/* Register renaming for the GNU compiler. Copyright (C) 2000-2014 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl-error.h" #include "tm_p.h" #include "insn-config.h" #include "regs.h" #include "addresses.h" #include "hard-reg-set.h" #include "basic-block.h" #include "reload.h" #include "output.h" #include "hashtab.h" #include "hash-set.h" #include "vec.h" #include "machmode.h" #include "input.h" #include "function.h" #include "recog.h" #include "flags.h" #include "obstack.h" #include "tree-pass.h" #include "df.h" #include "target.h" #include "emit-rtl.h" #include "regrename.h" /* This file implements the RTL register renaming pass of the compiler. It is a semi-local pass whose goal is to maximize the usage of the register file of the processor by substituting registers for others in the solution given by the register allocator. The algorithm is as follows: 1. Local def/use chains are built: within each basic block, chains are opened and closed; if a chain isn't closed at the end of the block, it is dropped. We pre-open chains if we have already examined a predecessor block and found chains live at the end which match live registers at the start of the new block. 2. We try to combine the local chains across basic block boundaries by comparing chains that were open at the start or end of a block to those in successor/predecessor blocks. 3. For each chain, the set of possible renaming registers is computed. This takes into account the renaming of previously processed chains. Optionally, a preferred class is computed for the renaming register. 4. The best renaming register is computed for the chain in the above set, using a round-robin allocation. If a preferred class exists, then the round-robin allocation is done within the class first, if possible. The round-robin allocation of renaming registers itself is global. 5. If a renaming register has been found, it is substituted in the chain. Targets can parameterize the pass by specifying a preferred class for the renaming register for a given (super)class of registers to be renamed. */ #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS #error "Use a different bitmap implementation for untracked_operands." #endif enum scan_actions { terminate_write, terminate_dead, mark_all_read, mark_read, mark_write, /* mark_access is for marking the destination regs in REG_FRAME_RELATED_EXPR notes (as if they were read) so that the note is updated properly. */ mark_access }; static const char * const scan_actions_name[] = { "terminate_write", "terminate_dead", "mark_all_read", "mark_read", "mark_write", "mark_access" }; /* TICK and THIS_TICK are used to record the last time we saw each register. */ static int tick[FIRST_PSEUDO_REGISTER]; static int this_tick = 0; static struct obstack rename_obstack; /* If nonnull, the code calling into the register renamer requested information about insn operands, and we store it here. */ vec insn_rr; static void scan_rtx (rtx_insn *, rtx *, enum reg_class, enum scan_actions, enum op_type); static bool build_def_use (basic_block); /* The id to be given to the next opened chain. */ static unsigned current_id; /* A mapping of unique id numbers to chains. */ static vec id_to_chain; /* List of currently open chains. */ static struct du_head *open_chains; /* Bitmap of open chains. The bits set always match the list found in open_chains. */ static bitmap_head open_chains_set; /* Record the registers being tracked in open_chains. */ static HARD_REG_SET live_in_chains; /* Record the registers that are live but not tracked. The intersection between this and live_in_chains is empty. */ static HARD_REG_SET live_hard_regs; /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis is for a caller that requires operand data. Used in record_operand_use. */ static operand_rr_info *cur_operand; /* Return the chain corresponding to id number ID. Take into account that chains may have been merged. */ du_head_p regrename_chain_from_id (unsigned int id) { du_head_p first_chain = id_to_chain[id]; du_head_p chain = first_chain; while (chain->id != id) { id = chain->id; chain = id_to_chain[id]; } first_chain->id = id; return chain; } /* Dump all def/use chains, starting at id FROM. */ static void dump_def_use_chain (int from) { du_head_p head; int i; FOR_EACH_VEC_ELT_FROM (id_to_chain, i, head, from) { struct du_chain *this_du = head->first; fprintf (dump_file, "Register %s (%d):", reg_names[head->regno], head->nregs); while (this_du) { fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn), reg_class_names[this_du->cl]); this_du = this_du->next_use; } fprintf (dump_file, "\n"); head = head->next_chain; } } static void free_chain_data (void) { int i; du_head_p ptr; for (i = 0; id_to_chain.iterate (i, &ptr); i++) bitmap_clear (&ptr->conflicts); id_to_chain.release (); } /* Walk all chains starting with CHAINS and record that they conflict with another chain whose id is ID. */ static void mark_conflict (struct du_head *chains, unsigned id) { while (chains) { bitmap_set_bit (&chains->conflicts, id); chains = chains->next_chain; } } /* Examine cur_operand, and if it is nonnull, record information about the use THIS_DU which is part of the chain HEAD. */ static void record_operand_use (struct du_head *head, struct du_chain *this_du) { if (cur_operand == NULL) return; gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS); cur_operand->heads[cur_operand->n_chains] = head; cur_operand->chains[cur_operand->n_chains++] = this_du; } /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO, and record its occurrence in *LOC, which is being written to in INSN. This access requires a register of class CL. */ static du_head_p create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc, rtx_insn *insn, enum reg_class cl) { struct du_head *head = XOBNEW (&rename_obstack, struct du_head); struct du_chain *this_du; int nregs; head->next_chain = open_chains; head->regno = this_regno; head->nregs = this_nregs; head->need_caller_save_reg = 0; head->cannot_rename = 0; id_to_chain.safe_push (head); head->id = current_id++; bitmap_initialize (&head->conflicts, &bitmap_default_obstack); bitmap_copy (&head->conflicts, &open_chains_set); mark_conflict (open_chains, head->id); /* Since we're tracking this as a chain now, remove it from the list of conflicting live hard registers and track it in live_in_chains instead. */ nregs = head->nregs; while (nregs-- > 0) { SET_HARD_REG_BIT (live_in_chains, head->regno + nregs); CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs); } COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs); bitmap_set_bit (&open_chains_set, head->id); open_chains = head; if (dump_file) { fprintf (dump_file, "Creating chain %s (%d)", reg_names[head->regno], head->id); if (insn != NULL_RTX) fprintf (dump_file, " at insn %d", INSN_UID (insn)); fprintf (dump_file, "\n"); } if (insn == NULL_RTX) { head->first = head->last = NULL; return head; } this_du = XOBNEW (&rename_obstack, struct du_chain); head->first = head->last = this_du; this_du->next_use = 0; this_du->loc = loc; this_du->insn = insn; this_du->cl = cl; record_operand_use (head, this_du); return head; } /* For a def-use chain HEAD, find which registers overlap its lifetime and set the corresponding bits in *PSET. */ static void merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head) { bitmap_iterator bi; unsigned i; IOR_HARD_REG_SET (*pset, head->hard_conflicts); EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi) { du_head_p other = regrename_chain_from_id (i); unsigned j = other->nregs; gcc_assert (other != head); while (j-- > 0) SET_HARD_REG_BIT (*pset, other->regno + j); } } /* Check if NEW_REG can be the candidate register to rename for REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard registers. */ static bool check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg, struct du_head *this_head, HARD_REG_SET this_unavailable) { enum machine_mode mode = GET_MODE (*this_head->first->loc); int nregs = hard_regno_nregs[new_reg][mode]; int i; struct du_chain *tmp; for (i = nregs - 1; i >= 0; --i) if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i) || fixed_regs[new_reg + i] || global_regs[new_reg + i] /* Can't use regs which aren't saved by the prologue. */ || (! df_regs_ever_live_p (new_reg + i) && ! call_used_regs[new_reg + i]) #ifdef LEAF_REGISTERS /* We can't use a non-leaf register if we're in a leaf function. */ || (crtl->is_leaf && !LEAF_REGISTERS[new_reg + i]) #endif #ifdef HARD_REGNO_RENAME_OK || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i) #endif ) return false; /* See whether it accepts all modes that occur in definition and uses. */ for (tmp = this_head->first; tmp; tmp = tmp->next_use) if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc)) && ! DEBUG_INSN_P (tmp->insn)) || (this_head->need_caller_save_reg && ! (HARD_REGNO_CALL_PART_CLOBBERED (reg, GET_MODE (*tmp->loc))) && (HARD_REGNO_CALL_PART_CLOBBERED (new_reg, GET_MODE (*tmp->loc))))) return false; return true; } /* For the chain THIS_HEAD, compute and return the best register to rename to. SUPER_CLASS is the superunion of register classes in the chain. UNAVAILABLE is a set of registers that cannot be used. OLD_REG is the register currently used for the chain. */ int find_best_rename_reg (du_head_p this_head, enum reg_class super_class, HARD_REG_SET *unavailable, int old_reg) { bool has_preferred_class; enum reg_class preferred_class; int pass; int best_new_reg = old_reg; /* Further narrow the set of registers we can use for renaming. If the chain needs a call-saved register, mark the call-used registers as unavailable. */ if (this_head->need_caller_save_reg) IOR_HARD_REG_SET (*unavailable, call_used_reg_set); /* Mark registers that overlap this chain's lifetime as unavailable. */ merge_overlapping_regs (unavailable, this_head); /* Compute preferred rename class of super union of all the classes in the chain. */ preferred_class = (enum reg_class) targetm.preferred_rename_class (super_class); /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass over registers that belong to PREFERRED_CLASS and try to find the best register within the class. If that failed, we iterate in the second pass over registers that don't belong to the class. If PREFERRED_CLASS is NO_REGS, we iterate over all registers in ascending order without any preference. */ has_preferred_class = (preferred_class != NO_REGS); for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++) { int new_reg; for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++) { if (has_preferred_class && (pass == 0) != TEST_HARD_REG_BIT (reg_class_contents[preferred_class], new_reg)) continue; /* In the first pass, we force the renaming of registers that don't belong to PREFERRED_CLASS to registers that do, even though the latters were used not very long ago. */ if (check_new_reg_p (old_reg, new_reg, this_head, *unavailable) && ((pass == 0 && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class], best_new_reg)) || tick[best_new_reg] > tick[new_reg])) best_new_reg = new_reg; } if (pass == 0 && best_new_reg != old_reg) break; } return best_new_reg; } /* Perform register renaming on the current function. */ static void rename_chains (void) { HARD_REG_SET unavailable; du_head_p this_head; int i; memset (tick, 0, sizeof tick); CLEAR_HARD_REG_SET (unavailable); /* Don't clobber traceback for noreturn functions. */ if (frame_pointer_needed) { add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM); #if !HARD_FRAME_POINTER_IS_FRAME_POINTER add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM); #endif } FOR_EACH_VEC_ELT (id_to_chain, i, this_head) { int best_new_reg; int n_uses; struct du_chain *tmp; HARD_REG_SET this_unavailable; int reg = this_head->regno; enum reg_class super_class = NO_REGS; if (this_head->cannot_rename) continue; if (fixed_regs[reg] || global_regs[reg] #if !HARD_FRAME_POINTER_IS_FRAME_POINTER || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM) #else || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM) #endif ) continue; COPY_HARD_REG_SET (this_unavailable, unavailable); /* Iterate over elements in the chain in order to: 1. Count number of uses, and narrow the set of registers we can use for renaming. 2. Compute the superunion of register classes in this chain. */ n_uses = 0; super_class = NO_REGS; for (tmp = this_head->first; tmp; tmp = tmp->next_use) { if (DEBUG_INSN_P (tmp->insn)) continue; n_uses++; IOR_COMPL_HARD_REG_SET (this_unavailable, reg_class_contents[tmp->cl]); super_class = reg_class_superunion[(int) super_class][(int) tmp->cl]; } if (n_uses < 2) continue; best_new_reg = find_best_rename_reg (this_head, super_class, &this_unavailable, reg); if (dump_file) { fprintf (dump_file, "Register %s in insn %d", reg_names[reg], INSN_UID (this_head->first->insn)); if (this_head->need_caller_save_reg) fprintf (dump_file, " crosses a call"); } if (best_new_reg == reg) { tick[reg] = ++this_tick; if (dump_file) fprintf (dump_file, "; no available better choice\n"); continue; } if (dump_file) fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]); regrename_do_replace (this_head, best_new_reg); tick[best_new_reg] = ++this_tick; df_set_regs_ever_live (best_new_reg, true); } } /* A structure to record information for each hard register at the start of a basic block. */ struct incoming_reg_info { /* Holds the number of registers used in the chain that gave us information about this register. Zero means no information known yet, while a negative value is used for something that is part of, but not the first register in a multi-register value. */ int nregs; /* Set to true if we have accesses that conflict in the number of registers used. */ bool unusable; }; /* A structure recording information about each basic block. It is saved and restored around basic block boundaries. A pointer to such a structure is stored in each basic block's aux field during regrename_analyze, except for blocks we know can't be optimized (such as entry and exit blocks). */ struct bb_rename_info { /* The basic block corresponding to this structure. */ basic_block bb; /* Copies of the global information. */ bitmap_head open_chains_set; bitmap_head incoming_open_chains_set; struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER]; }; /* Initialize a rename_info structure P for basic block BB, which starts a new scan. */ static void init_rename_info (struct bb_rename_info *p, basic_block bb) { int i; df_ref def; HARD_REG_SET start_chains_set; p->bb = bb; bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack); bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack); open_chains = NULL; bitmap_clear (&open_chains_set); CLEAR_HARD_REG_SET (live_in_chains); REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb)); FOR_EACH_ARTIFICIAL_DEF (def, bb->index) if (DF_REF_FLAGS (def) & DF_REF_AT_TOP) SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def)); /* Open chains based on information from (at least one) predecessor block. This gives us a chance later on to combine chains across basic block boundaries. Inconsistencies (in access sizes) will be caught normally and dealt with conservatively by disabling the chain for renaming, and there is no risk of losing optimization opportunities by opening chains either: if we did not open the chains, we'd have to track the live register as a hard reg, and we'd be unable to rename it in any case. */ CLEAR_HARD_REG_SET (start_chains_set); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { struct incoming_reg_info *iri = p->incoming + i; if (iri->nregs > 0 && !iri->unusable && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs)) { SET_HARD_REG_BIT (start_chains_set, i); remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs); } } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { struct incoming_reg_info *iri = p->incoming + i; if (TEST_HARD_REG_BIT (start_chains_set, i)) { du_head_p chain; if (dump_file) fprintf (dump_file, "opening incoming chain\n"); chain = create_new_chain (i, iri->nregs, NULL, NULL, NO_REGS); bitmap_set_bit (&p->incoming_open_chains_set, chain->id); } } } /* Record in RI that the block corresponding to it has an incoming live value, described by CHAIN. */ static void set_incoming_from_chain (struct bb_rename_info *ri, du_head_p chain) { int i; int incoming_nregs = ri->incoming[chain->regno].nregs; int nregs; /* If we've recorded the same information before, everything is fine. */ if (incoming_nregs == chain->nregs) { if (dump_file) fprintf (dump_file, "reg %d/%d already recorded\n", chain->regno, chain->nregs); return; } /* If we have no information for any of the involved registers, update the incoming array. */ nregs = chain->nregs; while (nregs-- > 0) if (ri->incoming[chain->regno + nregs].nregs != 0 || ri->incoming[chain->regno + nregs].unusable) break; if (nregs < 0) { nregs = chain->nregs; ri->incoming[chain->regno].nregs = nregs; while (nregs-- > 1) ri->incoming[chain->regno + nregs].nregs = -nregs; if (dump_file) fprintf (dump_file, "recorded reg %d/%d\n", chain->regno, chain->nregs); return; } /* There must be some kind of conflict. Prevent both the old and new ranges from being used. */ if (incoming_nregs < 0) ri->incoming[chain->regno + incoming_nregs].unusable = true; for (i = 0; i < chain->nregs; i++) ri->incoming[chain->regno + i].unusable = true; } /* Merge the two chains C1 and C2 so that all conflict information is recorded and C1, and the id of C2 is changed to that of C1. */ static void merge_chains (du_head_p c1, du_head_p c2) { if (c1 == c2) return; if (c2->first != NULL) { if (c1->first == NULL) c1->first = c2->first; else c1->last->next_use = c2->first; c1->last = c2->last; } c2->first = c2->last = NULL; c2->id = c1->id; IOR_HARD_REG_SET (c1->hard_conflicts, c2->hard_conflicts); bitmap_ior_into (&c1->conflicts, &c2->conflicts); c1->need_caller_save_reg |= c2->need_caller_save_reg; c1->cannot_rename |= c2->cannot_rename; } /* Analyze the current function and build chains for renaming. */ void regrename_analyze (bitmap bb_mask) { struct bb_rename_info *rename_info; int i; basic_block bb; int n_bbs; int *inverse_postorder; inverse_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun)); n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false); /* Gather some information about the blocks in this function. */ rename_info = XCNEWVEC (struct bb_rename_info, n_basic_blocks_for_fn (cfun)); i = 0; FOR_EACH_BB_FN (bb, cfun) { struct bb_rename_info *ri = rename_info + i; ri->bb = bb; if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index)) bb->aux = NULL; else bb->aux = ri; i++; } current_id = 0; id_to_chain.create (0); bitmap_initialize (&open_chains_set, &bitmap_default_obstack); /* The order in which we visit blocks ensures that whenever possible, we only process a block after at least one of its predecessors, which provides a "seeding" effect to make the logic in set_incoming_from_chain and init_rename_info useful. */ for (i = 0; i < n_bbs; i++) { basic_block bb1 = BASIC_BLOCK_FOR_FN (cfun, inverse_postorder[i]); struct bb_rename_info *this_info; bool success; edge e; edge_iterator ei; int old_length = id_to_chain.length (); this_info = (struct bb_rename_info *) bb1->aux; if (this_info == NULL) continue; if (dump_file) fprintf (dump_file, "\nprocessing block %d:\n", bb1->index); init_rename_info (this_info, bb1); success = build_def_use (bb1); if (!success) { if (dump_file) fprintf (dump_file, "failed\n"); bb1->aux = NULL; id_to_chain.truncate (old_length); current_id = old_length; bitmap_clear (&this_info->incoming_open_chains_set); open_chains = NULL; if (insn_rr.exists ()) { rtx_insn *insn; FOR_BB_INSNS (bb1, insn) { insn_rr_info *p = &insn_rr[INSN_UID (insn)]; p->op_info = NULL; } } continue; } if (dump_file) dump_def_use_chain (old_length); bitmap_copy (&this_info->open_chains_set, &open_chains_set); /* Add successor blocks to the worklist if necessary, and record data about our own open chains at the end of this block, which will be used to pre-open chains when processing the successors. */ FOR_EACH_EDGE (e, ei, bb1->succs) { struct bb_rename_info *dest_ri; struct du_head *chain; if (dump_file) fprintf (dump_file, "successor block %d\n", e->dest->index); if (e->flags & (EDGE_EH | EDGE_ABNORMAL)) continue; dest_ri = (struct bb_rename_info *)e->dest->aux; if (dest_ri == NULL) continue; for (chain = open_chains; chain; chain = chain->next_chain) set_incoming_from_chain (dest_ri, chain); } } free (inverse_postorder); /* Now, combine the chains data we have gathered across basic block boundaries. For every basic block, there may be chains open at the start, or at the end. Rather than exclude them from renaming, we look for open chains with matching registers at the other side of the CFG edge. For a given chain using register R, open at the start of block B, we must find an open chain using R on the other side of every edge leading to B, if the register is live across this edge. In the code below, N_PREDS_USED counts the number of edges where the register is live, and N_PREDS_JOINED counts those where we found an appropriate chain for joining. We perform the analysis for both incoming and outgoing edges, but we only need to merge once (in the second part, after verifying outgoing edges). */ FOR_EACH_BB_FN (bb, cfun) { struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux; unsigned j; bitmap_iterator bi; if (bb_ri == NULL) continue; if (dump_file) fprintf (dump_file, "processing bb %d in edges\n", bb->index); EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi) { edge e; edge_iterator ei; struct du_head *chain = regrename_chain_from_id (j); int n_preds_used = 0, n_preds_joined = 0; FOR_EACH_EDGE (e, ei, bb->preds) { struct bb_rename_info *src_ri; unsigned k; bitmap_iterator bi2; HARD_REG_SET live; bool success = false; REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src)); if (!range_overlaps_hard_reg_set_p (live, chain->regno, chain->nregs)) continue; n_preds_used++; if (e->flags & (EDGE_EH | EDGE_ABNORMAL)) continue; src_ri = (struct bb_rename_info *)e->src->aux; if (src_ri == NULL) continue; EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set, 0, k, bi2) { struct du_head *outgoing_chain = regrename_chain_from_id (k); if (outgoing_chain->regno == chain->regno && outgoing_chain->nregs == chain->nregs) { n_preds_joined++; success = true; break; } } if (!success && dump_file) fprintf (dump_file, "failure to match with pred block %d\n", e->src->index); } if (n_preds_joined < n_preds_used) { if (dump_file) fprintf (dump_file, "cannot rename chain %d\n", j); chain->cannot_rename = 1; } } } FOR_EACH_BB_FN (bb, cfun) { struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux; unsigned j; bitmap_iterator bi; if (bb_ri == NULL) continue; if (dump_file) fprintf (dump_file, "processing bb %d out edges\n", bb->index); EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi) { edge e; edge_iterator ei; struct du_head *chain = regrename_chain_from_id (j); int n_succs_used = 0, n_succs_joined = 0; FOR_EACH_EDGE (e, ei, bb->succs) { bool printed = false; struct bb_rename_info *dest_ri; unsigned k; bitmap_iterator bi2; HARD_REG_SET live; REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest)); if (!range_overlaps_hard_reg_set_p (live, chain->regno, chain->nregs)) continue; n_succs_used++; dest_ri = (struct bb_rename_info *)e->dest->aux; if (dest_ri == NULL) continue; EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set, 0, k, bi2) { struct du_head *incoming_chain = regrename_chain_from_id (k); if (incoming_chain->regno == chain->regno && incoming_chain->nregs == chain->nregs) { if (dump_file) { if (!printed) fprintf (dump_file, "merging blocks for edge %d -> %d\n", e->src->index, e->dest->index); printed = true; fprintf (dump_file, " merging chains %d (->%d) and %d (->%d) [%s]\n", k, incoming_chain->id, j, chain->id, reg_names[incoming_chain->regno]); } merge_chains (chain, incoming_chain); n_succs_joined++; break; } } } if (n_succs_joined < n_succs_used) { if (dump_file) fprintf (dump_file, "cannot rename chain %d\n", j); chain->cannot_rename = 1; } } } free (rename_info); FOR_EACH_BB_FN (bb, cfun) bb->aux = NULL; } void regrename_do_replace (struct du_head *head, int reg) { struct du_chain *chain; unsigned int base_regno = head->regno; enum machine_mode mode; for (chain = head->first; chain; chain = chain->next_use) { unsigned int regno = ORIGINAL_REGNO (*chain->loc); struct reg_attrs *attr = REG_ATTRS (*chain->loc); int reg_ptr = REG_POINTER (*chain->loc); if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno) INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC (); else { *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg); if (regno >= FIRST_PSEUDO_REGISTER) ORIGINAL_REGNO (*chain->loc) = regno; REG_ATTRS (*chain->loc) = attr; REG_POINTER (*chain->loc) = reg_ptr; } df_insn_rescan (chain->insn); } mode = GET_MODE (*head->first->loc); head->regno = reg; head->nregs = hard_regno_nregs[reg][mode]; } /* True if we found a register with a size mismatch, which means that we can't track its lifetime accurately. If so, we abort the current block without renaming. */ static bool fail_current_block; /* Return true if OP is a reg for which all bits are set in PSET, false if all bits are clear. In other cases, set fail_current_block and return false. */ static bool verify_reg_in_set (rtx op, HARD_REG_SET *pset) { unsigned regno, nregs; bool all_live, all_dead; if (!REG_P (op)) return false; regno = REGNO (op); nregs = hard_regno_nregs[regno][GET_MODE (op)]; all_live = all_dead = true; while (nregs-- > 0) if (TEST_HARD_REG_BIT (*pset, regno + nregs)) all_dead = false; else all_live = false; if (!all_dead && !all_live) { fail_current_block = true; return false; } return all_live; } /* Return true if OP is a reg that is being tracked already in some form. May set fail_current_block if it sees an unhandled case of overlap. */ static bool verify_reg_tracked (rtx op) { return (verify_reg_in_set (op, &live_hard_regs) || verify_reg_in_set (op, &live_in_chains)); } /* Called through note_stores. DATA points to a rtx_code, either SET or CLOBBER, which tells us which kind of rtx to look at. If we have a match, record the set register in live_hard_regs and in the hard_conflicts bitmap of open chains. */ static void note_sets_clobbers (rtx x, const_rtx set, void *data) { enum rtx_code code = *(enum rtx_code *)data; struct du_head *chain; if (GET_CODE (x) == SUBREG) x = SUBREG_REG (x); if (!REG_P (x) || GET_CODE (set) != code) return; /* There must not be pseudos at this point. */ gcc_assert (HARD_REGISTER_P (x)); add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x)); for (chain = open_chains; chain; chain = chain->next_chain) add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x)); } static void scan_rtx_reg (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action, enum op_type type) { struct du_head **p; rtx x = *loc; enum machine_mode mode = GET_MODE (x); unsigned this_regno = REGNO (x); int this_nregs = hard_regno_nregs[this_regno][mode]; if (action == mark_write) { if (type == OP_OUT) create_new_chain (this_regno, this_nregs, loc, insn, cl); return; } if ((type == OP_OUT) != (action == terminate_write || action == mark_access)) return; for (p = &open_chains; *p;) { struct du_head *head = *p; struct du_head *next = head->next_chain; int exact_match = (head->regno == this_regno && head->nregs == this_nregs); int superset = (this_regno <= head->regno && this_regno + this_nregs >= head->regno + head->nregs); int subset = (this_regno >= head->regno && this_regno + this_nregs <= head->regno + head->nregs); if (!bitmap_bit_p (&open_chains_set, head->id) || head->regno + head->nregs <= this_regno || this_regno + this_nregs <= head->regno) { p = &head->next_chain; continue; } if (action == mark_read || action == mark_access) { /* ??? Class NO_REGS can happen if the md file makes use of EXTRA_CONSTRAINTS to match registers. Which is arguably wrong, but there we are. */ if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn))) { if (dump_file) fprintf (dump_file, "Cannot rename chain %s (%d) at insn %d (%s)\n", reg_names[head->regno], head->id, INSN_UID (insn), scan_actions_name[(int) action]); head->cannot_rename = 1; if (superset) { unsigned nregs = this_nregs; head->regno = this_regno; head->nregs = this_nregs; while (nregs-- > 0) SET_HARD_REG_BIT (live_in_chains, head->regno + nregs); if (dump_file) fprintf (dump_file, "Widening register in chain %s (%d) at insn %d\n", reg_names[head->regno], head->id, INSN_UID (insn)); } else if (!subset) { fail_current_block = true; if (dump_file) fprintf (dump_file, "Failing basic block due to unhandled overlap\n"); } } else { struct du_chain *this_du; this_du = XOBNEW (&rename_obstack, struct du_chain); this_du->next_use = 0; this_du->loc = loc; this_du->insn = insn; this_du->cl = cl; if (head->first == NULL) head->first = this_du; else head->last->next_use = this_du; record_operand_use (head, this_du); head->last = this_du; } /* Avoid adding the same location in a DEBUG_INSN multiple times, which could happen with non-exact overlap. */ if (DEBUG_INSN_P (insn)) return; /* Otherwise, find any other chains that do not match exactly; ensure they all get marked unrenamable. */ p = &head->next_chain; continue; } /* Whether the terminated chain can be used for renaming depends on the action and this being an exact match. In either case, we remove this element from open_chains. */ if ((action == terminate_dead || action == terminate_write) && (superset || subset)) { unsigned nregs; if (subset && !superset) head->cannot_rename = 1; bitmap_clear_bit (&open_chains_set, head->id); nregs = head->nregs; while (nregs-- > 0) { CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs); if (subset && !superset && (head->regno + nregs < this_regno || head->regno + nregs >= this_regno + this_nregs)) SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs); } *p = next; if (dump_file) fprintf (dump_file, "Closing chain %s (%d) at insn %d (%s%s)\n", reg_names[head->regno], head->id, INSN_UID (insn), scan_actions_name[(int) action], superset ? ", superset" : subset ? ", subset" : ""); } else if (action == terminate_dead || action == terminate_write) { /* In this case, tracking liveness gets too hard. Fail the entire basic block. */ if (dump_file) fprintf (dump_file, "Failing basic block due to unhandled overlap\n"); fail_current_block = true; return; } else { head->cannot_rename = 1; if (dump_file) fprintf (dump_file, "Cannot rename chain %s (%d) at insn %d (%s)\n", reg_names[head->regno], head->id, INSN_UID (insn), scan_actions_name[(int) action]); p = &head->next_chain; } } } /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or BASE_REG_CLASS depending on how the register is being considered. */ static void scan_rtx_address (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action, enum machine_mode mode, addr_space_t as) { rtx x = *loc; RTX_CODE code = GET_CODE (x); const char *fmt; int i, j; if (action == mark_write || action == mark_access) return; switch (code) { case PLUS: { rtx orig_op0 = XEXP (x, 0); rtx orig_op1 = XEXP (x, 1); RTX_CODE code0 = GET_CODE (orig_op0); RTX_CODE code1 = GET_CODE (orig_op1); rtx op0 = orig_op0; rtx op1 = orig_op1; rtx *locI = NULL; rtx *locB = NULL; enum rtx_code index_code = SCRATCH; if (GET_CODE (op0) == SUBREG) { op0 = SUBREG_REG (op0); code0 = GET_CODE (op0); } if (GET_CODE (op1) == SUBREG) { op1 = SUBREG_REG (op1); code1 = GET_CODE (op1); } if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE || code0 == ZERO_EXTEND || code1 == MEM) { locI = &XEXP (x, 0); locB = &XEXP (x, 1); index_code = GET_CODE (*locI); } else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE || code1 == ZERO_EXTEND || code0 == MEM) { locI = &XEXP (x, 1); locB = &XEXP (x, 0); index_code = GET_CODE (*locI); } else if (code0 == CONST_INT || code0 == CONST || code0 == SYMBOL_REF || code0 == LABEL_REF) { locB = &XEXP (x, 1); index_code = GET_CODE (XEXP (x, 0)); } else if (code1 == CONST_INT || code1 == CONST || code1 == SYMBOL_REF || code1 == LABEL_REF) { locB = &XEXP (x, 0); index_code = GET_CODE (XEXP (x, 1)); } else if (code0 == REG && code1 == REG) { int index_op; unsigned regno0 = REGNO (op0), regno1 = REGNO (op1); if (REGNO_OK_FOR_INDEX_P (regno1) && regno_ok_for_base_p (regno0, mode, as, PLUS, REG)) index_op = 1; else if (REGNO_OK_FOR_INDEX_P (regno0) && regno_ok_for_base_p (regno1, mode, as, PLUS, REG)) index_op = 0; else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG) || REGNO_OK_FOR_INDEX_P (regno1)) index_op = 1; else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG)) index_op = 0; else index_op = 1; locI = &XEXP (x, index_op); locB = &XEXP (x, !index_op); index_code = GET_CODE (*locI); } else if (code0 == REG) { locI = &XEXP (x, 0); locB = &XEXP (x, 1); index_code = GET_CODE (*locI); } else if (code1 == REG) { locI = &XEXP (x, 1); locB = &XEXP (x, 0); index_code = GET_CODE (*locI); } if (locI) scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode, as); if (locB) scan_rtx_address (insn, locB, base_reg_class (mode, as, PLUS, index_code), action, mode, as); return; } case POST_INC: case POST_DEC: case POST_MODIFY: case PRE_INC: case PRE_DEC: case PRE_MODIFY: #ifndef AUTO_INC_DEC /* If the target doesn't claim to handle autoinc, this must be something special, like a stack push. Kill this chain. */ action = mark_all_read; #endif break; case MEM: scan_rtx_address (insn, &XEXP (x, 0), base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x), MEM, SCRATCH), action, GET_MODE (x), MEM_ADDR_SPACE (x)); return; case REG: scan_rtx_reg (insn, loc, cl, action, OP_IN); return; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as); } } static void scan_rtx (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action, enum op_type type) { const char *fmt; rtx x = *loc; enum rtx_code code = GET_CODE (x); int i, j; code = GET_CODE (x); switch (code) { case CONST: CASE_CONST_ANY: case SYMBOL_REF: case LABEL_REF: case CC0: case PC: return; case REG: scan_rtx_reg (insn, loc, cl, action, type); return; case MEM: scan_rtx_address (insn, &XEXP (x, 0), base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x), MEM, SCRATCH), action, GET_MODE (x), MEM_ADDR_SPACE (x)); return; case SET: scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN); scan_rtx (insn, &SET_DEST (x), cl, action, (GET_CODE (PATTERN (insn)) == COND_EXEC && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT); return; case STRICT_LOW_PART: scan_rtx (insn, &XEXP (x, 0), cl, action, verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT); return; case ZERO_EXTRACT: case SIGN_EXTRACT: scan_rtx (insn, &XEXP (x, 0), cl, action, (type == OP_IN ? OP_IN : verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT)); scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN); scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN); return; case POST_INC: case PRE_INC: case POST_DEC: case PRE_DEC: case POST_MODIFY: case PRE_MODIFY: /* Should only happen inside MEM. */ gcc_unreachable (); case CLOBBER: scan_rtx (insn, &SET_DEST (x), cl, action, (GET_CODE (PATTERN (insn)) == COND_EXEC && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT); return; case EXPR_LIST: scan_rtx (insn, &XEXP (x, 0), cl, action, type); if (XEXP (x, 1)) scan_rtx (insn, &XEXP (x, 1), cl, action, type); return; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') scan_rtx (insn, &XEXP (x, i), cl, action, type); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type); } } /* Hide operands of the current insn (of which there are N_OPS) by substituting cc0 for them. Previous values are stored in the OLD_OPERANDS and OLD_DUPS. For every bit set in DO_NOT_HIDE, we leave the operand alone. If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands and earlyclobbers. */ static void hide_operands (int n_ops, rtx *old_operands, rtx *old_dups, unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only) { int i; const operand_alternative *op_alt = which_op_alt (); for (i = 0; i < n_ops; i++) { old_operands[i] = recog_data.operand[i]; /* Don't squash match_operator or match_parallel here, since we don't know that all of the contained registers are reachable by proper operands. */ if (recog_data.constraints[i][0] == '\0') continue; if (do_not_hide & (1 << i)) continue; if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT || op_alt[i].earlyclobber) *recog_data.operand_loc[i] = cc0_rtx; } for (i = 0; i < recog_data.n_dups; i++) { int opn = recog_data.dup_num[i]; old_dups[i] = *recog_data.dup_loc[i]; if (do_not_hide & (1 << opn)) continue; if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT || op_alt[opn].earlyclobber) *recog_data.dup_loc[i] = cc0_rtx; } } /* Undo the substitution performed by hide_operands. INSN is the insn we are processing; the arguments are the same as in hide_operands. */ static void restore_operands (rtx_insn *insn, int n_ops, rtx *old_operands, rtx *old_dups) { int i; for (i = 0; i < recog_data.n_dups; i++) *recog_data.dup_loc[i] = old_dups[i]; for (i = 0; i < n_ops; i++) *recog_data.operand_loc[i] = old_operands[i]; if (recog_data.n_dups) df_insn_rescan (insn); } /* For each output operand of INSN, call scan_rtx to create a new open chain. Do this only for normal or earlyclobber outputs, depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to record information about the operands in the insn. */ static void record_out_operands (rtx_insn *insn, bool earlyclobber, insn_rr_info *insn_info) { int n_ops = recog_data.n_operands; const operand_alternative *op_alt = which_op_alt (); int i; for (i = 0; i < n_ops + recog_data.n_dups; i++) { int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops]; rtx *loc = (i < n_ops ? recog_data.operand_loc[opn] : recog_data.dup_loc[i - n_ops]); rtx op = *loc; enum reg_class cl = alternative_class (op_alt, opn); struct du_head *prev_open; if (recog_data.operand_type[opn] != OP_OUT || op_alt[opn].earlyclobber != earlyclobber) continue; if (insn_info) cur_operand = insn_info->op_info + i; prev_open = open_chains; scan_rtx (insn, loc, cl, mark_write, OP_OUT); /* ??? Many targets have output constraints on the SET_DEST of a call insn, which is stupid, since these are certainly ABI defined hard registers. For these, and for asm operands that originally referenced hard registers, we must record that the chain cannot be renamed. */ if (CALL_P (insn) || (asm_noperands (PATTERN (insn)) > 0 && REG_P (op) && REGNO (op) == ORIGINAL_REGNO (op))) { if (prev_open != open_chains) open_chains->cannot_rename = 1; } } cur_operand = NULL; } /* Build def/use chain. */ static bool build_def_use (basic_block bb) { rtx_insn *insn; unsigned HOST_WIDE_INT untracked_operands; fail_current_block = false; for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn)) { if (NONDEBUG_INSN_P (insn)) { int n_ops; rtx note; rtx old_operands[MAX_RECOG_OPERANDS]; rtx old_dups[MAX_DUP_OPERANDS]; int i; int predicated; enum rtx_code set_code = SET; enum rtx_code clobber_code = CLOBBER; insn_rr_info *insn_info = NULL; /* Process the insn, determining its effect on the def-use chains and live hard registers. We perform the following steps with the register references in the insn, simulating its effect: (1) Deal with earlyclobber operands and CLOBBERs of non-operands by creating chains and marking hard regs live. (2) Any read outside an operand causes any chain it overlaps with to be marked unrenamable. (3) Any read inside an operand is added if there's already an open chain for it. (4) For any REG_DEAD note we find, close open chains that overlap it. (5) For any non-earlyclobber write we find, close open chains that overlap it. (6) For any non-earlyclobber write we find in an operand, make a new chain or mark the hard register as live. (7) For any REG_UNUSED, close any chains we just opened. We cannot deal with situations where we track a reg in one mode and see a reference in another mode; these will cause the chain to be marked unrenamable or even cause us to abort the entire basic block. */ extract_constrain_insn (insn); preprocess_constraints (insn); const operand_alternative *op_alt = which_op_alt (); n_ops = recog_data.n_operands; untracked_operands = 0; if (insn_rr.exists ()) { insn_info = &insn_rr[INSN_UID (insn)]; insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info, recog_data.n_operands); memset (insn_info->op_info, 0, sizeof (operand_rr_info) * recog_data.n_operands); } /* Simplify the code below by promoting OP_OUT to OP_INOUT in predicated instructions, but only for register operands that are already tracked, so that we can create a chain when the first SET makes a register live. */ predicated = GET_CODE (PATTERN (insn)) == COND_EXEC; for (i = 0; i < n_ops; ++i) { rtx op = recog_data.operand[i]; int matches = op_alt[i].matches; if (matches >= 0 || op_alt[i].matched >= 0 || (predicated && recog_data.operand_type[i] == OP_OUT)) { recog_data.operand_type[i] = OP_INOUT; /* A special case to deal with instruction patterns that have matching operands with different modes. If we're not already tracking such a reg, we won't start here, and we must instead make sure to make the operand visible to the machinery that tracks hard registers. */ if (matches >= 0 && (GET_MODE_SIZE (recog_data.operand_mode[i]) != GET_MODE_SIZE (recog_data.operand_mode[matches])) && !verify_reg_in_set (op, &live_in_chains)) { untracked_operands |= 1 << i; untracked_operands |= 1 << matches; } } /* If there's an in-out operand with a register that is not being tracked at all yet, open a chain. */ if (recog_data.operand_type[i] == OP_INOUT && !(untracked_operands & (1 << i)) && REG_P (op) && !verify_reg_tracked (op)) { enum machine_mode mode = GET_MODE (op); unsigned this_regno = REGNO (op); unsigned this_nregs = hard_regno_nregs[this_regno][mode]; create_new_chain (this_regno, this_nregs, NULL, NULL, NO_REGS); } } if (fail_current_block) break; /* Step 1a: Mark hard registers that are clobbered in this insn, outside an operand, as live. */ hide_operands (n_ops, old_operands, old_dups, untracked_operands, false); note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code); restore_operands (insn, n_ops, old_operands, old_dups); /* Step 1b: Begin new chains for earlyclobbered writes inside operands. */ record_out_operands (insn, true, insn_info); /* Step 2: Mark chains for which we have reads outside operands as unrenamable. We do this by munging all operands into CC0, and closing everything remaining. */ hide_operands (n_ops, old_operands, old_dups, untracked_operands, false); scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN); restore_operands (insn, n_ops, old_operands, old_dups); /* Step 2B: Can't rename function call argument registers. */ if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn)) scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn), NO_REGS, mark_all_read, OP_IN); /* Step 2C: Can't rename asm operands that were originally hard registers. */ if (asm_noperands (PATTERN (insn)) > 0) for (i = 0; i < n_ops; i++) { rtx *loc = recog_data.operand_loc[i]; rtx op = *loc; if (REG_P (op) && REGNO (op) == ORIGINAL_REGNO (op) && (recog_data.operand_type[i] == OP_IN || recog_data.operand_type[i] == OP_INOUT)) scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN); } /* Step 3: Append to chains for reads inside operands. */ for (i = 0; i < n_ops + recog_data.n_dups; i++) { int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops]; rtx *loc = (i < n_ops ? recog_data.operand_loc[opn] : recog_data.dup_loc[i - n_ops]); enum reg_class cl = alternative_class (op_alt, opn); enum op_type type = recog_data.operand_type[opn]; /* Don't scan match_operand here, since we've no reg class information to pass down. Any operands that we could substitute in will be represented elsewhere. */ if (recog_data.constraints[opn][0] == '\0' || untracked_operands & (1 << opn)) continue; if (insn_info) cur_operand = i == opn ? insn_info->op_info + i : NULL; if (op_alt[opn].is_address) scan_rtx_address (insn, loc, cl, mark_read, VOIDmode, ADDR_SPACE_GENERIC); else scan_rtx (insn, loc, cl, mark_read, type); } cur_operand = NULL; /* Step 3B: Record updates for regs in REG_INC notes, and source regs in REG_FRAME_RELATED_EXPR notes. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_INC || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR) scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read, OP_INOUT); /* Step 4: Close chains for registers that die here, unless the register is mentioned in a REG_UNUSED note. In that case we keep the chain open until step #7 below to ensure it conflicts with other output operands of this insn. See PR 52573. Arguably the insn should not have both notes; it has proven difficult to fix that without other undesirable side effects. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_DEAD && !find_regno_note (insn, REG_UNUSED, REGNO (XEXP (note, 0)))) { remove_from_hard_reg_set (&live_hard_regs, GET_MODE (XEXP (note, 0)), REGNO (XEXP (note, 0))); scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead, OP_IN); } /* Step 4B: If this is a call, any chain live at this point requires a caller-saved reg. */ if (CALL_P (insn)) { struct du_head *p; for (p = open_chains; p; p = p->next_chain) p->need_caller_save_reg = 1; } /* Step 5: Close open chains that overlap writes. Similar to step 2, we hide in-out operands, since we do not want to close these chains. We also hide earlyclobber operands, since we've opened chains for them in step 1, and earlier chains they would overlap with must have been closed at the previous insn at the latest, as such operands cannot possibly overlap with any input operands. */ hide_operands (n_ops, old_operands, old_dups, untracked_operands, true); scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN); restore_operands (insn, n_ops, old_operands, old_dups); /* Step 6a: Mark hard registers that are set in this insn, outside an operand, as live. */ hide_operands (n_ops, old_operands, old_dups, untracked_operands, false); note_stores (PATTERN (insn), note_sets_clobbers, &set_code); restore_operands (insn, n_ops, old_operands, old_dups); /* Step 6b: Begin new chains for writes inside operands. */ record_out_operands (insn, false, insn_info); /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR notes for update. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR) scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access, OP_INOUT); /* Step 7: Close chains for registers that were never really used here. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_UNUSED) { remove_from_hard_reg_set (&live_hard_regs, GET_MODE (XEXP (note, 0)), REGNO (XEXP (note, 0))); scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead, OP_IN); } } else if (DEBUG_INSN_P (insn) && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn))) { scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn), ALL_REGS, mark_read, OP_IN); } if (insn == BB_END (bb)) break; } if (fail_current_block) return false; return true; } /* Initialize the register renamer. If INSN_INFO is true, ensure that insn_rr is nonnull. */ void regrename_init (bool insn_info) { gcc_obstack_init (&rename_obstack); insn_rr.create (0); if (insn_info) insn_rr.safe_grow_cleared (get_max_uid ()); } /* Free all global data used by the register renamer. */ void regrename_finish (void) { insn_rr.release (); free_chain_data (); obstack_free (&rename_obstack, NULL); } /* Perform register renaming on the current function. */ static unsigned int regrename_optimize (void) { df_set_flags (DF_LR_RUN_DCE); df_note_add_problem (); df_analyze (); df_set_flags (DF_DEFER_INSN_RESCAN); regrename_init (false); regrename_analyze (NULL); rename_chains (); regrename_finish (); return 0; } namespace { const pass_data pass_data_regrename = { RTL_PASS, /* type */ "rnreg", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_RENAME_REGISTERS, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_df_finish, /* todo_flags_finish */ }; class pass_regrename : public rtl_opt_pass { public: pass_regrename (gcc::context *ctxt) : rtl_opt_pass (pass_data_regrename, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return (optimize > 0 && (flag_rename_registers)); } virtual unsigned int execute (function *) { return regrename_optimize (); } }; // class pass_regrename } // anon namespace rtl_opt_pass * make_pass_regrename (gcc::context *ctxt) { return new pass_regrename (ctxt); }