/* Definitions for code generation pass of GNU compiler. Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_OPTABS_H #define GCC_OPTABS_H #include "insn-codes.h" /* Optabs are tables saying how to generate insn bodies for various machine modes and numbers of operands. Each optab applies to one operation. For example, add_optab applies to addition. The `lib_call' slot is the name of the library function that can be used to perform the operation. A few optabs, such as move_optab, are used by special code. */ struct optab_handlers { /* I - CODE_FOR_nothing, where I is either the insn code of the associated insn generator or CODE_FOR_nothing if there is no such insn on the target machine. */ int insn_code; }; struct widening_optab_handlers { struct optab_handlers handlers[NUM_MACHINE_MODES][NUM_MACHINE_MODES]; }; struct optab_d { enum rtx_code code; char libcall_suffix; const char *libcall_basename; void (*libcall_gen)(struct optab_d *, const char *name, char suffix, enum machine_mode); struct optab_handlers handlers[NUM_MACHINE_MODES]; struct widening_optab_handlers *widening; }; typedef struct optab_d * optab; /* A convert_optab is for some sort of conversion operation between modes. The first array index is the destination mode, the second is the source mode. */ struct convert_optab_d { enum rtx_code code; const char *libcall_basename; void (*libcall_gen)(struct convert_optab_d *, const char *name, enum machine_mode, enum machine_mode); struct optab_handlers handlers[NUM_MACHINE_MODES][NUM_MACHINE_MODES]; }; typedef struct convert_optab_d *convert_optab; /* Given an enum insn_code, access the function to construct the body of that kind of insn. */ #define GEN_FCN(CODE) (insn_data[CODE].genfun) /* Enumeration of valid indexes into optab_table. */ enum optab_index { /* Fixed-point operators with signed/unsigned saturation */ OTI_ssadd, OTI_usadd, OTI_sssub, OTI_ussub, OTI_ssmul, OTI_usmul, OTI_ssdiv, OTI_usdiv, OTI_ssneg, OTI_usneg, OTI_ssashl, OTI_usashl, OTI_add, OTI_addv, OTI_sub, OTI_subv, /* Signed and fp multiply */ OTI_smul, OTI_smulv, /* Signed multiply, return high word */ OTI_smul_highpart, OTI_umul_highpart, /* Signed multiply with result one machine mode wider than args */ OTI_smul_widen, OTI_umul_widen, /* Widening multiply of one unsigned and one signed operand. */ OTI_usmul_widen, /* Signed multiply and add with the result and addend one machine mode wider than the multiplicand and multiplier. */ OTI_smadd_widen, /* Unsigned multiply and add with the result and addend one machine mode wider than the multiplicand and multiplier. */ OTI_umadd_widen, /* Signed multiply and add with the result and addend one machine mode wider than the multiplicand and multiplier. All involved operations are saturating. */ OTI_ssmadd_widen, /* Unsigned multiply and add with the result and addend one machine mode wider than the multiplicand and multiplier. All involved operations are saturating. */ OTI_usmadd_widen, /* Signed multiply and subtract the result and minuend one machine mode wider than the multiplicand and multiplier. */ OTI_smsub_widen, /* Unsigned multiply and subtract the result and minuend one machine mode wider than the multiplicand and multiplier. */ OTI_umsub_widen, /* Signed multiply and subtract the result and minuend one machine mode wider than the multiplicand and multiplier. All involved operations are saturating. */ OTI_ssmsub_widen, /* Unsigned multiply and subtract the result and minuend one machine mode wider than the multiplicand and multiplier. All involved operations are saturating. */ OTI_usmsub_widen, /* Signed divide */ OTI_sdiv, OTI_sdivv, /* Signed divide-and-remainder in one */ OTI_sdivmod, OTI_udiv, OTI_udivmod, /* Signed remainder */ OTI_smod, OTI_umod, /* Floating point remainder functions */ OTI_fmod, OTI_remainder, /* Convert float to integer in float fmt */ OTI_ftrunc, /* Logical and */ OTI_and, /* Logical or */ OTI_ior, /* Logical xor */ OTI_xor, /* Arithmetic shift left */ OTI_ashl, /* Logical shift right */ OTI_lshr, /* Arithmetic shift right */ OTI_ashr, /* Rotate left */ OTI_rotl, /* Rotate right */ OTI_rotr, /* Arithmetic shift left of vector by vector */ OTI_vashl, /* Logical shift right of vector by vector */ OTI_vlshr, /* Arithmetic shift right of vector by vector */ OTI_vashr, /* Rotate left of vector by vector */ OTI_vrotl, /* Rotate right of vector by vector */ OTI_vrotr, /* Signed and floating-point minimum value */ OTI_smin, /* Signed and floating-point maximum value */ OTI_smax, /* Unsigned minimum value */ OTI_umin, /* Unsigned maximum value */ OTI_umax, /* Power */ OTI_pow, /* Arc tangent of y/x */ OTI_atan2, /* Floating multiply/add */ OTI_fma, OTI_fms, OTI_fnma, OTI_fnms, /* Move instruction. */ OTI_mov, /* Move, preserving high part of register. */ OTI_movstrict, /* Move, with a misaligned memory. */ OTI_movmisalign, /* Nontemporal store. */ OTI_storent, /* Unary operations */ /* Negation */ OTI_neg, OTI_negv, /* Abs value */ OTI_abs, OTI_absv, /* Byteswap */ OTI_bswap, /* Bitwise not */ OTI_one_cmpl, /* Bit scanning and counting */ OTI_ffs, OTI_clz, OTI_ctz, OTI_clrsb, OTI_popcount, OTI_parity, /* Square root */ OTI_sqrt, /* Sine-Cosine */ OTI_sincos, /* Sine */ OTI_sin, /* Inverse sine */ OTI_asin, /* Cosine */ OTI_cos, /* Inverse cosine */ OTI_acos, /* Exponential */ OTI_exp, /* Base-10 Exponential */ OTI_exp10, /* Base-2 Exponential */ OTI_exp2, /* Exponential - 1*/ OTI_expm1, /* Load exponent of a floating point number */ OTI_ldexp, /* Multiply floating-point number by integral power of radix */ OTI_scalb, /* Mantissa of a floating-point number */ OTI_significand, /* Radix-independent exponent */ OTI_logb, OTI_ilogb, /* Natural Logarithm */ OTI_log, /* Base-10 Logarithm */ OTI_log10, /* Base-2 Logarithm */ OTI_log2, /* logarithm of 1 plus argument */ OTI_log1p, /* Rounding functions */ OTI_floor, OTI_ceil, OTI_btrunc, OTI_round, OTI_nearbyint, OTI_rint, /* Tangent */ OTI_tan, /* Inverse tangent */ OTI_atan, /* Copy sign */ OTI_copysign, /* Signbit */ OTI_signbit, /* Test for infinite value */ OTI_isinf, /* Compare insn; two operands. Used only for libcalls. */ OTI_cmp, OTI_ucmp, /* Floating point comparison optabs - used primarily for libfuncs */ OTI_eq, OTI_ne, OTI_gt, OTI_ge, OTI_lt, OTI_le, OTI_unord, /* String length */ OTI_strlen, /* Combined compare & jump/move/store flags/trap operations. */ OTI_cbranch, OTI_cmov, OTI_cstore, OTI_ctrap, /* Push instruction. */ OTI_push, /* Conditional add instruction. */ OTI_addcc, /* Reduction operations on a vector operand. */ OTI_reduc_smax, OTI_reduc_umax, OTI_reduc_smin, OTI_reduc_umin, OTI_reduc_splus, OTI_reduc_uplus, /* Summation, with result machine mode one or more wider than args. */ OTI_ssum_widen, OTI_usum_widen, /* Dot product, with result machine mode one or more wider than args. */ OTI_sdot_prod, OTI_udot_prod, /* Set specified field of vector operand. */ OTI_vec_set, /* Extract specified field of vector operand. */ OTI_vec_extract, /* Extract even/odd fields of vector operands. */ OTI_vec_extract_even, OTI_vec_extract_odd, /* Interleave fields of vector operands. */ OTI_vec_interleave_high, OTI_vec_interleave_low, /* Initialize vector operand. */ OTI_vec_init, /* Whole vector shift. The shift amount is in bits. */ OTI_vec_shl, OTI_vec_shr, /* Extract specified elements from vectors, for vector load. */ OTI_vec_realign_load, /* Widening multiplication. The high/low part of the resulting vector of products is returned. */ OTI_vec_widen_umult_hi, OTI_vec_widen_umult_lo, OTI_vec_widen_smult_hi, OTI_vec_widen_smult_lo, /* Extract and widen the high/low part of a vector of signed or floating point elements. */ OTI_vec_unpacks_hi, OTI_vec_unpacks_lo, /* Extract and widen the high/low part of a vector of unsigned elements. */ OTI_vec_unpacku_hi, OTI_vec_unpacku_lo, /* Extract, convert to floating point and widen the high/low part of a vector of signed or unsigned integer elements. */ OTI_vec_unpacks_float_hi, OTI_vec_unpacks_float_lo, OTI_vec_unpacku_float_hi, OTI_vec_unpacku_float_lo, /* Narrow (demote) and merge the elements of two vectors. */ OTI_vec_pack_trunc, OTI_vec_pack_usat, OTI_vec_pack_ssat, /* Convert to signed/unsigned integer, narrow and merge elements of two vectors of floating point elements. */ OTI_vec_pack_sfix_trunc, OTI_vec_pack_ufix_trunc, /* Perform a raise to the power of integer. */ OTI_powi, OTI_MAX }; #define ssadd_optab (&optab_table[OTI_ssadd]) #define usadd_optab (&optab_table[OTI_usadd]) #define sssub_optab (&optab_table[OTI_sssub]) #define ussub_optab (&optab_table[OTI_ussub]) #define ssmul_optab (&optab_table[OTI_ssmul]) #define usmul_optab (&optab_table[OTI_usmul]) #define ssdiv_optab (&optab_table[OTI_ssdiv]) #define usdiv_optab (&optab_table[OTI_usdiv]) #define ssneg_optab (&optab_table[OTI_ssneg]) #define usneg_optab (&optab_table[OTI_usneg]) #define ssashl_optab (&optab_table[OTI_ssashl]) #define usashl_optab (&optab_table[OTI_usashl]) #define add_optab (&optab_table[OTI_add]) #define sub_optab (&optab_table[OTI_sub]) #define smul_optab (&optab_table[OTI_smul]) #define addv_optab (&optab_table[OTI_addv]) #define subv_optab (&optab_table[OTI_subv]) #define smul_highpart_optab (&optab_table[OTI_smul_highpart]) #define umul_highpart_optab (&optab_table[OTI_umul_highpart]) #define smul_widen_optab (&optab_table[OTI_smul_widen]) #define umul_widen_optab (&optab_table[OTI_umul_widen]) #define usmul_widen_optab (&optab_table[OTI_usmul_widen]) #define smadd_widen_optab (&optab_table[OTI_smadd_widen]) #define umadd_widen_optab (&optab_table[OTI_umadd_widen]) #define ssmadd_widen_optab (&optab_table[OTI_ssmadd_widen]) #define usmadd_widen_optab (&optab_table[OTI_usmadd_widen]) #define smsub_widen_optab (&optab_table[OTI_smsub_widen]) #define umsub_widen_optab (&optab_table[OTI_umsub_widen]) #define ssmsub_widen_optab (&optab_table[OTI_ssmsub_widen]) #define usmsub_widen_optab (&optab_table[OTI_usmsub_widen]) #define sdiv_optab (&optab_table[OTI_sdiv]) #define smulv_optab (&optab_table[OTI_smulv]) #define sdivv_optab (&optab_table[OTI_sdivv]) #define sdivmod_optab (&optab_table[OTI_sdivmod]) #define udiv_optab (&optab_table[OTI_udiv]) #define udivmod_optab (&optab_table[OTI_udivmod]) #define smod_optab (&optab_table[OTI_smod]) #define umod_optab (&optab_table[OTI_umod]) #define fmod_optab (&optab_table[OTI_fmod]) #define remainder_optab (&optab_table[OTI_remainder]) #define ftrunc_optab (&optab_table[OTI_ftrunc]) #define and_optab (&optab_table[OTI_and]) #define ior_optab (&optab_table[OTI_ior]) #define xor_optab (&optab_table[OTI_xor]) #define ashl_optab (&optab_table[OTI_ashl]) #define lshr_optab (&optab_table[OTI_lshr]) #define ashr_optab (&optab_table[OTI_ashr]) #define rotl_optab (&optab_table[OTI_rotl]) #define rotr_optab (&optab_table[OTI_rotr]) #define vashl_optab (&optab_table[OTI_vashl]) #define vlshr_optab (&optab_table[OTI_vlshr]) #define vashr_optab (&optab_table[OTI_vashr]) #define vrotl_optab (&optab_table[OTI_vrotl]) #define vrotr_optab (&optab_table[OTI_vrotr]) #define smin_optab (&optab_table[OTI_smin]) #define smax_optab (&optab_table[OTI_smax]) #define umin_optab (&optab_table[OTI_umin]) #define umax_optab (&optab_table[OTI_umax]) #define pow_optab (&optab_table[OTI_pow]) #define atan2_optab (&optab_table[OTI_atan2]) #define fma_optab (&optab_table[OTI_fma]) #define fms_optab (&optab_table[OTI_fms]) #define fnma_optab (&optab_table[OTI_fnma]) #define fnms_optab (&optab_table[OTI_fnms]) #define mov_optab (&optab_table[OTI_mov]) #define movstrict_optab (&optab_table[OTI_movstrict]) #define movmisalign_optab (&optab_table[OTI_movmisalign]) #define storent_optab (&optab_table[OTI_storent]) #define neg_optab (&optab_table[OTI_neg]) #define negv_optab (&optab_table[OTI_negv]) #define abs_optab (&optab_table[OTI_abs]) #define absv_optab (&optab_table[OTI_absv]) #define one_cmpl_optab (&optab_table[OTI_one_cmpl]) #define bswap_optab (&optab_table[OTI_bswap]) #define ffs_optab (&optab_table[OTI_ffs]) #define clz_optab (&optab_table[OTI_clz]) #define ctz_optab (&optab_table[OTI_ctz]) #define clrsb_optab (&optab_table[OTI_clrsb]) #define popcount_optab (&optab_table[OTI_popcount]) #define parity_optab (&optab_table[OTI_parity]) #define sqrt_optab (&optab_table[OTI_sqrt]) #define sincos_optab (&optab_table[OTI_sincos]) #define sin_optab (&optab_table[OTI_sin]) #define asin_optab (&optab_table[OTI_asin]) #define cos_optab (&optab_table[OTI_cos]) #define acos_optab (&optab_table[OTI_acos]) #define exp_optab (&optab_table[OTI_exp]) #define exp10_optab (&optab_table[OTI_exp10]) #define exp2_optab (&optab_table[OTI_exp2]) #define expm1_optab (&optab_table[OTI_expm1]) #define ldexp_optab (&optab_table[OTI_ldexp]) #define scalb_optab (&optab_table[OTI_scalb]) #define significand_optab (&optab_table[OTI_significand]) #define logb_optab (&optab_table[OTI_logb]) #define ilogb_optab (&optab_table[OTI_ilogb]) #define log_optab (&optab_table[OTI_log]) #define log10_optab (&optab_table[OTI_log10]) #define log2_optab (&optab_table[OTI_log2]) #define log1p_optab (&optab_table[OTI_log1p]) #define floor_optab (&optab_table[OTI_floor]) #define ceil_optab (&optab_table[OTI_ceil]) #define btrunc_optab (&optab_table[OTI_btrunc]) #define round_optab (&optab_table[OTI_round]) #define nearbyint_optab (&optab_table[OTI_nearbyint]) #define rint_optab (&optab_table[OTI_rint]) #define tan_optab (&optab_table[OTI_tan]) #define atan_optab (&optab_table[OTI_atan]) #define copysign_optab (&optab_table[OTI_copysign]) #define signbit_optab (&optab_table[OTI_signbit]) #define isinf_optab (&optab_table[OTI_isinf]) #define cmp_optab (&optab_table[OTI_cmp]) #define ucmp_optab (&optab_table[OTI_ucmp]) #define eq_optab (&optab_table[OTI_eq]) #define ne_optab (&optab_table[OTI_ne]) #define gt_optab (&optab_table[OTI_gt]) #define ge_optab (&optab_table[OTI_ge]) #define lt_optab (&optab_table[OTI_lt]) #define le_optab (&optab_table[OTI_le]) #define unord_optab (&optab_table[OTI_unord]) #define strlen_optab (&optab_table[OTI_strlen]) #define cbranch_optab (&optab_table[OTI_cbranch]) #define cmov_optab (&optab_table[OTI_cmov]) #define cstore_optab (&optab_table[OTI_cstore]) #define ctrap_optab (&optab_table[OTI_ctrap]) #define push_optab (&optab_table[OTI_push]) #define addcc_optab (&optab_table[OTI_addcc]) #define reduc_smax_optab (&optab_table[OTI_reduc_smax]) #define reduc_umax_optab (&optab_table[OTI_reduc_umax]) #define reduc_smin_optab (&optab_table[OTI_reduc_smin]) #define reduc_umin_optab (&optab_table[OTI_reduc_umin]) #define reduc_splus_optab (&optab_table[OTI_reduc_splus]) #define reduc_uplus_optab (&optab_table[OTI_reduc_uplus]) #define ssum_widen_optab (&optab_table[OTI_ssum_widen]) #define usum_widen_optab (&optab_table[OTI_usum_widen]) #define sdot_prod_optab (&optab_table[OTI_sdot_prod]) #define udot_prod_optab (&optab_table[OTI_udot_prod]) #define vec_set_optab (&optab_table[OTI_vec_set]) #define vec_extract_optab (&optab_table[OTI_vec_extract]) #define vec_extract_even_optab (&optab_table[OTI_vec_extract_even]) #define vec_extract_odd_optab (&optab_table[OTI_vec_extract_odd]) #define vec_interleave_high_optab (&optab_table[OTI_vec_interleave_high]) #define vec_interleave_low_optab (&optab_table[OTI_vec_interleave_low]) #define vec_init_optab (&optab_table[OTI_vec_init]) #define vec_shl_optab (&optab_table[OTI_vec_shl]) #define vec_shr_optab (&optab_table[OTI_vec_shr]) #define vec_realign_load_optab (&optab_table[OTI_vec_realign_load]) #define vec_widen_umult_hi_optab (&optab_table[OTI_vec_widen_umult_hi]) #define vec_widen_umult_lo_optab (&optab_table[OTI_vec_widen_umult_lo]) #define vec_widen_smult_hi_optab (&optab_table[OTI_vec_widen_smult_hi]) #define vec_widen_smult_lo_optab (&optab_table[OTI_vec_widen_smult_lo]) #define vec_unpacks_hi_optab (&optab_table[OTI_vec_unpacks_hi]) #define vec_unpacks_lo_optab (&optab_table[OTI_vec_unpacks_lo]) #define vec_unpacku_hi_optab (&optab_table[OTI_vec_unpacku_hi]) #define vec_unpacku_lo_optab (&optab_table[OTI_vec_unpacku_lo]) #define vec_unpacks_float_hi_optab (&optab_table[OTI_vec_unpacks_float_hi]) #define vec_unpacks_float_lo_optab (&optab_table[OTI_vec_unpacks_float_lo]) #define vec_unpacku_float_hi_optab (&optab_table[OTI_vec_unpacku_float_hi]) #define vec_unpacku_float_lo_optab (&optab_table[OTI_vec_unpacku_float_lo]) #define vec_pack_trunc_optab (&optab_table[OTI_vec_pack_trunc]) #define vec_pack_ssat_optab (&optab_table[OTI_vec_pack_ssat]) #define vec_pack_usat_optab (&optab_table[OTI_vec_pack_usat]) #define vec_pack_sfix_trunc_optab (&optab_table[OTI_vec_pack_sfix_trunc]) #define vec_pack_ufix_trunc_optab (&optab_table[OTI_vec_pack_ufix_trunc]) #define powi_optab (&optab_table[OTI_powi]) /* Conversion optabs have their own table and indexes. */ enum convert_optab_index { COI_sext, COI_zext, COI_trunc, COI_sfix, COI_ufix, COI_sfixtrunc, COI_ufixtrunc, COI_sfloat, COI_ufloat, COI_lrint, COI_lround, COI_lfloor, COI_lceil, COI_fract, COI_fractuns, COI_satfract, COI_satfractuns, COI_vec_load_lanes, COI_vec_store_lanes, /* Vector conditional operations. */ COI_vcond, COI_vcondu, COI_MAX }; #define sext_optab (&convert_optab_table[COI_sext]) #define zext_optab (&convert_optab_table[COI_zext]) #define trunc_optab (&convert_optab_table[COI_trunc]) #define sfix_optab (&convert_optab_table[COI_sfix]) #define ufix_optab (&convert_optab_table[COI_ufix]) #define sfixtrunc_optab (&convert_optab_table[COI_sfixtrunc]) #define ufixtrunc_optab (&convert_optab_table[COI_ufixtrunc]) #define sfloat_optab (&convert_optab_table[COI_sfloat]) #define ufloat_optab (&convert_optab_table[COI_ufloat]) #define lrint_optab (&convert_optab_table[COI_lrint]) #define lround_optab (&convert_optab_table[COI_lround]) #define lfloor_optab (&convert_optab_table[COI_lfloor]) #define lceil_optab (&convert_optab_table[COI_lceil]) #define fract_optab (&convert_optab_table[COI_fract]) #define fractuns_optab (&convert_optab_table[COI_fractuns]) #define satfract_optab (&convert_optab_table[COI_satfract]) #define satfractuns_optab (&convert_optab_table[COI_satfractuns]) #define vec_load_lanes_optab (&convert_optab_table[COI_vec_load_lanes]) #define vec_store_lanes_optab (&convert_optab_table[COI_vec_store_lanes]) #define vcond_optab (&convert_optab_table[(int) COI_vcond]) #define vcondu_optab (&convert_optab_table[(int) COI_vcondu]) /* Contains the optab used for each rtx code. */ extern optab code_to_optab[NUM_RTX_CODE + 1]; typedef rtx (*rtxfun) (rtx); /* Enumerates operations that have a named .md pattern associated with them, but which are not implemented as library functions. */ enum direct_optab_index { #ifdef HAVE_conditional_move /* Conditional move operations. */ DOI_movcc, #endif /* Operations that use a scratch register to perform input and output reloads of special objects. */ DOI_reload_in, DOI_reload_out, /* Block move operation. */ DOI_movmem, /* Block set operation. */ DOI_setmem, /* Various types of block compare operation. */ DOI_cmpstr, DOI_cmpstrn, DOI_cmpmem, /* Synchronization primitives. This first set is atomic operation for which we don't care about the resulting value. */ DOI_sync_add, DOI_sync_sub, DOI_sync_ior, DOI_sync_and, DOI_sync_xor, DOI_sync_nand, /* This second set is atomic operations in which we return the value that existed in memory before the operation. */ DOI_sync_old_add, DOI_sync_old_sub, DOI_sync_old_ior, DOI_sync_old_and, DOI_sync_old_xor, DOI_sync_old_nand, /* This third set is atomic operations in which we return the value that resulted after performing the operation. */ DOI_sync_new_add, DOI_sync_new_sub, DOI_sync_new_ior, DOI_sync_new_and, DOI_sync_new_xor, DOI_sync_new_nand, /* Atomic compare and swap. */ DOI_sync_compare_and_swap, /* Atomic exchange with acquire semantics. */ DOI_sync_lock_test_and_set, /* Atomic clear with release semantics. */ DOI_sync_lock_release, DOI_MAX }; /* A structure that says which insn should be used to perform an operation in a particular mode. */ struct direct_optab_d { struct optab_handlers handlers[NUM_MACHINE_MODES]; }; typedef struct direct_optab_d *direct_optab; #ifdef HAVE_conditional_move #define movcc_optab (&direct_optab_table[(int) DOI_movcc]) #endif #define reload_in_optab (&direct_optab_table[(int) DOI_reload_in]) #define reload_out_optab (&direct_optab_table[(int) DOI_reload_out]) #define movmem_optab (&direct_optab_table[(int) DOI_movmem]) #define setmem_optab (&direct_optab_table[(int) DOI_setmem]) #define cmpstr_optab (&direct_optab_table[(int) DOI_cmpstr]) #define cmpstrn_optab (&direct_optab_table[(int) DOI_cmpstrn]) #define cmpmem_optab (&direct_optab_table[(int) DOI_cmpmem]) #define sync_add_optab (&direct_optab_table[(int) DOI_sync_add]) #define sync_sub_optab (&direct_optab_table[(int) DOI_sync_sub]) #define sync_ior_optab (&direct_optab_table[(int) DOI_sync_ior]) #define sync_and_optab (&direct_optab_table[(int) DOI_sync_and]) #define sync_xor_optab (&direct_optab_table[(int) DOI_sync_xor]) #define sync_nand_optab (&direct_optab_table[(int) DOI_sync_nand]) #define sync_old_add_optab (&direct_optab_table[(int) DOI_sync_old_add]) #define sync_old_sub_optab (&direct_optab_table[(int) DOI_sync_old_sub]) #define sync_old_ior_optab (&direct_optab_table[(int) DOI_sync_old_ior]) #define sync_old_and_optab (&direct_optab_table[(int) DOI_sync_old_and]) #define sync_old_xor_optab (&direct_optab_table[(int) DOI_sync_old_xor]) #define sync_old_nand_optab (&direct_optab_table[(int) DOI_sync_old_nand]) #define sync_new_add_optab (&direct_optab_table[(int) DOI_sync_new_add]) #define sync_new_sub_optab (&direct_optab_table[(int) DOI_sync_new_sub]) #define sync_new_ior_optab (&direct_optab_table[(int) DOI_sync_new_ior]) #define sync_new_and_optab (&direct_optab_table[(int) DOI_sync_new_and]) #define sync_new_xor_optab (&direct_optab_table[(int) DOI_sync_new_xor]) #define sync_new_nand_optab (&direct_optab_table[(int) DOI_sync_new_nand]) #define sync_compare_and_swap_optab \ (&direct_optab_table[(int) DOI_sync_compare_and_swap]) #define sync_lock_test_and_set_optab \ (&direct_optab_table[(int) DOI_sync_lock_test_and_set]) #define sync_lock_release_optab \ (&direct_optab_table[(int) DOI_sync_lock_release]) /* Target-dependent globals. */ struct target_optabs { /* Tables of patterns that may have an associated libcall. */ struct optab_d x_optab_table[(int) OTI_MAX]; /* Tables of patterns for converting one mode to another. */ struct convert_optab_d x_convert_optab_table[(int) COI_MAX]; /* Tables of patterns for direct optabs (i.e. those which cannot be implemented using a libcall). */ struct direct_optab_d x_direct_optab_table[(int) DOI_MAX]; }; extern struct target_optabs default_target_optabs; #if SWITCHABLE_TARGET extern struct target_optabs *this_target_optabs; #else #define this_target_optabs (&default_target_optabs) #endif #define optab_table \ (this_target_optabs->x_optab_table) #define convert_optab_table \ (this_target_optabs->x_convert_optab_table) #define direct_optab_table \ (this_target_optabs->x_direct_optab_table) /* Define functions given in optabs.c. */ extern rtx expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op, rtx target, int unsignedp); extern rtx expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0, rtx op1, rtx op2, rtx target, int unsignedp); /* Expand a binary operation given optab and rtx operands. */ extern rtx expand_binop (enum machine_mode, optab, rtx, rtx, rtx, int, enum optab_methods); extern bool force_expand_binop (enum machine_mode, optab, rtx, rtx, rtx, int, enum optab_methods); /* Expand a binary operation with both signed and unsigned forms. */ extern rtx sign_expand_binop (enum machine_mode, optab, optab, rtx, rtx, rtx, int, enum optab_methods); /* Generate code to perform an operation on one operand with two results. */ extern int expand_twoval_unop (optab, rtx, rtx, rtx, int); /* Generate code to perform an operation on two operands with two results. */ extern int expand_twoval_binop (optab, rtx, rtx, rtx, rtx, int); /* Generate code to perform an operation on two operands with two results, using a library function. */ extern bool expand_twoval_binop_libfunc (optab, rtx, rtx, rtx, rtx, enum rtx_code); /* Expand a unary arithmetic operation given optab rtx operand. */ extern rtx expand_unop (enum machine_mode, optab, rtx, rtx, int); /* Expand the absolute value operation. */ extern rtx expand_abs_nojump (enum machine_mode, rtx, rtx, int); extern rtx expand_abs (enum machine_mode, rtx, rtx, int, int); /* Expand the one's complement absolute value operation. */ extern rtx expand_one_cmpl_abs_nojump (enum machine_mode, rtx, rtx); /* Expand the copysign operation. */ extern rtx expand_copysign (rtx, rtx, rtx); /* Generate an instruction with a given INSN_CODE with an output and an input. */ extern void emit_unop_insn (enum insn_code, rtx, rtx, enum rtx_code); extern bool maybe_emit_unop_insn (enum insn_code, rtx, rtx, enum rtx_code); /* Find a widening optab even if it doesn't widen as much as we want. */ #define find_widening_optab_handler(A,B,C,D) \ find_widening_optab_handler_and_mode (A, B, C, D, NULL) extern enum insn_code find_widening_optab_handler_and_mode (optab, enum machine_mode, enum machine_mode, int, enum machine_mode *); /* An extra flag to control optab_for_tree_code's behavior. This is needed to distinguish between machines with a vector shift that takes a scalar for the shift amount vs. machines that take a vector for the shift amount. */ enum optab_subtype { optab_default, optab_scalar, optab_vector }; /* Return the optab used for computing the given operation on the type given by the second argument. The third argument distinguishes between the types of vector shifts and rotates */ extern optab optab_for_tree_code (enum tree_code, const_tree, enum optab_subtype); /* The various uses that a comparison can have; used by can_compare_p: jumps, conditional moves, store flag operations. */ enum can_compare_purpose { ccp_jump, ccp_cmov, ccp_store_flag }; /* Nonzero if a compare of mode MODE can be done straightforwardly (without splitting it into pieces). */ extern int can_compare_p (enum rtx_code, enum machine_mode, enum can_compare_purpose); /* Return the INSN_CODE to use for an extend operation. */ extern enum insn_code can_extend_p (enum machine_mode, enum machine_mode, int); /* Generate the body of an insn to extend Y (with mode MFROM) into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ extern rtx gen_extend_insn (rtx, rtx, enum machine_mode, enum machine_mode, int); /* Call this to reset the function entry for one optab. */ extern void set_optab_libfunc (optab, enum machine_mode, const char *); extern void set_conv_libfunc (convert_optab, enum machine_mode, enum machine_mode, const char *); /* Generate code for a FIXED_CONVERT_EXPR. */ extern void expand_fixed_convert (rtx, rtx, int, int); /* Generate code for a FLOAT_EXPR. */ extern void expand_float (rtx, rtx, int); /* Return the insn_code for a FLOAT_EXPR. */ enum insn_code can_float_p (enum machine_mode, enum machine_mode, int); /* Generate code for a FIX_EXPR. */ extern void expand_fix (rtx, rtx, int); /* Generate code for float to integral conversion. */ extern bool expand_sfix_optab (rtx, rtx, convert_optab); /* Generate code for a widening multiply. */ extern rtx expand_widening_mult (enum machine_mode, rtx, rtx, rtx, int, optab); /* Return tree if target supports vector operations for COND_EXPR. */ bool expand_vec_cond_expr_p (tree, tree); /* Generate code for VEC_COND_EXPR. */ extern rtx expand_vec_cond_expr (tree, tree, tree, tree, rtx); /* Generate code for VEC_LSHIFT_EXPR and VEC_RSHIFT_EXPR. */ extern rtx expand_vec_shift_expr (sepops, rtx); /* Return the insn used to implement mode MODE of OP, or CODE_FOR_nothing if the target does not have such an insn. */ static inline enum insn_code optab_handler (optab op, enum machine_mode mode) { return (enum insn_code) (op->handlers[(int) mode].insn_code + (int) CODE_FOR_nothing); } /* Like optab_handler, but for widening_operations that have a TO_MODE and a FROM_MODE. */ static inline enum insn_code widening_optab_handler (optab op, enum machine_mode to_mode, enum machine_mode from_mode) { if (to_mode == from_mode || from_mode == VOIDmode) return optab_handler (op, to_mode); if (op->widening) return (enum insn_code) (op->widening->handlers[(int) to_mode][(int) from_mode].insn_code + (int) CODE_FOR_nothing); return CODE_FOR_nothing; } /* Record that insn CODE should be used to implement mode MODE of OP. */ static inline void set_optab_handler (optab op, enum machine_mode mode, enum insn_code code) { op->handlers[(int) mode].insn_code = (int) code - (int) CODE_FOR_nothing; } /* Like set_optab_handler, but for widening operations that have a TO_MODE and a FROM_MODE. */ static inline void set_widening_optab_handler (optab op, enum machine_mode to_mode, enum machine_mode from_mode, enum insn_code code) { if (to_mode == from_mode) set_optab_handler (op, to_mode, code); else { if (op->widening == NULL) op->widening = (struct widening_optab_handlers *) xcalloc (1, sizeof (struct widening_optab_handlers)); op->widening->handlers[(int) to_mode][(int) from_mode].insn_code = (int) code - (int) CODE_FOR_nothing; } } /* Return the insn used to perform conversion OP from mode FROM_MODE to mode TO_MODE; return CODE_FOR_nothing if the target does not have such an insn. */ static inline enum insn_code convert_optab_handler (convert_optab op, enum machine_mode to_mode, enum machine_mode from_mode) { return ((enum insn_code) (op->handlers[(int) to_mode][(int) from_mode].insn_code + (int) CODE_FOR_nothing)); } /* Record that insn CODE should be used to perform conversion OP from mode FROM_MODE to mode TO_MODE. */ static inline void set_convert_optab_handler (convert_optab op, enum machine_mode to_mode, enum machine_mode from_mode, enum insn_code code) { op->handlers[(int) to_mode][(int) from_mode].insn_code = (int) code - (int) CODE_FOR_nothing; } /* Return the insn used to implement mode MODE of OP, or CODE_FOR_nothing if the target does not have such an insn. */ static inline enum insn_code direct_optab_handler (direct_optab op, enum machine_mode mode) { return (enum insn_code) (op->handlers[(int) mode].insn_code + (int) CODE_FOR_nothing); } /* Record that insn CODE should be used to implement mode MODE of OP. */ static inline void set_direct_optab_handler (direct_optab op, enum machine_mode mode, enum insn_code code) { op->handlers[(int) mode].insn_code = (int) code - (int) CODE_FOR_nothing; } extern rtx optab_libfunc (optab optab, enum machine_mode mode); extern rtx convert_optab_libfunc (convert_optab optab, enum machine_mode mode1, enum machine_mode mode2); extern bool insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand); /* Describes the type of an expand_operand. Each value is associated with a create_*_operand function; see the comments above those functions for details. */ enum expand_operand_type { EXPAND_FIXED, EXPAND_OUTPUT, EXPAND_INPUT, EXPAND_CONVERT_TO, EXPAND_CONVERT_FROM, EXPAND_ADDRESS, EXPAND_INTEGER }; /* Information about an operand for instruction expansion. */ struct expand_operand { /* The type of operand. */ ENUM_BITFIELD (expand_operand_type) type : 8; /* True if any conversion should treat VALUE as being unsigned rather than signed. Only meaningful for certain types. */ unsigned int unsigned_p : 1; /* Unused; available for future use. */ unsigned int unused : 7; /* The mode passed to the convert_*_operand function. It has a type-dependent meaning. */ ENUM_BITFIELD (machine_mode) mode : 16; /* The value of the operand. */ rtx value; }; /* Initialize OP with the given fields. Initialise the other fields to their default values. */ static inline void create_expand_operand (struct expand_operand *op, enum expand_operand_type type, rtx value, enum machine_mode mode, bool unsigned_p) { op->type = type; op->unsigned_p = unsigned_p; op->unused = 0; op->mode = mode; op->value = value; } /* Make OP describe an operand that must use rtx X, even if X is volatile. */ static inline void create_fixed_operand (struct expand_operand *op, rtx x) { create_expand_operand (op, EXPAND_FIXED, x, VOIDmode, false); } /* Make OP describe an output operand that must have mode MODE. X, if nonnull, is a suggestion for where the output should be stored. It is OK for VALUE to be inconsistent with MODE, although it will just be ignored in that case. */ static inline void create_output_operand (struct expand_operand *op, rtx x, enum machine_mode mode) { create_expand_operand (op, EXPAND_OUTPUT, x, mode, false); } /* Make OP describe an input operand that must have mode MODE and value VALUE; MODE cannot be VOIDmode. The backend may request that VALUE be copied into a different kind of rtx before being passed as an operand. */ static inline void create_input_operand (struct expand_operand *op, rtx value, enum machine_mode mode) { create_expand_operand (op, EXPAND_INPUT, value, mode, false); } /* Like create_input_operand, except that VALUE must first be converted to mode MODE. UNSIGNED_P says whether VALUE is unsigned. */ static inline void create_convert_operand_to (struct expand_operand *op, rtx value, enum machine_mode mode, bool unsigned_p) { create_expand_operand (op, EXPAND_CONVERT_TO, value, mode, unsigned_p); } /* Make OP describe an input operand that should have the same value as VALUE, after any mode conversion that the backend might request. If VALUE is a CONST_INT, it should be treated as having mode MODE. UNSIGNED_P says whether VALUE is unsigned. */ static inline void create_convert_operand_from (struct expand_operand *op, rtx value, enum machine_mode mode, bool unsigned_p) { create_expand_operand (op, EXPAND_CONVERT_FROM, value, mode, unsigned_p); } extern void create_convert_operand_from_type (struct expand_operand *op, rtx value, tree type); /* Make OP describe an input Pmode address operand. VALUE is the value of the address, but it may need to be converted to Pmode first. */ static inline void create_address_operand (struct expand_operand *op, rtx value) { create_expand_operand (op, EXPAND_ADDRESS, value, Pmode, false); } /* Make OP describe an input operand that has value INTVAL and that has no inherent mode. This function should only be used for operands that are always expand-time constants. The backend may request that INTVAL be copied into a different kind of rtx, but it must specify the mode of that rtx if so. */ static inline void create_integer_operand (struct expand_operand *op, HOST_WIDE_INT intval) { create_expand_operand (op, EXPAND_INTEGER, GEN_INT (intval), VOIDmode, false); } extern bool valid_multiword_target_p (rtx); extern bool maybe_legitimize_operands (enum insn_code icode, unsigned int opno, unsigned int nops, struct expand_operand *ops); extern rtx maybe_gen_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops); extern bool maybe_expand_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops); extern bool maybe_expand_jump_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops); extern void expand_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops); extern void expand_jump_insn (enum insn_code icode, unsigned int nops, struct expand_operand *ops); extern rtx prepare_operand (enum insn_code, rtx, int, enum machine_mode, enum machine_mode, int); #endif /* GCC_OPTABS_H */