/* Expand the basic unary and binary arithmetic operations, for GNU compiler. Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "config.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "insn-flags.h" #include "insn-codes.h" #include "expr.h" #include "insn-config.h" #include "recog.h" #include /* Each optab contains info on how this target machine can perform a particular operation for all sizes and kinds of operands. The operation to be performed is often specified by passing one of these optabs as an argument. See expr.h for documentation of these optabs. */ optab add_optab; optab sub_optab; optab smul_optab; optab smul_widen_optab; optab umul_widen_optab; optab sdiv_optab; optab sdivmod_optab; optab udiv_optab; optab udivmod_optab; optab smod_optab; optab umod_optab; optab flodiv_optab; optab ftrunc_optab; optab and_optab; optab ior_optab; optab xor_optab; optab ashl_optab; optab lshr_optab; optab lshl_optab; optab ashr_optab; optab rotl_optab; optab rotr_optab; optab smin_optab; optab smax_optab; optab umin_optab; optab umax_optab; optab mov_optab; optab movstrict_optab; optab neg_optab; optab abs_optab; optab one_cmpl_optab; optab ffs_optab; optab sqrt_optab; optab cmp_optab; optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */ optab tst_optab; optab strlen_optab; /* SYMBOL_REF rtx's for the library functions that are called implicitly and not via optabs. */ rtx extendsfdf2_libfunc; rtx extendsfxf2_libfunc; rtx extendsftf2_libfunc; rtx extenddfxf2_libfunc; rtx extenddftf2_libfunc; rtx truncdfsf2_libfunc; rtx truncxfsf2_libfunc; rtx trunctfsf2_libfunc; rtx truncxfdf2_libfunc; rtx trunctfdf2_libfunc; rtx memcpy_libfunc; rtx bcopy_libfunc; rtx memcmp_libfunc; rtx bcmp_libfunc; rtx memset_libfunc; rtx bzero_libfunc; rtx eqsf2_libfunc; rtx nesf2_libfunc; rtx gtsf2_libfunc; rtx gesf2_libfunc; rtx ltsf2_libfunc; rtx lesf2_libfunc; rtx eqdf2_libfunc; rtx nedf2_libfunc; rtx gtdf2_libfunc; rtx gedf2_libfunc; rtx ltdf2_libfunc; rtx ledf2_libfunc; rtx eqxf2_libfunc; rtx nexf2_libfunc; rtx gtxf2_libfunc; rtx gexf2_libfunc; rtx ltxf2_libfunc; rtx lexf2_libfunc; rtx eqtf2_libfunc; rtx netf2_libfunc; rtx gttf2_libfunc; rtx getf2_libfunc; rtx lttf2_libfunc; rtx letf2_libfunc; rtx floatsisf_libfunc; rtx floatdisf_libfunc; rtx floattisf_libfunc; rtx floatsidf_libfunc; rtx floatdidf_libfunc; rtx floattidf_libfunc; rtx floatsixf_libfunc; rtx floatdixf_libfunc; rtx floattixf_libfunc; rtx floatsitf_libfunc; rtx floatditf_libfunc; rtx floattitf_libfunc; rtx fixsfsi_libfunc; rtx fixsfdi_libfunc; rtx fixsfti_libfunc; rtx fixdfsi_libfunc; rtx fixdfdi_libfunc; rtx fixdfti_libfunc; rtx fixxfsi_libfunc; rtx fixxfdi_libfunc; rtx fixxfti_libfunc; rtx fixtfsi_libfunc; rtx fixtfdi_libfunc; rtx fixtfti_libfunc; rtx fixunssfsi_libfunc; rtx fixunssfdi_libfunc; rtx fixunssfti_libfunc; rtx fixunsdfsi_libfunc; rtx fixunsdfdi_libfunc; rtx fixunsdfti_libfunc; rtx fixunsxfsi_libfunc; rtx fixunsxfdi_libfunc; rtx fixunsxfti_libfunc; rtx fixunstfsi_libfunc; rtx fixunstfdi_libfunc; rtx fixunstfti_libfunc; /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) gives the gen_function to make a branch to test that condition. */ rtxfun bcc_gen_fctn[NUM_RTX_CODE]; /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) gives the insn code to make a store-condition insn to test that condition. */ enum insn_code setcc_gen_code[NUM_RTX_CODE]; static void emit_float_lib_cmp (); /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to the result of operation CODE applied to OP0 (and OP1 if it is a binary operation). If the last insn does not set TARGET, don't do anything, but return 1. If a previous insn sets TARGET and TARGET is one of OP0 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then try again, ensuring that TARGET is not one of the operands. */ static int add_equal_note (seq, target, code, op0, op1) rtx seq; rtx target; enum rtx_code code; rtx op0, op1; { rtx set; int i; rtx note; if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2' && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<') || GET_CODE (seq) != SEQUENCE || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0 || GET_CODE (target) == ZERO_EXTRACT || (! rtx_equal_p (SET_DEST (set), target) /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the SUBREG. */ && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)), target)))) return 1; /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET besides the last insn. */ if (reg_overlap_mentioned_p (target, op0) || (op1 && reg_overlap_mentioned_p (target, op1))) for (i = XVECLEN (seq, 0) - 2; i >= 0; i--) if (reg_set_p (target, XVECEXP (seq, 0, i))) return 0; if (GET_RTX_CLASS (code) == '1') note = gen_rtx (code, GET_MODE (target), op0); else note = gen_rtx (code, GET_MODE (target), op0, op1); REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)) = gen_rtx (EXPR_LIST, REG_EQUAL, note, REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))); return 1; } /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with result having machine-mode MODE. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. If TARGET is nonzero, the value is generated there, if it is convenient to do so. In all cases an rtx is returned for the locus of the value; this may or may not be TARGET. */ rtx expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods) enum machine_mode mode; optab binoptab; rtx op0, op1; rtx target; int unsignedp; enum optab_methods methods; { enum mode_class class; enum machine_mode wider_mode; register rtx temp; int commutative_op = 0; int shift_op = (binoptab->code == ASHIFT || binoptab->code == ASHIFTRT || binoptab->code == LSHIFT || binoptab->code == LSHIFTRT || binoptab->code == ROTATE || binoptab->code == ROTATERT); rtx last; class = GET_MODE_CLASS (mode); op0 = protect_from_queue (op0, 0); op1 = protect_from_queue (op1, 0); if (target) target = protect_from_queue (target, 1); if (flag_force_mem) { op0 = force_not_mem (op0); op1 = force_not_mem (op1); } /* If we are inside an appropriately-short loop and one operand is an expensive constant, force it into a register. */ if (CONSTANT_P (op0) && preserve_subexpressions_p () && rtx_cost (op0, binoptab->code) > 2) op0 = force_reg (mode, op0); if (CONSTANT_P (op1) && preserve_subexpressions_p () && rtx_cost (op1, binoptab->code) > 2) op1 = force_reg (shift_op ? word_mode : mode, op1); #if 0 /* Turned off because it seems to be a kludgy method. */ /* If subtracting integer from pointer, and the pointer has a special mode, then change it to an add. We use the add insn of Pmode for combining integers with pointers, and the sub insn to subtract two pointers. */ if (binoptab == sub_optab && GET_MODE (op0) == Pmode && GET_MODE (op1) != Pmode) { op1 = negate_rtx (GET_MODE(op1), op1); binoptab = add_optab; } #endif /* 0 */ /* Record where to delete back to if we backtrack. */ last = get_last_insn (); /* If operation is commutative, try to make the first operand a register. Even better, try to make it the same as the target. Also try to make the last operand a constant. */ if (GET_RTX_CLASS (binoptab->code) == 'c' || binoptab == smul_widen_optab || binoptab == umul_widen_optab) { commutative_op = 1; if (((target == 0 || GET_CODE (target) == REG) ? ((GET_CODE (op1) == REG && GET_CODE (op0) != REG) || target == op1) : rtx_equal_p (op1, target)) || GET_CODE (op0) == CONST_INT) { temp = op1; op1 = op0; op0 = temp; } } /* If we can do it with a three-operand insn, do so. */ if (methods != OPTAB_MUST_WIDEN && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) binoptab->handlers[(int) mode].insn_code; enum machine_mode mode0 = insn_operand_mode[icode][1]; enum machine_mode mode1 = insn_operand_mode[icode][2]; rtx pat; rtx xop0 = op0, xop1 = op1; if (target) temp = target; else temp = gen_reg_rtx (mode); /* If it is a commutative operator and the modes would match if we would swap the operands, we can save the conversions. */ if (commutative_op) { if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0) { register rtx tmp; tmp = op0; op0 = op1; op1 = tmp; tmp = xop0; xop0 = xop1; xop1 = tmp; } } /* In case the insn wants input operands in modes different from the result, convert the operands. */ if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) xop0 = convert_to_mode (mode0, xop0, unsignedp); if (GET_MODE (xop1) != VOIDmode && GET_MODE (xop1) != mode1) xop1 = convert_to_mode (mode1, xop1, unsignedp); /* Now, if insn's predicates don't allow our operands, put them into pseudo regs. */ if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) xop0 = copy_to_mode_reg (mode0, xop0); if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) xop1 = copy_to_mode_reg (mode1, xop1); if (! (*insn_operand_predicate[icode][0]) (temp, mode)) temp = gen_reg_rtx (mode); pat = GEN_FCN (icode) (temp, xop0, xop1); if (pat) { /* If PAT is a multi-insn sequence, try to add an appropriate REG_EQUAL note to it. If we can't because TEMP conflicts with an operand, call ourselves again, this time without a target. */ if (GET_CODE (pat) == SEQUENCE && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1)) { delete_insns_since (last); return expand_binop (mode, binoptab, op0, op1, 0, unsignedp, methods); } emit_insn (pat); return temp; } else delete_insns_since (last); } /* Look for a wider mode of the same class for which we think we can open-code the operation. */ if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) && mode != OPTAB_DIRECT && mode != OPTAB_LIB) for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) { rtx xop0 = op0, xop1 = op1; int no_extend = 0; /* For certain integer operations, we need not actually extend the narrow operands, as long as we will truncate the results to the same narrowness. */ if ((binoptab == ior_optab || binoptab == and_optab || binoptab == xor_optab || binoptab == add_optab || binoptab == sub_optab || binoptab == smul_optab || binoptab == ashl_optab || binoptab == lshl_optab) && class == MODE_INT) no_extend = 1; /* If an operand is a constant integer, we might as well convert it since that is more efficient than using a SUBREG, unlike the case for other operands. */ if (no_extend && GET_MODE (xop0) != VOIDmode) xop0 = gen_rtx (SUBREG, wider_mode, force_reg (GET_MODE (xop0), xop0), 0); else xop0 = convert_to_mode (wider_mode, xop0, unsignedp); if (no_extend && GET_MODE (xop1) != VOIDmode) xop1 = gen_rtx (SUBREG, wider_mode, force_reg (GET_MODE (xop1), xop1), 0); else xop1 = convert_to_mode (wider_mode, xop1, unsignedp); temp = expand_binop (wider_mode, binoptab, xop0, xop1, 0, unsignedp, OPTAB_DIRECT); if (temp) { if (class != MODE_INT) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } /* These can be done a word at a time. */ if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab) && class == MODE_INT && GET_MODE_SIZE (mode) > UNITS_PER_WORD && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) { int i; rtx insns; rtx equiv_value; /* If TARGET is the same as one of the operands, the REG_EQUAL note won't be accurate, so use a new target. */ if (target == 0 || target == op0 || target == op1) target = gen_reg_rtx (mode); start_sequence (); /* Do the actual arithmetic. */ for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) { rtx target_piece = operand_subword (target, i, 1, mode); rtx x = expand_binop (word_mode, binoptab, operand_subword_force (op0, i, mode), operand_subword_force (op1, i, mode), target_piece, unsignedp, methods); if (target_piece != x) emit_move_insn (target_piece, x); } insns = get_insns (); end_sequence (); if (binoptab->code != UNKNOWN) equiv_value = gen_rtx (binoptab->code, mode, op0, op1); else equiv_value = 0; emit_no_conflict_block (insns, target, op0, op1, equiv_value); return target; } /* These can be done a word at a time by propagating carries. */ if ((binoptab == add_optab || binoptab == sub_optab) && class == MODE_INT && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) { int i; rtx carry_tmp = gen_reg_rtx (word_mode); optab otheroptab = binoptab == add_optab ? sub_optab : add_optab; int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; rtx carry_in, carry_out; /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG value is one of those, use it. Otherwise, use 1 since it is the one easiest to get. */ #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 int normalizep = STORE_FLAG_VALUE; #else int normalizep = 1; #endif /* Prepare the operands. */ op0 = force_reg (mode, op0); op1 = force_reg (mode, op1); if (target == 0 || GET_CODE (target) != REG || target == op0 || target == op1) target = gen_reg_rtx (mode); /* Do the actual arithmetic. */ for (i = 0; i < nwords; i++) { int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); rtx target_piece = operand_subword (target, index, 1, mode); rtx op0_piece = operand_subword_force (op0, index, mode); rtx op1_piece = operand_subword_force (op1, index, mode); rtx x; /* Main add/subtract of the input operands. */ x = expand_binop (word_mode, binoptab, op0_piece, op1_piece, target_piece, unsignedp, methods); if (x == 0) break; if (i + 1 < nwords) { /* Store carry from main add/subtract. */ carry_out = gen_reg_rtx (word_mode); carry_out = emit_store_flag (carry_out, binoptab == add_optab ? LTU : GTU, x, op0_piece, word_mode, 1, normalizep); if (!carry_out) break; } if (i > 0) { /* Add/subtract previous carry to main result. */ x = expand_binop (word_mode, normalizep == 1 ? binoptab : otheroptab, x, carry_in, target_piece, 1, methods); if (target_piece != x) emit_move_insn (target_piece, x); if (i + 1 < nwords) { /* THIS CODE HAS NOT BEEN TESTED. */ /* Get out carry from adding/subtracting carry in. */ carry_tmp = emit_store_flag (carry_tmp, binoptab == add_optab ? LTU : GTU, x, carry_in, word_mode, 1, normalizep); /* Logical-ior the two poss. carry together. */ carry_out = expand_binop (word_mode, ior_optab, carry_out, carry_tmp, carry_out, 0, methods); if (!carry_out) break; } } carry_in = carry_out; } if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD) { rtx temp; temp = emit_move_insn (target, target); REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, gen_rtx (binoptab->code, mode, op0, op1), REG_NOTES (temp)); return target; } else delete_insns_since (last); } /* If we want to multiply two two-word values and have normal and widening multiplies of single-word values, we can do this with three smaller multiplications. Note that we do not make a REG_NO_CONFLICT block here because we are not operating on one word at a time. The multiplication proceeds as follows: _______________________ [__op0_high_|__op0_low__] _______________________ * [__op1_high_|__op1_low__] _______________________________________________ _______________________ (1) [__op0_low__*__op1_low__] _______________________ (2a) [__op0_low__*__op1_high_] _______________________ (2b) [__op0_high_*__op1_low__] _______________________ (3) [__op0_high_*__op1_high_] This gives a 4-word result. Since we are only interested in the lower 2 words, partial result (3) and the upper words of (2a) and (2b) don't need to be calculated. Hence (2a) and (2b) can be calculated using non-widening multiplication. (1), however, needs to be calculated with an unsigned widening multiplication. If this operation is not directly supported we try using a signed widening multiplication and adjust the result. This adjustment works as follows: If both operands are positive then no adjustment is needed. If the operands have different signs, for example op0_low < 0 and op1_low >= 0, the instruction treats the most significant bit of op0_low as a sign bit instead of a bit with significance 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low with 2**BITS_PER_WORD - op0_low, and two's complements the result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to the result. Similarly, if both operands are negative, we need to add (op0_low + op1_low) * 2**BITS_PER_WORD. We use a trick to adjust quickly. We logically shift op0_low right (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to op0_high (op1_high) before it is used to calculate 2b (2a). If no logical shift exists, we do an arithmetic right shift and subtract the 0 or -1. */ if (binoptab == smul_optab && class == MODE_INT && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing && ((umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) || (smul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing))) { int low = (WORDS_BIG_ENDIAN ? 1 : 0); int high = (WORDS_BIG_ENDIAN ? 0 : 1); rtx op0_high = operand_subword_force (op0, high, mode); rtx op0_low = operand_subword_force (op0, low, mode); rtx op1_high = operand_subword_force (op1, high, mode); rtx op1_low = operand_subword_force (op1, low, mode); rtx product = 0; rtx op0_xhigh; rtx op1_xhigh; /* If the target is the same as one of the inputs, don't use it. This prevents problems with the REG_EQUAL note. */ if (target == op0 || target == op1) target = 0; /* Multiply the two lower words to get a double-word product. If unsigned widening multiplication is available, use that; otherwise use the signed form and compensate. */ if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, target, 1, OPTAB_DIRECT); /* If we didn't succeed, delete everything we did so far. */ if (product == 0) delete_insns_since (last); else op0_xhigh = op0_high, op1_xhigh = op1_high; } if (product == 0 && smul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { rtx wordm1 = gen_rtx (CONST_INT, VOIDmode, BITS_PER_WORD - 1); product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, target, 1, OPTAB_DIRECT); op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1, 0, 1, OPTAB_DIRECT); if (op0_xhigh) op0_xhigh = expand_binop (word_mode, add_optab, op0_high, op0_xhigh, op0_xhigh, 0, OPTAB_DIRECT); else { op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1, 0, 0, OPTAB_DIRECT); if (op0_xhigh) op0_xhigh = expand_binop (word_mode, sub_optab, op0_high, op0_xhigh, op0_xhigh, 0, OPTAB_DIRECT); } op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1, 0, 1, OPTAB_DIRECT); if (op1_xhigh) op1_xhigh = expand_binop (word_mode, add_optab, op1_high, op1_xhigh, op1_xhigh, 0, OPTAB_DIRECT); else { op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1, 0, 0, OPTAB_DIRECT); if (op1_xhigh) op1_xhigh = expand_binop (word_mode, sub_optab, op1_high, op1_xhigh, op1_xhigh, 0, OPTAB_DIRECT); } } /* If we have been able to directly compute the product of the low-order words of the operands and perform any required adjustments of the operands, we proceed by trying two more multiplications and then computing the appropriate sum. We have checked above that the required addition is provided. Full-word addition will normally always succeed, especially if it is provided at all, so we don't worry about its failure. The multiplication may well fail, however, so we do handle that. */ if (product && op0_xhigh && op1_xhigh) { rtx product_piece; rtx product_high = operand_subword (product, high, 1, mode); rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh, 0, 0, OPTAB_DIRECT); if (temp) { product_piece = expand_binop (word_mode, add_optab, temp, product_high, product_high, 0, OPTAB_LIB_WIDEN); if (product_piece != product_high) emit_move_insn (product_high, product_piece); temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh, 0, 0, OPTAB_DIRECT); product_piece = expand_binop (word_mode, add_optab, temp, product_high, product_high, 0, OPTAB_LIB_WIDEN); if (product_piece != product_high) emit_move_insn (product_high, product_piece); temp = emit_move_insn (product, product); REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, gen_rtx (MULT, mode, op0, op1), REG_NOTES (temp)); return product; } } /* If we get here, we couldn't do it for some reason even though we originally thought we could. Delete anything we've emitted in trying to do it. */ delete_insns_since (last); } /* It can't be open-coded in this mode. Use a library call if one is available and caller says that's ok. */ if (binoptab->handlers[(int) mode].libfunc && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) { rtx insns; rtx funexp = binoptab->handlers[(int) mode].libfunc; start_sequence (); /* Pass 1 for NO_QUEUE so we don't lose any increments if the libcall is cse'd or moved. */ emit_library_call (binoptab->handlers[(int) mode].libfunc, 1, mode, 2, op0, mode, op1, (shift_op ? word_mode : mode)); insns = get_insns (); end_sequence (); target = gen_reg_rtx (mode); emit_libcall_block (insns, target, hard_libcall_value (mode), gen_rtx (binoptab->code, mode, op0, op1)); return target; } delete_insns_since (last); /* It can't be done in this mode. Can we do it in a wider mode? */ if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN || methods == OPTAB_MUST_WIDEN)) return 0; /* Caller says, don't even try. */ /* Compute the value of METHODS to pass to recursive calls. Don't allow widening to be tried recursively. */ methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT); /* Look for a wider mode of the same class for which it appears we can do the operation. */ if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if ((binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) || (methods == OPTAB_LIB && binoptab->handlers[(int) wider_mode].libfunc)) { rtx xop0 = op0, xop1 = op1; int no_extend = 0; /* For certain integer operations, we need not actually extend the narrow operands, as long as we will truncate the results to the same narrowness. */ if ((binoptab == ior_optab || binoptab == and_optab || binoptab == xor_optab || binoptab == add_optab || binoptab == sub_optab || binoptab == smul_optab || binoptab == ashl_optab || binoptab == lshl_optab) && class == MODE_INT) no_extend = 1; /* If an operand is a constant integer, we might as well convert it since that is more efficient than using a SUBREG, unlike the case for other operands. */ if (no_extend && GET_MODE (xop0) != VOIDmode) xop0 = gen_rtx (SUBREG, wider_mode, force_reg (GET_MODE (xop0), xop0), 0); else xop0 = convert_to_mode (wider_mode, xop0, unsignedp); if (no_extend && GET_MODE (xop1) != VOIDmode) xop1 = gen_rtx (SUBREG, wider_mode, force_reg (GET_MODE (xop1), xop1), 0); else xop1 = convert_to_mode (wider_mode, xop1, unsignedp); temp = expand_binop (wider_mode, binoptab, xop0, xop1, 0, unsignedp, methods); if (temp) { if (class != MODE_INT) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } } return 0; } /* Expand a binary operator which has both signed and unsigned forms. UOPTAB is the optab for unsigned operations, and SOPTAB is for signed operations. If we widen unsigned operands, we may use a signed wider operation instead of an unsigned wider operation, since the result would be the same. */ rtx sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods) enum machine_mode mode; optab uoptab, soptab; rtx op0, op1, target; int unsignedp; enum optab_methods methods; { register rtx temp; optab direct_optab = unsignedp ? uoptab : soptab; struct optab wide_soptab; /* Do it without widening, if possible. */ temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_DIRECT); if (temp || methods == OPTAB_DIRECT) return temp; /* Try widening to a signed int. Make a fake signed optab that hides any signed insn for direct use. */ wide_soptab = *soptab; wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing; wide_soptab.handlers[(int) mode].libfunc = 0; temp = expand_binop (mode, &wide_soptab, op0, op1, target, unsignedp, OPTAB_WIDEN); /* For unsigned operands, try widening to an unsigned int. */ if (temp == 0 && unsignedp) temp = expand_binop (mode, uoptab, op0, op1, target, unsignedp, OPTAB_WIDEN); if (temp || methods == OPTAB_WIDEN) return temp; /* Use the right width lib call if that exists. */ temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB); if (temp || methods == OPTAB_LIB) return temp; /* Must widen and use a lib call, use either signed or unsigned. */ temp = expand_binop (mode, &wide_soptab, op0, op1, target, unsignedp, methods); if (temp != 0) return temp; if (unsignedp) return expand_binop (mode, uoptab, op0, op1, target, unsignedp, methods); return 0; } /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with two results to TARG1 and TARG2. We assume that the order of the operands for the instruction is TARG0, OP0, OP1, TARG1, which would fit a pattern like [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))]. Either TARG0 or TARG1 may be zero, but what that means is that that result is not actually wanted. We will generate it into a dummy pseudo-reg and discard it. They may not both be zero. Returns 1 if this operation can be performed; 0 if not. */ int expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp) optab binoptab; rtx op0, op1; rtx targ0, targ1; int unsignedp; { enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); enum mode_class class; enum machine_mode wider_mode; rtx last; class = GET_MODE_CLASS (mode); op0 = protect_from_queue (op0, 0); op1 = protect_from_queue (op1, 0); if (flag_force_mem) { op0 = force_not_mem (op0); op1 = force_not_mem (op1); } /* If we are inside an appropriately-short loop and one operand is an expensive constant, force it into a register. */ if (CONSTANT_P (op0) && preserve_subexpressions_p () && rtx_cost (op0, binoptab->code) > 2) op0 = force_reg (mode, op0); if (CONSTANT_P (op1) && preserve_subexpressions_p () && rtx_cost (op1, binoptab->code) > 2) op1 = force_reg (mode, op1); if (targ0) targ0 = protect_from_queue (targ0, 1); else targ0 = gen_reg_rtx (mode); if (targ1) targ1 = protect_from_queue (targ1, 1); else targ1 = gen_reg_rtx (mode); /* Record where to go back to if we fail. */ last = get_last_insn (); if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) binoptab->handlers[(int) mode].insn_code; enum machine_mode mode0 = insn_operand_mode[icode][1]; enum machine_mode mode1 = insn_operand_mode[icode][2]; rtx pat; rtx xop0 = op0, xop1 = op1; /* In case this insn wants input operands in modes different from the result, convert the operands. */ if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) xop0 = convert_to_mode (mode0, xop0, unsignedp); if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1) xop1 = convert_to_mode (mode1, xop1, unsignedp); /* Now, if insn doesn't accept these operands, put them into pseudos. */ if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) xop0 = copy_to_mode_reg (mode0, xop0); if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) xop1 = copy_to_mode_reg (mode1, xop1); /* We could handle this, but we should always be called with a pseudo for our targets and all insns should take them as outputs. */ if (! (*insn_operand_predicate[icode][0]) (targ0, mode) || ! (*insn_operand_predicate[icode][3]) (targ1, mode)) abort (); pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1); if (pat) { emit_insn (pat); return 1; } else delete_insns_since (last); } /* It can't be done in this mode. Can we do it in a wider mode? */ if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) { register rtx t0 = gen_reg_rtx (wider_mode); register rtx t1 = gen_reg_rtx (wider_mode); if (expand_twoval_binop (binoptab, convert_to_mode (wider_mode, op0, unsignedp), convert_to_mode (wider_mode, op1, unsignedp), t0, t1, unsignedp)) { convert_move (targ0, t0, unsignedp); convert_move (targ1, t1, unsignedp); return 1; } else delete_insns_since (last); } } } return 0; } /* Generate code to perform an operation specified by UNOPTAB on operand OP0, with result having machine-mode MODE. UNSIGNEDP is for the case where we have to widen the operands to perform the operation. It says to use zero-extension. If TARGET is nonzero, the value is generated there, if it is convenient to do so. In all cases an rtx is returned for the locus of the value; this may or may not be TARGET. */ rtx expand_unop (mode, unoptab, op0, target, unsignedp) enum machine_mode mode; optab unoptab; rtx op0; rtx target; int unsignedp; { enum mode_class class; enum machine_mode wider_mode; register rtx temp; rtx last = get_last_insn (); rtx pat; class = GET_MODE_CLASS (mode); op0 = protect_from_queue (op0, 0); if (flag_force_mem) { op0 = force_not_mem (op0); } if (target) target = protect_from_queue (target, 1); if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) unoptab->handlers[(int) mode].insn_code; enum machine_mode mode0 = insn_operand_mode[icode][1]; rtx xop0 = op0; if (target) temp = target; else temp = gen_reg_rtx (mode); if (GET_MODE (xop0) != VOIDmode && GET_MODE (xop0) != mode0) xop0 = convert_to_mode (mode0, xop0, unsignedp); /* Now, if insn doesn't accept our operand, put it into a pseudo. */ if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) xop0 = copy_to_mode_reg (mode0, xop0); if (! (*insn_operand_predicate[icode][0]) (temp, mode)) temp = gen_reg_rtx (mode); pat = GEN_FCN (icode) (temp, xop0); if (pat) { if (GET_CODE (pat) == SEQUENCE && ! add_equal_note (pat, temp, unoptab->code, xop0, 0)) { delete_insns_since (last); return expand_unop (mode, unoptab, op0, 0, unsignedp); } emit_insn (pat); return temp; } else delete_insns_since (last); } /* It can't be done in this mode. Can we open-code it in a wider mode? */ if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) { rtx xop0 = op0; /* For certain operations, we need not actually extend the narrow operand, as long as we will truncate the results to the same narrowness. */ if ((unoptab == neg_optab || unoptab == one_cmpl_optab) && class == MODE_INT) xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); else xop0 = convert_to_mode (wider_mode, xop0, unsignedp); temp = expand_unop (wider_mode, unoptab, xop0, 0, unsignedp); if (temp) { if (class != MODE_INT) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } /* These can be done a word at a time. */ if (unoptab == one_cmpl_optab && class == MODE_INT && GET_MODE_SIZE (mode) > UNITS_PER_WORD && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) { int i; rtx insns; if (target == 0 || target == op0) target = gen_reg_rtx (mode); start_sequence (); /* Do the actual arithmetic. */ for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) { rtx target_piece = operand_subword (target, i, 1, mode); rtx x = expand_unop (word_mode, unoptab, operand_subword_force (op0, i, mode), target_piece, unsignedp); if (target_piece != x) emit_move_insn (target_piece, x); } insns = get_insns (); end_sequence (); emit_no_conflict_block (insns, target, op0, 0, gen_rtx (unoptab->code, mode, op0)); return target; } if (unoptab->handlers[(int) mode].libfunc) { rtx insns; rtx funexp = unoptab->handlers[(int) mode].libfunc; start_sequence (); /* Pass 1 for NO_QUEUE so we don't lose any increments if the libcall is cse'd or moved. */ emit_library_call (unoptab->handlers[(int) mode].libfunc, 1, mode, 1, op0, mode); insns = get_insns (); end_sequence (); target = gen_reg_rtx (mode); emit_libcall_block (insns, target, hard_libcall_value (mode), gen_rtx (unoptab->code, mode, op0)); return target; } /* It can't be done in this mode. Can we do it in a wider mode? */ if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if ((unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) || unoptab->handlers[(int) wider_mode].libfunc) { rtx xop0 = op0; /* For certain operations, we need not actually extend the narrow operand, as long as we will truncate the results to the same narrowness. */ if ((unoptab == neg_optab || unoptab == one_cmpl_optab) && class == MODE_INT) xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); else xop0 = convert_to_mode (wider_mode, xop0, unsignedp); temp = expand_unop (wider_mode, unoptab, xop0, 0, unsignedp); if (temp) { if (class != MODE_INT) { if (target == 0) target = gen_reg_rtx (mode); convert_move (target, temp, 0); return target; } else return gen_lowpart (mode, temp); } else delete_insns_since (last); } } } return 0; } /* Generate an instruction whose insn-code is INSN_CODE, with two operands: an output TARGET and an input OP0. TARGET *must* be nonzero, and the output is always stored there. CODE is an rtx code such that (CODE OP0) is an rtx that describes the value that is stored into TARGET. */ void emit_unop_insn (icode, target, op0, code) int icode; rtx target; rtx op0; enum rtx_code code; { register rtx temp; enum machine_mode mode0 = insn_operand_mode[icode][1]; rtx pat; temp = target = protect_from_queue (target, 1); op0 = protect_from_queue (op0, 0); if (flag_force_mem) op0 = force_not_mem (op0); /* Now, if insn does not accept our operands, put them into pseudos. */ if (! (*insn_operand_predicate[icode][1]) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp)) || (flag_force_mem && GET_CODE (temp) == MEM)) temp = gen_reg_rtx (GET_MODE (temp)); pat = GEN_FCN (icode) (temp, op0); if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN) add_equal_note (pat, temp, code, op0, 0); emit_insn (pat); if (temp != target) emit_move_insn (target, temp); } /* Emit code to perform a series of operations on a multi-word quantity, one word at a time. Such a block is preceded by a CLOBBER of the output, consists of multiple insns, each setting one word of the output, and followed by a SET copying the output to itself. Each of the insns setting words of the output receives a REG_NO_CONFLICT note indicating that it doesn't conflict with the (also multi-word) inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL notes. INSNS is a block of code generated to perform the operation, not including the CLOBBER and final copy. All insns that compute intermediate values are first emitted, followed by the block as described above. Only INSNs are allowed in the block; no library calls or jumps may be present. TARGET, OP0, and OP1 are the output and inputs of the operations, respectively. OP1 may be zero for a unary operation. EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note on the last insn. If TARGET is not a register, INSNS is simply emitted with no special processing. The final insn emitted is returned. */ rtx emit_no_conflict_block (insns, target, op0, op1, equiv) rtx insns; rtx target; rtx op0, op1; rtx equiv; { rtx prev, next, first, last, insn; if (GET_CODE (target) != REG || reload_in_progress) return emit_insns (insns); /* First emit all insns that do not store into words of the output and remove these from the list. */ for (insn = insns; insn; insn = next) { rtx set = 0; int i; next = NEXT_INSN (insn); if (GET_CODE (insn) != INSN) abort (); if (GET_CODE (PATTERN (insn)) == SET) set = PATTERN (insn); else if (GET_CODE (PATTERN (insn)) == PARALLEL) { for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) { set = XVECEXP (PATTERN (insn), 0, i); break; } } if (set == 0) abort (); if (! reg_overlap_mentioned_p (target, SET_DEST (set))) { if (PREV_INSN (insn)) NEXT_INSN (PREV_INSN (insn)) = next; else insns = next; if (next) PREV_INSN (next) = PREV_INSN (insn); add_insn (insn); } } prev = get_last_insn (); /* Now write the CLOBBER of the output, followed by the setting of each of the words, followed by the final copy. */ if (target != op0 && target != op1) emit_insn (gen_rtx (CLOBBER, VOIDmode, target)); for (insn = insns; insn; insn = next) { next = NEXT_INSN (insn); add_insn (insn); if (op1 && GET_CODE (op1) == REG) REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1, REG_NOTES (insn)); if (op0 && GET_CODE (op0) == REG) REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0, REG_NOTES (insn)); } last = emit_move_insn (target, target); if (equiv) REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); if (prev == 0) first = get_insns (); else first = NEXT_INSN (prev); /* Encapsulate the block so it gets manipulated as a unit. */ REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, REG_NOTES (first)); REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); return last; } /* Emit code to make a call to a constant function or a library call. INSNS is a list containing all insns emitted in the call. These insns leave the result in RESULT. Our block is to copy RESULT to TARGET, which is logically equivalent to EQUIV. We first emit any insns that set a pseudo on the assumption that these are loading constants into registers; doing so allows them to be safely cse'ed between blocks. Then we emit all the other insns in the block, followed by an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL note with an operand of EQUIV. Moving assignments to pseudos outside of the block is done to improve the generated code, but is not required to generate correct code, hence being unable to move an assignment is not grounds for not making a libcall block. There are two reasons why it is safe to leave these insns inside the block: First, we know that these pseudos cannot be used in generated RTL outside the block since they are created for temporary purposes within the block. Second, CSE will not record the values of anything set inside a libcall block, so we know they must be dead at the end of the block. Except for the first group of insns (the ones setting pseudos), the block is delimited by REG_RETVAL and REG_LIBCALL notes. */ void emit_libcall_block (insns, target, result, equiv) rtx insns; rtx target; rtx result; rtx equiv; { rtx prev, next, first, last, insn; /* First emit all insns that set pseudos. Remove them from the list as we go. Avoid insns that set pseudo which were referenced in previous insns. These can be generated by move_by_pieces, for example, to update an address. */ for (insn = insns; insn; insn = next) { rtx set = single_set (insn); next = NEXT_INSN (insn); if (set != 0 && GET_CODE (SET_DEST (set)) == REG && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER && (insn == insns || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns)) && ! reg_used_between_p (SET_DEST (set), insns, insn)))) { if (PREV_INSN (insn)) NEXT_INSN (PREV_INSN (insn)) = next; else insns = next; if (next) PREV_INSN (next) = PREV_INSN (insn); add_insn (insn); } } prev = get_last_insn (); /* Write the remaining insns followed by the final copy. */ for (insn = insns; insn; insn = next) { next = NEXT_INSN (insn); add_insn (insn); } last = emit_move_insn (target, result); REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); if (prev == 0) first = get_insns (); else first = NEXT_INSN (prev); /* Encapsulate the block so it gets manipulated as a unit. */ REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, REG_NOTES (first)); REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); } /* Generate code to store zero in X. */ void emit_clr_insn (x) rtx x; { emit_move_insn (x, const0_rtx); } /* Generate code to store 1 in X assuming it contains zero beforehand. */ void emit_0_to_1_insn (x) rtx x; { emit_move_insn (x, const1_rtx); } /* Generate code to compare X with Y so that the condition codes are set. MODE is the mode of the inputs (in case they are const_int). UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they need to be widened. If they have mode BLKmode, then SIZE specifies the size of both X and Y, and ALIGN specifies the known shared alignment of X and Y. COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It is ignored for fixed-point and block comparisons; it is used only for floating-point comparisons. */ void emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align) rtx x, y; enum rtx_code comparison; rtx size; enum machine_mode mode; int unsignedp; int align; { enum mode_class class; enum machine_mode wider_mode; class = GET_MODE_CLASS (mode); /* They could both be VOIDmode if both args are immediate constants, but we should fold that at an earlier stage. With no special code here, this will call abort, reminding the programmer to implement such folding. */ if (mode != BLKmode && flag_force_mem) { x = force_not_mem (x); y = force_not_mem (y); } /* If we are inside an appropriately-short loop and one operand is an expensive constant, force it into a register. */ if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2) x = force_reg (mode, x); if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2) y = force_reg (mode, y); /* Don't let both operands fail to indicate the mode. */ if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode) x = force_reg (mode, x); /* Handle all BLKmode compares. */ if (mode == BLKmode) { emit_queue (); x = protect_from_queue (x, 0); y = protect_from_queue (y, 0); if (size == 0) abort (); #ifdef HAVE_cmpstrqi if (HAVE_cmpstrqi && GET_CODE (size) == CONST_INT && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode))) { enum machine_mode result_mode = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0]; rtx result = gen_reg_rtx (result_mode); emit_insn (gen_cmpstrqi (result, x, y, size, gen_rtx (CONST_INT, VOIDmode, align))); emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0); } else #endif #ifdef HAVE_cmpstrhi if (HAVE_cmpstrhi && GET_CODE (size) == CONST_INT && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode))) { enum machine_mode result_mode = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0]; rtx result = gen_reg_rtx (result_mode); emit_insn (gen_cmpstrhi (result, x, y, size, gen_rtx (CONST_INT, VOIDmode, align))); emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0); } else #endif #ifdef HAVE_cmpstrsi if (HAVE_cmpstrsi) { enum machine_mode result_mode = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0]; rtx result = gen_reg_rtx (result_mode); emit_insn (gen_cmpstrsi (result, x, y, convert_to_mode (SImode, size, 1), gen_rtx (CONST_INT, VOIDmode, align))); emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0); } else #endif { #ifdef TARGET_MEM_FUNCTIONS emit_library_call (memcmp_libfunc, 1, TYPE_MODE (integer_type_node), 3, XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, size, Pmode); #else emit_library_call (bcmp_libfunc, 1, TYPE_MODE (integer_type_node), 3, XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, size, Pmode); #endif emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)), const0_rtx, comparison, 0, TYPE_MODE (integer_type_node), 0, 0); } return; } /* Handle some compares against zero. */ if (y == CONST0_RTX (mode) && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) tst_optab->handlers[(int) mode].insn_code; emit_queue (); x = protect_from_queue (x, 0); y = protect_from_queue (y, 0); /* Now, if insn does accept these operands, put them into pseudos. */ if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])) x = copy_to_mode_reg (insn_operand_mode[icode][0], x); emit_insn (GEN_FCN (icode) (x)); return; } /* Handle compares for which there is a directly suitable insn. */ if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) cmp_optab->handlers[(int) mode].insn_code; emit_queue (); x = protect_from_queue (x, 0); y = protect_from_queue (y, 0); /* Now, if insn doesn't accept these operands, put them into pseudos. */ if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])) x = copy_to_mode_reg (insn_operand_mode[icode][0], x); if (! (*insn_operand_predicate[icode][1]) (y, insn_operand_mode[icode][1])) y = copy_to_mode_reg (insn_operand_mode[icode][1], y); emit_insn (GEN_FCN (icode) (x, y)); return; } /* Try widening if we can find a direct insn that way. */ if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) { for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (cmp_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) { x = convert_to_mode (wider_mode, x, unsignedp); y = convert_to_mode (wider_mode, y, unsignedp); emit_cmp_insn (x, y, comparison, 0, wider_mode, unsignedp, align); return; } } } /* Handle a lib call just for the mode we are using. */ if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT) { rtx libfunc = cmp_optab->handlers[(int) mode].libfunc; /* If we want unsigned, and this mode has a distinct unsigned comparison routine, use that. */ if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc) libfunc = ucmp_optab->handlers[(int) mode].libfunc; emit_library_call (libfunc, 1, SImode, 2, x, mode, y, mode); /* Integer comparison returns a result that must be compared against 1, so that even if we do an unsigned compare afterward, there is still a value that can represent the result "less than". */ emit_cmp_insn (hard_libcall_value (SImode), const1_rtx, comparison, 0, SImode, unsignedp, 0); return; } if (class == MODE_FLOAT) emit_float_lib_cmp (x, y, comparison); else abort (); } /* Nonzero if a compare of mode MODE can be done straightforwardly (without splitting it into pieces). */ int can_compare_p (mode) enum machine_mode mode; { do { if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing) return 1; mode = GET_MODE_WIDER_MODE (mode); } while (mode != VOIDmode); return 0; } /* Emit a library call comparison between floating point X and Y. COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */ static void emit_float_lib_cmp (x, y, comparison) rtx x, y; enum rtx_code comparison; { enum machine_mode mode = GET_MODE (x); rtx libfunc; if (mode == SFmode) switch (comparison) { case EQ: libfunc = eqsf2_libfunc; break; case NE: libfunc = nesf2_libfunc; break; case GT: libfunc = gtsf2_libfunc; break; case GE: libfunc = gesf2_libfunc; break; case LT: libfunc = ltsf2_libfunc; break; case LE: libfunc = lesf2_libfunc; break; } else if (mode == DFmode) switch (comparison) { case EQ: libfunc = eqdf2_libfunc; break; case NE: libfunc = nedf2_libfunc; break; case GT: libfunc = gtdf2_libfunc; break; case GE: libfunc = gedf2_libfunc; break; case LT: libfunc = ltdf2_libfunc; break; case LE: libfunc = ledf2_libfunc; break; } else if (mode == XFmode) switch (comparison) { case EQ: libfunc = eqxf2_libfunc; break; case NE: libfunc = nexf2_libfunc; break; case GT: libfunc = gtxf2_libfunc; break; case GE: libfunc = gexf2_libfunc; break; case LT: libfunc = ltxf2_libfunc; break; case LE: libfunc = lexf2_libfunc; break; } else if (mode == TFmode) switch (comparison) { case EQ: libfunc = eqtf2_libfunc; break; case NE: libfunc = netf2_libfunc; break; case GT: libfunc = gttf2_libfunc; break; case GE: libfunc = getf2_libfunc; break; case LT: libfunc = lttf2_libfunc; break; case LE: libfunc = letf2_libfunc; break; } else { enum machine_mode wider_mode; for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if ((cmp_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) || (cmp_optab->handlers[(int) wider_mode].libfunc != 0)) { x = convert_to_mode (wider_mode, x, 0); y = convert_to_mode (wider_mode, y, 0); emit_float_lib_cmp (x, y, comparison); return; } } abort (); } emit_library_call (libfunc, 1, SImode, 2, x, mode, y, mode); emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, comparison, 0, SImode, 0, 0); } /* Generate code to indirectly jump to a location given in the rtx LOC. */ void emit_indirect_jump (loc) rtx loc; { if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0]) (loc, VOIDmode))) loc = copy_to_mode_reg (insn_operand_mode[(int)CODE_FOR_indirect_jump][0], loc); emit_jump_insn (gen_indirect_jump (loc)); emit_barrier (); } /* These three functions generate an insn body and return it rather than emitting the insn. They do not protect from queued increments, because they may be used 1) in protect_from_queue itself and 2) in other passes where there is no queue. */ /* Generate and return an insn body to add Y to X. */ rtx gen_add2_insn (x, y) rtx x, y; { int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code; if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) abort (); return (GEN_FCN (icode) (x, x, y)); } int have_add2_insn (mode) enum machine_mode mode; { return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; } /* Generate and return an insn body to subtract Y from X. */ rtx gen_sub2_insn (x, y) rtx x, y; { int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code; if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) abort (); return (GEN_FCN (icode) (x, x, y)); } int have_sub2_insn (mode) enum machine_mode mode; { return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; } /* Generate the body of an instruction to copy Y into X. */ rtx gen_move_insn (x, y) rtx x, y; { register enum machine_mode mode = GET_MODE (x); enum insn_code insn_code; if (mode == VOIDmode) mode = GET_MODE (y); insn_code = mov_optab->handlers[(int) mode].insn_code; /* Handle MODE_CC modes: If we don't have a special move insn for this mode, find a mode to do it in. If we have a movcc, use it. Otherwise, find the MODE_INT mode of the same width. */ if (insn_code == CODE_FOR_nothing) { enum machine_mode tmode = VOIDmode; rtx x1 = x, y1 = y; if (GET_MODE_CLASS (mode) == MODE_CC && mode != CCmode && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing) tmode = CCmode; else if (GET_MODE_CLASS (mode) == MODE_CC) for (tmode = QImode; tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode)) break; if (tmode == VOIDmode) abort (); /* Get X and Y in TMODE. We can't use gen_lowpart here because it may call change_address which is not appropriate if we were called when a reload was in progress. We don't have to worry about changing the address since the size in bytes is supposed to be the same. Copy the MEM to change the mode and move any substitutions from the old MEM to the new one. */ if (reload_in_progress) { x = gen_lowpart_common (tmode, x1); if (x == 0 && GET_CODE (x1) == MEM) { x = gen_rtx (MEM, tmode, XEXP (x1, 0)); RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1); MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1); MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1); copy_replacements (x1, x); } y = gen_lowpart_common (tmode, y1); if (y == 0 && GET_CODE (y1) == MEM) { y = gen_rtx (MEM, tmode, XEXP (y1, 0)); RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1); MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1); MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1); copy_replacements (y1, y); } } else { x = gen_lowpart (tmode, x); y = gen_lowpart (tmode, y); } insn_code = mov_optab->handlers[(int) tmode].insn_code; } return (GEN_FCN (insn_code) (x, y)); } /* Tables of patterns for extending one integer mode to another. */ static enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2]; /* Return the insn code used to extend FROM_MODE to TO_MODE. UNSIGNEDP specifies zero-extension instead of sign-extension. If no such operation exists, CODE_FOR_nothing will be returned. */ enum insn_code can_extend_p (to_mode, from_mode, unsignedp) enum machine_mode to_mode, from_mode; int unsignedp; { return extendtab[(int) to_mode][(int) from_mode][unsignedp]; } /* Generate the body of an insn to extend Y (with mode MFROM) into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ rtx gen_extend_insn (x, y, mto, mfrom, unsignedp) rtx x, y; enum machine_mode mto, mfrom; int unsignedp; { return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y)); } static void init_extends () { enum insn_code *p; for (p = extendtab[0][0]; p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0]; p++) *p = CODE_FOR_nothing; #ifdef HAVE_extendditi2 if (HAVE_extendditi2) extendtab[(int) TImode][(int) DImode][0] = CODE_FOR_extendditi2; #endif #ifdef HAVE_extendsiti2 if (HAVE_extendsiti2) extendtab[(int) TImode][(int) SImode][0] = CODE_FOR_extendsiti2; #endif #ifdef HAVE_extendhiti2 if (HAVE_extendhiti2) extendtab[(int) TImode][(int) HImode][0] = CODE_FOR_extendhiti2; #endif #ifdef HAVE_extendqiti2 if (HAVE_extendqiti2) extendtab[(int) TImode][(int) QImode][0] = CODE_FOR_extendqiti2; #endif #ifdef HAVE_extendsidi2 if (HAVE_extendsidi2) extendtab[(int) DImode][(int) SImode][0] = CODE_FOR_extendsidi2; #endif #ifdef HAVE_extendhidi2 if (HAVE_extendhidi2) extendtab[(int) DImode][(int) HImode][0] = CODE_FOR_extendhidi2; #endif #ifdef HAVE_extendqidi2 if (HAVE_extendqidi2) extendtab[(int) DImode][(int) QImode][0] = CODE_FOR_extendqidi2; #endif #ifdef HAVE_extendhisi2 if (HAVE_extendhisi2) extendtab[(int) SImode][(int) HImode][0] = CODE_FOR_extendhisi2; #endif #ifdef HAVE_extendqisi2 if (HAVE_extendqisi2) extendtab[(int) SImode][(int) QImode][0] = CODE_FOR_extendqisi2; #endif #ifdef HAVE_extendqihi2 if (HAVE_extendqihi2) extendtab[(int) HImode][(int) QImode][0] = CODE_FOR_extendqihi2; #endif #ifdef HAVE_zero_extendditi2 if (HAVE_zero_extendsiti2) extendtab[(int) TImode][(int) DImode][1] = CODE_FOR_zero_extendditi2; #endif #ifdef HAVE_zero_extendsiti2 if (HAVE_zero_extendsiti2) extendtab[(int) TImode][(int) SImode][1] = CODE_FOR_zero_extendsiti2; #endif #ifdef HAVE_zero_extendhiti2 if (HAVE_zero_extendhiti2) extendtab[(int) TImode][(int) HImode][1] = CODE_FOR_zero_extendhiti2; #endif #ifdef HAVE_zero_extendqiti2 if (HAVE_zero_extendqiti2) extendtab[(int) TImode][(int) QImode][1] = CODE_FOR_zero_extendqiti2; #endif #ifdef HAVE_zero_extendsidi2 if (HAVE_zero_extendsidi2) extendtab[(int) DImode][(int) SImode][1] = CODE_FOR_zero_extendsidi2; #endif #ifdef HAVE_zero_extendhidi2 if (HAVE_zero_extendhidi2) extendtab[(int) DImode][(int) HImode][1] = CODE_FOR_zero_extendhidi2; #endif #ifdef HAVE_zero_extendqidi2 if (HAVE_zero_extendqidi2) extendtab[(int) DImode][(int) QImode][1] = CODE_FOR_zero_extendqidi2; #endif #ifdef HAVE_zero_extendhisi2 if (HAVE_zero_extendhisi2) extendtab[(int) SImode][(int) HImode][1] = CODE_FOR_zero_extendhisi2; #endif #ifdef HAVE_zero_extendqisi2 if (HAVE_zero_extendqisi2) extendtab[(int) SImode][(int) QImode][1] = CODE_FOR_zero_extendqisi2; #endif #ifdef HAVE_zero_extendqihi2 if (HAVE_zero_extendqihi2) extendtab[(int) HImode][(int) QImode][1] = CODE_FOR_zero_extendqihi2; #endif } /* can_fix_p and can_float_p say whether the target machine can directly convert a given fixed point type to a given floating point type, or vice versa. The returned value is the CODE_FOR_... value to use, or CODE_FOR_nothing if these modes cannot be directly converted. */ static enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; static enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; static enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; /* *TRUNCP_PTR is set to 1 if it is necessary to output an explicit FTRUNC insn before the fix insn; otherwise 0. */ static enum insn_code can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr) enum machine_mode fltmode, fixmode; int unsignedp; int *truncp_ptr; { *truncp_ptr = 0; if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing) return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp]; if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing) { *truncp_ptr = 1; return fixtab[(int) fltmode][(int) fixmode][unsignedp]; } return CODE_FOR_nothing; } static enum insn_code can_float_p (fltmode, fixmode, unsignedp) enum machine_mode fixmode, fltmode; int unsignedp; { return floattab[(int) fltmode][(int) fixmode][unsignedp]; } void init_fixtab () { enum insn_code *p; for (p = fixtab[0][0]; p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]); p++) *p = CODE_FOR_nothing; for (p = fixtrunctab[0][0]; p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]); p++) *p = CODE_FOR_nothing; #ifdef HAVE_fixsfqi2 if (HAVE_fixsfqi2) fixtab[(int) SFmode][(int) QImode][0] = CODE_FOR_fixsfqi2; #endif #ifdef HAVE_fixsfhi2 if (HAVE_fixsfhi2) fixtab[(int) SFmode][(int) HImode][0] = CODE_FOR_fixsfhi2; #endif #ifdef HAVE_fixsfsi2 if (HAVE_fixsfsi2) fixtab[(int) SFmode][(int) SImode][0] = CODE_FOR_fixsfsi2; #endif #ifdef HAVE_fixsfdi2 if (HAVE_fixsfdi2) fixtab[(int) SFmode][(int) DImode][0] = CODE_FOR_fixsfdi2; #endif #ifdef HAVE_fixdfqi2 if (HAVE_fixdfqi2) fixtab[(int) DFmode][(int) QImode][0] = CODE_FOR_fixdfqi2; #endif #ifdef HAVE_fixdfhi2 if (HAVE_fixdfhi2) fixtab[(int) DFmode][(int) HImode][0] = CODE_FOR_fixdfhi2; #endif #ifdef HAVE_fixdfsi2 if (HAVE_fixdfsi2) fixtab[(int) DFmode][(int) SImode][0] = CODE_FOR_fixdfsi2; #endif #ifdef HAVE_fixdfdi2 if (HAVE_fixdfdi2) fixtab[(int) DFmode][(int) DImode][0] = CODE_FOR_fixdfdi2; #endif #ifdef HAVE_fixdfti2 if (HAVE_fixdfti2) fixtab[(int) DFmode][(int) TImode][0] = CODE_FOR_fixdfti2; #endif #ifdef HAVE_fixxfqi2 if (HAVE_fixxfqi2) fixtab[(int) XFmode][(int) QImode][0] = CODE_FOR_fixxfqi2; #endif #ifdef HAVE_fixxfhi2 if (HAVE_fixxfhi2) fixtab[(int) XFmode][(int) HImode][0] = CODE_FOR_fixxfhi2; #endif #ifdef HAVE_fixxfsi2 if (HAVE_fixxfsi2) fixtab[(int) XFmode][(int) SImode][0] = CODE_FOR_fixxfsi2; #endif #ifdef HAVE_fixxfdi2 if (HAVE_fixxfdi2) fixtab[(int) XFmode][(int) DImode][0] = CODE_FOR_fixxfdi2; #endif #ifdef HAVE_fixxfti2 if (HAVE_fixxfti2) fixtab[(int) XFmode][(int) TImode][0] = CODE_FOR_fixxfti2; #endif #ifdef HAVE_fixtfqi2 if (HAVE_fixtfqi2) fixtab[(int) TFmode][(int) QImode][0] = CODE_FOR_fixtfqi2; #endif #ifdef HAVE_fixtfhi2 if (HAVE_fixtfhi2) fixtab[(int) TFmode][(int) HImode][0] = CODE_FOR_fixtfhi2; #endif #ifdef HAVE_fixtfsi2 if (HAVE_fixtfsi2) fixtab[(int) TFmode][(int) SImode][0] = CODE_FOR_fixtfsi2; #endif #ifdef HAVE_fixtfdi2 if (HAVE_fixtfdi2) fixtab[(int) TFmode][(int) DImode][0] = CODE_FOR_fixtfdi2; #endif #ifdef HAVE_fixtfti2 if (HAVE_fixtfti2) fixtab[(int) TFmode][(int) TImode][0] = CODE_FOR_fixtfti2; #endif #ifdef HAVE_fixunssfqi2 if (HAVE_fixunssfqi2) fixtab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixunssfqi2; #endif #ifdef HAVE_fixunssfhi2 if (HAVE_fixunssfhi2) fixtab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixunssfhi2; #endif #ifdef HAVE_fixunssfsi2 if (HAVE_fixunssfsi2) fixtab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixunssfsi2; #endif #ifdef HAVE_fixunssfdi2 if (HAVE_fixunssfdi2) fixtab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixunssfdi2; #endif #ifdef HAVE_fixunsdfqi2 if (HAVE_fixunsdfqi2) fixtab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixunsdfqi2; #endif #ifdef HAVE_fixunsdfhi2 if (HAVE_fixunsdfhi2) fixtab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixunsdfhi2; #endif #ifdef HAVE_fixunsdfsi2 if (HAVE_fixunsdfsi2) fixtab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixunsdfsi2; #endif #ifdef HAVE_fixunsdfdi2 if (HAVE_fixunsdfdi2) fixtab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixunsdfdi2; #endif #ifdef HAVE_fixunsdfti2 if (HAVE_fixunsdfti2) fixtab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixunsdfti2; #endif #ifdef HAVE_fixunsxfqi2 if (HAVE_fixunsxfqi2) fixtab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixunsxfqi2; #endif #ifdef HAVE_fixunsxfhi2 if (HAVE_fixunsxfhi2) fixtab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixunsxfhi2; #endif #ifdef HAVE_fixunsxfsi2 if (HAVE_fixunsxfsi2) fixtab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixunsxfsi2; #endif #ifdef HAVE_fixunsxfdi2 if (HAVE_fixunsxfdi2) fixtab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixunsxfdi2; #endif #ifdef HAVE_fixunsxfti2 if (HAVE_fixunsxfti2) fixtab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixunsxfti2; #endif #ifdef HAVE_fixunstfqi2 if (HAVE_fixunstfqi2) fixtab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixunstfqi2; #endif #ifdef HAVE_fixunstfhi2 if (HAVE_fixunstfhi2) fixtab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixunstfhi2; #endif #ifdef HAVE_fixunstfsi2 if (HAVE_fixunstfsi2) fixtab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixunstfsi2; #endif #ifdef HAVE_fixunstfdi2 if (HAVE_fixunstfdi2) fixtab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixunstfdi2; #endif #ifdef HAVE_fixunstfti2 if (HAVE_fixunstfti2) fixtab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixunstfti2; #endif #ifdef HAVE_fix_truncsfqi2 if (HAVE_fix_truncsfqi2) fixtrunctab[(int) SFmode][(int) QImode][0] = CODE_FOR_fix_truncsfqi2; #endif #ifdef HAVE_fix_truncsfhi2 if (HAVE_fix_truncsfhi2) fixtrunctab[(int) SFmode][(int) HImode][0] = CODE_FOR_fix_truncsfhi2; #endif #ifdef HAVE_fix_truncsfsi2 if (HAVE_fix_truncsfsi2) fixtrunctab[(int) SFmode][(int) SImode][0] = CODE_FOR_fix_truncsfsi2; #endif #ifdef HAVE_fix_truncsfdi2 if (HAVE_fix_truncsfdi2) fixtrunctab[(int) SFmode][(int) DImode][0] = CODE_FOR_fix_truncsfdi2; #endif #ifdef HAVE_fix_truncdfqi2 if (HAVE_fix_truncdfsi2) fixtrunctab[(int) DFmode][(int) QImode][0] = CODE_FOR_fix_truncdfqi2; #endif #ifdef HAVE_fix_truncdfhi2 if (HAVE_fix_truncdfhi2) fixtrunctab[(int) DFmode][(int) HImode][0] = CODE_FOR_fix_truncdfhi2; #endif #ifdef HAVE_fix_truncdfsi2 if (HAVE_fix_truncdfsi2) fixtrunctab[(int) DFmode][(int) SImode][0] = CODE_FOR_fix_truncdfsi2; #endif #ifdef HAVE_fix_truncdfdi2 if (HAVE_fix_truncdfdi2) fixtrunctab[(int) DFmode][(int) DImode][0] = CODE_FOR_fix_truncdfdi2; #endif #ifdef HAVE_fix_truncdfti2 if (HAVE_fix_truncdfti2) fixtrunctab[(int) DFmode][(int) TImode][0] = CODE_FOR_fix_truncdfti2; #endif #ifdef HAVE_fix_truncxfqi2 if (HAVE_fix_truncxfqi2) fixtrunctab[(int) XFmode][(int) QImode][0] = CODE_FOR_fix_truncxfqi2; #endif #ifdef HAVE_fix_truncxfhi2 if (HAVE_fix_truncxfhi2) fixtrunctab[(int) XFmode][(int) HImode][0] = CODE_FOR_fix_truncxfhi2; #endif #ifdef HAVE_fix_truncxfsi2 if (HAVE_fix_truncxfsi2) fixtrunctab[(int) XFmode][(int) SImode][0] = CODE_FOR_fix_truncxfsi2; #endif #ifdef HAVE_fix_truncxfdi2 if (HAVE_fix_truncxfdi2) fixtrunctab[(int) XFmode][(int) DImode][0] = CODE_FOR_fix_truncxfdi2; #endif #ifdef HAVE_fix_truncxfti2 if (HAVE_fix_truncxfti2) fixtrunctab[(int) XFmode][(int) TImode][0] = CODE_FOR_fix_truncxfti2; #endif #ifdef HAVE_fix_trunctfqi2 if (HAVE_fix_trunctfqi2) fixtrunctab[(int) TFmode][(int) QImode][0] = CODE_FOR_fix_trunctfqi2; #endif #ifdef HAVE_fix_trunctfhi2 if (HAVE_fix_trunctfhi2) fixtrunctab[(int) TFmode][(int) HImode][0] = CODE_FOR_fix_trunctfhi2; #endif #ifdef HAVE_fix_trunctfsi2 if (HAVE_fix_trunctfsi2) fixtrunctab[(int) TFmode][(int) SImode][0] = CODE_FOR_fix_trunctfsi2; #endif #ifdef HAVE_fix_trunctfdi2 if (HAVE_fix_trunctfdi2) fixtrunctab[(int) TFmode][(int) DImode][0] = CODE_FOR_fix_trunctfdi2; #endif #ifdef HAVE_fix_trunctfti2 if (HAVE_fix_trunctfti2) fixtrunctab[(int) TFmode][(int) TImode][0] = CODE_FOR_fix_trunctfti2; #endif #ifdef HAVE_fixuns_truncsfqi2 if (HAVE_fixuns_truncsfqi2) fixtrunctab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixuns_truncsfqi2; #endif #ifdef HAVE_fixuns_truncsfhi2 if (HAVE_fixuns_truncsfhi2) fixtrunctab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixuns_truncsfhi2; #endif #ifdef HAVE_fixuns_truncsfsi2 if (HAVE_fixuns_truncsfsi2) fixtrunctab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixuns_truncsfsi2; #endif #ifdef HAVE_fixuns_truncsfdi2 if (HAVE_fixuns_truncsfdi2) fixtrunctab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixuns_truncsfdi2; #endif #ifdef HAVE_fixuns_truncdfqi2 if (HAVE_fixuns_truncdfqi2) fixtrunctab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixuns_truncdfqi2; #endif #ifdef HAVE_fixuns_truncdfhi2 if (HAVE_fixuns_truncdfhi2) fixtrunctab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixuns_truncdfhi2; #endif #ifdef HAVE_fixuns_truncdfsi2 if (HAVE_fixuns_truncdfsi2) fixtrunctab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixuns_truncdfsi2; #endif #ifdef HAVE_fixuns_truncdfdi2 if (HAVE_fixuns_truncdfdi2) fixtrunctab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixuns_truncdfdi2; #endif #ifdef HAVE_fixuns_truncdfti2 if (HAVE_fixuns_truncdfti2) fixtrunctab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixuns_truncdfti2; #endif #ifdef HAVE_fixuns_truncxfqi2 if (HAVE_fixuns_truncxfqi2) fixtrunctab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixuns_truncxfqi2; #endif #ifdef HAVE_fixuns_truncxfhi2 if (HAVE_fixuns_truncxfhi2) fixtrunctab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixuns_truncxfhi2; #endif #ifdef HAVE_fixuns_truncxfsi2 if (HAVE_fixuns_truncxfsi2) fixtrunctab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixuns_truncxfsi2; #endif #ifdef HAVE_fixuns_truncxfdi2 if (HAVE_fixuns_truncxfdi2) fixtrunctab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixuns_truncxfdi2; #endif #ifdef HAVE_fixuns_truncxfti2 if (HAVE_fixuns_truncxfti2) fixtrunctab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixuns_truncxfti2; #endif #ifdef HAVE_fixuns_trunctfqi2 if (HAVE_fixuns_trunctfqi2) fixtrunctab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixuns_trunctfqi2; #endif #ifdef HAVE_fixuns_trunctfhi2 if (HAVE_fixuns_trunctfhi2) fixtrunctab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixuns_trunctfhi2; #endif #ifdef HAVE_fixuns_trunctfsi2 if (HAVE_fixuns_trunctfsi2) fixtrunctab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixuns_trunctfsi2; #endif #ifdef HAVE_fixuns_trunctfdi2 if (HAVE_fixuns_trunctfdi2) fixtrunctab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixuns_trunctfdi2; #endif #ifdef HAVE_fixuns_trunctfti2 if (HAVE_fixuns_trunctfti2) fixtrunctab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixuns_trunctfti2; #endif #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC /* This flag says the same insns that convert to a signed fixnum also convert validly to an unsigned one. */ { int i; int j; for (i = 0; i < NUM_MACHINE_MODES; i++) for (j = 0; j < NUM_MACHINE_MODES; j++) fixtrunctab[i][j][1] = fixtrunctab[i][j][0]; } #endif } void init_floattab () { enum insn_code *p; for (p = floattab[0][0]; p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]); p++) *p = CODE_FOR_nothing; #ifdef HAVE_floatqisf2 if (HAVE_floatqisf2) floattab[(int) SFmode][(int) QImode][0] = CODE_FOR_floatqisf2; #endif #ifdef HAVE_floathisf2 if (HAVE_floathisf2) floattab[(int) SFmode][(int) HImode][0] = CODE_FOR_floathisf2; #endif #ifdef HAVE_floatsisf2 if (HAVE_floatsisf2) floattab[(int) SFmode][(int) SImode][0] = CODE_FOR_floatsisf2; #endif #ifdef HAVE_floatdisf2 if (HAVE_floatdisf2) floattab[(int) SFmode][(int) DImode][0] = CODE_FOR_floatdisf2; #endif #ifdef HAVE_floattisf2 if (HAVE_floattisf2) floattab[(int) SFmode][(int) TImode][0] = CODE_FOR_floattisf2; #endif #ifdef HAVE_floatqidf2 if (HAVE_floatqidf2) floattab[(int) DFmode][(int) QImode][0] = CODE_FOR_floatqidf2; #endif #ifdef HAVE_floathidf2 if (HAVE_floathidf2) floattab[(int) DFmode][(int) HImode][0] = CODE_FOR_floathidf2; #endif #ifdef HAVE_floatsidf2 if (HAVE_floatsidf2) floattab[(int) DFmode][(int) SImode][0] = CODE_FOR_floatsidf2; #endif #ifdef HAVE_floatdidf2 if (HAVE_floatdidf2) floattab[(int) DFmode][(int) DImode][0] = CODE_FOR_floatdidf2; #endif #ifdef HAVE_floattidf2 if (HAVE_floattidf2) floattab[(int) DFmode][(int) TImode][0] = CODE_FOR_floattidf2; #endif #ifdef HAVE_floatqixf2 if (HAVE_floatqixf2) floattab[(int) XFmode][(int) QImode][0] = CODE_FOR_floatqixf2; #endif #ifdef HAVE_floathixf2 if (HAVE_floathixf2) floattab[(int) XFmode][(int) HImode][0] = CODE_FOR_floathixf2; #endif #ifdef HAVE_floatsixf2 if (HAVE_floatsixf2) floattab[(int) XFmode][(int) SImode][0] = CODE_FOR_floatsixf2; #endif #ifdef HAVE_floatdixf2 if (HAVE_floatdixf2) floattab[(int) XFmode][(int) DImode][0] = CODE_FOR_floatdixf2; #endif #ifdef HAVE_floattixf2 if (HAVE_floattixf2) floattab[(int) XFmode][(int) TImode][0] = CODE_FOR_floattixf2; #endif #ifdef HAVE_floatqitf2 if (HAVE_floatqitf2) floattab[(int) TFmode][(int) QImode][0] = CODE_FOR_floatqitf2; #endif #ifdef HAVE_floathitf2 if (HAVE_floathitf2) floattab[(int) TFmode][(int) HImode][0] = CODE_FOR_floathitf2; #endif #ifdef HAVE_floatsitf2 if (HAVE_floatsitf2) floattab[(int) TFmode][(int) SImode][0] = CODE_FOR_floatsitf2; #endif #ifdef HAVE_floatditf2 if (HAVE_floatditf2) floattab[(int) TFmode][(int) DImode][0] = CODE_FOR_floatditf2; #endif #ifdef HAVE_floattitf2 if (HAVE_floattitf2) floattab[(int) TFmode][(int) TImode][0] = CODE_FOR_floattitf2; #endif #ifdef HAVE_floatunsqisf2 if (HAVE_floatunsqisf2) floattab[(int) SFmode][(int) QImode][1] = CODE_FOR_floatunsqisf2; #endif #ifdef HAVE_floatunshisf2 if (HAVE_floatunshisf2) floattab[(int) SFmode][(int) HImode][1] = CODE_FOR_floatunshisf2; #endif #ifdef HAVE_floatunssisf2 if (HAVE_floatunssisf2) floattab[(int) SFmode][(int) SImode][1] = CODE_FOR_floatunssisf2; #endif #ifdef HAVE_floatunsdisf2 if (HAVE_floatunsdisf2) floattab[(int) SFmode][(int) DImode][1] = CODE_FOR_floatunsdisf2; #endif #ifdef HAVE_floatunstisf2 if (HAVE_floatunstisf2) floattab[(int) SFmode][(int) TImode][1] = CODE_FOR_floatunstisf2; #endif #ifdef HAVE_floatunsqidf2 if (HAVE_floatunsqidf2) floattab[(int) DFmode][(int) QImode][1] = CODE_FOR_floatunsqidf2; #endif #ifdef HAVE_floatunshidf2 if (HAVE_floatunshidf2) floattab[(int) DFmode][(int) HImode][1] = CODE_FOR_floatunshidf2; #endif #ifdef HAVE_floatunssidf2 if (HAVE_floatunssidf2) floattab[(int) DFmode][(int) SImode][1] = CODE_FOR_floatunssidf2; #endif #ifdef HAVE_floatunsdidf2 if (HAVE_floatunsdidf2) floattab[(int) DFmode][(int) DImode][1] = CODE_FOR_floatunsdidf2; #endif #ifdef HAVE_floatunstidf2 if (HAVE_floatunstidf2) floattab[(int) DFmode][(int) TImode][1] = CODE_FOR_floatunstidf2; #endif #ifdef HAVE_floatunsqixf2 if (HAVE_floatunsqixf2) floattab[(int) XFmode][(int) QImode][1] = CODE_FOR_floatunsqixf2; #endif #ifdef HAVE_floatunshixf2 if (HAVE_floatunshixf2) floattab[(int) XFmode][(int) HImode][1] = CODE_FOR_floatunshixf2; #endif #ifdef HAVE_floatunssixf2 if (HAVE_floatunssixf2) floattab[(int) XFmode][(int) SImode][1] = CODE_FOR_floatunssixf2; #endif #ifdef HAVE_floatunsdixf2 if (HAVE_floatunsdixf2) floattab[(int) XFmode][(int) DImode][1] = CODE_FOR_floatunsdixf2; #endif #ifdef HAVE_floatunstixf2 if (HAVE_floatunstixf2) floattab[(int) XFmode][(int) TImode][1] = CODE_FOR_floatunstixf2; #endif #ifdef HAVE_floatunsqitf2 if (HAVE_floatunsqitf2) floattab[(int) TFmode][(int) QImode][1] = CODE_FOR_floatunsqitf2; #endif #ifdef HAVE_floatunshitf2 if (HAVE_floatunshitf2) floattab[(int) TFmode][(int) HImode][1] = CODE_FOR_floatunshitf2; #endif #ifdef HAVE_floatunssitf2 if (HAVE_floatunssitf2) floattab[(int) TFmode][(int) SImode][1] = CODE_FOR_floatunssitf2; #endif #ifdef HAVE_floatunsditf2 if (HAVE_floatunsditf2) floattab[(int) TFmode][(int) DImode][1] = CODE_FOR_floatunsditf2; #endif #ifdef HAVE_floatunstitf2 if (HAVE_floatunstitf2) floattab[(int) TFmode][(int) TImode][1] = CODE_FOR_floatunstitf2; #endif } /* Generate code to convert FROM to floating point and store in TO. FROM must be fixed point and not VOIDmode. UNSIGNEDP nonzero means regard FROM as unsigned. Normally this is done by correcting the final value if it is negative. */ void expand_float (to, from, unsignedp) rtx to, from; int unsignedp; { enum insn_code icode; register rtx target = to; enum machine_mode fmode, imode; /* Crash now, because we won't be able to decide which mode to use. */ if (GET_MODE (from) == VOIDmode) abort (); /* Look for an insn to do the conversion. Do it in the specified modes if possible; otherwise convert either input, output or both to wider mode. If the integer mode is wider than the mode of FROM, we can do the conversion signed even if the input is unsigned. */ for (imode = GET_MODE (from); imode != VOIDmode; imode = GET_MODE_WIDER_MODE (imode)) for (fmode = GET_MODE (to); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) { int doing_unsigned = unsignedp; icode = can_float_p (fmode, imode, unsignedp); if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp) icode = can_float_p (fmode, imode, 0), doing_unsigned = 0; if (icode != CODE_FOR_nothing) { to = protect_from_queue (to, 1); if (imode != GET_MODE (from)) from = convert_to_mode (imode, from, unsignedp); else from = protect_from_queue (from, 0); if (fmode != GET_MODE (to)) target = gen_reg_rtx (fmode); emit_unop_insn (icode, target, from, doing_unsigned ? UNSIGNED_FLOAT : FLOAT); if (target != to) convert_move (to, target, 0); return; } } #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) /* Unsigned integer, and no way to convert directly. Convert as signed, then conditionally adjust the result. */ if (unsignedp) { rtx label = gen_label_rtx (); rtx temp; REAL_VALUE_TYPE offset; emit_queue (); to = protect_from_queue (to, 1); from = protect_from_queue (from, 0); if (flag_force_mem) from = force_not_mem (from); /* If we are about to do some arithmetic to correct for an unsigned operand, do it in a pseudo-register. */ if (GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER) target = gen_reg_rtx (GET_MODE (to)); /* Convert as signed integer to floating. */ expand_float (target, from, 0); /* If FROM is negative (and therefore TO is negative), correct its value by 2**bitwidth. */ do_pending_stack_adjust (); emit_cmp_insn (from, const0_rtx, GE, 0, GET_MODE (from), 0, 0); emit_jump_insn (gen_bge (label)); /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1). Rather than setting up a dconst_dot_5, let's hope SCO fixes the bug. */ offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from))); temp = expand_binop (GET_MODE (to), add_optab, target, immed_real_const_1 (offset, GET_MODE (to)), target, 0, OPTAB_LIB_WIDEN); if (temp != target) emit_move_insn (target, temp); do_pending_stack_adjust (); emit_label (label); } else #endif /* No hardware instruction available; call a library rotine to convert from SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */ { rtx libfcn; rtx insns; to = protect_from_queue (to, 1); if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) from = convert_to_mode (SImode, from, unsignedp); else from = protect_from_queue (from, 0); if (flag_force_mem) from = force_not_mem (from); if (GET_MODE (to) == SFmode) { if (GET_MODE (from) == SImode) libfcn = floatsisf_libfunc; else if (GET_MODE (from) == DImode) libfcn = floatdisf_libfunc; else if (GET_MODE (from) == TImode) libfcn = floattisf_libfunc; else abort (); } else if (GET_MODE (to) == DFmode) { if (GET_MODE (from) == SImode) libfcn = floatsidf_libfunc; else if (GET_MODE (from) == DImode) libfcn = floatdidf_libfunc; else if (GET_MODE (from) == TImode) libfcn = floattidf_libfunc; else abort (); } else if (GET_MODE (to) == XFmode) { if (GET_MODE (from) == SImode) libfcn = floatsixf_libfunc; else if (GET_MODE (from) == DImode) libfcn = floatdixf_libfunc; else if (GET_MODE (from) == TImode) libfcn = floattixf_libfunc; else abort (); } else if (GET_MODE (to) == TFmode) { if (GET_MODE (from) == SImode) libfcn = floatsitf_libfunc; else if (GET_MODE (from) == DImode) libfcn = floatditf_libfunc; else if (GET_MODE (from) == TImode) libfcn = floattitf_libfunc; else abort (); } else abort (); start_sequence (); emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); insns = get_insns (); end_sequence (); emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), gen_rtx (FLOAT, GET_MODE (to), from)); } /* Copy result to requested destination if we have been computing in a temp location. */ if (target != to) { if (GET_MODE (target) == GET_MODE (to)) emit_move_insn (to, target); else convert_move (to, target, 0); } } /* expand_fix: generate code to convert FROM to fixed point and store in TO. FROM must be floating point. */ static rtx ftruncify (x) rtx x; { rtx temp = gen_reg_rtx (GET_MODE (x)); return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0); } void expand_fix (to, from, unsignedp) register rtx to, from; int unsignedp; { enum insn_code icode; register rtx target = to; enum machine_mode fmode, imode; int must_trunc = 0; rtx libfcn = 0; /* We first try to find a pair of modes, one real and one integer, at least as wide as FROM and TO, respectively, in which we can open-code this conversion. If the integer mode is wider than the mode of TO, we can do the conversion either signed or unsigned. */ for (imode = GET_MODE (to); imode != VOIDmode; imode = GET_MODE_WIDER_MODE (imode)) for (fmode = GET_MODE (from); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) { int doing_unsigned = unsignedp; icode = can_fix_p (imode, fmode, unsignedp, &must_trunc); if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp) icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0; if (icode != CODE_FOR_nothing) { to = protect_from_queue (to, 1); if (fmode != GET_MODE (from)) from = convert_to_mode (fmode, from, 0); else from = protect_from_queue (from, 0); if (must_trunc) from = ftruncify (from); if (imode != GET_MODE (to)) target = gen_reg_rtx (imode); emit_unop_insn (icode, target, from, doing_unsigned ? UNSIGNED_FIX : FIX); if (target != to) convert_move (to, target, unsignedp); return; } } #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) /* For an unsigned conversion, there is one more way to do it. If we have a signed conversion, we generate code that compares the real value to the largest representable positive number. If if is smaller, the conversion is done normally. Otherwise, subtract one plus the highest signed number, convert, and add it back. We only need to check all real modes, since we know we didn't find anything with a wider integer mode. */ if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_INT) for (fmode = GET_MODE (from); fmode != VOIDmode; fmode = GET_MODE_WIDER_MODE (fmode)) /* Make sure we won't lose significant bits doing this. */ if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to)) && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)) { int bitsize = GET_MODE_BITSIZE (GET_MODE (to)); REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1); rtx limit = immed_real_const_1 (offset, fmode); rtx lab1 = gen_label_rtx (); rtx lab2 = gen_label_rtx (); rtx insn; emit_queue (); to = protect_from_queue (to, 1); from = protect_from_queue (from, 0); if (flag_force_mem) from = force_not_mem (from); if (fmode != GET_MODE (from)) from = convert_to_mode (fmode, from, 0); /* See if we need to do the subtraction. */ do_pending_stack_adjust (); emit_cmp_insn (from, limit, GE, 0, GET_MODE (from), 0, 0); emit_jump_insn (gen_bge (lab1)); /* If not, do the signed "fix" and branch around fixup code. */ expand_fix (to, from, 0); emit_jump_insn (gen_jump (lab2)); emit_barrier (); /* Otherwise, subtract 2**(N-1), convert to signed number, then add 2**(N-1). Do the addition using XOR since this will often generate better code. */ emit_label (lab1); target = expand_binop (GET_MODE (from), sub_optab, from, limit, 0, 0, OPTAB_LIB_WIDEN); expand_fix (to, target, 0); target = expand_binop (GET_MODE (to), xor_optab, to, gen_rtx (CONST_INT, VOIDmode, 1 << (bitsize - 1)), to, 1, OPTAB_LIB_WIDEN); if (target != to) emit_move_insn (to, target); emit_label (lab2); /* Make a place for a REG_NOTE and add it. */ insn = emit_move_insn (to, to); REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, gen_rtx (UNSIGNED_FIX, GET_MODE (to), from), REG_NOTES (insn)); return; } #endif /* We can't do it with an insn, so use a library call. But first ensure that the mode of TO is at least as wide as SImode, since those are the only library calls we know about. */ if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode)) { target = gen_reg_rtx (SImode); expand_fix (target, from, unsignedp); } else if (GET_MODE (from) == SFmode) { if (GET_MODE (to) == SImode) libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc; else if (GET_MODE (to) == DImode) libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc; else if (GET_MODE (to) == TImode) libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc; else abort (); } else if (GET_MODE (from) == DFmode) { if (GET_MODE (to) == SImode) libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc; else if (GET_MODE (to) == DImode) libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc; else if (GET_MODE (to) == TImode) libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc; else abort (); } else if (GET_MODE (from) == XFmode) { if (GET_MODE (to) == SImode) libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc; else if (GET_MODE (to) == DImode) libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc; else if (GET_MODE (to) == TImode) libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc; else abort (); } else if (GET_MODE (from) == TFmode) { if (GET_MODE (to) == SImode) libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc; else if (GET_MODE (to) == DImode) libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc; else if (GET_MODE (to) == TImode) libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc; else abort (); } else abort (); if (libfcn) { rtx insns; to = protect_from_queue (to, 1); from = protect_from_queue (from, 0); if (flag_force_mem) from = force_not_mem (from); start_sequence (); emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); insns = get_insns (); end_sequence (); emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), gen_rtx (unsignedp ? FIX : UNSIGNED_FIX, GET_MODE (to), from)); } if (GET_MODE (to) == GET_MODE (target)) emit_move_insn (to, target); else convert_move (to, target, 0); } static optab init_optab (code) enum rtx_code code; { int i; optab op = (optab) xmalloc (sizeof (struct optab)); op->code = code; for (i = 0; i < NUM_MACHINE_MODES; i++) { op->handlers[i].insn_code = CODE_FOR_nothing; op->handlers[i].libfunc = 0; } return op; } /* Initialize the libfunc fields of an entire group of entries in some optab. Each entry is set equal to a string consisting of a leading pair of underscores followed by a generic operation name followed by a mode name (downshifted to lower case) followed by a single character representing the number of operands for the given operation (which is usually one of the characters '2', '3', or '4'). OPTABLE is the table in which libfunc fields are to be initialized. FIRST_MODE is the first machine mode index in the given optab to initialize. LAST_MODE is the last machine mode index in the given optab to initialize. OPNAME is the generic (string) name of the operation. SUFFIX is the character which specifies the number of operands for the given generic operation. */ static void init_libfuncs (optable, first_mode, last_mode, opname, suffix) register optab optable; register char *opname; register enum machine_mode first_mode; register enum machine_mode last_mode; register char suffix; { register enum machine_mode mode; register unsigned opname_len = strlen (opname); for (mode = first_mode; mode <= last_mode; mode++) { register char *mname = mode_name[(int) mode]; register unsigned mname_len = strlen (mname); register char *libfunc_name = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1); register char *p; register char *q; p = libfunc_name; *p++ = '_'; *p++ = '_'; for (q = opname; *q; ) *p++ = *q++; for (q = mname; *q; q++) *p++ = tolower (*q); *p++ = suffix; *p++ = '\0'; optable->handlers[(int) mode].libfunc = gen_rtx (SYMBOL_REF, Pmode, libfunc_name); } } /* Initialize the libfunc fields of an entire group of entries in some optab which correspond to all integer mode operations. The parameters have the same meaning as similarly named ones for the `init_libfuncs' routine. (See above). */ static void init_integral_libfuncs (optable, opname, suffix) register optab optable; register char *opname; register char suffix; { init_libfuncs (optable, SImode, TImode, opname, suffix); } /* Initialize the libfunc fields of an entire group of entries in some optab which correspond to all real mode operations. The parameters have the same meaning as similarly named ones for the `init_libfuncs' routine. (See above). */ static void init_floating_libfuncs (optable, opname, suffix) register optab optable; register char *opname; register char suffix; { init_libfuncs (optable, SFmode, TFmode, opname, suffix); } /* Call this once to initialize the contents of the optabs appropriately for the current target machine. */ void init_optabs () { int i; init_fixtab (); init_floattab (); init_extends (); add_optab = init_optab (PLUS); sub_optab = init_optab (MINUS); smul_optab = init_optab (MULT); smul_widen_optab = init_optab (UNKNOWN); umul_widen_optab = init_optab (UNKNOWN); sdiv_optab = init_optab (DIV); sdivmod_optab = init_optab (UNKNOWN); udiv_optab = init_optab (UDIV); udivmod_optab = init_optab (UNKNOWN); smod_optab = init_optab (MOD); umod_optab = init_optab (UMOD); flodiv_optab = init_optab (DIV); ftrunc_optab = init_optab (UNKNOWN); and_optab = init_optab (AND); ior_optab = init_optab (IOR); xor_optab = init_optab (XOR); ashl_optab = init_optab (ASHIFT); ashr_optab = init_optab (ASHIFTRT); lshl_optab = init_optab (LSHIFT); lshr_optab = init_optab (LSHIFTRT); rotl_optab = init_optab (ROTATE); rotr_optab = init_optab (ROTATERT); smin_optab = init_optab (SMIN); smax_optab = init_optab (SMAX); umin_optab = init_optab (UMIN); umax_optab = init_optab (UMAX); mov_optab = init_optab (UNKNOWN); movstrict_optab = init_optab (UNKNOWN); cmp_optab = init_optab (UNKNOWN); ucmp_optab = init_optab (UNKNOWN); tst_optab = init_optab (UNKNOWN); neg_optab = init_optab (NEG); abs_optab = init_optab (ABS); one_cmpl_optab = init_optab (NOT); ffs_optab = init_optab (FFS); sqrt_optab = init_optab (SQRT); strlen_optab = init_optab (UNKNOWN); #ifdef HAVE_addqi3 if (HAVE_addqi3) add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3; #endif #ifdef HAVE_addhi3 if (HAVE_addhi3) add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3; #endif #ifdef HAVE_addpsi3 if (HAVE_addpsi3) add_optab->handlers[(int) PSImode].insn_code = CODE_FOR_addpsi3; #endif #ifdef HAVE_addsi3 if (HAVE_addsi3) add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3; #endif #ifdef HAVE_adddi3 if (HAVE_adddi3) add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3; #endif #ifdef HAVE_addti3 if (HAVE_addti3) add_optab->handlers[(int) TImode].insn_code = CODE_FOR_addti3; #endif #ifdef HAVE_addsf3 if (HAVE_addsf3) add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3; #endif #ifdef HAVE_adddf3 if (HAVE_adddf3) add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3; #endif #ifdef HAVE_addxf3 if (HAVE_addxf3) add_optab->handlers[(int) XFmode].insn_code = CODE_FOR_addxf3; #endif #ifdef HAVE_addtf3 if (HAVE_addtf3) add_optab->handlers[(int) TFmode].insn_code = CODE_FOR_addtf3; #endif init_integral_libfuncs (add_optab, "add", '3'); init_floating_libfuncs (add_optab, "add", '3'); #ifdef HAVE_subqi3 if (HAVE_subqi3) sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3; #endif #ifdef HAVE_subhi3 if (HAVE_subhi3) sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3; #endif #ifdef HAVE_subpsi3 if (HAVE_subpsi3) sub_optab->handlers[(int) PSImode].insn_code = CODE_FOR_subpsi3; #endif #ifdef HAVE_subsi3 if (HAVE_subsi3) sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3; #endif #ifdef HAVE_subdi3 if (HAVE_subdi3) sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3; #endif #ifdef HAVE_subti3 if (HAVE_subti3) sub_optab->handlers[(int) TImode].insn_code = CODE_FOR_subti3; #endif #ifdef HAVE_subsf3 if (HAVE_subsf3) sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3; #endif #ifdef HAVE_subdf3 if (HAVE_subdf3) sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3; #endif #ifdef HAVE_subxf3 if (HAVE_subxf3) sub_optab->handlers[(int) XFmode].insn_code = CODE_FOR_subxf3; #endif #ifdef HAVE_subtf3 if (HAVE_subtf3) sub_optab->handlers[(int) TFmode].insn_code = CODE_FOR_subtf3; #endif init_integral_libfuncs (sub_optab, "sub", '3'); init_floating_libfuncs (sub_optab, "sub", '3'); #ifdef HAVE_mulqi3 if (HAVE_mulqi3) smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3; #endif #ifdef HAVE_mulhi3 if (HAVE_mulhi3) smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3; #endif #ifdef HAVE_mulpsi3 if (HAVE_mulpsi3) smul_optab->handlers[(int) PSImode].insn_code = CODE_FOR_mulpsi3; #endif #ifdef HAVE_mulsi3 if (HAVE_mulsi3) smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3; #endif #ifdef HAVE_muldi3 if (HAVE_muldi3) smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3; #endif #ifdef HAVE_multi3 if (HAVE_multi3) smul_optab->handlers[(int) TImode].insn_code = CODE_FOR_multi3; #endif #ifdef HAVE_mulsf3 if (HAVE_mulsf3) smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3; #endif #ifdef HAVE_muldf3 if (HAVE_muldf3) smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3; #endif #ifdef HAVE_mulxf3 if (HAVE_mulxf3) smul_optab->handlers[(int) XFmode].insn_code = CODE_FOR_mulxf3; #endif #ifdef HAVE_multf3 if (HAVE_multf3) smul_optab->handlers[(int) TFmode].insn_code = CODE_FOR_multf3; #endif init_integral_libfuncs (smul_optab, "mul", '3'); init_floating_libfuncs (smul_optab, "mul", '3'); #ifdef MULSI3_LIBCALL smul_optab->handlers[(int) SImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL); #endif #ifdef MULDI3_LIBCALL smul_optab->handlers[(int) DImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL); #endif #ifdef MULTI3_LIBCALL smul_optab->handlers[(int) TImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL); #endif #ifdef HAVE_mulqihi3 if (HAVE_mulqihi3) smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3; #endif #ifdef HAVE_mulhisi3 if (HAVE_mulhisi3) smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3; #endif #ifdef HAVE_mulsidi3 if (HAVE_mulsidi3) smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3; #endif #ifdef HAVE_mulditi3 if (HAVE_mulditi3) smul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_mulditi3; #endif #ifdef HAVE_umulqihi3 if (HAVE_umulqihi3) umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3; #endif #ifdef HAVE_umulhisi3 if (HAVE_umulhisi3) umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3; #endif #ifdef HAVE_umulsidi3 if (HAVE_umulsidi3) umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3; #endif #ifdef HAVE_umulditi3 if (HAVE_umulditi3) umul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_umulditi3; #endif #ifdef HAVE_divqi3 if (HAVE_divqi3) sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3; #endif #ifdef HAVE_divhi3 if (HAVE_divhi3) sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3; #endif #ifdef HAVE_divpsi3 if (HAVE_divpsi3) sdiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_divpsi3; #endif #ifdef HAVE_divsi3 if (HAVE_divsi3) sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3; #endif #ifdef HAVE_divdi3 if (HAVE_divdi3) sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3; #endif #ifdef HAVE_divti3 if (HAVE_divti3) sdiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_divti3; #endif init_integral_libfuncs (sdiv_optab, "div", '3'); #ifdef DIVSI3_LIBCALL sdiv_optab->handlers[(int) SImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL); #endif #ifdef DIVDI3_LIBCALL sdiv_optab->handlers[(int) DImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL); #endif #ifdef DIVTI3_LIBCALL sdiv_optab->handlers[(int) TImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL); #endif #ifdef HAVE_udivqi3 if (HAVE_udivqi3) udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3; #endif #ifdef HAVE_udivhi3 if (HAVE_udivhi3) udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3; #endif #ifdef HAVE_udivpsi3 if (HAVE_udivpsi3) udiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_udivpsi3; #endif #ifdef HAVE_udivsi3 if (HAVE_udivsi3) udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3; #endif #ifdef HAVE_udivdi3 if (HAVE_udivdi3) udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3; #endif #ifdef HAVE_udivti3 if (HAVE_udivti3) udiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivti3; #endif init_integral_libfuncs (udiv_optab, "udiv", '3'); #ifdef UDIVSI3_LIBCALL udiv_optab->handlers[(int) SImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL); #endif #ifdef UDIVDI3_LIBCALL udiv_optab->handlers[(int) DImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL); #endif #ifdef UDIVTI3_LIBCALL udiv_optab->handlers[(int) TImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL); #endif #ifdef HAVE_divmodqi4 if (HAVE_divmodqi4) sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4; #endif #ifdef HAVE_divmodhi4 if (HAVE_divmodhi4) sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4; #endif #ifdef HAVE_divmodsi4 if (HAVE_divmodsi4) sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4; #endif #ifdef HAVE_divmoddi4 if (HAVE_divmoddi4) sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4; #endif #ifdef HAVE_divmodti4 if (HAVE_divmodti4) sdivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_divmodti4; #endif init_integral_libfuncs (sdivmod_optab, "divmod", '4'); #ifdef HAVE_udivmodqi4 if (HAVE_udivmodqi4) udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4; #endif #ifdef HAVE_udivmodhi4 if (HAVE_udivmodhi4) udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4; #endif #ifdef HAVE_udivmodsi4 if (HAVE_udivmodsi4) udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4; #endif #ifdef HAVE_udivmoddi4 if (HAVE_udivmoddi4) udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4; #endif #ifdef HAVE_udivmodti4 if (HAVE_udivmodti4) udivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivmodti4; #endif init_integral_libfuncs (udivmod_optab, "udivmod", '4'); #ifdef HAVE_modqi3 if (HAVE_modqi3) smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3; #endif #ifdef HAVE_modhi3 if (HAVE_modhi3) smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3; #endif #ifdef HAVE_modpsi3 if (HAVE_modpsi3) smod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_modpsi3; #endif #ifdef HAVE_modsi3 if (HAVE_modsi3) smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3; #endif #ifdef HAVE_moddi3 if (HAVE_moddi3) smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3; #endif #ifdef HAVE_modti3 if (HAVE_modti3) smod_optab->handlers[(int) TImode].insn_code = CODE_FOR_modti3; #endif init_integral_libfuncs (smod_optab, "mod", '3'); #ifdef MODSI3_LIBCALL smod_optab->handlers[(int) SImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL); #endif #ifdef MODDI3_LIBCALL smod_optab->handlers[(int) DImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL); #endif #ifdef MODTI3_LIBCALL smod_optab->handlers[(int) TImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL); #endif #ifdef HAVE_umodqi3 if (HAVE_umodqi3) umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3; #endif #ifdef HAVE_umodhi3 if (HAVE_umodhi3) umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3; #endif #ifdef HAVE_umodpsi3 if (HAVE_umodpsi3) umod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_umodpsi3; #endif #ifdef HAVE_umodsi3 if (HAVE_umodsi3) umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3; #endif #ifdef HAVE_umoddi3 if (HAVE_umoddi3) umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3; #endif #ifdef HAVE_umodti3 if (HAVE_umodti3) umod_optab->handlers[(int) TImode].insn_code = CODE_FOR_umodti3; #endif init_integral_libfuncs (umod_optab, "umod", '3'); #ifdef UMODSI3_LIBCALL umod_optab->handlers[(int) SImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL); #endif #ifdef UMODDI3_LIBCALL umod_optab->handlers[(int) DImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL); #endif #ifdef UMODTI3_LIBCALL umod_optab->handlers[(int) TImode].libfunc = gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL); #endif #ifdef HAVE_divsf3 if (HAVE_divsf3) flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3; #endif #ifdef HAVE_divdf3 if (HAVE_divdf3) flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3; #endif #ifdef HAVE_divxf3 if (HAVE_divxf3) flodiv_optab->handlers[(int) XFmode].insn_code = CODE_FOR_divxf3; #endif #ifdef HAVE_divtf3 if (HAVE_divtf3) flodiv_optab->handlers[(int) TFmode].insn_code = CODE_FOR_divtf3; #endif init_floating_libfuncs (flodiv_optab, "div", '3'); #ifdef HAVE_ftruncsf2 if (HAVE_ftruncsf2) ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2; #endif #ifdef HAVE_ftruncdf2 if (HAVE_ftruncdf2) ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2; #endif #ifdef HAVE_ftruncxf2 if (HAVE_ftruncxf2) ftrunc_optab->handlers[(int) XFmode].insn_code = CODE_FOR_ftruncxf2; #endif #ifdef HAVE_ftrunctf2 if (HAVE_ftrunctf2) ftrunc_optab->handlers[(int) TFmode].insn_code = CODE_FOR_ftrunctf2; #endif init_floating_libfuncs (ftrunc_optab, "ftrunc", '2'); #ifdef HAVE_andqi3 if (HAVE_andqi3) and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3; #endif #ifdef HAVE_andhi3 if (HAVE_andhi3) and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3; #endif #ifdef HAVE_andpsi3 if (HAVE_andpsi3) and_optab->handlers[(int) PSImode].insn_code = CODE_FOR_andpsi3; #endif #ifdef HAVE_andsi3 if (HAVE_andsi3) and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3; #endif #ifdef HAVE_anddi3 if (HAVE_anddi3) and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3; #endif #ifdef HAVE_andti3 if (HAVE_andti3) and_optab->handlers[(int) TImode].insn_code = CODE_FOR_andti3; #endif init_integral_libfuncs (and_optab, "and", '3'); #ifdef HAVE_iorqi3 if (HAVE_iorqi3) ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3; #endif #ifdef HAVE_iorhi3 if (HAVE_iorhi3) ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3; #endif #ifdef HAVE_iorpsi3 if (HAVE_iorpsi3) ior_optab->handlers[(int) PSImode].insn_code = CODE_FOR_iorpsi3; #endif #ifdef HAVE_iorsi3 if (HAVE_iorsi3) ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3; #endif #ifdef HAVE_iordi3 if (HAVE_iordi3) ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3; #endif #ifdef HAVE_iorti3 if (HAVE_iorti3) ior_optab->handlers[(int) TImode].insn_code = CODE_FOR_iorti3; #endif init_integral_libfuncs (ior_optab, "ior", '3'); #ifdef HAVE_xorqi3 if (HAVE_xorqi3) xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3; #endif #ifdef HAVE_xorhi3 if (HAVE_xorhi3) xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3; #endif #ifdef HAVE_xorpsi3 if (HAVE_xorpsi3) xor_optab->handlers[(int) PSImode].insn_code = CODE_FOR_xorpsi3; #endif #ifdef HAVE_xorsi3 if (HAVE_xorsi3) xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3; #endif #ifdef HAVE_xordi3 if (HAVE_xordi3) xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3; #endif #ifdef HAVE_xorti3 if (HAVE_xorti3) xor_optab->handlers[(int) TImode].insn_code = CODE_FOR_xorti3; #endif init_integral_libfuncs (xor_optab, "xor", '3'); #ifdef HAVE_ashlqi3 if (HAVE_ashlqi3) ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3; #endif #ifdef HAVE_ashlhi3 if (HAVE_ashlhi3) ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3; #endif #ifdef HAVE_ashlpsi3 if (HAVE_ashlpsi3) ashl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashlpsi3; #endif #ifdef HAVE_ashlsi3 if (HAVE_ashlsi3) ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3; #endif #ifdef HAVE_ashldi3 if (HAVE_ashldi3) ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3; #endif #ifdef HAVE_ashlti3 if (HAVE_ashlti3) ashl_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashlti3; #endif init_integral_libfuncs (ashl_optab, "ashl", '3'); #ifdef HAVE_ashrqi3 if (HAVE_ashrqi3) ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3; #endif #ifdef HAVE_ashrhi3 if (HAVE_ashrhi3) ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3; #endif #ifdef HAVE_ashrpsi3 if (HAVE_ashrpsi3) ashr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashrpsi3; #endif #ifdef HAVE_ashrsi3 if (HAVE_ashrsi3) ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3; #endif #ifdef HAVE_ashrdi3 if (HAVE_ashrdi3) ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3; #endif #ifdef HAVE_ashrti3 if (HAVE_ashrti3) ashr_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashrti3; #endif init_integral_libfuncs (ashr_optab, "ashr", '3'); #ifdef HAVE_lshlqi3 if (HAVE_lshlqi3) lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3; #endif #ifdef HAVE_lshlhi3 if (HAVE_lshlhi3) lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3; #endif #ifdef HAVE_lshlpsi3 if (HAVE_lshlpsi3) lshl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshlpsi3; #endif #ifdef HAVE_lshlsi3 if (HAVE_lshlsi3) lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3; #endif #ifdef HAVE_lshldi3 if (HAVE_lshldi3) lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3; #endif #ifdef HAVE_lshlti3 if (HAVE_lshlti3) lshl_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshlti3; #endif init_integral_libfuncs (lshl_optab, "lshl", '3'); #ifdef HAVE_lshrqi3 if (HAVE_lshrqi3) lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3; #endif #ifdef HAVE_lshrhi3 if (HAVE_lshrhi3) lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3; #endif #ifdef HAVE_lshrpsi3 if (HAVE_lshrpsi3) lshr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshrpsi3; #endif #ifdef HAVE_lshrsi3 if (HAVE_lshrsi3) lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3; #endif #ifdef HAVE_lshrdi3 if (HAVE_lshrdi3) lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3; #endif #ifdef HAVE_lshrti3 if (HAVE_lshrti3) lshr_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshrti3; #endif init_integral_libfuncs (lshr_optab, "lshr", '3'); #ifdef HAVE_rotlqi3 if (HAVE_rotlqi3) rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3; #endif #ifdef HAVE_rotlhi3 if (HAVE_rotlhi3) rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3; #endif #ifdef HAVE_rotlpsi3 if (HAVE_rotlpsi3) rotl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotlpsi3; #endif #ifdef HAVE_rotlsi3 if (HAVE_rotlsi3) rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3; #endif #ifdef HAVE_rotldi3 if (HAVE_rotldi3) rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3; #endif #ifdef HAVE_rotlti3 if (HAVE_rotlti3) rotl_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotlti3; #endif init_integral_libfuncs (rotl_optab, "rotl", '3'); #ifdef HAVE_rotrqi3 if (HAVE_rotrqi3) rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3; #endif #ifdef HAVE_rotrhi3 if (HAVE_rotrhi3) rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3; #endif #ifdef HAVE_rotrpsi3 if (HAVE_rotrpsi3) rotr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotrpsi3; #endif #ifdef HAVE_rotrsi3 if (HAVE_rotrsi3) rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3; #endif #ifdef HAVE_rotrdi3 if (HAVE_rotrdi3) rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3; #endif #ifdef HAVE_rotrti3 if (HAVE_rotrti3) rotr_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotrti3; #endif init_integral_libfuncs (rotr_optab, "rotr", '3'); #ifdef HAVE_sminqi3 if (HAVE_sminqi3) smin_optab->handlers[(int) QImode].insn_code = CODE_FOR_sminqi3; #endif #ifdef HAVE_sminhi3 if (HAVE_sminhi3) smin_optab->handlers[(int) HImode].insn_code = CODE_FOR_sminhi3; #endif #ifdef HAVE_sminsi3 if (HAVE_sminsi3) smin_optab->handlers[(int) SImode].insn_code = CODE_FOR_sminsi3; #endif #ifdef HAVE_smindi3 if (HAVE_smindi3) smin_optab->handlers[(int) DImode].insn_code = CODE_FOR_smindi3; #endif #ifdef HAVE_sminti3 if (HAVE_sminti3) smin_optab->handlers[(int) TImode].insn_code = CODE_FOR_sminti3; #endif #ifdef HAVE_minsf3 if (HAVE_minsf3) smin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_minsf3; #endif #ifdef HAVE_mindf3 if (HAVE_mindf3) smin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_mindf3; #endif #ifdef HAVE_minxf3 if (HAVE_minxf3) smin_optab->handlers[(int) XFmode].insn_code = CODE_FOR_minxf3; #endif #ifdef HAVE_mintf3 if (HAVE_mintf3) smin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_mintf3; #endif init_integral_libfuncs (smin_optab, "min", '3'); init_floating_libfuncs (smin_optab, "min", '3'); #ifdef HAVE_smaxqi3 if (HAVE_smaxqi3) smax_optab->handlers[(int) QImode].insn_code = CODE_FOR_smaxqi3; #endif #ifdef HAVE_smaxhi3 if (HAVE_smaxhi3) smax_optab->handlers[(int) HImode].insn_code = CODE_FOR_smaxhi3; #endif #ifdef HAVE_smaxsi3 if (HAVE_smaxsi3) smax_optab->handlers[(int) SImode].insn_code = CODE_FOR_smaxsi3; #endif #ifdef HAVE_smaxdi3 if (HAVE_smaxdi3) smax_optab->handlers[(int) DImode].insn_code = CODE_FOR_smaxdi3; #endif #ifdef HAVE_smaxti3 if (HAVE_smaxti3) smax_optab->handlers[(int) TImode].insn_code = CODE_FOR_smaxti3; #endif #ifdef HAVE_maxsf3 if (HAVE_maxsf3) smax_optab->handlers[(int) SFmode].insn_code = CODE_FOR_maxsf3; #endif #ifdef HAVE_maxdf3 if (HAVE_maxdf3) smax_optab->handlers[(int) DFmode].insn_code = CODE_FOR_maxdf3; #endif #ifdef HAVE_maxxf3 if (HAVE_maxxf3) smax_optab->handlers[(int) XFmode].insn_code = CODE_FOR_maxxf3; #endif #ifdef HAVE_maxtf3 if (HAVE_maxtf3) smax_optab->handlers[(int) TFmode].insn_code = CODE_FOR_maxtf3; #endif init_integral_libfuncs (smax_optab, "max", '3'); init_floating_libfuncs (smax_optab, "max", '3'); #ifdef HAVE_uminqi3 if (HAVE_uminqi3) umin_optab->handlers[(int) QImode].insn_code = CODE_FOR_uminqi3; #endif #ifdef HAVE_uminhi3 if (HAVE_uminhi3) umin_optab->handlers[(int) HImode].insn_code = CODE_FOR_uminhi3; #endif #ifdef HAVE_uminsi3 if (HAVE_uminsi3) umin_optab->handlers[(int) SImode].insn_code = CODE_FOR_uminsi3; #endif #ifdef HAVE_umindi3 if (HAVE_umindi3) umin_optab->handlers[(int) DImode].insn_code = CODE_FOR_umindi3; #endif #ifdef HAVE_uminti3 if (HAVE_uminti3) umin_optab->handlers[(int) TImode].insn_code = CODE_FOR_uminti3; #endif init_integral_libfuncs (umin_optab, "umin", '3'); #ifdef HAVE_umaxqi3 if (HAVE_umaxqi3) umax_optab->handlers[(int) QImode].insn_code = CODE_FOR_umaxqi3; #endif #ifdef HAVE_umaxhi3 if (HAVE_umaxhi3) umax_optab->handlers[(int) HImode].insn_code = CODE_FOR_umaxhi3; #endif #ifdef HAVE_umaxsi3 if (HAVE_umaxsi3) umax_optab->handlers[(int) SImode].insn_code = CODE_FOR_umaxsi3; #endif #ifdef HAVE_umaxdi3 if (HAVE_umaxdi3) umax_optab->handlers[(int) DImode].insn_code = CODE_FOR_umaxdi3; #endif #ifdef HAVE_umaxti3 if (HAVE_umaxti3) umax_optab->handlers[(int) TImode].insn_code = CODE_FOR_umaxti3; #endif init_integral_libfuncs (umax_optab, "umax", '3'); #ifdef HAVE_negqi2 if (HAVE_negqi2) neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2; #endif #ifdef HAVE_neghi2 if (HAVE_neghi2) neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2; #endif #ifdef HAVE_negpsi2 if (HAVE_negpsi2) neg_optab->handlers[(int) PSImode].insn_code = CODE_FOR_negpsi2; #endif #ifdef HAVE_negsi2 if (HAVE_negsi2) neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2; #endif #ifdef HAVE_negdi2 if (HAVE_negdi2) neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2; #endif #ifdef HAVE_negti2 if (HAVE_negti2) neg_optab->handlers[(int) TImode].insn_code = CODE_FOR_negti2; #endif #ifdef HAVE_negsf2 if (HAVE_negsf2) neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2; #endif #ifdef HAVE_negdf2 if (HAVE_negdf2) neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2; #endif #ifdef HAVE_negxf2 if (HAVE_negxf2) neg_optab->handlers[(int) XFmode].insn_code = CODE_FOR_negxf2; #endif #ifdef HAVE_negtf2 if (HAVE_negtf2) neg_optab->handlers[(int) TFmode].insn_code = CODE_FOR_negtf2; #endif init_integral_libfuncs (neg_optab, "neg", '2'); init_floating_libfuncs (neg_optab, "neg", '2'); #ifdef HAVE_absqi2 if (HAVE_absqi2) abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2; #endif #ifdef HAVE_abshi2 if (HAVE_abshi2) abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2; #endif #ifdef HAVE_abspsi2 if (HAVE_abspsi2) abs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_abspsi2; #endif #ifdef HAVE_abssi2 if (HAVE_abssi2) abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2; #endif #ifdef HAVE_absdi2 if (HAVE_absdi2) abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2; #endif #ifdef HAVE_absti2 if (HAVE_absti2) abs_optab->handlers[(int) TImode].insn_code = CODE_FOR_absti2; #endif #ifdef HAVE_abssf2 if (HAVE_abssf2) abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2; #endif #ifdef HAVE_absdf2 if (HAVE_absdf2) abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2; #endif #ifdef HAVE_absxf2 if (HAVE_absxf2) abs_optab->handlers[(int) XFmode].insn_code = CODE_FOR_absxf2; #endif #ifdef HAVE_abstf2 if (HAVE_abstf2) abs_optab->handlers[(int) TFmode].insn_code = CODE_FOR_abstf2; #endif /* No library calls here! If there is no abs instruction, expand_expr will generate a conditional negation. */ #ifdef HAVE_sqrtqi2 if (HAVE_sqrtqi2) sqrt_optab->handlers[(int) QImode].insn_code = CODE_FOR_sqrtqi2; #endif #ifdef HAVE_sqrthi2 if (HAVE_sqrthi2) sqrt_optab->handlers[(int) HImode].insn_code = CODE_FOR_sqrthi2; #endif #ifdef HAVE_sqrtpsi2 if (HAVE_sqrtpsi2) sqrt_optab->handlers[(int) PSImode].insn_code = CODE_FOR_sqrtpsi2; #endif #ifdef HAVE_sqrtsi2 if (HAVE_sqrtsi2) sqrt_optab->handlers[(int) SImode].insn_code = CODE_FOR_sqrtsi2; #endif #ifdef HAVE_sqrtdi2 if (HAVE_sqrtdi2) sqrt_optab->handlers[(int) DImode].insn_code = CODE_FOR_sqrtdi2; #endif #ifdef HAVE_sqrtti2 if (HAVE_sqrtti2) sqrt_optab->handlers[(int) TImode].insn_code = CODE_FOR_sqrtti2; #endif #ifdef HAVE_sqrtsf2 if (HAVE_sqrtsf2) sqrt_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sqrtsf2; #endif #ifdef HAVE_sqrtdf2 if (HAVE_sqrtdf2) sqrt_optab->handlers[(int) DFmode].insn_code = CODE_FOR_sqrtdf2; #endif #ifdef HAVE_sqrttf2 if (HAVE_sqrttf2) sqrt_optab->handlers[(int) TFmode].insn_code = CODE_FOR_sqrttf2; #endif /* No library calls here! If there is no sqrt instruction expand_builtin should force the library call. */ #ifdef HAVE_strlenqi if (HAVE_strlenqi) strlen_optab->handlers[(int) QImode].insn_code = CODE_FOR_strlenqi; #endif #ifdef HAVE_strlenhi if (HAVE_strlenhi) strlen_optab->handlers[(int) HImode].insn_code = CODE_FOR_strlenhi; #endif #ifdef HAVE_strlenpsi if (HAVE_strlenpsi) strlen_optab->handlers[(int) PSImode].insn_code = CODE_FOR_strlenpsi; #endif #ifdef HAVE_strlensi if (HAVE_strlensi) strlen_optab->handlers[(int) SImode].insn_code = CODE_FOR_strlensi; #endif #ifdef HAVE_strlendi if (HAVE_strlendi) strlen_optab->handlers[(int) DImode].insn_code = CODE_FOR_strlendi; #endif #ifdef HAVE_strlenti if (HAVE_strlenti) strlen_optab->handlers[(int) TImode].insn_code = CODE_FOR_strlenti; #endif /* No library calls here! If there is no strlen instruction expand_builtin should force the library call. */ #ifdef HAVE_one_cmplqi2 if (HAVE_one_cmplqi2) one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2; #endif #ifdef HAVE_one_cmplhi2 if (HAVE_one_cmplhi2) one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2; #endif #ifdef HAVE_one_cmplpsi2 if (HAVE_one_cmplpsi2) one_cmpl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_one_cmplpsi2; #endif #ifdef HAVE_one_cmplsi2 if (HAVE_one_cmplsi2) one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2; #endif #ifdef HAVE_one_cmpldi2 if (HAVE_one_cmpldi2) one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2; #endif #ifdef HAVE_one_cmplti2 if (HAVE_one_cmplti2) one_cmpl_optab->handlers[(int) TImode].insn_code = CODE_FOR_one_cmplti2; #endif init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2'); #ifdef HAVE_ffsqi2 if (HAVE_ffsqi2) ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2; #endif #ifdef HAVE_ffshi2 if (HAVE_ffshi2) ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2; #endif #ifdef HAVE_ffspsi2 if (HAVE_ffspsi2) ffs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ffspsi2; #endif #ifdef HAVE_ffssi2 if (HAVE_ffssi2) ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2; #endif #ifdef HAVE_ffsdi2 if (HAVE_ffsdi2) ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2; #endif #ifdef HAVE_ffsti2 if (HAVE_ffsti2) ffs_optab->handlers[(int) TImode].insn_code = CODE_FOR_ffsti2; #endif init_integral_libfuncs (ffs_optab, "ffs", '2'); #ifdef HAVE_movqi if (HAVE_movqi) mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi; #endif #ifdef HAVE_movhi if (HAVE_movhi) mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi; #endif #ifdef HAVE_movpsi if (HAVE_movpsi) mov_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movpsi; #endif #ifdef HAVE_movsi if (HAVE_movsi) mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi; #endif #ifdef HAVE_movdi if (HAVE_movdi) mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi; #endif #ifdef HAVE_movti if (HAVE_movti) mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti; #endif #ifdef HAVE_movsf if (HAVE_movsf) mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf; #endif #ifdef HAVE_movdf if (HAVE_movdf) mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf; #endif #ifdef HAVE_movxf if (HAVE_movxf) mov_optab->handlers[(int) XFmode].insn_code = CODE_FOR_movxf; #endif #ifdef HAVE_movtf if (HAVE_movtf) mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf; #endif #ifdef HAVE_movcc if (HAVE_movcc) mov_optab->handlers[(int) CCmode].insn_code = CODE_FOR_movcc; #endif #ifdef EXTRA_CC_MODES init_mov_optab (); #endif #ifdef HAVE_movstrictqi if (HAVE_movstrictqi) movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi; #endif #ifdef HAVE_movstricthi if (HAVE_movstricthi) movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi; #endif #ifdef HAVE_movstrictpsi if (HAVE_movstrictpsi) movstrict_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movstrictpsi; #endif #ifdef HAVE_movstrictsi if (HAVE_movstrictsi) movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi; #endif #ifdef HAVE_movstrictdi if (HAVE_movstrictdi) movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi; #endif #ifdef HAVE_movstrictti if (HAVE_movstrictti) movstrict_optab->handlers[(int) TImode].insn_code = CODE_FOR_movstrictti; #endif #ifdef HAVE_cmpqi if (HAVE_cmpqi) cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi; #endif #ifdef HAVE_cmphi if (HAVE_cmphi) cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi; #endif #ifdef HAVE_cmppsi if (HAVE_cmppsi) cmp_optab->handlers[(int) PSImode].insn_code = CODE_FOR_cmppsi; #endif #ifdef HAVE_cmpsi if (HAVE_cmpsi) cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi; #endif #ifdef HAVE_cmpdi if (HAVE_cmpdi) cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi; #endif #ifdef HAVE_cmpti if (HAVE_cmpti) cmp_optab->handlers[(int) TImode].insn_code = CODE_FOR_cmpti; #endif #ifdef HAVE_cmpsf if (HAVE_cmpsf) cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf; #endif #ifdef HAVE_cmpdf if (HAVE_cmpdf) cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf; #endif #ifdef HAVE_cmpxf if (HAVE_cmpxf) cmp_optab->handlers[(int) XFmode].insn_code = CODE_FOR_cmpxf; #endif #ifdef HAVE_cmptf if (HAVE_cmptf) cmp_optab->handlers[(int) TFmode].insn_code = CODE_FOR_cmptf; #endif /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */ init_integral_libfuncs (cmp_optab, "cmp", '2'); init_integral_libfuncs (ucmp_optab, "ucmp", '2'); init_floating_libfuncs (cmp_optab, "cmp", '2'); #ifdef HAVE_tstqi if (HAVE_tstqi) tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi; #endif #ifdef HAVE_tsthi if (HAVE_tsthi) tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi; #endif #ifdef HAVE_tstpsi if (HAVE_tstpsi) tst_optab->handlers[(int) PSImode].insn_code = CODE_FOR_tstpsi; #endif #ifdef HAVE_tstsi if (HAVE_tstsi) tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi; #endif #ifdef HAVE_tstdi if (HAVE_tstdi) tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi; #endif #ifdef HAVE_tstti if (HAVE_tstti) tst_optab->handlers[(int) TImode].insn_code = CODE_FOR_tstti; #endif #ifdef HAVE_tstsf if (HAVE_tstsf) tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf; #endif #ifdef HAVE_tstdf if (HAVE_tstdf) tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf; #endif #ifdef HAVE_tstxf if (HAVE_tstxf) tst_optab->handlers[(int) XFmode].insn_code = CODE_FOR_tstxf; #endif #ifdef HAVE_tsttf if (HAVE_tsttf) tst_optab->handlers[(int) TFmode].insn_code = CODE_FOR_tsttf; #endif #ifdef HAVE_beq if (HAVE_beq) bcc_gen_fctn[(int) EQ] = gen_beq; #endif #ifdef HAVE_bne if (HAVE_bne) bcc_gen_fctn[(int) NE] = gen_bne; #endif #ifdef HAVE_bgt if (HAVE_bgt) bcc_gen_fctn[(int) GT] = gen_bgt; #endif #ifdef HAVE_bge if (HAVE_bge) bcc_gen_fctn[(int) GE] = gen_bge; #endif #ifdef HAVE_bgtu if (HAVE_bgtu) bcc_gen_fctn[(int) GTU] = gen_bgtu; #endif #ifdef HAVE_bgeu if (HAVE_bgeu) bcc_gen_fctn[(int) GEU] = gen_bgeu; #endif #ifdef HAVE_blt if (HAVE_blt) bcc_gen_fctn[(int) LT] = gen_blt; #endif #ifdef HAVE_ble if (HAVE_ble) bcc_gen_fctn[(int) LE] = gen_ble; #endif #ifdef HAVE_bltu if (HAVE_bltu) bcc_gen_fctn[(int) LTU] = gen_bltu; #endif #ifdef HAVE_bleu if (HAVE_bleu) bcc_gen_fctn[(int) LEU] = gen_bleu; #endif for (i = 0; i < NUM_RTX_CODE; i++) setcc_gen_code[i] = CODE_FOR_nothing; #ifdef HAVE_seq if (HAVE_seq) setcc_gen_code[(int) EQ] = CODE_FOR_seq; #endif #ifdef HAVE_sne if (HAVE_sne) setcc_gen_code[(int) NE] = CODE_FOR_sne; #endif #ifdef HAVE_sgt if (HAVE_sgt) setcc_gen_code[(int) GT] = CODE_FOR_sgt; #endif #ifdef HAVE_sge if (HAVE_sge) setcc_gen_code[(int) GE] = CODE_FOR_sge; #endif #ifdef HAVE_sgtu if (HAVE_sgtu) setcc_gen_code[(int) GTU] = CODE_FOR_sgtu; #endif #ifdef HAVE_sgeu if (HAVE_sgeu) setcc_gen_code[(int) GEU] = CODE_FOR_sgeu; #endif #ifdef HAVE_slt if (HAVE_slt) setcc_gen_code[(int) LT] = CODE_FOR_slt; #endif #ifdef HAVE_sle if (HAVE_sle) setcc_gen_code[(int) LE] = CODE_FOR_sle; #endif #ifdef HAVE_sltu if (HAVE_sltu) setcc_gen_code[(int) LTU] = CODE_FOR_sltu; #endif #ifdef HAVE_sleu if (HAVE_sleu) setcc_gen_code[(int) LEU] = CODE_FOR_sleu; #endif extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2"); extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2"); extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2"); extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2"); extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2"); truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2"); truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2"); trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2"); truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2"); trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2"); memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy"); bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy"); memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp"); bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcmp"); memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset"); bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero"); eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2"); nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2"); gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2"); gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2"); ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2"); lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2"); eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2"); nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2"); gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2"); gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2"); ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2"); ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2"); eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2"); nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2"); gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2"); gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2"); ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2"); lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2"); eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2"); netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2"); gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2"); getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2"); lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2"); letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2"); floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf"); floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf"); floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf"); floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf"); floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf"); floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf"); floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf"); floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf"); floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf"); floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf"); floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf"); floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf"); fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi"); fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi"); fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti"); fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi"); fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi"); fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti"); fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi"); fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi"); fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti"); fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi"); fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi"); fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti"); fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi"); fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi"); fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti"); fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi"); fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi"); fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti"); fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi"); fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi"); fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti"); fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi"); fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi"); fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti"); } #ifdef BROKEN_LDEXP /* SCO 3.2 apparently has a broken ldexp. */ double ldexp(x,n) double x; int n; { if (n > 0) while (n--) x *= 2; return x; } #endif /* BROKEN_LDEXP */