_type = build_sized_array_type (integer_type_node, 2); decl = start_var_decl (array_type, "_OBJC_IMAGE_INFO"); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, integer_zero_node); CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, build_int_cst (integer_type_node, flags)); /* If we need this (determined above) it is because the runtime wants to refer to it in a manner hidden from the compiler. So we must force the output. */ DECL_PRESERVE_P (decl) = 1; finish_var_decl (decl, objc_build_constructor (TREE_TYPE (decl), v)); } /* Routine is called to issue diagnostic when reference to a private ivar is made and no other variable with same name is found in current scope. */ bool objc_diagnose_private_ivar (tree id) { tree ivar; if (!objc_method_context) return false; ivar = is_ivar (objc_ivar_chain, id); if (ivar && is_private (ivar)) { error ("instance variable %qs is declared private", IDENTIFIER_POINTER (id)); return true; } return false; } /* Look up ID as an instance variable. OTHER contains the result of the C or C++ lookup, which we may want to use instead. */ /* To use properties inside an instance method, use self.property. */ tree objc_lookup_ivar (tree other, tree id) { tree ivar; /* If we are not inside of an ObjC method, ivar lookup makes no sense. */ if (!objc_method_context) return other; if (!strcmp (IDENTIFIER_POINTER (id), "super")) /* We have a message to super. */ return get_super_receiver (); /* In a class method, look up an instance variable only as a last resort. */ if (TREE_CODE (objc_method_context) == CLASS_METHOD_DECL && other && other != error_mark_node) return other; /* Look up the ivar, but do not use it if it is not accessible. */ ivar = is_ivar (objc_ivar_chain, id); if (!ivar || is_private (ivar)) return other; /* In an instance method, a local variable (or parameter) may hide the instance variable. */ if (TREE_CODE (objc_method_context) == INSTANCE_METHOD_DECL && other && other != error_mark_node #ifdef OBJCPLUS && CP_DECL_CONTEXT (other) != global_namespace) #else && !DECL_FILE_SCOPE_P (other)) #endif { warning (0, "local declaration of %qE hides instance variable", id); return other; } /* At this point, we are either in an instance method with no obscuring local definitions, or in a class method with no alternate definitions at all. */ return build_ivar_reference (id); } /* Possibly rewrite a function CALL into an OBJ_TYPE_REF expression. This needs to be done if we are calling a function through a cast. */ tree objc_rewrite_function_call (tree function, tree first_param) { if (TREE_CODE (function) == NOP_EXPR && TREE_CODE (TREE_OPERAND (function, 0)) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (TREE_OPERAND (function, 0), 0)) == FUNCTION_DECL) { function = build3 (OBJ_TYPE_REF, TREE_TYPE (function), TREE_OPERAND (function, 0), first_param, size_zero_node); } return function; } /* This is called to "gimplify" a PROPERTY_REF node. It builds the corresponding 'getter' function call. Note that we assume the PROPERTY_REF to be valid since we generated it while parsing. */ static void objc_gimplify_property_ref (tree *expr_p) { tree getter = PROPERTY_REF_GETTER_CALL (*expr_p); tree call_exp; if (getter == NULL_TREE) { tree property_decl = PROPERTY_REF_PROPERTY_DECL (*expr_p); /* This can happen if DECL_ARTIFICIAL (*expr_p), but should be impossible for real properties, which always have a getter. */ error_at (EXPR_LOCATION (*expr_p), "no %qs getter found", IDENTIFIER_POINTER (PROPERTY_NAME (property_decl))); /* Try to recover from the error to prevent an ICE. We take zero and cast it to the type of the property. */ *expr_p = convert (TREE_TYPE (property_decl), integer_zero_node); return; } if (PROPERTY_REF_DEPRECATED_GETTER (*expr_p)) { /* PROPERTY_REF_DEPRECATED_GETTER contains the method prototype that is deprecated. */ warn_deprecated_use (PROPERTY_REF_DEPRECATED_GETTER (*expr_p), NULL_TREE); } call_exp = getter; #ifdef OBJCPLUS /* In C++, a getter which returns an aggregate value results in a target_expr which initializes a temporary to the call expression. */ if (TREE_CODE (getter) == TARGET_EXPR) { gcc_assert (MAYBE_CLASS_TYPE_P (TREE_TYPE (getter))); gcc_assert (TREE_CODE (TREE_OPERAND (getter, 0)) == VAR_DECL); call_exp = TREE_OPERAND (getter, 1); } #endif gcc_assert (TREE_CODE (call_exp) == CALL_EXPR); *expr_p = call_exp; } /* This is called when "gimplifying" the trees. We need to gimplify the Objective-C/Objective-C++ specific trees, then hand over the process to C/C++. */ int objc_gimplify_expr (tree *expr_p, gimple_seq *pre_p, gimple_seq *post_p) { enum tree_code code = TREE_CODE (*expr_p); switch (code) { /* Look for the special case of OBJC_TYPE_REF with the address of a function in OBJ_TYPE_REF_EXPR (presumably objc_msgSend or one of its cousins). */ case OBJ_TYPE_REF: if (TREE_CODE (OBJ_TYPE_REF_EXPR (*expr_p)) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (OBJ_TYPE_REF_EXPR (*expr_p), 0)) == FUNCTION_DECL) { enum gimplify_status r0, r1; /* Postincrements in OBJ_TYPE_REF_OBJECT don't affect the value of the OBJ_TYPE_REF, so force them to be emitted during subexpression evaluation rather than after the OBJ_TYPE_REF. This permits objc_msgSend calls in Objective C to use direct rather than indirect calls when the object expression has a postincrement. */ r0 = gimplify_expr (&OBJ_TYPE_REF_OBJECT (*expr_p), pre_p, NULL, is_gimple_val, fb_rvalue); r1 = gimplify_expr (&OBJ_TYPE_REF_EXPR (*expr_p), pre_p, post_p, is_gimple_val, fb_rvalue); return MIN (r0, r1); } break; case PROPERTY_REF: objc_gimplify_property_ref (expr_p); /* Do not return yet; let C/C++ gimplify the resulting expression. */ break; default: break; } #ifdef OBJCPLUS return (enum gimplify_status) cp_gimplify_expr (expr_p, pre_p, post_p); #else return (enum gimplify_status) c_gimplify_expr (expr_p, pre_p, post_p); #endif } /* This routine returns true if TYPE is a valid objc object type, suitable for messaging; false otherwise. If 'accept_class' is 'true', then a Class object is considered valid for messaging and 'true' is returned if 'type' refers to a Class. If 'accept_class' is 'false', then a Class object is not considered valid for messaging and 'false' is returned in that case. */ static bool objc_type_valid_for_messaging (tree type, bool accept_classes) { if (!POINTER_TYPE_P (type)) return false; /* Remove the pointer indirection; don't remove more than one otherwise we'd consider "NSObject **" a valid type for messaging, which it isn't. */ type = TREE_TYPE (type); if (TREE_CODE (type) != RECORD_TYPE) return false; if (objc_is_object_id (type)) return true; if (objc_is_class_id (type)) return accept_classes; if (TYPE_HAS_OBJC_INFO (type)) return true; return false; } /* Begin code generation for fast enumeration (foreach) ... */ /* Defines struct __objcFastEnumerationState { unsigned long state; id *itemsPtr; unsigned long *mutationsPtr; unsigned long extra[5]; }; Confusingly enough, NSFastEnumeration is then defined by libraries to be the same structure. */ static void build_fast_enumeration_state_template (void) { tree decls, *chain = NULL; /* { */ objc_fast_enumeration_state_template = objc_start_struct (get_identifier (TAG_FAST_ENUMERATION_STATE)); /* unsigned long state; */ decls = add_field_decl (long_unsigned_type_node, "state", &chain); /* id *itemsPtr; */ add_field_decl (build_pointer_type (objc_object_type), "itemsPtr", &chain); /* unsigned long *mutationsPtr; */ add_field_decl (build_pointer_type (long_unsigned_type_node), "mutationsPtr", &chain); /* unsigned long extra[5]; */ add_field_decl (build_sized_array_type (long_unsigned_type_node, 5), "extra", &chain); /* } */ objc_finish_struct (objc_fast_enumeration_state_template, decls); } /* 'objc_finish_foreach_loop()' generates the code for an Objective-C foreach loop. The 'location' argument is the location of the 'for' that starts the loop. The 'object_expression' is the expression of the 'object' that iterates; the 'collection_expression' is the expression of the collection that we iterate over (we need to make sure we evaluate this only once); the 'for_body' is the set of statements to be executed in each iteration; 'break_label' and 'continue_label' are the break and continue labels which we need to emit since the may be jumping to 'break_label' (if they contain 'break') or to 'continue_label' (if they contain 'continue'). The syntax is for ( in ) which is compiled into the following blurb: { id __objc_foreach_collection; __objc_fast_enumeration_state __objc_foreach_enum_state; unsigned long __objc_foreach_batchsize; id __objc_foreach_items[16]; __objc_foreach_collection = ; __objc_foreach_enum_state = { 0 }; __objc_foreach_batchsize = [__objc_foreach_collection countByEnumeratingWithState: &__objc_foreach_enum_state objects: __objc_foreach_items count: 16]; if (__objc_foreach_batchsize == 0) = nil; else { unsigned long __objc_foreach_mutations_pointer = *__objc_foreach_enum_state.mutationsPtr; next_batch: { unsigned long __objc_foreach_index; __objc_foreach_index = 0; next_object: if (__objc_foreach_mutation_pointer != *__objc_foreach_enum_state.mutationsPtr) objc_enumeration_mutation (); = enumState.itemsPtr[__objc_foreach_index]; [PS: inside , 'break' jumps to break_label and 'continue' jumps to continue_label] continue_label: __objc_foreach_index++; if (__objc_foreach_index < __objc_foreach_batchsize) goto next_object; __objc_foreach_batchsize = [__objc_foreach_collection countByEnumeratingWithState: &__objc_foreach_enum_state objects: __objc_foreach_items count: 16]; } if (__objc_foreach_batchsize != 0) goto next_batch; = nil; break_label: } } 'statements' may contain a 'continue' or 'break' instruction, which the user expects to 'continue' or 'break' the entire foreach loop. We are provided the labels that 'break' and 'continue' jump to, so we place them where we want them to jump to when they pick them. Optimization TODO: we could cache the IMP of countByEnumeratingWithState:objects:count:. */ /* If you need to debug objc_finish_foreach_loop(), uncomment the following line. */ /* #define DEBUG_OBJC_FINISH_FOREACH_LOOP 1 */ #ifdef DEBUG_OBJC_FINISH_FOREACH_LOOP #include "tree-pretty-print.h" #endif void objc_finish_foreach_loop (location_t location, tree object_expression, tree collection_expression, tree for_body, tree break_label, tree continue_label) { /* A tree representing the __objcFastEnumerationState struct type, or NSFastEnumerationState struct, whatever we are using. */ tree objc_fast_enumeration_state_type; /* The trees representing the declarations of each of the local variables. */ tree objc_foreach_collection_decl; tree objc_foreach_enum_state_decl; tree objc_foreach_items_decl; tree objc_foreach_batchsize_decl; tree objc_foreach_mutations_pointer_decl; tree objc_foreach_index_decl; /* A tree representing the selector countByEnumeratingWithState:objects:count:. */ tree selector_name; /* A tree representing the local bind. */ tree bind; /* A tree representing the external 'if (__objc_foreach_batchsize)' */ tree first_if; /* A tree representing the 'else' part of 'first_if' */ tree first_else; /* A tree representing the 'next_batch' label. */ tree next_batch_label_decl; /* A tree representing the binding after the 'next_batch' label. */ tree next_batch_bind; /* A tree representing the 'next_object' label. */ tree next_object_label_decl; /* Temporary variables. */ tree t; int i; if (flag_objc1_only) error_at (location, "fast enumeration is not available in Objective-C 1.0"); if (object_expression == error_mark_node) return; if (collection_expression == error_mark_node) return; if (!objc_type_valid_for_messaging (TREE_TYPE (object_expression), true)) { error_at (location, "iterating variable in fast enumeration is not an object"); return; } if (!objc_type_valid_for_messaging (TREE_TYPE (collection_expression), true)) { error_at (location, "collection in fast enumeration is not an object"); return; } /* TODO: Check that object_expression is either a variable declaration, or an lvalue. */ /* This kludge is an idea from apple. We use the __objcFastEnumerationState struct implicitly defined by the compiler, unless a NSFastEnumerationState struct has been defined (by a Foundation library such as GNUstep Base) in which case, we use that one. */ objc_fast_enumeration_state_type = objc_fast_enumeration_state_template; { tree objc_NSFastEnumeration_type = lookup_name (get_identifier ("NSFastEnumerationState")); if (objc_NSFastEnumeration_type) { /* TODO: We really need to check that objc_NSFastEnumeration_type is the same as ours! */ if (TREE_CODE (objc_NSFastEnumeration_type) == TYPE_DECL) { /* If it's a typedef, use the original type. */ if (DECL_ORIGINAL_TYPE (objc_NSFastEnumeration_type)) objc_fast_enumeration_state_type = DECL_ORIGINAL_TYPE (objc_NSFastEnumeration_type); else objc_fast_enumeration_state_type = TREE_TYPE (objc_NSFastEnumeration_type); } } } /* { */ /* Done by c-parser.c. */ /* type object; */ /* Done by c-parser.c. */ /* Disable warnings that 'object' is unused. For example the code for (id object in collection) i++; which can be used to count how many objects there are in the collection is fine and should generate no warnings even if 'object' is technically unused. */ TREE_USED (object_expression) = 1; if (DECL_P (object_expression)) DECL_READ_P (object_expression) = 1; /* id __objc_foreach_collection */ objc_foreach_collection_decl = objc_create_temporary_var (objc_object_type, "__objc_foreach_collection"); /* __objcFastEnumerationState __objc_foreach_enum_state; */ objc_foreach_enum_state_decl = objc_create_temporary_var (objc_fast_enumeration_state_type, "__objc_foreach_enum_state"); TREE_CHAIN (objc_foreach_enum_state_decl) = objc_foreach_collection_decl; /* id __objc_foreach_items[16]; */ objc_foreach_items_decl = objc_create_temporary_var (build_sized_array_type (objc_object_type, 16), "__objc_foreach_items"); TREE_CHAIN (objc_foreach_items_decl) = objc_foreach_enum_state_decl; /* unsigned long __objc_foreach_batchsize; */ objc_foreach_batchsize_decl = objc_create_temporary_var (long_unsigned_type_node, "__objc_foreach_batchsize"); TREE_CHAIN (objc_foreach_batchsize_decl) = objc_foreach_items_decl; /* Generate the local variable binding. */ bind = build3 (BIND_EXPR, void_type_node, objc_foreach_batchsize_decl, NULL, NULL); SET_EXPR_LOCATION (bind, location); TREE_SIDE_EFFECTS (bind) = 1; /* __objc_foreach_collection = ; */ t = build2 (MODIFY_EXPR, void_type_node, objc_foreach_collection_decl, collection_expression); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); /* We have used 'collection_expression'. */ mark_exp_read (collection_expression); /* __objc_foreach_enum_state.state = 0; */ t = build2 (MODIFY_EXPR, void_type_node, objc_build_component_ref (objc_foreach_enum_state_decl, get_identifier ("state")), build_int_cst (long_unsigned_type_node, 0)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); /* __objc_foreach_enum_state.itemsPtr = NULL; */ t = build2 (MODIFY_EXPR, void_type_node, objc_build_component_ref (objc_foreach_enum_state_decl, get_identifier ("itemsPtr")), null_pointer_node); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); /* __objc_foreach_enum_state.mutationsPtr = NULL; */ t = build2 (MODIFY_EXPR, void_type_node, objc_build_component_ref (objc_foreach_enum_state_decl, get_identifier ("mutationsPtr")), null_pointer_node); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); /* __objc_foreach_enum_state.extra[0] = 0; */ /* __objc_foreach_enum_state.extra[1] = 0; */ /* __objc_foreach_enum_state.extra[2] = 0; */ /* __objc_foreach_enum_state.extra[3] = 0; */ /* __objc_foreach_enum_state.extra[4] = 0; */ for (i = 0; i < 5 ; i++) { t = build2 (MODIFY_EXPR, void_type_node, build_array_ref (location, objc_build_component_ref (objc_foreach_enum_state_decl, get_identifier ("extra")), build_int_cst (NULL_TREE, i)), build_int_cst (long_unsigned_type_node, 0)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); } /* __objc_foreach_batchsize = [__objc_foreach_collection countByEnumeratingWithState: &__objc_foreach_enum_state objects: __objc_foreach_items count: 16]; */ selector_name = get_identifier ("countByEnumeratingWithState:objects:count:"); #ifdef OBJCPLUS t = objc_finish_message_expr (objc_foreach_collection_decl, selector_name, /* Parameters. */ tree_cons /* &__objc_foreach_enum_state */ (NULL_TREE, build_fold_addr_expr_loc (location, objc_foreach_enum_state_decl), tree_cons /* __objc_foreach_items */ (NULL_TREE, objc_foreach_items_decl, tree_cons /* 16 */ (NULL_TREE, build_int_cst (NULL_TREE, 16), NULL_TREE))), NULL); #else /* In C, we need to decay the __objc_foreach_items array that we are passing. */ { struct c_expr array; array.value = objc_foreach_items_decl; t = objc_finish_message_expr (objc_foreach_collection_decl, selector_name, /* Parameters. */ tree_cons /* &__objc_foreach_enum_state */ (NULL_TREE, build_fold_addr_expr_loc (location, objc_foreach_enum_state_decl), tree_cons /* __objc_foreach_items */ (NULL_TREE, default_function_array_conversion (location, array).value, tree_cons /* 16 */ (NULL_TREE, build_int_cst (NULL_TREE, 16), NULL_TREE))), NULL); } #endif t = build2 (MODIFY_EXPR, void_type_node, objc_foreach_batchsize_decl, convert (long_unsigned_type_node, t)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (bind)); /* if (__objc_foreach_batchsize == 0) */ first_if = build3 (COND_EXPR, void_type_node, /* Condition. */ c_fully_fold (c_common_truthvalue_conversion (location, build_binary_op (location, EQ_EXPR, objc_foreach_batchsize_decl, build_int_cst (long_unsigned_type_node, 0), 1)), false, NULL), /* Then block (we fill it in later). */ NULL_TREE, /* Else block (we fill it in later). */ NULL_TREE); SET_EXPR_LOCATION (first_if, location); append_to_statement_list (first_if, &BIND_EXPR_BODY (bind)); /* then = nil; */ t = build2 (MODIFY_EXPR, void_type_node, object_expression, convert (objc_object_type, null_pointer_node)); SET_EXPR_LOCATION (t, location); COND_EXPR_THEN (first_if) = t; /* Now we build the 'else' part of the if; once we finish building it, we attach it to first_if as the 'else' part. */ /* else */ /* { */ /* unsigned long __objc_foreach_mutations_pointer; */ objc_foreach_mutations_pointer_decl = objc_create_temporary_var (long_unsigned_type_node, "__objc_foreach_mutations_pointer"); /* Generate the local variable binding. */ first_else = build3 (BIND_EXPR, void_type_node, objc_foreach_mutations_pointer_decl, NULL, NULL); SET_EXPR_LOCATION (first_else, location); TREE_SIDE_EFFECTS (first_else) = 1; /* __objc_foreach_mutations_pointer = *__objc_foreach_enum_state.mutationsPtr; */ t = build2 (MODIFY_EXPR, void_type_node, objc_foreach_mutations_pointer_decl, build_indirect_ref (location, objc_build_component_ref (objc_foreach_enum_state_decl, get_identifier ("mutationsPtr")), RO_UNARY_STAR)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (first_else)); /* next_batch: */ next_batch_label_decl = create_artificial_label (location); t = build1 (LABEL_EXPR, void_type_node, next_batch_label_decl); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (first_else)); /* { */ /* unsigned long __objc_foreach_index; */ objc_foreach_index_decl = objc_create_temporary_var (long_unsigned_type_node, "__objc_foreach_index"); /* Generate the local variable binding. */ next_batch_bind = build3 (BIND_EXPR, void_type_node, objc_foreach_index_decl, NULL, NULL); SET_EXPR_LOCATION (next_batch_bind, location); TREE_SIDE_EFFECTS (next_batch_bind) = 1; append_to_statement_list (next_batch_bind, &BIND_EXPR_BODY (first_else)); /* __objc_foreach_index = 0; */ t = build2 (MODIFY_EXPR, void_type_node, objc_foreach_index_decl, build_int_cst (long_unsigned_type_node, 0)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); /* next_object: */ next_object_label_decl = create_artificial_label (location); t = build1 (LABEL_EXPR, void_type_node, next_object_label_decl); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); /* if (__objc_foreach_mutation_pointer != *__objc_foreach_enum_state.mutationsPtr) objc_enumeration_mutation (); */ t = build3 (COND_EXPR, void_type_node, /* Condition. */ c_fully_fold (c_common_truthvalue_conversion (location, build_binary_op (location, NE_EXPR, objc_foreach_mutations_pointer_decl, build_indirect_ref (location, objc_build_component_ref (objc_foreach_enum_state_decl, get_identifier ("mutationsPtr")), RO_UNARY_STAR), 1)), false, NULL), /* Then block. */ build_function_call (input_location, objc_enumeration_mutation_decl, tree_cons (NULL, collection_expression, NULL)), /* Else block. */ NULL_TREE); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); /* = enumState.itemsPtr[__objc_foreach_index]; */ t = build2 (MODIFY_EXPR, void_type_node, object_expression, build_array_ref (location, objc_build_component_ref (objc_foreach_enum_state_decl, get_identifier ("itemsPtr")), objc_foreach_index_decl)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); /* [PS: in , 'break' jumps to break_label and 'continue' jumps to continue_label] */ append_to_statement_list (for_body, &BIND_EXPR_BODY (next_batch_bind)); /* continue_label: */ if (continue_label) { t = build1 (LABEL_EXPR, void_type_node, continue_label); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); } /* __objc_foreach_index++; */ t = build2 (MODIFY_EXPR, void_type_node, objc_foreach_index_decl, build_binary_op (location, PLUS_EXPR, objc_foreach_index_decl, build_int_cst (long_unsigned_type_node, 1), 1)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); /* if (__objc_foreach_index < __objc_foreach_batchsize) goto next_object; */ t = build3 (COND_EXPR, void_type_node, /* Condition. */ c_fully_fold (c_common_truthvalue_conversion (location, build_binary_op (location, LT_EXPR, objc_foreach_index_decl, objc_foreach_batchsize_decl, 1)), false, NULL), /* Then block. */ build1 (GOTO_EXPR, void_type_node, next_object_label_decl), /* Else block. */ NULL_TREE); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); /* __objc_foreach_batchsize = [__objc_foreach_collection countByEnumeratingWithState: &__objc_foreach_enum_state objects: __objc_foreach_items count: 16]; */ #ifdef OBJCPLUS t = objc_finish_message_expr (objc_foreach_collection_decl, selector_name, /* Parameters. */ tree_cons /* &__objc_foreach_enum_state */ (NULL_TREE, build_fold_addr_expr_loc (location, objc_foreach_enum_state_decl), tree_cons /* __objc_foreach_items */ (NULL_TREE, objc_foreach_items_decl, tree_cons /* 16 */ (NULL_TREE, build_int_cst (NULL_TREE, 16), NULL_TREE))), NULL); #else /* In C, we need to decay the __objc_foreach_items array that we are passing. */ { struct c_expr array; array.value = objc_foreach_items_decl; t = objc_finish_message_expr (objc_foreach_collection_decl, selector_name, /* Parameters. */ tree_cons /* &__objc_foreach_enum_state */ (NULL_TREE, build_fold_addr_expr_loc (location, objc_foreach_enum_state_decl), tree_cons /* __objc_foreach_items */ (NULL_TREE, default_function_array_conversion (location, array).value, tree_cons /* 16 */ (NULL_TREE, build_int_cst (NULL_TREE, 16), NULL_TREE))), NULL); } #endif t = build2 (MODIFY_EXPR, void_type_node, objc_foreach_batchsize_decl, convert (long_unsigned_type_node, t)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (next_batch_bind)); /* } */ /* if (__objc_foreach_batchsize != 0) goto next_batch; */ t = build3 (COND_EXPR, void_type_node, /* Condition. */ c_fully_fold (c_common_truthvalue_conversion (location, build_binary_op (location, NE_EXPR, objc_foreach_batchsize_decl, build_int_cst (long_unsigned_type_node, 0), 1)), false, NULL), /* Then block. */ build1 (GOTO_EXPR, void_type_node, next_batch_label_decl), /* Else block. */ NULL_TREE); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (first_else)); /* = nil; */ t = build2 (MODIFY_EXPR, void_type_node, object_expression, convert (objc_object_type, null_pointer_node)); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (first_else)); /* break_label: */ if (break_label) { t = build1 (LABEL_EXPR, void_type_node, break_label); SET_EXPR_LOCATION (t, location); append_to_statement_list (t, &BIND_EXPR_BODY (first_else)); } /* } */ COND_EXPR_ELSE (first_if) = first_else; /* Do the whole thing. */ add_stmt (bind); #ifdef DEBUG_OBJC_FINISH_FOREACH_LOOP /* This will print to stderr the whole blurb generated by the compiler while compiling (assuming the compiler doesn't crash before getting here). */ debug_generic_stmt (bind); #endif /* } */ /* Done by c-parser.c */ } /* Return true if we have an NxString object pointer. */ bool objc_string_ref_type_p (tree strp) { tree tmv; if (!strp || TREE_CODE (strp) != POINTER_TYPE) return false; tmv = TYPE_MAIN_VARIANT (TREE_TYPE (strp)); tmv = OBJC_TYPE_NAME (tmv); return (tmv && TREE_CODE (tmv) == IDENTIFIER_NODE && IDENTIFIER_POINTER (tmv) && !strncmp (IDENTIFIER_POINTER (tmv), "NSString", 8)); } /* At present the behavior of this is undefined and it does nothing. */ void objc_check_format_arg (tree ARG_UNUSED (format_arg), tree ARG_UNUSED (args_list)) { } #include "gt-objc-objc-act.h"