/* Reload pseudo regs into hard regs for insns that require hard regs.
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "machmode.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "tm_p.h"
#include "obstack.h"
#include "insn-config.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "regs.h"
#include "addresses.h"
#include "basic-block.h"
#include "reload.h"
#include "recog.h"
#include "output.h"
#include "real.h"
#include "toplev.h"
#include "except.h"
#include "tree.h"
#include "ira.h"
#include "df.h"
#include "target.h"
#include "emit-rtl.h"
/* This file contains the reload pass of the compiler, which is
run after register allocation has been done. It checks that
each insn is valid (operands required to be in registers really
are in registers of the proper class) and fixes up invalid ones
by copying values temporarily into registers for the insns
that need them.
The results of register allocation are described by the vector
reg_renumber; the insns still contain pseudo regs, but reg_renumber
can be used to find which hard reg, if any, a pseudo reg is in.
The technique we always use is to free up a few hard regs that are
called ``reload regs'', and for each place where a pseudo reg
must be in a hard reg, copy it temporarily into one of the reload regs.
Reload regs are allocated locally for every instruction that needs
reloads. When there are pseudos which are allocated to a register that
has been chosen as a reload reg, such pseudos must be ``spilled''.
This means that they go to other hard regs, or to stack slots if no other
available hard regs can be found. Spilling can invalidate more
insns, requiring additional need for reloads, so we must keep checking
until the process stabilizes.
For machines with different classes of registers, we must keep track
of the register class needed for each reload, and make sure that
we allocate enough reload registers of each class.
The file reload.c contains the code that checks one insn for
validity and reports the reloads that it needs. This file
is in charge of scanning the entire rtl code, accumulating the
reload needs, spilling, assigning reload registers to use for
fixing up each insn, and generating the new insns to copy values
into the reload registers. */
/* During reload_as_needed, element N contains a REG rtx for the hard reg
into which reg N has been reloaded (perhaps for a previous insn). */
static rtx *reg_last_reload_reg;
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
for an output reload that stores into reg N. */
static regset_head reg_has_output_reload;
/* Indicates which hard regs are reload-registers for an output reload
in the current insn. */
static HARD_REG_SET reg_is_output_reload;
/* Element N is the constant value to which pseudo reg N is equivalent,
or zero if pseudo reg N is not equivalent to a constant.
find_reloads looks at this in order to replace pseudo reg N
with the constant it stands for. */
rtx *reg_equiv_constant;
/* Element N is an invariant value to which pseudo reg N is equivalent.
eliminate_regs_in_insn uses this to replace pseudos in particular
contexts. */
rtx *reg_equiv_invariant;
/* Element N is a memory location to which pseudo reg N is equivalent,
prior to any register elimination (such as frame pointer to stack
pointer). Depending on whether or not it is a valid address, this value
is transferred to either reg_equiv_address or reg_equiv_mem. */
rtx *reg_equiv_memory_loc;
/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
collector can keep track of what is inside. */
VEC(rtx,gc) *reg_equiv_memory_loc_vec;
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
This is used when the address is not valid as a memory address
(because its displacement is too big for the machine.) */
rtx *reg_equiv_address;
/* Element N is the memory slot to which pseudo reg N is equivalent,
or zero if pseudo reg N is not equivalent to a memory slot. */
rtx *reg_equiv_mem;
/* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
alternate representations of the location of pseudo reg N. */
rtx *reg_equiv_alt_mem_list;
/* Widest width in which each pseudo reg is referred to (via subreg). */
static unsigned int *reg_max_ref_width;
/* Element N is the list of insns that initialized reg N from its equivalent
constant or memory slot. */
rtx *reg_equiv_init;
int reg_equiv_init_size;
/* Vector to remember old contents of reg_renumber before spilling. */
static short *reg_old_renumber;
/* During reload_as_needed, element N contains the last pseudo regno reloaded
into hard register N. If that pseudo reg occupied more than one register,
reg_reloaded_contents points to that pseudo for each spill register in
use; all of these must remain set for an inheritance to occur. */
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
/* During reload_as_needed, element N contains the insn for which
hard register N was last used. Its contents are significant only
when reg_reloaded_valid is set for this register. */
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
static HARD_REG_SET reg_reloaded_valid;
/* Indicate if the register was dead at the end of the reload.
This is only valid if reg_reloaded_contents is set and valid. */
static HARD_REG_SET reg_reloaded_dead;
/* Indicate whether the register's current value is one that is not
safe to retain across a call, even for registers that are normally
call-saved. This is only meaningful for members of reg_reloaded_valid. */
static HARD_REG_SET reg_reloaded_call_part_clobbered;
/* Number of spill-regs so far; number of valid elements of spill_regs. */
static int n_spills;
/* In parallel with spill_regs, contains REG rtx's for those regs.
Holds the last rtx used for any given reg, or 0 if it has never
been used for spilling yet. This rtx is reused, provided it has
the proper mode. */
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
/* In parallel with spill_regs, contains nonzero for a spill reg
that was stored after the last time it was used.
The precise value is the insn generated to do the store. */
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
/* This is the register that was stored with spill_reg_store. This is a
copy of reload_out / reload_out_reg when the value was stored; if
reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
/* This table is the inverse mapping of spill_regs:
indexed by hard reg number,
it contains the position of that reg in spill_regs,
or -1 for something that is not in spill_regs.
?!? This is no longer accurate. */
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
/* This reg set indicates registers that can't be used as spill registers for
the currently processed insn. These are the hard registers which are live
during the insn, but not allocated to pseudos, as well as fixed
registers. */
static HARD_REG_SET bad_spill_regs;
/* These are the hard registers that can't be used as spill register for any
insn. This includes registers used for user variables and registers that
we can't eliminate. A register that appears in this set also can't be used
to retry register allocation. */
static HARD_REG_SET bad_spill_regs_global;
/* Describes order of use of registers for reloading
of spilled pseudo-registers. `n_spills' is the number of
elements that are actually valid; new ones are added at the end.
Both spill_regs and spill_reg_order are used on two occasions:
once during find_reload_regs, where they keep track of the spill registers
for a single insn, but also during reload_as_needed where they show all
the registers ever used by reload. For the latter case, the information
is calculated during finish_spills. */
static short spill_regs[FIRST_PSEUDO_REGISTER];
/* This vector of reg sets indicates, for each pseudo, which hard registers
may not be used for retrying global allocation because the register was
formerly spilled from one of them. If we allowed reallocating a pseudo to
a register that it was already allocated to, reload might not
terminate. */
static HARD_REG_SET *pseudo_previous_regs;
/* This vector of reg sets indicates, for each pseudo, which hard
registers may not be used for retrying global allocation because they
are used as spill registers during one of the insns in which the
pseudo is live. */
static HARD_REG_SET *pseudo_forbidden_regs;
/* All hard regs that have been used as spill registers for any insn are
marked in this set. */
static HARD_REG_SET used_spill_regs;
/* Index of last register assigned as a spill register. We allocate in
a round-robin fashion. */
static int last_spill_reg;
/* Nonzero if indirect addressing is supported on the machine; this means
that spilling (REG n) does not require reloading it into a register in
order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
value indicates the level of indirect addressing supported, e.g., two
means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
a hard register. */
static char spill_indirect_levels;
/* Nonzero if indirect addressing is supported when the innermost MEM is
of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
which these are valid is the same as spill_indirect_levels, above. */
char indirect_symref_ok;
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
char double_reg_address_ok;
/* Record the stack slot for each spilled hard register. */
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
/* Width allocated so far for that stack slot. */
static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
/* Record which pseudos needed to be spilled. */
static regset_head spilled_pseudos;
/* Record which pseudos changed their allocation in finish_spills. */
static regset_head changed_allocation_pseudos;
/* Used for communication between order_regs_for_reload and count_pseudo.
Used to avoid counting one pseudo twice. */
static regset_head pseudos_counted;
/* First uid used by insns created by reload in this function.
Used in find_equiv_reg. */
int reload_first_uid;
/* Flag set by local-alloc or global-alloc if anything is live in
a call-clobbered reg across calls. */
int caller_save_needed;
/* Set to 1 while reload_as_needed is operating.
Required by some machines to handle any generated moves differently. */
int reload_in_progress = 0;
/* These arrays record the insn_code of insns that may be needed to
perform input and output reloads of special objects. They provide a
place to pass a scratch register. */
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
/* This obstack is used for allocation of rtl during register elimination.
The allocated storage can be freed once find_reloads has processed the
insn. */
static struct obstack reload_obstack;
/* Points to the beginning of the reload_obstack. All insn_chain structures
are allocated first. */
static char *reload_startobj;
/* The point after all insn_chain structures. Used to quickly deallocate
memory allocated in copy_reloads during calculate_needs_all_insns. */
static char *reload_firstobj;
/* This points before all local rtl generated by register elimination.
Used to quickly free all memory after processing one insn. */
static char *reload_insn_firstobj;
/* List of insn_chain instructions, one for every insn that reload needs to
examine. */
struct insn_chain *reload_insn_chain;
/* List of all insns needing reloads. */
static struct insn_chain *insns_need_reload;
/* This structure is used to record information about register eliminations.
Each array entry describes one possible way of eliminating a register
in favor of another. If there is more than one way of eliminating a
particular register, the most preferred should be specified first. */
struct elim_table
{
int from; /* Register number to be eliminated. */
int to; /* Register number used as replacement. */
HOST_WIDE_INT initial_offset; /* Initial difference between values. */
int can_eliminate; /* Nonzero if this elimination can be done. */
int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
insns made by reload. */
HOST_WIDE_INT offset; /* Current offset between the two regs. */
HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
int ref_outside_mem; /* "to" has been referenced outside a MEM. */
rtx from_rtx; /* REG rtx for the register to be eliminated.
We cannot simply compare the number since
we might then spuriously replace a hard
register corresponding to a pseudo
assigned to the reg to be eliminated. */
rtx to_rtx; /* REG rtx for the replacement. */
};
static struct elim_table *reg_eliminate = 0;
/* This is an intermediate structure to initialize the table. It has
exactly the members provided by ELIMINABLE_REGS. */
static const struct elim_table_1
{
const int from;
const int to;
} reg_eliminate_1[] =
/* If a set of eliminable registers was specified, define the table from it.
Otherwise, default to the normal case of the frame pointer being
replaced by the stack pointer. */
#ifdef ELIMINABLE_REGS
ELIMINABLE_REGS;
#else
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
#endif
#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
/* Record the number of pending eliminations that have an offset not equal
to their initial offset. If nonzero, we use a new copy of each
replacement result in any insns encountered. */
int num_not_at_initial_offset;
/* Count the number of registers that we may be able to eliminate. */
static int num_eliminable;
/* And the number of registers that are equivalent to a constant that
can be eliminated to frame_pointer / arg_pointer + constant. */
static int num_eliminable_invariants;
/* For each label, we record the offset of each elimination. If we reach
a label by more than one path and an offset differs, we cannot do the
elimination. This information is indexed by the difference of the
number of the label and the first label number. We can't offset the
pointer itself as this can cause problems on machines with segmented
memory. The first table is an array of flags that records whether we
have yet encountered a label and the second table is an array of arrays,
one entry in the latter array for each elimination. */
static int first_label_num;
static char *offsets_known_at;
static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
/* Number of labels in the current function. */
static int num_labels;
static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
static void maybe_fix_stack_asms (void);
static void copy_reloads (struct insn_chain *);
static void calculate_needs_all_insns (int);
static int find_reg (struct insn_chain *, int);
static void find_reload_regs (struct insn_chain *);
static void select_reload_regs (void);
static void delete_caller_save_insns (void);
static void spill_failure (rtx, enum reg_class);
static void count_spilled_pseudo (int, int, int);
static void delete_dead_insn (rtx);
static void alter_reg (int, int, bool);
static void set_label_offsets (rtx, rtx, int);
static void check_eliminable_occurrences (rtx);
static void elimination_effects (rtx, enum machine_mode);
static int eliminate_regs_in_insn (rtx, int);
static void update_eliminable_offsets (void);
static void mark_not_eliminable (rtx, const_rtx, void *);
static void set_initial_elim_offsets (void);
static bool verify_initial_elim_offsets (void);
static void set_initial_label_offsets (void);
static void set_offsets_for_label (rtx);
static void init_elim_table (void);
static void update_eliminables (HARD_REG_SET *);
static void spill_hard_reg (unsigned int, int);
static int finish_spills (int);
static void scan_paradoxical_subregs (rtx);
static void count_pseudo (int);
static void order_regs_for_reload (struct insn_chain *);
static void reload_as_needed (int);
static void forget_old_reloads_1 (rtx, const_rtx, void *);
static void forget_marked_reloads (regset);
static int reload_reg_class_lower (const void *, const void *);
static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
enum machine_mode);
static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
enum machine_mode);
static int reload_reg_free_p (unsigned int, int, enum reload_type);
static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
rtx, rtx, int, int);
static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
rtx, rtx, int, int);
static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
static int allocate_reload_reg (struct insn_chain *, int, int);
static int conflicts_with_override (rtx);
static void failed_reload (rtx, int);
static int set_reload_reg (int, int);
static void choose_reload_regs_init (struct insn_chain *, rtx *);
static void choose_reload_regs (struct insn_chain *);
static void merge_assigned_reloads (rtx);
static void emit_input_reload_insns (struct insn_chain *, struct reload *,
rtx, int);
static void emit_output_reload_insns (struct insn_chain *, struct reload *,
int);
static void do_input_reload (struct insn_chain *, struct reload *, int);
static void do_output_reload (struct insn_chain *, struct reload *, int);
static void emit_reload_insns (struct insn_chain *);
static void delete_output_reload (rtx, int, int, rtx);
static void delete_address_reloads (rtx, rtx);
static void delete_address_reloads_1 (rtx, rtx, rtx);
static rtx inc_for_reload (rtx, rtx, rtx, int);
#ifdef AUTO_INC_DEC
static void add_auto_inc_notes (rtx, rtx);
#endif
static void copy_eh_notes (rtx, rtx);
static void substitute (rtx *, const_rtx, rtx);
static bool gen_reload_chain_without_interm_reg_p (int, int);
static int reloads_conflict (int, int);
static rtx gen_reload (rtx, rtx, int, enum reload_type);
static rtx emit_insn_if_valid_for_reload (rtx);
/* Initialize the reload pass. This is called at the beginning of compilation
and may be called again if the target is reinitialized. */
void
init_reload (void)
{
int i;
/* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
Set spill_indirect_levels to the number of levels such addressing is
permitted, zero if it is not permitted at all. */
rtx tem
= gen_rtx_MEM (Pmode,
gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode,
LAST_VIRTUAL_REGISTER + 1),
GEN_INT (4)));
spill_indirect_levels = 0;
while (memory_address_p (QImode, tem))
{
spill_indirect_levels++;
tem = gen_rtx_MEM (Pmode, tem);
}
/* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
indirect_symref_ok = memory_address_p (QImode, tem);
/* See if reg+reg is a valid (and offsettable) address. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
tem = gen_rtx_PLUS (Pmode,
gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
gen_rtx_REG (Pmode, i));
/* This way, we make sure that reg+reg is an offsettable address. */
tem = plus_constant (tem, 4);
if (memory_address_p (QImode, tem))
{
double_reg_address_ok = 1;
break;
}
}
/* Initialize obstack for our rtl allocation. */
gcc_obstack_init (&reload_obstack);
reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
INIT_REG_SET (&spilled_pseudos);
INIT_REG_SET (&changed_allocation_pseudos);
INIT_REG_SET (&pseudos_counted);
}
/* List of insn chains that are currently unused. */
static struct insn_chain *unused_insn_chains = 0;
/* Allocate an empty insn_chain structure. */
struct insn_chain *
new_insn_chain (void)
{
struct insn_chain *c;
if (unused_insn_chains == 0)
{
c = XOBNEW (&reload_obstack, struct insn_chain);
INIT_REG_SET (&c->live_throughout);
INIT_REG_SET (&c->dead_or_set);
}
else
{
c = unused_insn_chains;
unused_insn_chains = c->next;
}
c->is_caller_save_insn = 0;
c->need_operand_change = 0;
c->need_reload = 0;
c->need_elim = 0;
return c;
}
/* Small utility function to set all regs in hard reg set TO which are
allocated to pseudos in regset FROM. */
void
compute_use_by_pseudos (HARD_REG_SET *to, regset from)
{
unsigned int regno;
reg_set_iterator rsi;
EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
{
int r = reg_renumber[regno];
if (r < 0)
{
/* reload_combine uses the information from DF_LIVE_IN,
which might still contain registers that have not
actually been allocated since they have an
equivalence. */
gcc_assert (ira_conflicts_p || reload_completed);
}
else
add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
}
}
/* Replace all pseudos found in LOC with their corresponding
equivalences. */
static void
replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
{
rtx x = *loc;
enum rtx_code code;
const char *fmt;
int i, j;
if (! x)
return;
code = GET_CODE (x);
if (code == REG)
{
unsigned int regno = REGNO (x);
if (regno < FIRST_PSEUDO_REGISTER)
return;
x = eliminate_regs (x, mem_mode, usage);
if (x != *loc)
{
*loc = x;
replace_pseudos_in (loc, mem_mode, usage);
return;
}
if (reg_equiv_constant[regno])
*loc = reg_equiv_constant[regno];
else if (reg_equiv_mem[regno])
*loc = reg_equiv_mem[regno];
else if (reg_equiv_address[regno])
*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
else
{
gcc_assert (!REG_P (regno_reg_rtx[regno])
|| REGNO (regno_reg_rtx[regno]) != regno);
*loc = regno_reg_rtx[regno];
}
return;
}
else if (code == MEM)
{
replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
return;
}
/* Process each of our operands recursively. */
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
if (*fmt == 'e')
replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
else if (*fmt == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
}
/* Determine if the current function has an exception receiver block
that reaches the exit block via non-exceptional edges */
static bool
has_nonexceptional_receiver (void)
{
edge e;
edge_iterator ei;
basic_block *tos, *worklist, bb;
/* If we're not optimizing, then just err on the safe side. */
if (!optimize)
return true;
/* First determine which blocks can reach exit via normal paths. */
tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
FOR_EACH_BB (bb)
bb->flags &= ~BB_REACHABLE;
/* Place the exit block on our worklist. */
EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
*tos++ = EXIT_BLOCK_PTR;
/* Iterate: find everything reachable from what we've already seen. */
while (tos != worklist)
{
bb = *--tos;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!(e->flags & EDGE_ABNORMAL))
{
basic_block src = e->src;
if (!(src->flags & BB_REACHABLE))
{
src->flags |= BB_REACHABLE;
*tos++ = src;
}
}
}
free (worklist);
/* Now see if there's a reachable block with an exceptional incoming
edge. */
FOR_EACH_BB (bb)
if (bb->flags & BB_REACHABLE)
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->flags & EDGE_ABNORMAL)
return true;
/* No exceptional block reached exit unexceptionally. */
return false;
}
/* Global variables used by reload and its subroutines. */
/* Set during calculate_needs if an insn needs register elimination. */
static int something_needs_elimination;
/* Set during calculate_needs if an insn needs an operand changed. */
static int something_needs_operands_changed;
/* Nonzero means we couldn't get enough spill regs. */
static int failure;
/* Temporary array of pseudo-register number. */
static int *temp_pseudo_reg_arr;
/* Main entry point for the reload pass.
FIRST is the first insn of the function being compiled.
GLOBAL nonzero means we were called from global_alloc
and should attempt to reallocate any pseudoregs that we
displace from hard regs we will use for reloads.
If GLOBAL is zero, we do not have enough information to do that,
so any pseudo reg that is spilled must go to the stack.
Return value is nonzero if reload failed
and we must not do any more for this function. */
int
reload (rtx first, int global)
{
int i, n;
rtx insn;
struct elim_table *ep;
basic_block bb;
/* Make sure even insns with volatile mem refs are recognizable. */
init_recog ();
failure = 0;
reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
/* Make sure that the last insn in the chain
is not something that needs reloading. */
emit_note (NOTE_INSN_DELETED);
/* Enable find_equiv_reg to distinguish insns made by reload. */
reload_first_uid = get_max_uid ();
#ifdef SECONDARY_MEMORY_NEEDED
/* Initialize the secondary memory table. */
clear_secondary_mem ();
#endif
/* We don't have a stack slot for any spill reg yet. */
memset (spill_stack_slot, 0, sizeof spill_stack_slot);
memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
/* Initialize the save area information for caller-save, in case some
are needed. */
init_save_areas ();
/* Compute which hard registers are now in use
as homes for pseudo registers.
This is done here rather than (eg) in global_alloc
because this point is reached even if not optimizing. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
mark_home_live (i);
/* A function that has a nonlocal label that can reach the exit
block via non-exceptional paths must save all call-saved
registers. */
if (cfun->has_nonlocal_label
&& has_nonexceptional_receiver ())
crtl->saves_all_registers = 1;
if (crtl->saves_all_registers)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
df_set_regs_ever_live (i, true);
/* Find all the pseudo registers that didn't get hard regs
but do have known equivalent constants or memory slots.
These include parameters (known equivalent to parameter slots)
and cse'd or loop-moved constant memory addresses.
Record constant equivalents in reg_equiv_constant
so they will be substituted by find_reloads.
Record memory equivalents in reg_mem_equiv so they can
be substituted eventually by altering the REG-rtx's. */
reg_equiv_constant = XCNEWVEC (rtx, max_regno);
reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
reg_equiv_mem = XCNEWVEC (rtx, max_regno);
reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
reg_equiv_address = XCNEWVEC (rtx, max_regno);
reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
reg_old_renumber = XCNEWVEC (short, max_regno);
memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
CLEAR_HARD_REG_SET (bad_spill_regs_global);
/* Look for REG_EQUIV notes; record what each pseudo is equivalent
to. Also find all paradoxical subregs and find largest such for
each pseudo. */
num_eliminable_invariants = 0;
for (insn = first; insn; insn = NEXT_INSN (insn))
{
rtx set = single_set (insn);
/* We may introduce USEs that we want to remove at the end, so
we'll mark them with QImode. Make sure there are no
previously-marked insns left by say regmove. */
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
&& GET_MODE (insn) != VOIDmode)
PUT_MODE (insn, VOIDmode);
if (INSN_P (insn))
scan_paradoxical_subregs (PATTERN (insn));
if (set != 0 && REG_P (SET_DEST (set)))
{
rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
rtx x;
if (! note)
continue;
i = REGNO (SET_DEST (set));
x = XEXP (note, 0);
if (i <= LAST_VIRTUAL_REGISTER)
continue;
if (! function_invariant_p (x)
|| ! flag_pic
/* A function invariant is often CONSTANT_P but may
include a register. We promise to only pass
CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
|| (CONSTANT_P (x)
&& LEGITIMATE_PIC_OPERAND_P (x)))
{
/* It can happen that a REG_EQUIV note contains a MEM
that is not a legitimate memory operand. As later
stages of reload assume that all addresses found
in the reg_equiv_* arrays were originally legitimate,
we ignore such REG_EQUIV notes. */
if (memory_operand (x, VOIDmode))
{
/* Always unshare the equivalence, so we can
substitute into this insn without touching the
equivalence. */
reg_equiv_memory_loc[i] = copy_rtx (x);
}
else if (function_invariant_p (x))
{
if (GET_CODE (x) == PLUS)
{
/* This is PLUS of frame pointer and a constant,
and might be shared. Unshare it. */
reg_equiv_invariant[i] = copy_rtx (x);
num_eliminable_invariants++;
}
else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
{
reg_equiv_invariant[i] = x;
num_eliminable_invariants++;
}
else if (LEGITIMATE_CONSTANT_P (x))
reg_equiv_constant[i] = x;
else
{
reg_equiv_memory_loc[i]
= force_const_mem (GET_MODE (SET_DEST (set)), x);
if (! reg_equiv_memory_loc[i])
reg_equiv_init[i] = NULL_RTX;
}
}
else
{
reg_equiv_init[i] = NULL_RTX;
continue;
}
}
else
reg_equiv_init[i] = NULL_RTX;
}
}
if (dump_file)
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_equiv_init[i])
{
fprintf (dump_file, "init_insns for %u: ", i);
print_inline_rtx (dump_file, reg_equiv_init[i], 20);
fprintf (dump_file, "\n");
}
init_elim_table ();
first_label_num = get_first_label_num ();
num_labels = max_label_num () - first_label_num;
/* Allocate the tables used to store offset information at labels. */
/* We used to use alloca here, but the size of what it would try to
allocate would occasionally cause it to exceed the stack limit and
cause a core dump. */
offsets_known_at = XNEWVEC (char, num_labels);
offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
/* Alter each pseudo-reg rtx to contain its hard reg number. Assign
stack slots to the pseudos that lack hard regs or equivalents.
Do not touch virtual registers. */
temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
temp_pseudo_reg_arr[n++] = i;
if (ira_conflicts_p)
/* Ask IRA to order pseudo-registers for better stack slot
sharing. */
ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
for (i = 0; i < n; i++)
alter_reg (temp_pseudo_reg_arr[i], -1, false);
/* If we have some registers we think can be eliminated, scan all insns to
see if there is an insn that sets one of these registers to something
other than itself plus a constant. If so, the register cannot be
eliminated. Doing this scan here eliminates an extra pass through the
main reload loop in the most common case where register elimination
cannot be done. */
for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
if (INSN_P (insn))
note_stores (PATTERN (insn), mark_not_eliminable, NULL);
maybe_fix_stack_asms ();
insns_need_reload = 0;
something_needs_elimination = 0;
/* Initialize to -1, which means take the first spill register. */
last_spill_reg = -1;
/* Spill any hard regs that we know we can't eliminate. */
CLEAR_HARD_REG_SET (used_spill_regs);
/* There can be multiple ways to eliminate a register;
they should be listed adjacently.
Elimination for any register fails only if all possible ways fail. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; )
{
int from = ep->from;
int can_eliminate = 0;
do
{
can_eliminate |= ep->can_eliminate;
ep++;
}
while (ep < ®_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
if (! can_eliminate)
spill_hard_reg (from, 1);
}
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
if (frame_pointer_needed)
spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
#endif
finish_spills (global);
/* From now on, we may need to generate moves differently. We may also
allow modifications of insns which cause them to not be recognized.
Any such modifications will be cleaned up during reload itself. */
reload_in_progress = 1;
/* This loop scans the entire function each go-round
and repeats until one repetition spills no additional hard regs. */
for (;;)
{
int something_changed;
int did_spill;
HOST_WIDE_INT starting_frame_size;
starting_frame_size = get_frame_size ();
set_initial_elim_offsets ();
set_initial_label_offsets ();
/* For each pseudo register that has an equivalent location defined,
try to eliminate any eliminable registers (such as the frame pointer)
assuming initial offsets for the replacement register, which
is the normal case.
If the resulting location is directly addressable, substitute
the MEM we just got directly for the old REG.
If it is not addressable but is a constant or the sum of a hard reg
and constant, it is probably not addressable because the constant is
out of range, in that case record the address; we will generate
hairy code to compute the address in a register each time it is
needed. Similarly if it is a hard register, but one that is not
valid as an address register.
If the location is not addressable, but does not have one of the
above forms, assign a stack slot. We have to do this to avoid the
potential of producing lots of reloads if, e.g., a location involves
a pseudo that didn't get a hard register and has an equivalent memory
location that also involves a pseudo that didn't get a hard register.
Perhaps at some point we will improve reload_when_needed handling
so this problem goes away. But that's very hairy. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
{
rtx x = eliminate_regs (reg_equiv_memory_loc[i], VOIDmode,
NULL_RTX);
if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
XEXP (x, 0)))
reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
else if (CONSTANT_P (XEXP (x, 0))
|| (REG_P (XEXP (x, 0))
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
|| (GET_CODE (XEXP (x, 0)) == PLUS
&& REG_P (XEXP (XEXP (x, 0), 0))
&& (REGNO (XEXP (XEXP (x, 0), 0))
< FIRST_PSEUDO_REGISTER)
&& CONSTANT_P (XEXP (XEXP (x, 0), 1))))
reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
else
{
/* Make a new stack slot. Then indicate that something
changed so we go back and recompute offsets for
eliminable registers because the allocation of memory
below might change some offset. reg_equiv_{mem,address}
will be set up for this pseudo on the next pass around
the loop. */
reg_equiv_memory_loc[i] = 0;
reg_equiv_init[i] = 0;
alter_reg (i, -1, true);
}
}
if (caller_save_needed)
setup_save_areas ();
/* If we allocated another stack slot, redo elimination bookkeeping. */
if (starting_frame_size != get_frame_size ())
continue;
if (starting_frame_size && crtl->stack_alignment_needed)
{
/* If we have a stack frame, we must align it now. The
stack size may be a part of the offset computation for
register elimination. So if this changes the stack size,
then repeat the elimination bookkeeping. We don't
realign when there is no stack, as that will cause a
stack frame when none is needed should
STARTING_FRAME_OFFSET not be already aligned to
STACK_BOUNDARY. */
assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
if (starting_frame_size != get_frame_size ())
continue;
}
if (caller_save_needed)
{
save_call_clobbered_regs ();
/* That might have allocated new insn_chain structures. */
reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
}
calculate_needs_all_insns (global);
if (! ira_conflicts_p)
/* Don't do it for IRA. We need this info because we don't
change live_throughout and dead_or_set for chains when IRA
is used. */
CLEAR_REG_SET (&spilled_pseudos);
did_spill = 0;
something_changed = 0;
/* If we allocated any new memory locations, make another pass
since it might have changed elimination offsets. */
if (starting_frame_size != get_frame_size ())
something_changed = 1;
/* Even if the frame size remained the same, we might still have
changed elimination offsets, e.g. if find_reloads called
force_const_mem requiring the back end to allocate a constant
pool base register that needs to be saved on the stack. */
else if (!verify_initial_elim_offsets ())
something_changed = 1;
{
HARD_REG_SET to_spill;
CLEAR_HARD_REG_SET (to_spill);
update_eliminables (&to_spill);
AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (to_spill, i))
{
spill_hard_reg (i, 1);
did_spill = 1;
/* Regardless of the state of spills, if we previously had
a register that we thought we could eliminate, but now can
not eliminate, we must run another pass.
Consider pseudos which have an entry in reg_equiv_* which
reference an eliminable register. We must make another pass
to update reg_equiv_* so that we do not substitute in the
old value from when we thought the elimination could be
performed. */
something_changed = 1;
}
}
select_reload_regs ();
if (failure)
goto failed;
if (insns_need_reload != 0 || did_spill)
something_changed |= finish_spills (global);
if (! something_changed)
break;
if (caller_save_needed)
delete_caller_save_insns ();
obstack_free (&reload_obstack, reload_firstobj);
}
/* If global-alloc was run, notify it of any register eliminations we have
done. */
if (global)
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->can_eliminate)
mark_elimination (ep->from, ep->to);
/* If a pseudo has no hard reg, delete the insns that made the equivalence.
If that insn didn't set the register (i.e., it copied the register to
memory), just delete that insn instead of the equivalencing insn plus
anything now dead. If we call delete_dead_insn on that insn, we may
delete the insn that actually sets the register if the register dies
there and that is incorrect. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
{
rtx list;
for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
{
rtx equiv_insn = XEXP (list, 0);
/* If we already deleted the insn or if it may trap, we can't
delete it. The latter case shouldn't happen, but can
if an insn has a variable address, gets a REG_EH_REGION
note added to it, and then gets converted into a load
from a constant address. */
if (NOTE_P (equiv_insn)
|| can_throw_internal (equiv_insn))
;
else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
delete_dead_insn (equiv_insn);
else
SET_INSN_DELETED (equiv_insn);
}
}
}
/* Use the reload registers where necessary
by generating move instructions to move the must-be-register
values into or out of the reload registers. */
if (insns_need_reload != 0 || something_needs_elimination
|| something_needs_operands_changed)
{
HOST_WIDE_INT old_frame_size = get_frame_size ();
reload_as_needed (global);
gcc_assert (old_frame_size == get_frame_size ());
gcc_assert (verify_initial_elim_offsets ());
}
/* If we were able to eliminate the frame pointer, show that it is no
longer live at the start of any basic block. If it ls live by
virtue of being in a pseudo, that pseudo will be marked live
and hence the frame pointer will be known to be live via that
pseudo. */
if (! frame_pointer_needed)
FOR_EACH_BB (bb)
bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
/* Come here (with failure set nonzero) if we can't get enough spill
regs. */
failed:
CLEAR_REG_SET (&changed_allocation_pseudos);
CLEAR_REG_SET (&spilled_pseudos);
reload_in_progress = 0;
/* Now eliminate all pseudo regs by modifying them into
their equivalent memory references.
The REG-rtx's for the pseudos are modified in place,
so all insns that used to refer to them now refer to memory.
For a reg that has a reg_equiv_address, all those insns
were changed by reloading so that no insns refer to it any longer;
but the DECL_RTL of a variable decl may refer to it,
and if so this causes the debugging info to mention the variable. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
{
rtx addr = 0;
if (reg_equiv_mem[i])
addr = XEXP (reg_equiv_mem[i], 0);
if (reg_equiv_address[i])
addr = reg_equiv_address[i];
if (addr)
{
if (reg_renumber[i] < 0)
{
rtx reg = regno_reg_rtx[i];
REG_USERVAR_P (reg) = 0;
PUT_CODE (reg, MEM);
XEXP (reg, 0) = addr;
if (reg_equiv_memory_loc[i])
MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
else
{
MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
MEM_ATTRS (reg) = 0;
}
MEM_NOTRAP_P (reg) = 1;
}
else if (reg_equiv_mem[i])
XEXP (reg_equiv_mem[i], 0) = addr;
}
}
/* We must set reload_completed now since the cleanup_subreg_operands call
below will re-recognize each insn and reload may have generated insns
which are only valid during and after reload. */
reload_completed = 1;
/* Make a pass over all the insns and delete all USEs which we inserted
only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
notes. Delete all CLOBBER insns, except those that refer to the return
value and the special mem:BLK CLOBBERs added to prevent the scheduler
from misarranging variable-array code, and simplify (subreg (reg))
operands. Strip and regenerate REG_INC notes that may have been moved
around. */
for (insn = first; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
rtx *pnote;
if (CALL_P (insn))
replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
if ((GET_CODE (PATTERN (insn)) == USE
/* We mark with QImode USEs introduced by reload itself. */
&& (GET_MODE (insn) == QImode
|| find_reg_note (insn, REG_EQUAL, NULL_RTX)))
|| (GET_CODE (PATTERN (insn)) == CLOBBER
&& (!MEM_P (XEXP (PATTERN (insn), 0))
|| GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
|| (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
&& XEXP (XEXP (PATTERN (insn), 0), 0)
!= stack_pointer_rtx))
&& (!REG_P (XEXP (PATTERN (insn), 0))
|| ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
{
delete_insn (insn);
continue;
}
/* Some CLOBBERs may survive until here and still reference unassigned
pseudos with const equivalent, which may in turn cause ICE in later
passes if the reference remains in place. */
if (GET_CODE (PATTERN (insn)) == CLOBBER)
replace_pseudos_in (& XEXP (PATTERN (insn), 0),
VOIDmode, PATTERN (insn));
/* Discard obvious no-ops, even without -O. This optimization
is fast and doesn't interfere with debugging. */
if (NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == SET
&& REG_P (SET_SRC (PATTERN (insn)))
&& REG_P (SET_DEST (PATTERN (insn)))
&& (REGNO (SET_SRC (PATTERN (insn)))
== REGNO (SET_DEST (PATTERN (insn)))))
{
delete_insn (insn);
continue;
}
pnote = ®_NOTES (insn);
while (*pnote != 0)
{
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|| REG_NOTE_KIND (*pnote) == REG_UNUSED
|| REG_NOTE_KIND (*pnote) == REG_INC)
*pnote = XEXP (*pnote, 1);
else
pnote = &XEXP (*pnote, 1);
}
#ifdef AUTO_INC_DEC
add_auto_inc_notes (insn, PATTERN (insn));
#endif
/* Simplify (subreg (reg)) if it appears as an operand. */
cleanup_subreg_operands (insn);
/* Clean up invalid ASMs so that they don't confuse later passes.
See PR 21299. */
if (asm_noperands (PATTERN (insn)) >= 0)
{
extract_insn (insn);
if (!constrain_operands (1))
{
error_for_asm (insn,
"% operand has impossible constraints");
delete_insn (insn);
continue;
}
}
}
/* If we are doing generic stack checking, give a warning if this
function's frame size is larger than we expect. */
if (flag_stack_check == GENERIC_STACK_CHECK)
{
HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
static int verbose_warned = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
size += UNITS_PER_WORD;
if (size > STACK_CHECK_MAX_FRAME_SIZE)
{
warning (0, "frame size too large for reliable stack checking");
if (! verbose_warned)
{
warning (0, "try reducing the number of local variables");
verbose_warned = 1;
}
}
}
/* Indicate that we no longer have known memory locations or constants. */
if (reg_equiv_constant)
free (reg_equiv_constant);
if (reg_equiv_invariant)
free (reg_equiv_invariant);
reg_equiv_constant = 0;
reg_equiv_invariant = 0;
VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
reg_equiv_memory_loc = 0;
free (temp_pseudo_reg_arr);
if (offsets_known_at)
free (offsets_known_at);
if (offsets_at)
free (offsets_at);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (reg_equiv_alt_mem_list[i])
free_EXPR_LIST_list (®_equiv_alt_mem_list[i]);
free (reg_equiv_alt_mem_list);
free (reg_equiv_mem);
reg_equiv_init = 0;
free (reg_equiv_address);
free (reg_max_ref_width);
free (reg_old_renumber);
free (pseudo_previous_regs);
free (pseudo_forbidden_regs);
CLEAR_HARD_REG_SET (used_spill_regs);
for (i = 0; i < n_spills; i++)
SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
/* Free all the insn_chain structures at once. */
obstack_free (&reload_obstack, reload_startobj);
unused_insn_chains = 0;
fixup_abnormal_edges ();
/* Replacing pseudos with their memory equivalents might have
created shared rtx. Subsequent passes would get confused
by this, so unshare everything here. */
unshare_all_rtl_again (first);
#ifdef STACK_BOUNDARY
/* init_emit has set the alignment of the hard frame pointer
to STACK_BOUNDARY. It is very likely no longer valid if
the hard frame pointer was used for register allocation. */
if (!frame_pointer_needed)
REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
#endif
return failure;
}
/* Yet another special case. Unfortunately, reg-stack forces people to
write incorrect clobbers in asm statements. These clobbers must not
cause the register to appear in bad_spill_regs, otherwise we'll call
fatal_insn later. We clear the corresponding regnos in the live
register sets to avoid this.
The whole thing is rather sick, I'm afraid. */
static void
maybe_fix_stack_asms (void)
{
#ifdef STACK_REGS
const char *constraints[MAX_RECOG_OPERANDS];
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
struct insn_chain *chain;
for (chain = reload_insn_chain; chain != 0; chain = chain->next)
{
int i, noperands;
HARD_REG_SET clobbered, allowed;
rtx pat;
if (! INSN_P (chain->insn)
|| (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
continue;
pat = PATTERN (chain->insn);
if (GET_CODE (pat) != PARALLEL)
continue;
CLEAR_HARD_REG_SET (clobbered);
CLEAR_HARD_REG_SET (allowed);
/* First, make a mask of all stack regs that are clobbered. */
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx t = XVECEXP (pat, 0, i);
if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
}
/* Get the operand values and constraints out of the insn. */
decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
constraints, operand_mode, NULL);
/* For every operand, see what registers are allowed. */
for (i = 0; i < noperands; i++)
{
const char *p = constraints[i];
/* For every alternative, we compute the class of registers allowed
for reloading in CLS, and merge its contents into the reg set
ALLOWED. */
int cls = (int) NO_REGS;
for (;;)
{
char c = *p;
if (c == '\0' || c == ',' || c == '#')
{
/* End of one alternative - mark the regs in the current
class, and reset the class. */
IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
cls = NO_REGS;
p++;
if (c == '#')
do {
c = *p++;
} while (c != '\0' && c != ',');
if (c == '\0')
break;
continue;
}
switch (c)
{
case '=': case '+': case '*': case '%': case '?': case '!':
case '0': case '1': case '2': case '3': case '4': case '<':
case '>': case 'V': case 'o': case '&': case 'E': case 'F':
case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
case TARGET_MEM_CONSTRAINT:
break;
case 'p':
cls = (int) reg_class_subunion[cls]
[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
break;
case 'g':
case 'r':
cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
break;
default:
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
cls = (int) reg_class_subunion[cls]
[(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
else
cls = (int) reg_class_subunion[cls]
[(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
}
p += CONSTRAINT_LEN (c, p);
}
}
/* Those of the registers which are clobbered, but allowed by the
constraints, must be usable as reload registers. So clear them
out of the life information. */
AND_HARD_REG_SET (allowed, clobbered);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (allowed, i))
{
CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
}
}
#endif
}
/* Copy the global variables n_reloads and rld into the corresponding elts
of CHAIN. */
static void
copy_reloads (struct insn_chain *chain)
{
chain->n_reloads = n_reloads;
chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
}
/* Walk the chain of insns, and determine for each whether it needs reloads
and/or eliminations. Build the corresponding insns_need_reload list, and
set something_needs_elimination as appropriate. */
static void
calculate_needs_all_insns (int global)
{
struct insn_chain **pprev_reload = &insns_need_reload;
struct insn_chain *chain, *next = 0;
something_needs_elimination = 0;
reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
for (chain = reload_insn_chain; chain != 0; chain = next)
{
rtx insn = chain->insn;
next = chain->next;
/* Clear out the shortcuts. */
chain->n_reloads = 0;
chain->need_elim = 0;
chain->need_reload = 0;
chain->need_operand_change = 0;
/* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
what effects this has on the known offsets at labels. */
if (LABEL_P (insn) || JUMP_P (insn)
|| (INSN_P (insn) && REG_NOTES (insn) != 0))
set_label_offsets (insn, insn, 0);
if (INSN_P (insn))
{
rtx old_body = PATTERN (insn);
int old_code = INSN_CODE (insn);
rtx old_notes = REG_NOTES (insn);
int did_elimination = 0;
int operands_changed = 0;
rtx set = single_set (insn);
/* Skip insns that only set an equivalence. */
if (set && REG_P (SET_DEST (set))
&& reg_renumber[REGNO (SET_DEST (set))] < 0
&& (reg_equiv_constant[REGNO (SET_DEST (set))]
|| (reg_equiv_invariant[REGNO (SET_DEST (set))]))
&& reg_equiv_init[REGNO (SET_DEST (set))])
continue;
/* If needed, eliminate any eliminable registers. */
if (num_eliminable || num_eliminable_invariants)
did_elimination = eliminate_regs_in_insn (insn, 0);
/* Analyze the instruction. */
operands_changed = find_reloads (insn, 0, spill_indirect_levels,
global, spill_reg_order);
/* If a no-op set needs more than one reload, this is likely
to be something that needs input address reloads. We
can't get rid of this cleanly later, and it is of no use
anyway, so discard it now.
We only do this when expensive_optimizations is enabled,
since this complements reload inheritance / output
reload deletion, and it can make debugging harder. */
if (flag_expensive_optimizations && n_reloads > 1)
{
rtx set = single_set (insn);
if (set
&&
((SET_SRC (set) == SET_DEST (set)
&& REG_P (SET_SRC (set))
&& REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
|| (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
&& reg_renumber[REGNO (SET_SRC (set))] < 0
&& reg_renumber[REGNO (SET_DEST (set))] < 0
&& reg_equiv_memory_loc[REGNO (SET_SRC (set))] != NULL
&& reg_equiv_memory_loc[REGNO (SET_DEST (set))] != NULL
&& rtx_equal_p (reg_equiv_memory_loc
[REGNO (SET_SRC (set))],
reg_equiv_memory_loc
[REGNO (SET_DEST (set))]))))
{
if (ira_conflicts_p)
/* Inform IRA about the insn deletion. */
ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
REGNO (SET_SRC (set)));
delete_insn (insn);
/* Delete it from the reload chain. */
if (chain->prev)
chain->prev->next = next;
else
reload_insn_chain = next;
if (next)
next->prev = chain->prev;
chain->next = unused_insn_chains;
unused_insn_chains = chain;
continue;
}
}
if (num_eliminable)
update_eliminable_offsets ();
/* Remember for later shortcuts which insns had any reloads or
register eliminations. */
chain->need_elim = did_elimination;
chain->need_reload = n_reloads > 0;
chain->need_operand_change = operands_changed;
/* Discard any register replacements done. */
if (did_elimination)
{
obstack_free (&reload_obstack, reload_insn_firstobj);
PATTERN (insn) = old_body;
INSN_CODE (insn) = old_code;
REG_NOTES (insn) = old_notes;
something_needs_elimination = 1;
}
something_needs_operands_changed |= operands_changed;
if (n_reloads != 0)
{
copy_reloads (chain);
*pprev_reload = chain;
pprev_reload = &chain->next_need_reload;
}
}
}
*pprev_reload = 0;
}
/* Comparison function for qsort to decide which of two reloads
should be handled first. *P1 and *P2 are the reload numbers. */
static int
reload_reg_class_lower (const void *r1p, const void *r2p)
{
int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
int t;
/* Consider required reloads before optional ones. */
t = rld[r1].optional - rld[r2].optional;
if (t != 0)
return t;
/* Count all solitary classes before non-solitary ones. */
t = ((reg_class_size[(int) rld[r2].rclass] == 1)
- (reg_class_size[(int) rld[r1].rclass] == 1));
if (t != 0)
return t;
/* Aside from solitaires, consider all multi-reg groups first. */
t = rld[r2].nregs - rld[r1].nregs;
if (t != 0)
return t;
/* Consider reloads in order of increasing reg-class number. */
t = (int) rld[r1].rclass - (int) rld[r2].rclass;
if (t != 0)
return t;
/* If reloads are equally urgent, sort by reload number,
so that the results of qsort leave nothing to chance. */
return r1 - r2;
}
/* The cost of spilling each hard reg. */
static int spill_cost[FIRST_PSEUDO_REGISTER];
/* When spilling multiple hard registers, we use SPILL_COST for the first
spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
only the first hard reg for a multi-reg pseudo. */
static int spill_add_cost[FIRST_PSEUDO_REGISTER];
/* Map of hard regno to pseudo regno currently occupying the hard
reg. */
static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
/* Update the spill cost arrays, considering that pseudo REG is live. */
static void
count_pseudo (int reg)
{
int freq = REG_FREQ (reg);
int r = reg_renumber[reg];
int nregs;
if (REGNO_REG_SET_P (&pseudos_counted, reg)
|| REGNO_REG_SET_P (&spilled_pseudos, reg)
/* Ignore spilled pseudo-registers which can be here only if IRA
is used. */
|| (ira_conflicts_p && r < 0))
return;
SET_REGNO_REG_SET (&pseudos_counted, reg);
gcc_assert (r >= 0);
spill_add_cost[r] += freq;
nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
while (nregs-- > 0)
{
hard_regno_to_pseudo_regno[r + nregs] = reg;
spill_cost[r + nregs] += freq;
}
}
/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
contents of BAD_SPILL_REGS for the insn described by CHAIN. */
static void
order_regs_for_reload (struct insn_chain *chain)
{
unsigned i;
HARD_REG_SET used_by_pseudos;
HARD_REG_SET used_by_pseudos2;
reg_set_iterator rsi;
COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
memset (spill_cost, 0, sizeof spill_cost);
memset (spill_add_cost, 0, sizeof spill_add_cost);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
hard_regno_to_pseudo_regno[i] = -1;
/* Count number of uses of each hard reg by pseudo regs allocated to it
and then order them by decreasing use. First exclude hard registers
that are live in or across this insn. */
REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
/* Now find out which pseudos are allocated to it, and update
hard_reg_n_uses. */
CLEAR_REG_SET (&pseudos_counted);
EXECUTE_IF_SET_IN_REG_SET
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
{
count_pseudo (i);
}
EXECUTE_IF_SET_IN_REG_SET
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
{
count_pseudo (i);
}
CLEAR_REG_SET (&pseudos_counted);
}
/* Vector of reload-numbers showing the order in which the reloads should
be processed. */
static short reload_order[MAX_RELOADS];
/* This is used to keep track of the spill regs used in one insn. */
static HARD_REG_SET used_spill_regs_local;
/* We decided to spill hard register SPILLED, which has a size of
SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
update SPILL_COST/SPILL_ADD_COST. */
static void
count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
{
int freq = REG_FREQ (reg);
int r = reg_renumber[reg];
int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
/* Ignore spilled pseudo-registers which can be here only if IRA is
used. */
if ((ira_conflicts_p && r < 0)
|| REGNO_REG_SET_P (&spilled_pseudos, reg)
|| spilled + spilled_nregs <= r || r + nregs <= spilled)
return;
SET_REGNO_REG_SET (&spilled_pseudos, reg);
spill_add_cost[r] -= freq;
while (nregs-- > 0)
{
hard_regno_to_pseudo_regno[r + nregs] = -1;
spill_cost[r + nregs] -= freq;
}
}
/* Find reload register to use for reload number ORDER. */
static int
find_reg (struct insn_chain *chain, int order)
{
int rnum = reload_order[order];
struct reload *rl = rld + rnum;
int best_cost = INT_MAX;
int best_reg = -1;
unsigned int i, j, n;
int k;
HARD_REG_SET not_usable;
HARD_REG_SET used_by_other_reload;
reg_set_iterator rsi;
static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
COPY_HARD_REG_SET (not_usable, bad_spill_regs);
IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
CLEAR_HARD_REG_SET (used_by_other_reload);
for (k = 0; k < order; k++)
{
int other = reload_order[k];
if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
for (j = 0; j < rld[other].nregs; j++)
SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
#ifdef REG_ALLOC_ORDER
unsigned int regno = reg_alloc_order[i];
#else
unsigned int regno = i;
#endif
if (! TEST_HARD_REG_BIT (not_usable, regno)
&& ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
&& HARD_REGNO_MODE_OK (regno, rl->mode))
{
int this_cost = spill_cost[regno];
int ok = 1;
unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
for (j = 1; j < this_nregs; j++)
{
this_cost += spill_add_cost[regno + j];
if ((TEST_HARD_REG_BIT (not_usable, regno + j))
|| TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
ok = 0;
}
if (! ok)
continue;
if (ira_conflicts_p)
{
/* Ask IRA to find a better pseudo-register for
spilling. */
for (n = j = 0; j < this_nregs; j++)
{
int r = hard_regno_to_pseudo_regno[regno + j];
if (r < 0)
continue;
if (n == 0 || regno_pseudo_regs[n - 1] != r)
regno_pseudo_regs[n++] = r;
}
regno_pseudo_regs[n++] = -1;
if (best_reg < 0
|| ira_better_spill_reload_regno_p (regno_pseudo_regs,
best_regno_pseudo_regs,
rl->in, rl->out,
chain->insn))
{
best_reg = regno;
for (j = 0;; j++)
{
best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
if (regno_pseudo_regs[j] < 0)
break;
}
}
continue;
}
if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
this_cost--;
if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
this_cost--;
if (this_cost < best_cost
/* Among registers with equal cost, prefer caller-saved ones, or
use REG_ALLOC_ORDER if it is defined. */
|| (this_cost == best_cost
#ifdef REG_ALLOC_ORDER
&& (inv_reg_alloc_order[regno]
< inv_reg_alloc_order[best_reg])
#else
&& call_used_regs[regno]
&& ! call_used_regs[best_reg]
#endif
))
{
best_reg = regno;
best_cost = this_cost;
}
}
}
if (best_reg == -1)
return 0;
if (dump_file)
fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
rl->nregs = hard_regno_nregs[best_reg][rl->mode];
rl->regno = best_reg;
EXECUTE_IF_SET_IN_REG_SET
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
{
count_spilled_pseudo (best_reg, rl->nregs, j);
}
EXECUTE_IF_SET_IN_REG_SET
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
{
count_spilled_pseudo (best_reg, rl->nregs, j);
}
for (i = 0; i < rl->nregs; i++)
{
gcc_assert (spill_cost[best_reg + i] == 0);
gcc_assert (spill_add_cost[best_reg + i] == 0);
gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
}
return 1;
}
/* Find more reload regs to satisfy the remaining need of an insn, which
is given by CHAIN.
Do it by ascending class number, since otherwise a reg
might be spilled for a big class and might fail to count
for a smaller class even though it belongs to that class. */
static void
find_reload_regs (struct insn_chain *chain)
{
int i;
/* In order to be certain of getting the registers we need,
we must sort the reloads into order of increasing register class.
Then our grabbing of reload registers will parallel the process
that provided the reload registers. */
for (i = 0; i < chain->n_reloads; i++)
{
/* Show whether this reload already has a hard reg. */
if (chain->rld[i].reg_rtx)
{
int regno = REGNO (chain->rld[i].reg_rtx);
chain->rld[i].regno = regno;
chain->rld[i].nregs
= hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
}
else
chain->rld[i].regno = -1;
reload_order[i] = i;
}
n_reloads = chain->n_reloads;
memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
CLEAR_HARD_REG_SET (used_spill_regs_local);
if (dump_file)
fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
/* Compute the order of preference for hard registers to spill. */
order_regs_for_reload (chain);
for (i = 0; i < n_reloads; i++)
{
int r = reload_order[i];
/* Ignore reloads that got marked inoperative. */
if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
&& ! rld[r].optional
&& rld[r].regno == -1)
if (! find_reg (chain, i))
{
if (dump_file)
fprintf (dump_file, "reload failure for reload %d\n", r);
spill_failure (chain->insn, rld[r].rclass);
failure = 1;
return;
}
}
COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
}
static void
select_reload_regs (void)
{
struct insn_chain *chain;
/* Try to satisfy the needs for each insn. */
for (chain = insns_need_reload; chain != 0;
chain = chain->next_need_reload)
find_reload_regs (chain);
}
/* Delete all insns that were inserted by emit_caller_save_insns during
this iteration. */
static void
delete_caller_save_insns (void)
{
struct insn_chain *c = reload_insn_chain;
while (c != 0)
{
while (c != 0 && c->is_caller_save_insn)
{
struct insn_chain *next = c->next;
rtx insn = c->insn;
if (c == reload_insn_chain)
reload_insn_chain = next;
delete_insn (insn);
if (next)
next->prev = c->prev;
if (c->prev)
c->prev->next = next;
c->next = unused_insn_chains;
unused_insn_chains = c;
c = next;
}
if (c != 0)
c = c->next;
}
}
/* Handle the failure to find a register to spill.
INSN should be one of the insns which needed this particular spill reg. */
static void
spill_failure (rtx insn, enum reg_class rclass)
{
if (asm_noperands (PATTERN (insn)) >= 0)
error_for_asm (insn, "can't find a register in class %qs while "
"reloading %",
reg_class_names[rclass]);
else
{
error ("unable to find a register to spill in class %qs",
reg_class_names[rclass]);
if (dump_file)
{
fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
debug_reload_to_stream (dump_file);
}
fatal_insn ("this is the insn:", insn);
}
}
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
data that is dead in INSN. */
static void
delete_dead_insn (rtx insn)
{
rtx prev = prev_real_insn (insn);
rtx prev_dest;
/* If the previous insn sets a register that dies in our insn, delete it
too. */
if (prev && GET_CODE (PATTERN (prev)) == SET
&& (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
&& reg_mentioned_p (prev_dest, PATTERN (insn))
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
delete_dead_insn (prev);
SET_INSN_DELETED (insn);
}
/* Modify the home of pseudo-reg I.
The new home is present in reg_renumber[I].
FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
or it may be -1, meaning there is none or it is not relevant.
This is used so that all pseudos spilled from a given hard reg
can share one stack slot. */
static void
alter_reg (int i, int from_reg, bool dont_share_p)
{
/* When outputting an inline function, this can happen
for a reg that isn't actually used. */
if (regno_reg_rtx[i] == 0)
return;
/* If the reg got changed to a MEM at rtl-generation time,
ignore it. */
if (!REG_P (regno_reg_rtx[i]))
return;
/* Modify the reg-rtx to contain the new hard reg
number or else to contain its pseudo reg number. */
SET_REGNO (regno_reg_rtx[i],
reg_renumber[i] >= 0 ? reg_renumber[i] : i);
/* If we have a pseudo that is needed but has no hard reg or equivalent,
allocate a stack slot for it. */
if (reg_renumber[i] < 0
&& REG_N_REFS (i) > 0
&& reg_equiv_constant[i] == 0
&& (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
&& reg_equiv_memory_loc[i] == 0)
{
rtx x = NULL_RTX;
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
int adjust = 0;
if (ira_conflicts_p)
{
/* Mark the spill for IRA. */
SET_REGNO_REG_SET (&spilled_pseudos, i);
if (!dont_share_p)
x = ira_reuse_stack_slot (i, inherent_size, total_size);
}
if (x)
;
/* Each pseudo reg has an inherent size which comes from its own mode,
and a total size which provides room for paradoxical subregs
which refer to the pseudo reg in wider modes.
We can use a slot already allocated if it provides both
enough inherent space and enough total space.
Otherwise, we allocate a new slot, making sure that it has no less
inherent space, and no less total space, then the previous slot. */
else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
{
rtx stack_slot;
/* No known place to spill from => no slot to reuse. */
x = assign_stack_local (mode, total_size,
min_align > inherent_align
|| total_size > inherent_size ? -1 : 0);
stack_slot = x;
/* Cancel the big-endian correction done in assign_stack_local.
Get the address of the beginning of the slot. This is so we
can do a big-endian correction unconditionally below. */
if (BYTES_BIG_ENDIAN)
{
adjust = inherent_size - total_size;
if (adjust)
stack_slot
= adjust_address_nv (x, mode_for_size (total_size
* BITS_PER_UNIT,
MODE_INT, 1),
adjust);
}
if (! dont_share_p && ira_conflicts_p)
/* Inform IRA about allocation a new stack slot. */
ira_mark_new_stack_slot (stack_slot, i, total_size);
}
/* Reuse a stack slot if possible. */
else if (spill_stack_slot[from_reg] != 0
&& spill_stack_slot_width[from_reg] >= total_size
&& (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
>= inherent_size)
&& MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
x = spill_stack_slot[from_reg];
/* Allocate a bigger slot. */
else
{
/* Compute maximum size needed, both for inherent size
and for total size. */
rtx stack_slot;
if (spill_stack_slot[from_reg])
{
if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
> inherent_size)
mode = GET_MODE (spill_stack_slot[from_reg]);
if (spill_stack_slot_width[from_reg] > total_size)
total_size = spill_stack_slot_width[from_reg];
if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
}
/* Make a slot with that size. */
x = assign_stack_local (mode, total_size,
min_align > inherent_align
|| total_size > inherent_size ? -1 : 0);
stack_slot = x;
/* Cancel the big-endian correction done in assign_stack_local.
Get the address of the beginning of the slot. This is so we
can do a big-endian correction unconditionally below. */
if (BYTES_BIG_ENDIAN)
{
adjust = GET_MODE_SIZE (mode) - total_size;
if (adjust)
stack_slot
= adjust_address_nv (x, mode_for_size (total_size
* BITS_PER_UNIT,
MODE_INT, 1),
adjust);
}
spill_stack_slot[from_reg] = stack_slot;
spill_stack_slot_width[from_reg] = total_size;
}
/* On a big endian machine, the "address" of the slot
is the address of the low part that fits its inherent mode. */
if (BYTES_BIG_ENDIAN && inherent_size < total_size)
adjust += (total_size - inherent_size);
/* If we have any adjustment to make, or if the stack slot is the
wrong mode, make a new stack slot. */
x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
/* Set all of the memory attributes as appropriate for a spill. */
set_mem_attrs_for_spill (x);
/* Save the stack slot for later. */
reg_equiv_memory_loc[i] = x;
}
}
/* Mark the slots in regs_ever_live for the hard regs used by
pseudo-reg number REGNO, accessed in MODE. */
static void
mark_home_live_1 (int regno, enum machine_mode mode)
{
int i, lim;
i = reg_renumber[regno];
if (i < 0)
return;
lim = end_hard_regno (mode, i);
while (i < lim)
df_set_regs_ever_live(i++, true);
}
/* Mark the slots in regs_ever_live for the hard regs
used by pseudo-reg number REGNO. */
void
mark_home_live (int regno)
{
if (reg_renumber[regno] >= 0)
mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
}
/* This function handles the tracking of elimination offsets around branches.
X is a piece of RTL being scanned.
INSN is the insn that it came from, if any.
INITIAL_P is nonzero if we are to set the offset to be the initial
offset and zero if we are setting the offset of the label to be the
current offset. */
static void
set_label_offsets (rtx x, rtx insn, int initial_p)
{
enum rtx_code code = GET_CODE (x);
rtx tem;
unsigned int i;
struct elim_table *p;
switch (code)
{
case LABEL_REF:
if (LABEL_REF_NONLOCAL_P (x))
return;
x = XEXP (x, 0);
/* ... fall through ... */
case CODE_LABEL:
/* If we know nothing about this label, set the desired offsets. Note
that this sets the offset at a label to be the offset before a label
if we don't know anything about the label. This is not correct for
the label after a BARRIER, but is the best guess we can make. If
we guessed wrong, we will suppress an elimination that might have
been possible had we been able to guess correctly. */
if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
{
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
= (initial_p ? reg_eliminate[i].initial_offset
: reg_eliminate[i].offset);
offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
}
/* Otherwise, if this is the definition of a label and it is
preceded by a BARRIER, set our offsets to the known offset of
that label. */
else if (x == insn
&& (tem = prev_nonnote_insn (insn)) != 0
&& BARRIER_P (tem))
set_offsets_for_label (insn);
else
/* If neither of the above cases is true, compare each offset
with those previously recorded and suppress any eliminations
where the offsets disagree. */
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
!= (initial_p ? reg_eliminate[i].initial_offset
: reg_eliminate[i].offset))
reg_eliminate[i].can_eliminate = 0;
return;
case JUMP_INSN:
set_label_offsets (PATTERN (insn), insn, initial_p);
/* ... fall through ... */
case INSN:
case CALL_INSN:
/* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
to indirectly and hence must have all eliminations at their
initial offsets. */
for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
set_label_offsets (XEXP (tem, 0), insn, 1);
return;
case PARALLEL:
case ADDR_VEC:
case ADDR_DIFF_VEC:
/* Each of the labels in the parallel or address vector must be
at their initial offsets. We want the first field for PARALLEL
and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
insn, initial_p);
return;
case SET:
/* We only care about setting PC. If the source is not RETURN,
IF_THEN_ELSE, or a label, disable any eliminations not at
their initial offsets. Similarly if any arm of the IF_THEN_ELSE
isn't one of those possibilities. For branches to a label,
call ourselves recursively.
Note that this can disable elimination unnecessarily when we have
a non-local goto since it will look like a non-constant jump to
someplace in the current function. This isn't a significant
problem since such jumps will normally be when all elimination
pairs are back to their initial offsets. */
if (SET_DEST (x) != pc_rtx)
return;
switch (GET_CODE (SET_SRC (x)))
{
case PC:
case RETURN:
return;
case LABEL_REF:
set_label_offsets (SET_SRC (x), insn, initial_p);
return;
case IF_THEN_ELSE:
tem = XEXP (SET_SRC (x), 1);
if (GET_CODE (tem) == LABEL_REF)
set_label_offsets (XEXP (tem, 0), insn, initial_p);
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
break;
tem = XEXP (SET_SRC (x), 2);
if (GET_CODE (tem) == LABEL_REF)
set_label_offsets (XEXP (tem, 0), insn, initial_p);
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
break;
return;
default:
break;
}
/* If we reach here, all eliminations must be at their initial
offset because we are doing a jump to a variable address. */
for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++)
if (p->offset != p->initial_offset)
p->can_eliminate = 0;
break;
default:
break;
}
}
/* Scan X and replace any eliminable registers (such as fp) with a
replacement (such as sp), plus an offset.
MEM_MODE is the mode of an enclosing MEM. We need this to know how
much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
MEM, we are allowed to replace a sum of a register and the constant zero
with the register, which we cannot do outside a MEM. In addition, we need
to record the fact that a register is referenced outside a MEM.
If INSN is an insn, it is the insn containing X. If we replace a REG
in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
CLOBBER of the pseudo after INSN so find_equiv_regs will know that
the REG is being modified.
Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
That's used when we eliminate in expressions stored in notes.
This means, do not set ref_outside_mem even if the reference
is outside of MEMs.
REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
replacements done assuming all offsets are at their initial values. If
they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
encounter, return the actual location so that find_reloads will do
the proper thing. */
static rtx
eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
bool may_use_invariant)
{
enum rtx_code code = GET_CODE (x);
struct elim_table *ep;
int regno;
rtx new_rtx;
int i, j;
const char *fmt;
int copied = 0;
if (! current_function_decl)
return x;
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CONST:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
case ASM_INPUT:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case RETURN:
return x;
case REG:
regno = REGNO (x);
/* First handle the case where we encounter a bare register that
is eliminable. Replace it with a PLUS. */
if (regno < FIRST_PSEUDO_REGISTER)
{
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == x && ep->can_eliminate)
return plus_constant (ep->to_rtx, ep->previous_offset);
}
else if (reg_renumber && reg_renumber[regno] < 0
&& reg_equiv_invariant && reg_equiv_invariant[regno])
{
if (may_use_invariant)
return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
mem_mode, insn, true);
/* There exists at least one use of REGNO that cannot be
eliminated. Prevent the defining insn from being deleted. */
reg_equiv_init[regno] = NULL_RTX;
alter_reg (regno, -1, true);
}
return x;
/* You might think handling MINUS in a manner similar to PLUS is a
good idea. It is not. It has been tried multiple times and every
time the change has had to have been reverted.
Other parts of reload know a PLUS is special (gen_reload for example)
and require special code to handle code a reloaded PLUS operand.
Also consider backends where the flags register is clobbered by a
MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
lea instruction comes to mind). If we try to reload a MINUS, we
may kill the flags register that was holding a useful value.
So, please before trying to handle MINUS, consider reload as a
whole instead of this little section as well as the backend issues. */
case PLUS:
/* If this is the sum of an eliminable register and a constant, rework
the sum. */
if (REG_P (XEXP (x, 0))
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
&& CONSTANT_P (XEXP (x, 1)))
{
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
{
/* The only time we want to replace a PLUS with a REG (this
occurs when the constant operand of the PLUS is the negative
of the offset) is when we are inside a MEM. We won't want
to do so at other times because that would change the
structure of the insn in a way that reload can't handle.
We special-case the commonest situation in
eliminate_regs_in_insn, so just replace a PLUS with a
PLUS here, unless inside a MEM. */
if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == - ep->previous_offset)
return ep->to_rtx;
else
return gen_rtx_PLUS (Pmode, ep->to_rtx,
plus_constant (XEXP (x, 1),
ep->previous_offset));
}
/* If the register is not eliminable, we are done since the other
operand is a constant. */
return x;
}
/* If this is part of an address, we want to bring any constant to the
outermost PLUS. We will do this by doing register replacement in
our operands and seeing if a constant shows up in one of them.
Note that there is no risk of modifying the structure of the insn,
since we only get called for its operands, thus we are either
modifying the address inside a MEM, or something like an address
operand of a load-address insn. */
{
rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
{
/* If one side is a PLUS and the other side is a pseudo that
didn't get a hard register but has a reg_equiv_constant,
we must replace the constant here since it may no longer
be in the position of any operand. */
if (GET_CODE (new0) == PLUS && REG_P (new1)
&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (new1)] < 0
&& reg_equiv_constant != 0
&& reg_equiv_constant[REGNO (new1)] != 0)
new1 = reg_equiv_constant[REGNO (new1)];
else if (GET_CODE (new1) == PLUS && REG_P (new0)
&& REGNO (new0) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (new0)] < 0
&& reg_equiv_constant[REGNO (new0)] != 0)
new0 = reg_equiv_constant[REGNO (new0)];
new_rtx = form_sum (new0, new1);
/* As above, if we are not inside a MEM we do not want to
turn a PLUS into something else. We might try to do so here
for an addition of 0 if we aren't optimizing. */
if (! mem_mode && GET_CODE (new_rtx) != PLUS)
return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
else
return new_rtx;
}
}
return x;
case MULT:
/* If this is the product of an eliminable register and a
constant, apply the distribute law and move the constant out
so that we have (plus (mult ..) ..). This is needed in order
to keep load-address insns valid. This case is pathological.
We ignore the possibility of overflow here. */
if (REG_P (XEXP (x, 0))
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
{
if (! mem_mode
/* Refs inside notes don't count for this purpose. */
&& ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
|| GET_CODE (insn) == INSN_LIST)))
ep->ref_outside_mem = 1;
return
plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
ep->previous_offset * INTVAL (XEXP (x, 1)));
}
/* ... fall through ... */
case CALL:
case COMPARE:
/* See comments before PLUS about handling MINUS. */
case MINUS:
case DIV: case UDIV:
case MOD: case UMOD:
case AND: case IOR: case XOR:
case ROTATERT: case ROTATE:
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
case NE: case EQ:
case GE: case GT: case GEU: case GTU:
case LE: case LT: case LEU: case LTU:
{
rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
rtx new1 = XEXP (x, 1)
? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
}
return x;
case EXPR_LIST:
/* If we have something in XEXP (x, 0), the usual case, eliminate it. */
if (XEXP (x, 0))
{
new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
if (new_rtx != XEXP (x, 0))
{
/* If this is a REG_DEAD note, it is not valid anymore.
Using the eliminated version could result in creating a
REG_DEAD note for the stack or frame pointer. */
if (REG_NOTE_KIND (x) == REG_DEAD)
return (XEXP (x, 1)
? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
: NULL_RTX);
x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
}
}
/* ... fall through ... */
case INSN_LIST:
/* Now do eliminations in the rest of the chain. If this was
an EXPR_LIST, this might result in allocating more memory than is
strictly needed, but it simplifies the code. */
if (XEXP (x, 1))
{
new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
if (new_rtx != XEXP (x, 1))
return
gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
}
return x;
case PRE_INC:
case POST_INC:
case PRE_DEC:
case POST_DEC:
/* We do not support elimination of a register that is modified.
elimination_effects has already make sure that this does not
happen. */
return x;
case PRE_MODIFY:
case POST_MODIFY:
/* We do not support elimination of a register that is modified.
elimination_effects has already make sure that this does not
happen. The only remaining case we need to consider here is
that the increment value may be an eliminable register. */
if (GET_CODE (XEXP (x, 1)) == PLUS
&& XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
{
rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
insn, true);
if (new_rtx != XEXP (XEXP (x, 1), 1))
return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
gen_rtx_PLUS (GET_MODE (x),
XEXP (x, 0), new_rtx));
}
return x;
case STRICT_LOW_PART:
case NEG: case NOT:
case SIGN_EXTEND: case ZERO_EXTEND:
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
case FLOAT: case FIX:
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
case ABS:
case SQRT:
case FFS:
case CLZ:
case CTZ:
case POPCOUNT:
case PARITY:
case BSWAP:
new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
if (new_rtx != XEXP (x, 0))
return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
return x;
case SUBREG:
/* Similar to above processing, but preserve SUBREG_BYTE.
Convert (subreg (mem)) to (mem) if not paradoxical.
Also, if we have a non-paradoxical (subreg (pseudo)) and the
pseudo didn't get a hard reg, we must replace this with the
eliminated version of the memory location because push_reload
may do the replacement in certain circumstances. */
if (REG_P (SUBREG_REG (x))
&& (GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& reg_equiv_memory_loc != 0
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
{
new_rtx = SUBREG_REG (x);
}
else
new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
if (new_rtx != SUBREG_REG (x))
{
int x_size = GET_MODE_SIZE (GET_MODE (x));
int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
if (MEM_P (new_rtx)
&& ((x_size < new_size
#ifdef WORD_REGISTER_OPERATIONS
/* On these machines, combine can create rtl of the form
(set (subreg:m1 (reg:m2 R) 0) ...)
where m1 < m2, and expects something interesting to
happen to the entire word. Moreover, it will use the
(reg:m2 R) later, expecting all bits to be preserved.
So if the number of words is the same, preserve the
subreg so that push_reload can see it. */
&& ! ((x_size - 1) / UNITS_PER_WORD
== (new_size -1 ) / UNITS_PER_WORD)
#endif
)
|| x_size == new_size)
)
return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
else
return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
}
return x;
case MEM:
/* Our only special processing is to pass the mode of the MEM to our
recursive call and copy the flags. While we are here, handle this
case more efficiently. */
return
replace_equiv_address_nv (x,
eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
insn, true));
case USE:
/* Handle insn_list USE that a call to a pure function may generate. */
new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false);
if (new_rtx != XEXP (x, 0))
return gen_rtx_USE (GET_MODE (x), new_rtx);
return x;
case CLOBBER:
case ASM_OPERANDS:
case SET:
gcc_unreachable ();
default:
break;
}
/* Process each of our operands recursively. If any have changed, make a
copy of the rtx. */
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
{
if (*fmt == 'e')
{
new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
if (new_rtx != XEXP (x, i) && ! copied)
{
x = shallow_copy_rtx (x);
copied = 1;
}
XEXP (x, i) = new_rtx;
}
else if (*fmt == 'E')
{
int copied_vec = 0;
for (j = 0; j < XVECLEN (x, i); j++)
{
new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
{
rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
XVEC (x, i)->elem);
if (! copied)
{
x = shallow_copy_rtx (x);
copied = 1;
}
XVEC (x, i) = new_v;
copied_vec = 1;
}
XVECEXP (x, i, j) = new_rtx;
}
}
}
return x;
}
rtx
eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
{
return eliminate_regs_1 (x, mem_mode, insn, false);
}
/* Scan rtx X for modifications of elimination target registers. Update
the table of eliminables to reflect the changed state. MEM_MODE is
the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
static void
elimination_effects (rtx x, enum machine_mode mem_mode)
{
enum rtx_code code = GET_CODE (x);
struct elim_table *ep;
int regno;
int i, j;
const char *fmt;
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case CONST:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
case CC0:
case ASM_INPUT:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case RETURN:
return;
case REG:
regno = REGNO (x);
/* First handle the case where we encounter a bare register that
is eliminable. Replace it with a PLUS. */
if (regno < FIRST_PSEUDO_REGISTER)
{
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == x && ep->can_eliminate)
{
if (! mem_mode)
ep->ref_outside_mem = 1;
return;
}
}
else if (reg_renumber[regno] < 0 && reg_equiv_constant
&& reg_equiv_constant[regno]
&& ! function_invariant_p (reg_equiv_constant[regno]))
elimination_effects (reg_equiv_constant[regno], mem_mode);
return;
case PRE_INC:
case POST_INC:
case PRE_DEC:
case POST_DEC:
case POST_MODIFY:
case PRE_MODIFY:
/* If we modify the source of an elimination rule, disable it. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == XEXP (x, 0))
ep->can_eliminate = 0;
/* If we modify the target of an elimination rule by adding a constant,
update its offset. If we modify the target in any other way, we'll
have to disable the rule as well. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->to_rtx == XEXP (x, 0))
{
int size = GET_MODE_SIZE (mem_mode);
/* If more bytes than MEM_MODE are pushed, account for them. */
#ifdef PUSH_ROUNDING
if (ep->to_rtx == stack_pointer_rtx)
size = PUSH_ROUNDING (size);
#endif
if (code == PRE_DEC || code == POST_DEC)
ep->offset += size;
else if (code == PRE_INC || code == POST_INC)
ep->offset -= size;
else if (code == PRE_MODIFY || code == POST_MODIFY)
{
if (GET_CODE (XEXP (x, 1)) == PLUS
&& XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
&& CONST_INT_P (XEXP (XEXP (x, 1), 1)))
ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
else
ep->can_eliminate = 0;
}
}
/* These two aren't unary operators. */
if (code == POST_MODIFY || code == PRE_MODIFY)
break;
/* Fall through to generic unary operation case. */
case STRICT_LOW_PART:
case NEG: case NOT:
case SIGN_EXTEND: case ZERO_EXTEND:
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
case FLOAT: case FIX:
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
case ABS:
case SQRT:
case FFS:
case CLZ:
case CTZ:
case POPCOUNT:
case PARITY:
case BSWAP:
elimination_effects (XEXP (x, 0), mem_mode);
return;
case SUBREG:
if (REG_P (SUBREG_REG (x))
&& (GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& reg_equiv_memory_loc != 0
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
return;
elimination_effects (SUBREG_REG (x), mem_mode);
return;
case USE:
/* If using a register that is the source of an eliminate we still
think can be performed, note it cannot be performed since we don't
know how this register is used. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == XEXP (x, 0))
ep->can_eliminate = 0;
elimination_effects (XEXP (x, 0), mem_mode);
return;
case CLOBBER:
/* If clobbering a register that is the replacement register for an
elimination we still think can be performed, note that it cannot
be performed. Otherwise, we need not be concerned about it. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->to_rtx == XEXP (x, 0))
ep->can_eliminate = 0;
elimination_effects (XEXP (x, 0), mem_mode);
return;
case SET:
/* Check for setting a register that we know about. */
if (REG_P (SET_DEST (x)))
{
/* See if this is setting the replacement register for an
elimination.
If DEST is the hard frame pointer, we do nothing because we
assume that all assignments to the frame pointer are for
non-local gotos and are being done at a time when they are valid
and do not disturb anything else. Some machines want to
eliminate a fake argument pointer (or even a fake frame pointer)
with either the real frame or the stack pointer. Assignments to
the hard frame pointer must not prevent this elimination. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->to_rtx == SET_DEST (x)
&& SET_DEST (x) != hard_frame_pointer_rtx)
{
/* If it is being incremented, adjust the offset. Otherwise,
this elimination can't be done. */
rtx src = SET_SRC (x);
if (GET_CODE (src) == PLUS
&& XEXP (src, 0) == SET_DEST (x)
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
ep->offset -= INTVAL (XEXP (src, 1));
else
ep->can_eliminate = 0;
}
}
elimination_effects (SET_DEST (x), VOIDmode);
elimination_effects (SET_SRC (x), VOIDmode);
return;
case MEM:
/* Our only special processing is to pass the mode of the MEM to our
recursive call. */
elimination_effects (XEXP (x, 0), GET_MODE (x));
return;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
{
if (*fmt == 'e')
elimination_effects (XEXP (x, i), mem_mode);
else if (*fmt == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
elimination_effects (XVECEXP (x, i, j), mem_mode);
}
}
/* Descend through rtx X and verify that no references to eliminable registers
remain. If any do remain, mark the involved register as not
eliminable. */
static void
check_eliminable_occurrences (rtx x)
{
const char *fmt;
int i;
enum rtx_code code;
if (x == 0)
return;
code = GET_CODE (x);
if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
{
struct elim_table *ep;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == x)
ep->can_eliminate = 0;
return;
}
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
{
if (*fmt == 'e')
check_eliminable_occurrences (XEXP (x, i));
else if (*fmt == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
check_eliminable_occurrences (XVECEXP (x, i, j));
}
}
}
/* Scan INSN and eliminate all eliminable registers in it.
If REPLACE is nonzero, do the replacement destructively. Also
delete the insn as dead it if it is setting an eliminable register.
If REPLACE is zero, do all our allocations in reload_obstack.
If no eliminations were done and this insn doesn't require any elimination
processing (these are not identical conditions: it might be updating sp,
but not referencing fp; this needs to be seen during reload_as_needed so
that the offset between fp and sp can be taken into consideration), zero
is returned. Otherwise, 1 is returned. */
static int
eliminate_regs_in_insn (rtx insn, int replace)
{
int icode = recog_memoized (insn);
rtx old_body = PATTERN (insn);
int insn_is_asm = asm_noperands (old_body) >= 0;
rtx old_set = single_set (insn);
rtx new_body;
int val = 0;
int i;
rtx substed_operand[MAX_RECOG_OPERANDS];
rtx orig_operand[MAX_RECOG_OPERANDS];
struct elim_table *ep;
rtx plus_src, plus_cst_src;
if (! insn_is_asm && icode < 0)
{
gcc_assert (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|| GET_CODE (PATTERN (insn)) == ASM_INPUT);
return 0;
}
if (old_set != 0 && REG_P (SET_DEST (old_set))
&& REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
{
/* Check for setting an eliminable register. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
{
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
/* If this is setting the frame pointer register to the
hardware frame pointer register and this is an elimination
that will be done (tested above), this insn is really
adjusting the frame pointer downward to compensate for
the adjustment done before a nonlocal goto. */
if (ep->from == FRAME_POINTER_REGNUM
&& ep->to == HARD_FRAME_POINTER_REGNUM)
{
rtx base = SET_SRC (old_set);
rtx base_insn = insn;
HOST_WIDE_INT offset = 0;
while (base != ep->to_rtx)
{
rtx prev_insn, prev_set;
if (GET_CODE (base) == PLUS
&& GET_CODE (XEXP (base, 1)) == CONST_INT)
{
offset += INTVAL (XEXP (base, 1));
base = XEXP (base, 0);
}
else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
&& (prev_set = single_set (prev_insn)) != 0
&& rtx_equal_p (SET_DEST (prev_set), base))
{
base = SET_SRC (prev_set);
base_insn = prev_insn;
}
else
break;
}
if (base == ep->to_rtx)
{
rtx src
= plus_constant (ep->to_rtx, offset - ep->offset);
new_body = old_body;
if (! replace)
{
new_body = copy_insn (old_body);
if (REG_NOTES (insn))
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
}
PATTERN (insn) = new_body;
old_set = single_set (insn);
/* First see if this insn remains valid when we
make the change. If not, keep the INSN_CODE
the same and let reload fit it up. */
validate_change (insn, &SET_SRC (old_set), src, 1);
validate_change (insn, &SET_DEST (old_set),
ep->to_rtx, 1);
if (! apply_change_group ())
{
SET_SRC (old_set) = src;
SET_DEST (old_set) = ep->to_rtx;
}
val = 1;
goto done;
}
}
#endif
/* In this case this insn isn't serving a useful purpose. We
will delete it in reload_as_needed once we know that this
elimination is, in fact, being done.
If REPLACE isn't set, we can't delete this insn, but needn't
process it since it won't be used unless something changes. */
if (replace)
{
delete_dead_insn (insn);
return 1;
}
val = 1;
goto done;
}
}
/* We allow one special case which happens to work on all machines we
currently support: a single set with the source or a REG_EQUAL
note being a PLUS of an eliminable register and a constant. */
plus_src = plus_cst_src = 0;
if (old_set && REG_P (SET_DEST (old_set)))
{
if (GET_CODE (SET_SRC (old_set)) == PLUS)
plus_src = SET_SRC (old_set);
/* First see if the source is of the form (plus (...) CST). */
if (plus_src
&& GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
plus_cst_src = plus_src;
else if (REG_P (SET_SRC (old_set))
|| plus_src)
{
/* Otherwise, see if we have a REG_EQUAL note of the form
(plus (...) CST). */
rtx links;
for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
{
if ((REG_NOTE_KIND (links) == REG_EQUAL
|| REG_NOTE_KIND (links) == REG_EQUIV)
&& GET_CODE (XEXP (links, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
{
plus_cst_src = XEXP (links, 0);
break;
}
}
}
/* Check that the first operand of the PLUS is a hard reg or
the lowpart subreg of one. */
if (plus_cst_src)
{
rtx reg = XEXP (plus_cst_src, 0);
if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
reg = SUBREG_REG (reg);
if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
plus_cst_src = 0;
}
}
if (plus_cst_src)
{
rtx reg = XEXP (plus_cst_src, 0);
HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->from_rtx == reg && ep->can_eliminate)
{
rtx to_rtx = ep->to_rtx;
offset += ep->offset;
offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
to_rtx);
/* If we have a nonzero offset, and the source is already
a simple REG, the following transformation would
increase the cost of the insn by replacing a simple REG
with (plus (reg sp) CST). So try only when we already
had a PLUS before. */
if (offset == 0 || plus_src)
{
rtx new_src = plus_constant (to_rtx, offset);
new_body = old_body;
if (! replace)
{
new_body = copy_insn (old_body);
if (REG_NOTES (insn))
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
}
PATTERN (insn) = new_body;
old_set = single_set (insn);
/* First see if this insn remains valid when we make the
change. If not, try to replace the whole pattern with
a simple set (this may help if the original insn was a
PARALLEL that was only recognized as single_set due to
REG_UNUSED notes). If this isn't valid either, keep
the INSN_CODE the same and let reload fix it up. */
if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
{
rtx new_pat = gen_rtx_SET (VOIDmode,
SET_DEST (old_set), new_src);
if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
SET_SRC (old_set) = new_src;
}
}
else
break;
val = 1;
/* This can't have an effect on elimination offsets, so skip right
to the end. */
goto done;
}
}
/* Determine the effects of this insn on elimination offsets. */
elimination_effects (old_body, VOIDmode);
/* Eliminate all eliminable registers occurring in operands that
can be handled by reload. */
extract_insn (insn);
for (i = 0; i < recog_data.n_operands; i++)
{
orig_operand[i] = recog_data.operand[i];
substed_operand[i] = recog_data.operand[i];
/* For an asm statement, every operand is eliminable. */
if (insn_is_asm || insn_data[icode].operand[i].eliminable)
{
bool is_set_src, in_plus;
/* Check for setting a register that we know about. */
if (recog_data.operand_type[i] != OP_IN
&& REG_P (orig_operand[i]))
{
/* If we are assigning to a register that can be eliminated, it
must be as part of a PARALLEL, since the code above handles
single SETs. We must indicate that we can no longer
eliminate this reg. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
ep++)
if (ep->from_rtx == orig_operand[i])
ep->can_eliminate = 0;
}
/* Companion to the above plus substitution, we can allow
invariants as the source of a plain move. */
is_set_src = false;
if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
is_set_src = true;
in_plus = false;
if (plus_src
&& (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
|| recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
in_plus = true;
substed_operand[i]
= eliminate_regs_1 (recog_data.operand[i], VOIDmode,
replace ? insn : NULL_RTX,
is_set_src || in_plus);
if (substed_operand[i] != orig_operand[i])
val = 1;
/* Terminate the search in check_eliminable_occurrences at
this point. */
*recog_data.operand_loc[i] = 0;
/* If an output operand changed from a REG to a MEM and INSN is an
insn, write a CLOBBER insn. */
if (recog_data.operand_type[i] != OP_IN
&& REG_P (orig_operand[i])
&& MEM_P (substed_operand[i])
&& replace)
emit_insn_after (gen_clobber (orig_operand[i]), insn);
}
}
for (i = 0; i < recog_data.n_dups; i++)
*recog_data.dup_loc[i]
= *recog_data.operand_loc[(int) recog_data.dup_num[i]];
/* If any eliminable remain, they aren't eliminable anymore. */
check_eliminable_occurrences (old_body);
/* Substitute the operands; the new values are in the substed_operand
array. */
for (i = 0; i < recog_data.n_operands; i++)
*recog_data.operand_loc[i] = substed_operand[i];
for (i = 0; i < recog_data.n_dups; i++)
*recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
/* If we are replacing a body that was a (set X (plus Y Z)), try to
re-recognize the insn. We do this in case we had a simple addition
but now can do this as a load-address. This saves an insn in this
common case.
If re-recognition fails, the old insn code number will still be used,
and some register operands may have changed into PLUS expressions.
These will be handled by find_reloads by loading them into a register
again. */
if (val)
{
/* If we aren't replacing things permanently and we changed something,
make another copy to ensure that all the RTL is new. Otherwise
things can go wrong if find_reload swaps commutative operands
and one is inside RTL that has been copied while the other is not. */
new_body = old_body;
if (! replace)
{
new_body = copy_insn (old_body);
if (REG_NOTES (insn))
REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
}
PATTERN (insn) = new_body;
/* If we had a move insn but now we don't, rerecognize it. This will
cause spurious re-recognition if the old move had a PARALLEL since
the new one still will, but we can't call single_set without
having put NEW_BODY into the insn and the re-recognition won't
hurt in this rare case. */
/* ??? Why this huge if statement - why don't we just rerecognize the
thing always? */
if (! insn_is_asm
&& old_set != 0
&& ((REG_P (SET_SRC (old_set))
&& (GET_CODE (new_body) != SET
|| !REG_P (SET_SRC (new_body))))
/* If this was a load from or store to memory, compare
the MEM in recog_data.operand to the one in the insn.
If they are not equal, then rerecognize the insn. */
|| (old_set != 0
&& ((MEM_P (SET_SRC (old_set))
&& SET_SRC (old_set) != recog_data.operand[1])
|| (MEM_P (SET_DEST (old_set))
&& SET_DEST (old_set) != recog_data.operand[0])))
/* If this was an add insn before, rerecognize. */
|| GET_CODE (SET_SRC (old_set)) == PLUS))
{
int new_icode = recog (PATTERN (insn), insn, 0);
if (new_icode >= 0)
INSN_CODE (insn) = new_icode;
}
}
/* Restore the old body. If there were any changes to it, we made a copy
of it while the changes were still in place, so we'll correctly return
a modified insn below. */
if (! replace)
{
/* Restore the old body. */
for (i = 0; i < recog_data.n_operands; i++)
*recog_data.operand_loc[i] = orig_operand[i];
for (i = 0; i < recog_data.n_dups; i++)
*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
}
/* Update all elimination pairs to reflect the status after the current
insn. The changes we make were determined by the earlier call to
elimination_effects.
We also detect cases where register elimination cannot be done,
namely, if a register would be both changed and referenced outside a MEM
in the resulting insn since such an insn is often undefined and, even if
not, we cannot know what meaning will be given to it. Note that it is
valid to have a register used in an address in an insn that changes it
(presumably with a pre- or post-increment or decrement).
If anything changes, return nonzero. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
ep->can_eliminate = 0;
ep->ref_outside_mem = 0;
if (ep->previous_offset != ep->offset)
val = 1;
}
done:
/* If we changed something, perform elimination in REG_NOTES. This is
needed even when REPLACE is zero because a REG_DEAD note might refer
to a register that we eliminate and could cause a different number
of spill registers to be needed in the final reload pass than in
the pre-passes. */
if (val && REG_NOTES (insn) != 0)
REG_NOTES (insn)
= eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true);
return val;
}
/* Loop through all elimination pairs.
Recalculate the number not at initial offset.
Compute the maximum offset (minimum offset if the stack does not
grow downward) for each elimination pair. */
static void
update_eliminable_offsets (void)
{
struct elim_table *ep;
num_not_at_initial_offset = 0;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
ep->previous_offset = ep->offset;
if (ep->can_eliminate && ep->offset != ep->initial_offset)
num_not_at_initial_offset++;
}
}
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
replacement we currently believe is valid, mark it as not eliminable if X
modifies DEST in any way other than by adding a constant integer to it.
If DEST is the frame pointer, we do nothing because we assume that
all assignments to the hard frame pointer are nonlocal gotos and are being
done at a time when they are valid and do not disturb anything else.
Some machines want to eliminate a fake argument pointer with either the
frame or stack pointer. Assignments to the hard frame pointer must not
prevent this elimination.
Called via note_stores from reload before starting its passes to scan
the insns of the function. */
static void
mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
{
unsigned int i;
/* A SUBREG of a hard register here is just changing its mode. We should
not see a SUBREG of an eliminable hard register, but check just in
case. */
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (dest == hard_frame_pointer_rtx)
return;
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
&& (GET_CODE (x) != SET
|| GET_CODE (SET_SRC (x)) != PLUS
|| XEXP (SET_SRC (x), 0) != dest
|| GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
{
reg_eliminate[i].can_eliminate_previous
= reg_eliminate[i].can_eliminate = 0;
num_eliminable--;
}
}
/* Verify that the initial elimination offsets did not change since the
last call to set_initial_elim_offsets. This is used to catch cases
where something illegal happened during reload_as_needed that could
cause incorrect code to be generated if we did not check for it. */
static bool
verify_initial_elim_offsets (void)
{
HOST_WIDE_INT t;
if (!num_eliminable)
return true;
#ifdef ELIMINABLE_REGS
{
struct elim_table *ep;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
if (t != ep->initial_offset)
return false;
}
}
#else
INITIAL_FRAME_POINTER_OFFSET (t);
if (t != reg_eliminate[0].initial_offset)
return false;
#endif
return true;
}
/* Reset all offsets on eliminable registers to their initial values. */
static void
set_initial_elim_offsets (void)
{
struct elim_table *ep = reg_eliminate;
#ifdef ELIMINABLE_REGS
for (; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
ep->previous_offset = ep->offset = ep->initial_offset;
}
#else
INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
ep->previous_offset = ep->offset = ep->initial_offset;
#endif
num_not_at_initial_offset = 0;
}
/* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
static void
set_initial_eh_label_offset (rtx label)
{
set_label_offsets (label, NULL_RTX, 1);
}
/* Initialize the known label offsets.
Set a known offset for each forced label to be at the initial offset
of each elimination. We do this because we assume that all
computed jumps occur from a location where each elimination is
at its initial offset.
For all other labels, show that we don't know the offsets. */
static void
set_initial_label_offsets (void)
{
rtx x;
memset (offsets_known_at, 0, num_labels);
for (x = forced_labels; x; x = XEXP (x, 1))
if (XEXP (x, 0))
set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
for_each_eh_label (set_initial_eh_label_offset);
}
/* Set all elimination offsets to the known values for the code label given
by INSN. */
static void
set_offsets_for_label (rtx insn)
{
unsigned int i;
int label_nr = CODE_LABEL_NUMBER (insn);
struct elim_table *ep;
num_not_at_initial_offset = 0;
for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
{
ep->offset = ep->previous_offset
= offsets_at[label_nr - first_label_num][i];
if (ep->can_eliminate && ep->offset != ep->initial_offset)
num_not_at_initial_offset++;
}
}
/* See if anything that happened changes which eliminations are valid.
For example, on the SPARC, whether or not the frame pointer can
be eliminated can depend on what registers have been used. We need
not check some conditions again (such as flag_omit_frame_pointer)
since they can't have changed. */
static void
update_eliminables (HARD_REG_SET *pset)
{
int previous_frame_pointer_needed = frame_pointer_needed;
struct elim_table *ep;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
#ifdef ELIMINABLE_REGS
|| ! CAN_ELIMINATE (ep->from, ep->to)
#endif
)
ep->can_eliminate = 0;
/* Look for the case where we have discovered that we can't replace
register A with register B and that means that we will now be
trying to replace register A with register C. This means we can
no longer replace register C with register B and we need to disable
such an elimination, if it exists. This occurs often with A == ap,
B == sp, and C == fp. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
struct elim_table *op;
int new_to = -1;
if (! ep->can_eliminate && ep->can_eliminate_previous)
{
/* Find the current elimination for ep->from, if there is a
new one. */
for (op = reg_eliminate;
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
if (op->from == ep->from && op->can_eliminate)
{
new_to = op->to;
break;
}
/* See if there is an elimination of NEW_TO -> EP->TO. If so,
disable it. */
for (op = reg_eliminate;
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
if (op->from == new_to && op->to == ep->to)
op->can_eliminate = 0;
}
}
/* See if any registers that we thought we could eliminate the previous
time are no longer eliminable. If so, something has changed and we
must spill the register. Also, recompute the number of eliminable
registers and see if the frame pointer is needed; it is if there is
no elimination of the frame pointer that we can perform. */
frame_pointer_needed = 1;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
if (ep->can_eliminate
&& ep->from == FRAME_POINTER_REGNUM
&& ep->to != HARD_FRAME_POINTER_REGNUM
&& (! SUPPORTS_STACK_ALIGNMENT
|| ! crtl->stack_realign_needed))
frame_pointer_needed = 0;
if (! ep->can_eliminate && ep->can_eliminate_previous)
{
ep->can_eliminate_previous = 0;
SET_HARD_REG_BIT (*pset, ep->from);
num_eliminable--;
}
}
/* If we didn't need a frame pointer last time, but we do now, spill
the hard frame pointer. */
if (frame_pointer_needed && ! previous_frame_pointer_needed)
SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
}
/* Return true if X is used as the target register of an elimination. */
bool
elimination_target_reg_p (rtx x)
{
struct elim_table *ep;
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
if (ep->to_rtx == x && ep->can_eliminate)
return true;
return false;
}
/* Initialize the table of registers to eliminate.
Pre-condition: global flag frame_pointer_needed has been set before
calling this function. */
static void
init_elim_table (void)
{
struct elim_table *ep;
#ifdef ELIMINABLE_REGS
const struct elim_table_1 *ep1;
#endif
if (!reg_eliminate)
reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
num_eliminable = 0;
#ifdef ELIMINABLE_REGS
for (ep = reg_eliminate, ep1 = reg_eliminate_1;
ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
{
ep->from = ep1->from;
ep->to = ep1->to;
ep->can_eliminate = ep->can_eliminate_previous
= (CAN_ELIMINATE (ep->from, ep->to)
&& ! (ep->to == STACK_POINTER_REGNUM
&& frame_pointer_needed
&& (! SUPPORTS_STACK_ALIGNMENT
|| ! stack_realign_fp)));
}
#else
reg_eliminate[0].from = reg_eliminate_1[0].from;
reg_eliminate[0].to = reg_eliminate_1[0].to;
reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
= ! frame_pointer_needed;
#endif
/* Count the number of eliminable registers and build the FROM and TO
REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
We depend on this. */
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
{
num_eliminable += ep->can_eliminate;
ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
}
}
/* Kick all pseudos out of hard register REGNO.
If CANT_ELIMINATE is nonzero, it means that we are doing this spill
because we found we can't eliminate some register. In the case, no pseudos
are allowed to be in the register, even if they are only in a block that
doesn't require spill registers, unlike the case when we are spilling this
hard reg to produce another spill register.
Return nonzero if any pseudos needed to be kicked out. */
static void
spill_hard_reg (unsigned int regno, int cant_eliminate)
{
int i;
if (cant_eliminate)
{
SET_HARD_REG_BIT (bad_spill_regs_global, regno);
df_set_regs_ever_live (regno, true);
}
/* Spill every pseudo reg that was allocated to this reg
or to something that overlaps this reg. */
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (reg_renumber[i] >= 0
&& (unsigned int) reg_renumber[i] <= regno
&& end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
SET_REGNO_REG_SET (&spilled_pseudos, i);
}
/* After find_reload_regs has been run for all insn that need reloads,
and/or spill_hard_regs was called, this function is used to actually
spill pseudo registers and try to reallocate them. It also sets up the
spill_regs array for use by choose_reload_regs. */
static int
finish_spills (int global)
{
struct insn_chain *chain;
int something_changed = 0;
unsigned i;
reg_set_iterator rsi;
/* Build the spill_regs array for the function. */
/* If there are some registers still to eliminate and one of the spill regs
wasn't ever used before, additional stack space may have to be
allocated to store this register. Thus, we may have changed the offset
between the stack and frame pointers, so mark that something has changed.
One might think that we need only set VAL to 1 if this is a call-used
register. However, the set of registers that must be saved by the
prologue is not identical to the call-used set. For example, the
register used by the call insn for the return PC is a call-used register,
but must be saved by the prologue. */
n_spills = 0;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (used_spill_regs, i))
{
spill_reg_order[i] = n_spills;
spill_regs[n_spills++] = i;
if (num_eliminable && ! df_regs_ever_live_p (i))
something_changed = 1;
df_set_regs_ever_live (i, true);
}
else
spill_reg_order[i] = -1;
EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
if (! ira_conflicts_p || reg_renumber[i] >= 0)
{
/* Record the current hard register the pseudo is allocated to
in pseudo_previous_regs so we avoid reallocating it to the
same hard reg in a later pass. */
gcc_assert (reg_renumber[i] >= 0);
SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
/* Mark it as no longer having a hard register home. */
reg_renumber[i] = -1;
if (ira_conflicts_p)
/* Inform IRA about the change. */
ira_mark_allocation_change (i);
/* We will need to scan everything again. */
something_changed = 1;
}
/* Retry global register allocation if possible. */
if (global && ira_conflicts_p)
{
unsigned int n;
memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
/* For every insn that needs reloads, set the registers used as spill
regs in pseudo_forbidden_regs for every pseudo live across the
insn. */
for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
{
EXECUTE_IF_SET_IN_REG_SET
(&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
{
IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
chain->used_spill_regs);
}
EXECUTE_IF_SET_IN_REG_SET
(&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
{
IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
chain->used_spill_regs);
}
}
/* Retry allocating the pseudos spilled in IRA and the
reload. For each reg, merge the various reg sets that
indicate which hard regs can't be used, and call
ira_reassign_pseudos. */
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
if (reg_old_renumber[i] != reg_renumber[i])
{
if (reg_renumber[i] < 0)
temp_pseudo_reg_arr[n++] = i;
else
CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
}
if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
bad_spill_regs_global,
pseudo_forbidden_regs, pseudo_previous_regs,
&spilled_pseudos))
something_changed = 1;
}
/* Fix up the register information in the insn chain.
This involves deleting those of the spilled pseudos which did not get
a new hard register home from the live_{before,after} sets. */
for (chain = reload_insn_chain; chain; chain = chain->next)
{
HARD_REG_SET used_by_pseudos;
HARD_REG_SET used_by_pseudos2;
if (! ira_conflicts_p)
{
/* Don't do it for IRA because IRA and the reload still can
assign hard registers to the spilled pseudos on next
reload iterations. */
AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
}
/* Mark any unallocated hard regs as available for spills. That
makes inheritance work somewhat better. */
if (chain->need_reload)
{
REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
/* Value of chain->used_spill_regs from previous iteration
may be not included in the value calculated here because
of possible removing caller-saves insns (see function
delete_caller_save_insns. */
COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
}
}
CLEAR_REG_SET (&changed_allocation_pseudos);
/* Let alter_reg modify the reg rtx's for the modified pseudos. */
for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
{
int regno = reg_renumber[i];
if (reg_old_renumber[i] == regno)
continue;
SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
alter_reg (i, reg_old_renumber[i], false);
reg_old_renumber[i] = regno;
if (dump_file)
{
if (regno == -1)
fprintf (dump_file, " Register %d now on stack.\n\n", i);
else
fprintf (dump_file, " Register %d now in %d.\n\n",
i, reg_renumber[i]);
}
}
return something_changed;
}
/* Find all paradoxical subregs within X and update reg_max_ref_width. */
static void
scan_paradoxical_subregs (rtx x)
{
int i;
const char *fmt;
enum rtx_code code = GET_CODE (x);
switch (code)
{
case REG:
case CONST_INT:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR: /* shouldn't happen, but just in case. */
case CC0:
case PC:
case USE:
case CLOBBER:
return;
case SUBREG:
if (REG_P (SUBREG_REG (x))
&& (GET_MODE_SIZE (GET_MODE (x))
> reg_max_ref_width[REGNO (SUBREG_REG (x))]))
{
reg_max_ref_width[REGNO (SUBREG_REG (x))]
= GET_MODE_SIZE (GET_MODE (x));
mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
}
return;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
scan_paradoxical_subregs (XEXP (x, i));
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
scan_paradoxical_subregs (XVECEXP (x, i, j));
}
}
}
/* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
examine all of the reload insns between PREV and NEXT exclusive, and
annotate all that may trap. */
static void
fixup_eh_region_note (rtx insn, rtx prev, rtx next)
{
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
rtx i;
if (note == NULL)
return;
if (! may_trap_p (PATTERN (insn)))
remove_note (insn, note);
for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
add_reg_note (i, REG_EH_REGION, XEXP (note, 0));
}
/* Reload pseudo-registers into hard regs around each insn as needed.
Additional register load insns are output before the insn that needs it
and perhaps store insns after insns that modify the reloaded pseudo reg.
reg_last_reload_reg and reg_reloaded_contents keep track of
which registers are already available in reload registers.
We update these for the reloads that we perform,
as the insns are scanned. */
static void
reload_as_needed (int live_known)
{
struct insn_chain *chain;
#if defined (AUTO_INC_DEC)
int i;
#endif
rtx x;
memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
memset (spill_reg_store, 0, sizeof spill_reg_store);
reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
INIT_REG_SET (®_has_output_reload);
CLEAR_HARD_REG_SET (reg_reloaded_valid);
CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
set_initial_elim_offsets ();
for (chain = reload_insn_chain; chain; chain = chain->next)
{
rtx prev = 0;
rtx insn = chain->insn;
rtx old_next = NEXT_INSN (insn);
#ifdef AUTO_INC_DEC
rtx old_prev = PREV_INSN (insn);
#endif
/* If we pass a label, copy the offsets from the label information
into the current offsets of each elimination. */
if (LABEL_P (insn))
set_offsets_for_label (insn);
else if (INSN_P (insn))
{
regset_head regs_to_forget;
INIT_REG_SET (®s_to_forget);
note_stores (PATTERN (insn), forget_old_reloads_1, ®s_to_forget);
/* If this is a USE and CLOBBER of a MEM, ensure that any
references to eliminable registers have been removed. */
if ((GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
&& MEM_P (XEXP (PATTERN (insn), 0)))
XEXP (XEXP (PATTERN (insn), 0), 0)
= eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
GET_MODE (XEXP (PATTERN (insn), 0)),
NULL_RTX);
/* If we need to do register elimination processing, do so.
This might delete the insn, in which case we are done. */
if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
{
eliminate_regs_in_insn (insn, 1);
if (NOTE_P (insn))
{
update_eliminable_offsets ();
CLEAR_REG_SET (®s_to_forget);
continue;
}
}
/* If need_elim is nonzero but need_reload is zero, one might think
that we could simply set n_reloads to 0. However, find_reloads
could have done some manipulation of the insn (such as swapping
commutative operands), and these manipulations are lost during
the first pass for every insn that needs register elimination.
So the actions of find_reloads must be redone here. */
if (! chain->need_elim && ! chain->need_reload
&& ! chain->need_operand_change)
n_reloads = 0;
/* First find the pseudo regs that must be reloaded for this insn.
This info is returned in the tables reload_... (see reload.h).
Also modify the body of INSN by substituting RELOAD
rtx's for those pseudo regs. */
else
{
CLEAR_REG_SET (®_has_output_reload);
CLEAR_HARD_REG_SET (reg_is_output_reload);
find_reloads (insn, 1, spill_indirect_levels, live_known,
spill_reg_order);
}
if (n_reloads > 0)
{
rtx next = NEXT_INSN (insn);
rtx p;
prev = PREV_INSN (insn);
/* Now compute which reload regs to reload them into. Perhaps
reusing reload regs from previous insns, or else output
load insns to reload them. Maybe output store insns too.
Record the choices of reload reg in reload_reg_rtx. */
choose_reload_regs (chain);
/* Merge any reloads that we didn't combine for fear of
increasing the number of spill registers needed but now
discover can be safely merged. */
if (SMALL_REGISTER_CLASSES)
merge_assigned_reloads (insn);
/* Generate the insns to reload operands into or out of
their reload regs. */
emit_reload_insns (chain);
/* Substitute the chosen reload regs from reload_reg_rtx
into the insn's body (or perhaps into the bodies of other
load and store insn that we just made for reloading
and that we moved the structure into). */
subst_reloads (insn);
/* Adjust the exception region notes for loads and stores. */
if (flag_non_call_exceptions && !CALL_P (insn))
fixup_eh_region_note (insn, prev, next);
/* If this was an ASM, make sure that all the reload insns
we have generated are valid. If not, give an error
and delete them. */
if (asm_noperands (PATTERN (insn)) >= 0)
for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
if (p != insn && INSN_P (p)
&& GET_CODE (PATTERN (p)) != USE
&& (recog_memoized (p) < 0
|| (extract_insn (p), ! constrain_operands (1))))
{
error_for_asm (insn,
"% operand requires "
"impossible reload");
delete_insn (p);
}
}
if (num_eliminable && chain->need_elim)
update_eliminable_offsets ();
/* Any previously reloaded spilled pseudo reg, stored in this insn,
is no longer validly lying around to save a future reload.
Note that this does not detect pseudos that were reloaded
for this insn in order to be stored in
(obeying register constraints). That is correct; such reload
registers ARE still valid. */
forget_marked_reloads (®s_to_forget);
CLEAR_REG_SET (®s_to_forget);
/* There may have been CLOBBER insns placed after INSN. So scan
between INSN and NEXT and use them to forget old reloads. */
for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
note_stores (PATTERN (x), forget_old_reloads_1, NULL);
#ifdef AUTO_INC_DEC
/* Likewise for regs altered by auto-increment in this insn.
REG_INC notes have been changed by reloading:
find_reloads_address_1 records substitutions for them,
which have been performed by subst_reloads above. */
for (i = n_reloads - 1; i >= 0; i--)
{
rtx in_reg = rld[i].in_reg;
if (in_reg)
{
enum rtx_code code = GET_CODE (in_reg);
/* PRE_INC / PRE_DEC will have the reload register ending up
with the same value as the stack slot, but that doesn't
hold true for POST_INC / POST_DEC. Either we have to
convert the memory access to a true POST_INC / POST_DEC,
or we can't use the reload register for inheritance. */
if ((code == POST_INC || code == POST_DEC)
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
REGNO (rld[i].reg_rtx))
/* Make sure it is the inc/dec pseudo, and not
some other (e.g. output operand) pseudo. */
&& ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
== REGNO (XEXP (in_reg, 0))))
{
rtx reload_reg = rld[i].reg_rtx;
enum machine_mode mode = GET_MODE (reload_reg);
int n = 0;
rtx p;
for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
{
/* We really want to ignore REG_INC notes here, so
use PATTERN (p) as argument to reg_set_p . */
if (reg_set_p (reload_reg, PATTERN (p)))
break;
n = count_occurrences (PATTERN (p), reload_reg, 0);
if (! n)
continue;
if (n == 1)
{
n = validate_replace_rtx (reload_reg,
gen_rtx_fmt_e (code,
mode,
reload_reg),
p);
/* We must also verify that the constraints
are met after the replacement. */
extract_insn (p);
if (n)
n = constrain_operands (1);
else
break;
/* If the constraints were not met, then
undo the replacement. */
if (!n)
{
validate_replace_rtx (gen_rtx_fmt_e (code,
mode,
reload_reg),
reload_reg, p);
break;
}
}
break;
}
if (n == 1)
{
add_reg_note (p, REG_INC, reload_reg);
/* Mark this as having an output reload so that the
REG_INC processing code below won't invalidate
the reload for inheritance. */
SET_HARD_REG_BIT (reg_is_output_reload,
REGNO (reload_reg));
SET_REGNO_REG_SET (®_has_output_reload,
REGNO (XEXP (in_reg, 0)));
}
else
forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
NULL);
}
else if ((code == PRE_INC || code == PRE_DEC)
&& TEST_HARD_REG_BIT (reg_reloaded_valid,
REGNO (rld[i].reg_rtx))
/* Make sure it is the inc/dec pseudo, and not
some other (e.g. output operand) pseudo. */
&& ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
== REGNO (XEXP (in_reg, 0))))
{
SET_HARD_REG_BIT (reg_is_output_reload,
REGNO (rld[i].reg_rtx));
SET_REGNO_REG_SET (®_has_output_reload,
REGNO (XEXP (in_reg, 0)));
}
else if (code == PRE_INC || code == PRE_DEC
|| code == POST_INC || code == POST_DEC)
{
int in_regno = REGNO (XEXP (in_reg, 0));
if (reg_last_reload_reg[in_regno] != NULL_RTX)
{
int in_hard_regno;
bool forget_p = true;
in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
if (TEST_HARD_REG_BIT (reg_reloaded_valid,
in_hard_regno))
{
for (x = old_prev ? NEXT_INSN (old_prev) : insn;
x != old_next;
x = NEXT_INSN (x))
if (x == reg_reloaded_insn[in_hard_regno])
{
forget_p = false;
break;
}
}
/* If for some reasons, we didn't set up
reg_last_reload_reg in this insn,
invalidate inheritance from previous
insns for the incremented/decremented
register. Such registers will be not in
reg_has_output_reload. Invalidate it
also if the corresponding element in
reg_reloaded_insn is also
invalidated. */
if (forget_p)
forget_old_reloads_1 (XEXP (in_reg, 0),
NULL_RTX, NULL);
}
}
}
}
/* If a pseudo that got a hard register is auto-incremented,
we must purge records of copying it into pseudos without
hard registers. */
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
if (REG_NOTE_KIND (x) == REG_INC)
{
/* See if this pseudo reg was reloaded in this insn.
If so, its last-reload info is still valid
because it is based on this insn's reload. */
for (i = 0; i < n_reloads; i++)
if (rld[i].out == XEXP (x, 0))
break;
if (i == n_reloads)
forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
}
#endif
}
/* A reload reg's contents are unknown after a label. */
if (LABEL_P (insn))
CLEAR_HARD_REG_SET (reg_reloaded_valid);
/* Don't assume a reload reg is still good after a call insn
if it is a call-used reg, or if it contains a value that will
be partially clobbered by the call. */
else if (CALL_P (insn))
{
AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
}
}
/* Clean up. */
free (reg_last_reload_reg);
CLEAR_REG_SET (®_has_output_reload);
}
/* Discard all record of any value reloaded from X,
or reloaded in X from someplace else;
unless X is an output reload reg of the current insn.
X may be a hard reg (the reload reg)
or it may be a pseudo reg that was reloaded from.
When DATA is non-NULL just mark the registers in regset
to be forgotten later. */
static void
forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
void *data)
{
unsigned int regno;
unsigned int nr;
regset regs = (regset) data;
/* note_stores does give us subregs of hard regs,
subreg_regno_offset requires a hard reg. */
while (GET_CODE (x) == SUBREG)
{
/* We ignore the subreg offset when calculating the regno,
because we are using the entire underlying hard register
below. */
x = SUBREG_REG (x);
}
if (!REG_P (x))
return;
regno = REGNO (x);
if (regno >= FIRST_PSEUDO_REGISTER)
nr = 1;
else
{
unsigned int i;
nr = hard_regno_nregs[regno][GET_MODE (x)];
/* Storing into a spilled-reg invalidates its contents.
This can happen if a block-local pseudo is allocated to that reg
and it wasn't spilled because this block's total need is 0.
Then some insn might have an optional reload and use this reg. */
if (!regs)
for (i = 0; i < nr; i++)
/* But don't do this if the reg actually serves as an output
reload reg in the current instruction. */
if (n_reloads == 0
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
{
CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
spill_reg_store[regno + i] = 0;
}
}
if (regs)
while (nr-- > 0)
SET_REGNO_REG_SET (regs, regno + nr);
else
{
/* Since value of X has changed,
forget any value previously copied from it. */
while (nr-- > 0)
/* But don't forget a copy if this is the output reload
that establishes the copy's validity. */
if (n_reloads == 0
|| !REGNO_REG_SET_P (®_has_output_reload, regno + nr))
reg_last_reload_reg[regno + nr] = 0;
}
}
/* Forget the reloads marked in regset by previous function. */
static void
forget_marked_reloads (regset regs)
{
unsigned int reg;
reg_set_iterator rsi;
EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
{
if (reg < FIRST_PSEUDO_REGISTER
/* But don't do this if the reg actually serves as an output
reload reg in the current instruction. */
&& (n_reloads == 0
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
{
CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
spill_reg_store[reg] = 0;
}
if (n_reloads == 0
|| !REGNO_REG_SET_P (®_has_output_reload, reg))
reg_last_reload_reg[reg] = 0;
}
}
/* The following HARD_REG_SETs indicate when each hard register is
used for a reload of various parts of the current insn. */
/* If reg is unavailable for all reloads. */
static HARD_REG_SET reload_reg_unavailable;
/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
static HARD_REG_SET reload_reg_used;
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
static HARD_REG_SET reload_reg_used_in_op_addr;
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
/* If reg is in use for a RELOAD_FOR_INSN reload. */
static HARD_REG_SET reload_reg_used_in_insn;
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
static HARD_REG_SET reload_reg_used_in_other_addr;
/* If reg is in use as a reload reg for any sort of reload. */
static HARD_REG_SET reload_reg_used_at_all;
/* If reg is use as an inherited reload. We just mark the first register
in the group. */
static HARD_REG_SET reload_reg_used_for_inherit;
/* Records which hard regs are used in any way, either as explicit use or
by being allocated to a pseudo during any point of the current insn. */
static HARD_REG_SET reg_used_in_insn;
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
TYPE. MODE is used to indicate how many consecutive regs are
actually used. */
static void
mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
enum machine_mode mode)
{
unsigned int nregs = hard_regno_nregs[regno][mode];
unsigned int i;
for (i = regno; i < nregs + regno; i++)
{
switch (type)
{
case RELOAD_OTHER:
SET_HARD_REG_BIT (reload_reg_used, i);
break;
case RELOAD_FOR_INPUT_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
break;
case RELOAD_FOR_INPADDR_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
break;
case RELOAD_FOR_OPERAND_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
break;
case RELOAD_FOR_OPADDR_ADDR:
SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
break;
case RELOAD_FOR_OTHER_ADDRESS:
SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
break;
case RELOAD_FOR_INPUT:
SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
break;
case RELOAD_FOR_OUTPUT:
SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
break;
case RELOAD_FOR_INSN:
SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
break;
}
SET_HARD_REG_BIT (reload_reg_used_at_all, i);
}
}
/* Similarly, but show REGNO is no longer in use for a reload. */
static void
clear_reload_reg_in_use (unsigned int regno, int opnum,
enum reload_type type, enum machine_mode mode)
{
unsigned int nregs = hard_regno_nregs[regno][mode];
unsigned int start_regno, end_regno, r;
int i;
/* A complication is that for some reload types, inheritance might
allow multiple reloads of the same types to share a reload register.
We set check_opnum if we have to check only reloads with the same
operand number, and check_any if we have to check all reloads. */
int check_opnum = 0;
int check_any = 0;
HARD_REG_SET *used_in_set;
switch (type)
{
case RELOAD_OTHER:
used_in_set = &reload_reg_used;
break;
case RELOAD_FOR_INPUT_ADDRESS:
used_in_set = &reload_reg_used_in_input_addr[opnum];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
check_opnum = 1;
used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
used_in_set = &reload_reg_used_in_output_addr[opnum];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
check_opnum = 1;
used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
used_in_set = &reload_reg_used_in_op_addr;
break;
case RELOAD_FOR_OPADDR_ADDR:
check_any = 1;
used_in_set = &reload_reg_used_in_op_addr_reload;
break;
case RELOAD_FOR_OTHER_ADDRESS:
used_in_set = &reload_reg_used_in_other_addr;
check_any = 1;
break;
case RELOAD_FOR_INPUT:
used_in_set = &reload_reg_used_in_input[opnum];
break;
case RELOAD_FOR_OUTPUT:
used_in_set = &reload_reg_used_in_output[opnum];
break;
case RELOAD_FOR_INSN:
used_in_set = &reload_reg_used_in_insn;
break;
default:
gcc_unreachable ();
}
/* We resolve conflicts with remaining reloads of the same type by
excluding the intervals of reload registers by them from the
interval of freed reload registers. Since we only keep track of
one set of interval bounds, we might have to exclude somewhat
more than what would be necessary if we used a HARD_REG_SET here.
But this should only happen very infrequently, so there should
be no reason to worry about it. */
start_regno = regno;
end_regno = regno + nregs;
if (check_opnum || check_any)
{
for (i = n_reloads - 1; i >= 0; i--)
{
if (rld[i].when_needed == type
&& (check_any || rld[i].opnum == opnum)
&& rld[i].reg_rtx)
{
unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
unsigned int conflict_end
= end_hard_regno (rld[i].mode, conflict_start);
/* If there is an overlap with the first to-be-freed register,
adjust the interval start. */
if (conflict_start <= start_regno && conflict_end > start_regno)
start_regno = conflict_end;
/* Otherwise, if there is a conflict with one of the other
to-be-freed registers, adjust the interval end. */
if (conflict_start > start_regno && conflict_start < end_regno)
end_regno = conflict_start;
}
}
}
for (r = start_regno; r < end_regno; r++)
CLEAR_HARD_REG_BIT (*used_in_set, r);
}
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
specified by OPNUM and TYPE. */
static int
reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
{
int i;
/* In use for a RELOAD_OTHER means it's not available for anything. */
if (TEST_HARD_REG_BIT (reload_reg_used, regno)
|| TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
return 0;
switch (type)
{
case RELOAD_OTHER:
/* In use for anything means we can't use it for RELOAD_OTHER. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPUT:
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
return 0;
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
return 0;
/* If it is used for some other input, can't use it. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
/* If it is used in a later operand's address, can't use it. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPUT_ADDRESS:
/* Can't use a register if it is used for an input address for this
operand or used as an input in an earlier one. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
return 0;
for (i = 0; i < opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return 1;
case RELOAD_FOR_INPADDR_ADDRESS:
/* Can't use a register if it is used for an input address
for this operand or used as an input in an earlier
one. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
return 0;
for (i = 0; i < opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return 1;
case RELOAD_FOR_OUTPUT_ADDRESS:
/* Can't use a register if it is used for an output address for this
operand or used as an output in this or a later operand. Note
that multiple output operands are emitted in reverse order, so
the conflicting ones are those with lower indices. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
return 0;
for (i = 0; i <= opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OUTADDR_ADDRESS:
/* Can't use a register if it is used for an output address
for this operand or used as an output in this or a
later operand. Note that multiple output operands are
emitted in reverse order, so the conflicting ones are
those with lower indices. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
return 0;
for (i = 0; i <= opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return 1;
case RELOAD_FOR_OPERAND_ADDRESS:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
case RELOAD_FOR_OPADDR_ADDR:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
case RELOAD_FOR_OUTPUT:
/* This cannot share a register with RELOAD_FOR_INSN reloads, other
outputs, or an operand address for this or an earlier output.
Note that multiple output operands are emitted in reverse order,
so the conflicting ones are those with higher indices. */
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
return 0;
return 1;
case RELOAD_FOR_INSN:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
case RELOAD_FOR_OTHER_ADDRESS:
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
default:
gcc_unreachable ();
}
}
/* Return 1 if the value in reload reg REGNO, as used by a reload
needed for the part of the insn specified by OPNUM and TYPE,
is still available in REGNO at the end of the insn.
We can assume that the reload reg was already tested for availability
at the time it is needed, and we should not check this again,
in case the reg has already been marked in use. */
static int
reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
{
int i;
switch (type)
{
case RELOAD_OTHER:
/* Since a RELOAD_OTHER reload claims the reg for the entire insn,
its value must reach the end. */
return 1;
/* If this use is for part of the insn,
its value reaches if no subsequent part uses the same register.
Just like the above function, don't try to do this with lots
of fallthroughs. */
case RELOAD_FOR_OTHER_ADDRESS:
/* Here we check for everything else, since these don't conflict
with anything else and everything comes later. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& ! TEST_HARD_REG_BIT (reload_reg_used, regno));
case RELOAD_FOR_INPUT_ADDRESS:
case RELOAD_FOR_INPADDR_ADDRESS:
/* Similar, except that we check only for this and subsequent inputs
and the address of only subsequent inputs and we do not need
to check for RELOAD_OTHER objects since they are known not to
conflict. */
for (i = opnum; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
return 0;
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
return 0;
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& !TEST_HARD_REG_BIT (reload_reg_used, regno));
case RELOAD_FOR_INPUT:
/* Similar to input address, except we start at the next operand for
both input and input address and we do not check for
RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
would conflict. */
for (i = opnum + 1; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
return 0;
/* ... fall through ... */
case RELOAD_FOR_OPERAND_ADDRESS:
/* Check outputs and their addresses. */
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
case RELOAD_FOR_OPADDR_ADDR:
for (i = 0; i < reload_n_operands; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
return 0;
return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
&& !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
&& !TEST_HARD_REG_BIT (reload_reg_used, regno));
case RELOAD_FOR_INSN:
/* These conflict with other outputs with RELOAD_OTHER. So
we need only check for output addresses. */
opnum = reload_n_operands;
/* ... fall through ... */
case RELOAD_FOR_OUTPUT:
case RELOAD_FOR_OUTPUT_ADDRESS:
case RELOAD_FOR_OUTADDR_ADDRESS:
/* We already know these can't conflict with a later output. So the
only thing to check are later output addresses.
Note that multiple output operands are emitted in reverse order,
so the conflicting ones are those with lower indices. */
for (i = 0; i < opnum; i++)
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|| TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
return 0;
return 1;
default:
gcc_unreachable ();
}
}
/* Like reload_reg_reaches_end_p, but check that the condition holds for
every register in the range [REGNO, REGNO + NREGS). */
static bool
reload_regs_reach_end_p (unsigned int regno, int nregs,
int opnum, enum reload_type type)
{
int i;
for (i = 0; i < nregs; i++)
if (!reload_reg_reaches_end_p (regno + i, opnum, type))
return false;
return true;
}
/* Returns whether R1 and R2 are uniquely chained: the value of one
is used by the other, and that value is not used by any other
reload for this insn. This is used to partially undo the decision
made in find_reloads when in the case of multiple
RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
reloads. This code tries to avoid the conflict created by that
change. It might be cleaner to explicitly keep track of which
RELOAD_FOR_OPADDR_ADDR reload is associated with which
RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
this after the fact. */
static bool
reloads_unique_chain_p (int r1, int r2)
{
int i;
/* We only check input reloads. */
if (! rld[r1].in || ! rld[r2].in)
return false;
/* Avoid anything with output reloads. */
if (rld[r1].out || rld[r2].out)
return false;
/* "chained" means one reload is a component of the other reload,
not the same as the other reload. */
if (rld[r1].opnum != rld[r2].opnum
|| rtx_equal_p (rld[r1].in, rld[r2].in)
|| rld[r1].optional || rld[r2].optional
|| ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
|| reg_mentioned_p (rld[r2].in, rld[r1].in)))
return false;
for (i = 0; i < n_reloads; i ++)
/* Look for input reloads that aren't our two */
if (i != r1 && i != r2 && rld[i].in)
{
/* If our reload is mentioned at all, it isn't a simple chain. */
if (reg_mentioned_p (rld[r1].in, rld[i].in))
return false;
}
return true;
}
/* The recursive function change all occurrences of WHAT in *WHERE
onto REPL. */
static void
substitute (rtx *where, const_rtx what, rtx repl)
{
const char *fmt;
int i;
enum rtx_code code;
if (*where == 0)
return;
if (*where == what || rtx_equal_p (*where, what))
{
*where = repl;
return;
}
code = GET_CODE (*where);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
substitute (&XVECEXP (*where, i, j), what, repl);
}
else if (fmt[i] == 'e')
substitute (&XEXP (*where, i), what, repl);
}
}
/* The function returns TRUE if chain of reload R1 and R2 (in any
order) can be evaluated without usage of intermediate register for
the reload containing another reload. It is important to see
gen_reload to understand what the function is trying to do. As an
example, let us have reload chain
r2: const
r1: + const
and reload R2 got reload reg HR. The function returns true if
there is a correct insn HR = HR + . Otherwise,
gen_reload will use intermediate register (and this is the reload
reg for R1) to reload .
We need this function to find a conflict for chain reloads. In our
example, if HR = HR + is incorrect insn, then we cannot
use HR as a reload register for R2. If we do use it then we get a
wrong code:
HR = const
HR =
HR = HR + HR
*/
static bool
gen_reload_chain_without_interm_reg_p (int r1, int r2)
{
bool result;
int regno, n, code;
rtx out, in, tem, insn;
rtx last = get_last_insn ();
/* Make r2 a component of r1. */
if (reg_mentioned_p (rld[r1].in, rld[r2].in))
{
n = r1;
r1 = r2;
r2 = n;
}
gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
gcc_assert (regno >= 0);
out = gen_rtx_REG (rld[r1].mode, regno);
in = copy_rtx (rld[r1].in);
substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
/* If IN is a paradoxical SUBREG, remove it and try to put the
opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
if (GET_CODE (in) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (in))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
in = SUBREG_REG (in), out = tem;
if (GET_CODE (in) == PLUS
&& (REG_P (XEXP (in, 0))
|| GET_CODE (XEXP (in, 0)) == SUBREG
|| MEM_P (XEXP (in, 0)))
&& (REG_P (XEXP (in, 1))
|| GET_CODE (XEXP (in, 1)) == SUBREG
|| CONSTANT_P (XEXP (in, 1))
|| MEM_P (XEXP (in, 1))))
{
insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
code = recog_memoized (insn);
result = false;
if (code >= 0)
{
extract_insn (insn);
/* We want constrain operands to treat this insn strictly in
its validity determination, i.e., the way it would after
reload has completed. */
result = constrain_operands (1);
}
delete_insns_since (last);
return result;
}
/* It looks like other cases in gen_reload are not possible for
chain reloads or do need an intermediate hard registers. */
return true;
}
/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
Return 0 otherwise.
This function uses the same algorithm as reload_reg_free_p above. */
static int
reloads_conflict (int r1, int r2)
{
enum reload_type r1_type = rld[r1].when_needed;
enum reload_type r2_type = rld[r2].when_needed;
int r1_opnum = rld[r1].opnum;
int r2_opnum = rld[r2].opnum;
/* RELOAD_OTHER conflicts with everything. */
if (r2_type == RELOAD_OTHER)
return 1;
/* Otherwise, check conflicts differently for each type. */
switch (r1_type)
{
case RELOAD_FOR_INPUT:
return (r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS
|| r2_type == RELOAD_FOR_OPADDR_ADDR
|| r2_type == RELOAD_FOR_INPUT
|| ((r2_type == RELOAD_FOR_INPUT_ADDRESS
|| r2_type == RELOAD_FOR_INPADDR_ADDRESS)
&& r2_opnum > r1_opnum));
case RELOAD_FOR_INPUT_ADDRESS:
return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
case RELOAD_FOR_INPADDR_ADDRESS:
return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
|| (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
case RELOAD_FOR_OUTPUT_ADDRESS:
return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
case RELOAD_FOR_OUTADDR_ADDRESS:
return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
|| (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
case RELOAD_FOR_OPERAND_ADDRESS:
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
|| (r2_type == RELOAD_FOR_OPERAND_ADDRESS
&& (!reloads_unique_chain_p (r1, r2)
|| !gen_reload_chain_without_interm_reg_p (r1, r2))));
case RELOAD_FOR_OPADDR_ADDR:
return (r2_type == RELOAD_FOR_INPUT
|| r2_type == RELOAD_FOR_OPADDR_ADDR);
case RELOAD_FOR_OUTPUT:
return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
|| ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
|| r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
&& r2_opnum >= r1_opnum));
case RELOAD_FOR_INSN:
return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
|| r2_type == RELOAD_FOR_INSN
|| r2_type == RELOAD_FOR_OPERAND_ADDRESS);
case RELOAD_FOR_OTHER_ADDRESS:
return r2_type == RELOAD_FOR_OTHER_ADDRESS;
case RELOAD_OTHER:
return 1;
default:
gcc_unreachable ();
}
}
/* Indexed by reload number, 1 if incoming value
inherited from previous insns. */
static char reload_inherited[MAX_RELOADS];
/* For an inherited reload, this is the insn the reload was inherited from,
if we know it. Otherwise, this is 0. */
static rtx reload_inheritance_insn[MAX_RELOADS];
/* If nonzero, this is a place to get the value of the reload,
rather than using reload_in. */
static rtx reload_override_in[MAX_RELOADS];
/* For each reload, the hard register number of the register used,
or -1 if we did not need a register for this reload. */
static int reload_spill_index[MAX_RELOADS];
/* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
static rtx reload_reg_rtx_for_input[MAX_RELOADS];
/* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
static rtx reload_reg_rtx_for_output[MAX_RELOADS];
/* Subroutine of free_for_value_p, used to check a single register.
START_REGNO is the starting regno of the full reload register
(possibly comprising multiple hard registers) that we are considering. */
static int
reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
enum reload_type type, rtx value, rtx out,
int reloadnum, int ignore_address_reloads)
{
int time1;
/* Set if we see an input reload that must not share its reload register
with any new earlyclobber, but might otherwise share the reload
register with an output or input-output reload. */
int check_earlyclobber = 0;
int i;
int copy = 0;
if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
return 0;
if (out == const0_rtx)
{
copy = 1;
out = NULL_RTX;
}
/* We use some pseudo 'time' value to check if the lifetimes of the
new register use would overlap with the one of a previous reload
that is not read-only or uses a different value.
The 'time' used doesn't have to be linear in any shape or form, just
monotonic.
Some reload types use different 'buckets' for each operand.
So there are MAX_RECOG_OPERANDS different time values for each
such reload type.
We compute TIME1 as the time when the register for the prospective
new reload ceases to be live, and TIME2 for each existing
reload as the time when that the reload register of that reload
becomes live.
Where there is little to be gained by exact lifetime calculations,
we just make conservative assumptions, i.e. a longer lifetime;
this is done in the 'default:' cases. */
switch (type)
{
case RELOAD_FOR_OTHER_ADDRESS:
/* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
time1 = copy ? 0 : 1;
break;
case RELOAD_OTHER:
time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
break;
/* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
respectively, to the time values for these, we get distinct time
values. To get distinct time values for each operand, we have to
multiply opnum by at least three. We round that up to four because
multiply by four is often cheaper. */
case RELOAD_FOR_INPADDR_ADDRESS:
time1 = opnum * 4 + 2;
break;
case RELOAD_FOR_INPUT_ADDRESS:
time1 = opnum * 4 + 3;
break;
case RELOAD_FOR_INPUT:
/* All RELOAD_FOR_INPUT reloads remain live till the instruction
executes (inclusive). */
time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OPADDR_ADDR:
/* opnum * 4 + 4
<= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
time1 = MAX_RECOG_OPERANDS * 4 + 1;
break;
case RELOAD_FOR_OPERAND_ADDRESS:
/* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
is executed. */
time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
break;
default:
time1 = MAX_RECOG_OPERANDS * 5 + 5;
}
for (i = 0; i < n_reloads; i++)
{
rtx reg = rld[i].reg_rtx;
if (reg && REG_P (reg)
&& ((unsigned) regno - true_regnum (reg)
<= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
&& i != reloadnum)
{
rtx other_input = rld[i].in;
/* If the other reload loads the same input value, that
will not cause a conflict only if it's loading it into
the same register. */
if (true_regnum (reg) != start_regno)
other_input = NULL_RTX;
if (! other_input || ! rtx_equal_p (other_input, value)
|| rld[i].out || out)
{
int time2;
switch (rld[i].when_needed)
{
case RELOAD_FOR_OTHER_ADDRESS:
time2 = 0;
break;
case RELOAD_FOR_INPADDR_ADDRESS:
/* find_reloads makes sure that a
RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
by at most one - the first -
RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
address reload is inherited, the address address reload
goes away, so we can ignore this conflict. */
if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
/* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
Then the address address is still needed to store
back the new address. */
&& ! rld[reloadnum].out)
continue;
/* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
reloads go away. */
if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
&& ignore_address_reloads
/* Unless we are reloading an auto_inc expression. */
&& ! rld[reloadnum].out)
continue;
time2 = rld[i].opnum * 4 + 2;
break;
case RELOAD_FOR_INPUT_ADDRESS:
if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
&& ignore_address_reloads
&& ! rld[reloadnum].out)
continue;
time2 = rld[i].opnum * 4 + 3;
break;
case RELOAD_FOR_INPUT:
time2 = rld[i].opnum * 4 + 4;
check_earlyclobber = 1;
break;
/* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
== MAX_RECOG_OPERAND * 4 */
case RELOAD_FOR_OPADDR_ADDR:
if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
&& ! rld[reloadnum].out)
continue;
time2 = MAX_RECOG_OPERANDS * 4 + 1;
break;
case RELOAD_FOR_OPERAND_ADDRESS:
time2 = MAX_RECOG_OPERANDS * 4 + 2;
check_earlyclobber = 1;
break;
case RELOAD_FOR_INSN:
time2 = MAX_RECOG_OPERANDS * 4 + 3;
break;
case RELOAD_FOR_OUTPUT:
/* All RELOAD_FOR_OUTPUT reloads become live just after the
instruction is executed. */
time2 = MAX_RECOG_OPERANDS * 4 + 4;
break;
/* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
the RELOAD_FOR_OUTPUT reloads, so assign it the same time
value. */
case RELOAD_FOR_OUTADDR_ADDRESS:
if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
&& ignore_address_reloads
&& ! rld[reloadnum].out)
continue;
time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
break;
case RELOAD_OTHER:
/* If there is no conflict in the input part, handle this
like an output reload. */
if (! rld[i].in || rtx_equal_p (other_input, value))
{
time2 = MAX_RECOG_OPERANDS * 4 + 4;
/* Earlyclobbered outputs must conflict with inputs. */
if (earlyclobber_operand_p (rld[i].out))
time2 = MAX_RECOG_OPERANDS * 4 + 3;
break;
}
time2 = 1;
/* RELOAD_OTHER might be live beyond instruction execution,
but this is not obvious when we set time2 = 1. So check
here if there might be a problem with the new reload
clobbering the register used by the RELOAD_OTHER. */
if (out)
return 0;
break;
default:
return 0;
}
if ((time1 >= time2
&& (! rld[i].in || rld[i].out
|| ! rtx_equal_p (other_input, value)))
|| (out && rld[reloadnum].out_reg
&& time2 >= MAX_RECOG_OPERANDS * 4 + 3))
return 0;
}
}
}
/* Earlyclobbered outputs must conflict with inputs. */
if (check_earlyclobber && out && earlyclobber_operand_p (out))
return 0;
return 1;
}
/* Return 1 if the value in reload reg REGNO, as used by a reload
needed for the part of the insn specified by OPNUM and TYPE,
may be used to load VALUE into it.
MODE is the mode in which the register is used, this is needed to
determine how many hard regs to test.
Other read-only reloads with the same value do not conflict
unless OUT is nonzero and these other reloads have to live while
output reloads live.
If OUT is CONST0_RTX, this is a special case: it means that the
test should not be for using register REGNO as reload register, but
for copying from register REGNO into the reload register.
RELOADNUM is the number of the reload we want to load this value for;
a reload does not conflict with itself.
When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
reloads that load an address for the very reload we are considering.
The caller has to make sure that there is no conflict with the return
register. */
static int
free_for_value_p (int regno, enum machine_mode mode, int opnum,
enum reload_type type, rtx value, rtx out, int reloadnum,
int ignore_address_reloads)
{
int nregs = hard_regno_nregs[regno][mode];
while (nregs-- > 0)
if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
value, out, reloadnum,
ignore_address_reloads))
return 0;
return 1;
}
/* Return nonzero if the rtx X is invariant over the current function. */
/* ??? Actually, the places where we use this expect exactly what is
tested here, and not everything that is function invariant. In
particular, the frame pointer and arg pointer are special cased;
pic_offset_table_rtx is not, and we must not spill these things to
memory. */
int
function_invariant_p (const_rtx x)
{
if (CONSTANT_P (x))
return 1;
if (x == frame_pointer_rtx || x == arg_pointer_rtx)
return 1;
if (GET_CODE (x) == PLUS
&& (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
&& CONSTANT_P (XEXP (x, 1)))
return 1;
return 0;
}
/* Determine whether the reload reg X overlaps any rtx'es used for
overriding inheritance. Return nonzero if so. */
static int
conflicts_with_override (rtx x)
{
int i;
for (i = 0; i < n_reloads; i++)
if (reload_override_in[i]
&& reg_overlap_mentioned_p (x, reload_override_in[i]))
return 1;
return 0;
}
/* Give an error message saying we failed to find a reload for INSN,
and clear out reload R. */
static void
failed_reload (rtx insn, int r)
{
if (asm_noperands (PATTERN (insn)) < 0)
/* It's the compiler's fault. */
fatal_insn ("could not find a spill register", insn);
/* It's the user's fault; the operand's mode and constraint
don't match. Disable this reload so we don't crash in final. */
error_for_asm (insn,
"% operand constraint incompatible with operand size");
rld[r].in = 0;
rld[r].out = 0;
rld[r].reg_rtx = 0;
rld[r].optional = 1;
rld[r].secondary_p = 1;
}
/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
for reload R. If it's valid, get an rtx for it. Return nonzero if
successful. */
static int
set_reload_reg (int i, int r)
{
int regno;
rtx reg = spill_reg_rtx[i];
if (reg == 0 || GET_MODE (reg) != rld[r].mode)
spill_reg_rtx[i] = reg
= gen_rtx_REG (rld[r].mode, spill_regs[i]);
regno = true_regnum (reg);
/* Detect when the reload reg can't hold the reload mode.
This used to be one `if', but Sequent compiler can't handle that. */
if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
{
enum machine_mode test_mode = VOIDmode;
if (rld[r].in)
test_mode = GET_MODE (rld[r].in);
/* If rld[r].in has VOIDmode, it means we will load it
in whatever mode the reload reg has: to wit, rld[r].mode.
We have already tested that for validity. */
/* Aside from that, we need to test that the expressions
to reload from or into have modes which are valid for this
reload register. Otherwise the reload insns would be invalid. */
if (! (rld[r].in != 0 && test_mode != VOIDmode
&& ! HARD_REGNO_MODE_OK (regno, test_mode)))
if (! (rld[r].out != 0
&& ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
{
/* The reg is OK. */
last_spill_reg = i;
/* Mark as in use for this insn the reload regs we use
for this. */
mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
rld[r].when_needed, rld[r].mode);
rld[r].reg_rtx = reg;
reload_spill_index[r] = spill_regs[i];
return 1;
}
}
return 0;
}
/* Find a spill register to use as a reload register for reload R.
LAST_RELOAD is nonzero if this is the last reload for the insn being
processed.
Set rld[R].reg_rtx to the register allocated.
We return 1 if successful, or 0 if we couldn't find a spill reg and
we didn't change anything. */
static int
allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
int last_reload)
{
int i, pass, count;
/* If we put this reload ahead, thinking it is a group,
then insist on finding a group. Otherwise we can grab a
reg that some other reload needs.
(That can happen when we have a 68000 DATA_OR_FP_REG
which is a group of data regs or one fp reg.)
We need not be so restrictive if there are no more reloads
for this insn.
??? Really it would be nicer to have smarter handling
for that kind of reg class, where a problem like this is normal.
Perhaps those classes should be avoided for reloading
by use of more alternatives. */
int force_group = rld[r].nregs > 1 && ! last_reload;
/* If we want a single register and haven't yet found one,
take any reg in the right class and not in use.
If we want a consecutive group, here is where we look for it.
We use two passes so we can first look for reload regs to
reuse, which are already in use for other reloads in this insn,
and only then use additional registers.
I think that maximizing reuse is needed to make sure we don't
run out of reload regs. Suppose we have three reloads, and
reloads A and B can share regs. These need two regs.
Suppose A and B are given different regs.
That leaves none for C. */
for (pass = 0; pass < 2; pass++)
{
/* I is the index in spill_regs.
We advance it round-robin between insns to use all spill regs
equally, so that inherited reloads have a chance
of leapfrogging each other. */
i = last_spill_reg;
for (count = 0; count < n_spills; count++)
{
int rclass = (int) rld[r].rclass;
int regnum;
i++;
if (i >= n_spills)
i -= n_spills;
regnum = spill_regs[i];
if ((reload_reg_free_p (regnum, rld[r].opnum,
rld[r].when_needed)
|| (rld[r].in
/* We check reload_reg_used to make sure we
don't clobber the return register. */
&& ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
&& free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
rld[r].when_needed, rld[r].in,
rld[r].out, r, 1)))
&& TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
&& HARD_REGNO_MODE_OK (regnum, rld[r].mode)
/* Look first for regs to share, then for unshared. But
don't share regs used for inherited reloads; they are
the ones we want to preserve. */
&& (pass
|| (TEST_HARD_REG_BIT (reload_reg_used_at_all,
regnum)
&& ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
regnum))))
{
int nr = hard_regno_nregs[regnum][rld[r].mode];
/* Avoid the problem where spilling a GENERAL_OR_FP_REG
(on 68000) got us two FP regs. If NR is 1,
we would reject both of them. */
if (force_group)
nr = rld[r].nregs;
/* If we need only one reg, we have already won. */
if (nr == 1)
{
/* But reject a single reg if we demand a group. */
if (force_group)
continue;
break;
}
/* Otherwise check that as many consecutive regs as we need
are available here. */
while (nr > 1)
{
int regno = regnum + nr - 1;
if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
&& spill_reg_order[regno] >= 0
&& reload_reg_free_p (regno, rld[r].opnum,
rld[r].when_needed)))
break;
nr--;
}
if (nr == 1)
break;
}
}
/* If we found something on pass 1, omit pass 2. */
if (count < n_spills)
break;
}
/* We should have found a spill register by now. */
if (count >= n_spills)
return 0;
/* I is the index in SPILL_REG_RTX of the reload register we are to
allocate. Get an rtx for it and find its register number. */
return set_reload_reg (i, r);
}
/* Initialize all the tables needed to allocate reload registers.
CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
is the array we use to restore the reg_rtx field for every reload. */
static void
choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
{
int i;
for (i = 0; i < n_reloads; i++)
rld[i].reg_rtx = save_reload_reg_rtx[i];
memset (reload_inherited, 0, MAX_RELOADS);
memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
CLEAR_HARD_REG_SET (reload_reg_used);
CLEAR_HARD_REG_SET (reload_reg_used_at_all);
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
CLEAR_HARD_REG_SET (reg_used_in_insn);
{
HARD_REG_SET tmp;
REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
IOR_HARD_REG_SET (reg_used_in_insn, tmp);
compute_use_by_pseudos (®_used_in_insn, &chain->live_throughout);
compute_use_by_pseudos (®_used_in_insn, &chain->dead_or_set);
}
for (i = 0; i < reload_n_operands; i++)
{
CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
}
COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
for (i = 0; i < n_reloads; i++)
/* If we have already decided to use a certain register,
don't use it in another way. */
if (rld[i].reg_rtx)
mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
rld[i].when_needed, rld[i].mode);
}
/* Assign hard reg targets for the pseudo-registers we must reload
into hard regs for this insn.
Also output the instructions to copy them in and out of the hard regs.
For machines with register classes, we are responsible for
finding a reload reg in the proper class. */
static void
choose_reload_regs (struct insn_chain *chain)
{
rtx insn = chain->insn;
int i, j;
unsigned int max_group_size = 1;
enum reg_class group_class = NO_REGS;
int pass, win, inheritance;
rtx save_reload_reg_rtx[MAX_RELOADS];
/* In order to be certain of getting the registers we need,
we must sort the reloads into order of increasing register class.
Then our grabbing of reload registers will parallel the process
that provided the reload registers.
Also note whether any of the reloads wants a consecutive group of regs.
If so, record the maximum size of the group desired and what
register class contains all the groups needed by this insn. */
for (j = 0; j < n_reloads; j++)
{
reload_order[j] = j;
if (rld[j].reg_rtx != NULL_RTX)
{
gcc_assert (REG_P (rld[j].reg_rtx)
&& HARD_REGISTER_P (rld[j].reg_rtx));
reload_spill_index[j] = REGNO (rld[j].reg_rtx);
}
else
reload_spill_index[j] = -1;
if (rld[j].nregs > 1)
{
max_group_size = MAX (rld[j].nregs, max_group_size);
group_class
= reg_class_superunion[(int) rld[j].rclass][(int) group_class];
}
save_reload_reg_rtx[j] = rld[j].reg_rtx;
}
if (n_reloads > 1)
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
/* If -O, try first with inheritance, then turning it off.
If not -O, don't do inheritance.
Using inheritance when not optimizing leads to paradoxes
with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
because one side of the comparison might be inherited. */
win = 0;
for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
{
choose_reload_regs_init (chain, save_reload_reg_rtx);
/* Process the reloads in order of preference just found.
Beyond this point, subregs can be found in reload_reg_rtx.
This used to look for an existing reloaded home for all of the
reloads, and only then perform any new reloads. But that could lose
if the reloads were done out of reg-class order because a later
reload with a looser constraint might have an old home in a register
needed by an earlier reload with a tighter constraint.
To solve this, we make two passes over the reloads, in the order
described above. In the first pass we try to inherit a reload
from a previous insn. If there is a later reload that needs a
class that is a proper subset of the class being processed, we must
also allocate a spill register during the first pass.
Then make a second pass over the reloads to allocate any reloads
that haven't been given registers yet. */
for (j = 0; j < n_reloads; j++)
{
int r = reload_order[j];
rtx search_equiv = NULL_RTX;
/* Ignore reloads that got marked inoperative. */
if (rld[r].out == 0 && rld[r].in == 0
&& ! rld[r].secondary_p)
continue;
/* If find_reloads chose to use reload_in or reload_out as a reload
register, we don't need to chose one. Otherwise, try even if it
found one since we might save an insn if we find the value lying
around.
Try also when reload_in is a pseudo without a hard reg. */
if (rld[r].in != 0 && rld[r].reg_rtx != 0
&& (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
|| (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
&& !MEM_P (rld[r].in)
&& true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
continue;
#if 0 /* No longer needed for correct operation.
It might give better code, or might not; worth an experiment? */
/* If this is an optional reload, we can't inherit from earlier insns
until we are sure that any non-optional reloads have been allocated.
The following code takes advantage of the fact that optional reloads
are at the end of reload_order. */
if (rld[r].optional != 0)
for (i = 0; i < j; i++)
if ((rld[reload_order[i]].out != 0
|| rld[reload_order[i]].in != 0
|| rld[reload_order[i]].secondary_p)
&& ! rld[reload_order[i]].optional
&& rld[reload_order[i]].reg_rtx == 0)
allocate_reload_reg (chain, reload_order[i], 0);
#endif
/* First see if this pseudo is already available as reloaded
for a previous insn. We cannot try to inherit for reloads
that are smaller than the maximum number of registers needed
for groups unless the register we would allocate cannot be used
for the groups.
We could check here to see if this is a secondary reload for
an object that is already in a register of the desired class.
This would avoid the need for the secondary reload register.
But this is complex because we can't easily determine what
objects might want to be loaded via this reload. So let a
register be allocated here. In `emit_reload_insns' we suppress
one of the loads in the case described above. */
if (inheritance)
{
int byte = 0;
int regno = -1;
enum machine_mode mode = VOIDmode;
if (rld[r].in == 0)
;
else if (REG_P (rld[r].in))
{
regno = REGNO (rld[r].in);
mode = GET_MODE (rld[r].in);
}
else if (REG_P (rld[r].in_reg))
{
regno = REGNO (rld[r].in_reg);
mode = GET_MODE (rld[r].in_reg);
}
else if (GET_CODE (rld[r].in_reg) == SUBREG
&& REG_P (SUBREG_REG (rld[r].in_reg)))
{
regno = REGNO (SUBREG_REG (rld[r].in_reg));
if (regno < FIRST_PSEUDO_REGISTER)
regno = subreg_regno (rld[r].in_reg);
else
byte = SUBREG_BYTE (rld[r].in_reg);
mode = GET_MODE (rld[r].in_reg);
}
#ifdef AUTO_INC_DEC
else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
&& REG_P (XEXP (rld[r].in_reg, 0)))
{
regno = REGNO (XEXP (rld[r].in_reg, 0));
mode = GET_MODE (XEXP (rld[r].in_reg, 0));
rld[r].out = rld[r].in;
}
#endif
#if 0
/* This won't work, since REGNO can be a pseudo reg number.
Also, it takes much more hair to keep track of all the things
that can invalidate an inherited reload of part of a pseudoreg. */
else if (GET_CODE (rld[r].in) == SUBREG
&& REG_P (SUBREG_REG (rld[r].in)))
regno = subreg_regno (rld[r].in);
#endif
if (regno >= 0
&& reg_last_reload_reg[regno] != 0
#ifdef CANNOT_CHANGE_MODE_CLASS
/* Verify that the register it's in can be used in
mode MODE. */
&& !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
GET_MODE (reg_last_reload_reg[regno]),
mode)
#endif
)
{
enum reg_class rclass = rld[r].rclass, last_class;
rtx last_reg = reg_last_reload_reg[regno];
enum machine_mode need_mode;
i = REGNO (last_reg);
i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
last_class = REGNO_REG_CLASS (i);
if (byte == 0)
need_mode = mode;
else
need_mode
= smallest_mode_for_size
(GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
? MODE_INT : GET_MODE_CLASS (mode));
if ((GET_MODE_SIZE (GET_MODE (last_reg))
>= GET_MODE_SIZE (need_mode))
&& reg_reloaded_contents[i] == regno
&& TEST_HARD_REG_BIT (reg_reloaded_valid, i)
&& HARD_REGNO_MODE_OK (i, rld[r].mode)
&& (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
/* Even if we can't use this register as a reload
register, we might use it for reload_override_in,
if copying it to the desired class is cheap
enough. */
|| ((REGISTER_MOVE_COST (mode, last_class, rclass)
< MEMORY_MOVE_COST (mode, rclass, 1))
&& (secondary_reload_class (1, rclass, mode,
last_reg)
== NO_REGS)
#ifdef SECONDARY_MEMORY_NEEDED
&& ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
mode)
#endif
))
&& (rld[r].nregs == max_group_size
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
i))
&& free_for_value_p (i, rld[r].mode, rld[r].opnum,
rld[r].when_needed, rld[r].in,
const0_rtx, r, 1))
{
/* If a group is needed, verify that all the subsequent
registers still have their values intact. */
int nr = hard_regno_nregs[i][rld[r].mode];
int k;
for (k = 1; k < nr; k++)
if (reg_reloaded_contents[i + k] != regno
|| ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
break;
if (k == nr)
{
int i1;
int bad_for_class;
last_reg = (GET_MODE (last_reg) == mode
? last_reg : gen_rtx_REG (mode, i));
bad_for_class = 0;
for (k = 0; k < nr; k++)
bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
i+k);
/* We found a register that contains the
value we need. If this register is the
same as an `earlyclobber' operand of the
current insn, just mark it as a place to
reload from since we can't use it as the
reload register itself. */
for (i1 = 0; i1 < n_earlyclobbers; i1++)
if (reg_overlap_mentioned_for_reload_p
(reg_last_reload_reg[regno],
reload_earlyclobbers[i1]))
break;
if (i1 != n_earlyclobbers
|| ! (free_for_value_p (i, rld[r].mode,
rld[r].opnum,
rld[r].when_needed, rld[r].in,
rld[r].out, r, 1))
/* Don't use it if we'd clobber a pseudo reg. */
|| (TEST_HARD_REG_BIT (reg_used_in_insn, i)
&& rld[r].out
&& ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
/* Don't clobber the frame pointer. */
|| (i == HARD_FRAME_POINTER_REGNUM
&& frame_pointer_needed
&& rld[r].out)
/* Don't really use the inherited spill reg
if we need it wider than we've got it. */
|| (GET_MODE_SIZE (rld[r].mode)
> GET_MODE_SIZE (mode))
|| bad_for_class
/* If find_reloads chose reload_out as reload
register, stay with it - that leaves the
inherited register for subsequent reloads. */
|| (rld[r].out && rld[r].reg_rtx
&& rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
{
if (! rld[r].optional)
{
reload_override_in[r] = last_reg;
reload_inheritance_insn[r]
= reg_reloaded_insn[i];
}
}
else
{
int k;
/* We can use this as a reload reg. */
/* Mark the register as in use for this part of
the insn. */
mark_reload_reg_in_use (i,
rld[r].opnum,
rld[r].when_needed,
rld[r].mode);
rld[r].reg_rtx = last_reg;
reload_inherited[r] = 1;
reload_inheritance_insn[r]
= reg_reloaded_insn[i];
reload_spill_index[r] = i;
for (k = 0; k < nr; k++)
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
i + k);
}
}
}
}
}
/* Here's another way to see if the value is already lying around. */
if (inheritance
&& rld[r].in != 0
&& ! reload_inherited[r]
&& rld[r].out == 0
&& (CONSTANT_P (rld[r].in)
|| GET_CODE (rld[r].in) == PLUS
|| REG_P (rld[r].in)
|| MEM_P (rld[r].in))
&& (rld[r].nregs == max_group_size
|| ! reg_classes_intersect_p (rld[r].rclass, group_class)))
search_equiv = rld[r].in;
/* If this is an output reload from a simple move insn, look
if an equivalence for the input is available. */
else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
{
rtx set = single_set (insn);
if (set
&& rtx_equal_p (rld[r].out, SET_DEST (set))
&& CONSTANT_P (SET_SRC (set)))
search_equiv = SET_SRC (set);
}
if (search_equiv)
{
rtx equiv
= find_equiv_reg (search_equiv, insn, rld[r].rclass,
-1, NULL, 0, rld[r].mode);
int regno = 0;
if (equiv != 0)
{
if (REG_P (equiv))
regno = REGNO (equiv);
else
{
/* This must be a SUBREG of a hard register.
Make a new REG since this might be used in an
address and not all machines support SUBREGs
there. */
gcc_assert (GET_CODE (equiv) == SUBREG);
regno = subreg_regno (equiv);
equiv = gen_rtx_REG (rld[r].mode, regno);
/* If we choose EQUIV as the reload register, but the
loop below decides to cancel the inheritance, we'll
end up reloading EQUIV in rld[r].mode, not the mode
it had originally. That isn't safe when EQUIV isn't
available as a spill register since its value might
still be live at this point. */
for (i = regno; i < regno + (int) rld[r].nregs; i++)
if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
equiv = 0;
}
}
/* If we found a spill reg, reject it unless it is free
and of the desired class. */
if (equiv != 0)
{
int regs_used = 0;
int bad_for_class = 0;
int max_regno = regno + rld[r].nregs;
for (i = regno; i < max_regno; i++)
{
regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
i);
bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
i);
}
if ((regs_used
&& ! free_for_value_p (regno, rld[r].mode,
rld[r].opnum, rld[r].when_needed,
rld[r].in, rld[r].out, r, 1))
|| bad_for_class)
equiv = 0;
}
if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
equiv = 0;
/* We found a register that contains the value we need.
If this register is the same as an `earlyclobber' operand
of the current insn, just mark it as a place to reload from
since we can't use it as the reload register itself. */
if (equiv != 0)
for (i = 0; i < n_earlyclobbers; i++)
if (reg_overlap_mentioned_for_reload_p (equiv,
reload_earlyclobbers[i]))
{
if (! rld[r].optional)
reload_override_in[r] = equiv;
equiv = 0;
break;
}
/* If the equiv register we have found is explicitly clobbered
in the current insn, it depends on the reload type if we
can use it, use it for reload_override_in, or not at all.
In particular, we then can't use EQUIV for a
RELOAD_FOR_OUTPUT_ADDRESS reload. */
if (equiv != 0)
{
if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
switch (rld[r].when_needed)
{
case RELOAD_FOR_OTHER_ADDRESS:
case RELOAD_FOR_INPADDR_ADDRESS:
case RELOAD_FOR_INPUT_ADDRESS:
case RELOAD_FOR_OPADDR_ADDR:
break;
case RELOAD_OTHER:
case RELOAD_FOR_INPUT:
case RELOAD_FOR_OPERAND_ADDRESS:
if (! rld[r].optional)
reload_override_in[r] = equiv;
/* Fall through. */
default:
equiv = 0;
break;
}
else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
switch (rld[r].when_needed)
{
case RELOAD_FOR_OTHER_ADDRESS:
case RELOAD_FOR_INPADDR_ADDRESS:
case RELOAD_FOR_INPUT_ADDRESS:
case RELOAD_FOR_OPADDR_ADDR:
case RELOAD_FOR_OPERAND_ADDRESS:
case RELOAD_FOR_INPUT:
break;
case RELOAD_OTHER:
if (! rld[r].optional)
reload_override_in[r] = equiv;
/* Fall through. */
default:
equiv = 0;
break;
}
}
/* If we found an equivalent reg, say no code need be generated
to load it, and use it as our reload reg. */
if (equiv != 0
&& (regno != HARD_FRAME_POINTER_REGNUM
|| !frame_pointer_needed))
{
int nr = hard_regno_nregs[regno][rld[r].mode];
int k;
rld[r].reg_rtx = equiv;
reload_spill_index[r] = regno;
reload_inherited[r] = 1;
/* If reg_reloaded_valid is not set for this register,
there might be a stale spill_reg_store lying around.
We must clear it, since otherwise emit_reload_insns
might delete the store. */
if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
spill_reg_store[regno] = NULL_RTX;
/* If any of the hard registers in EQUIV are spill
registers, mark them as in use for this insn. */
for (k = 0; k < nr; k++)
{
i = spill_reg_order[regno + k];
if (i >= 0)
{
mark_reload_reg_in_use (regno, rld[r].opnum,
rld[r].when_needed,
rld[r].mode);
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
regno + k);
}
}
}
}
/* If we found a register to use already, or if this is an optional
reload, we are done. */
if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
continue;
#if 0
/* No longer needed for correct operation. Might or might
not give better code on the average. Want to experiment? */
/* See if there is a later reload that has a class different from our
class that intersects our class or that requires less register
than our reload. If so, we must allocate a register to this
reload now, since that reload might inherit a previous reload
and take the only available register in our class. Don't do this
for optional reloads since they will force all previous reloads
to be allocated. Also don't do this for reloads that have been
turned off. */
for (i = j + 1; i < n_reloads; i++)
{
int s = reload_order[i];
if ((rld[s].in == 0 && rld[s].out == 0
&& ! rld[s].secondary_p)
|| rld[s].optional)
continue;
if ((rld[s].rclass != rld[r].rclass
&& reg_classes_intersect_p (rld[r].rclass,
rld[s].rclass))
|| rld[s].nregs < rld[r].nregs)
break;
}
if (i == n_reloads)
continue;
allocate_reload_reg (chain, r, j == n_reloads - 1);
#endif
}
/* Now allocate reload registers for anything non-optional that
didn't get one yet. */
for (j = 0; j < n_reloads; j++)
{
int r = reload_order[j];
/* Ignore reloads that got marked inoperative. */
if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
continue;
/* Skip reloads that already have a register allocated or are
optional. */
if (rld[r].reg_rtx != 0 || rld[r].optional)
continue;
if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
break;
}
/* If that loop got all the way, we have won. */
if (j == n_reloads)
{
win = 1;
break;
}
/* Loop around and try without any inheritance. */
}
if (! win)
{
/* First undo everything done by the failed attempt
to allocate with inheritance. */
choose_reload_regs_init (chain, save_reload_reg_rtx);
/* Some sanity tests to verify that the reloads found in the first
pass are identical to the ones we have now. */
gcc_assert (chain->n_reloads == n_reloads);
for (i = 0; i < n_reloads; i++)
{
if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
continue;
gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
for (j = 0; j < n_spills; j++)
if (spill_regs[j] == chain->rld[i].regno)
if (! set_reload_reg (j, i))
failed_reload (chain->insn, i);
}
}
/* If we thought we could inherit a reload, because it seemed that
nothing else wanted the same reload register earlier in the insn,
verify that assumption, now that all reloads have been assigned.
Likewise for reloads where reload_override_in has been set. */
/* If doing expensive optimizations, do one preliminary pass that doesn't
cancel any inheritance, but removes reloads that have been needed only
for reloads that we know can be inherited. */
for (pass = flag_expensive_optimizations; pass >= 0; pass--)
{
for (j = 0; j < n_reloads; j++)
{
int r = reload_order[j];
rtx check_reg;
if (reload_inherited[r] && rld[r].reg_rtx)
check_reg = rld[r].reg_rtx;
else if (reload_override_in[r]
&& (REG_P (reload_override_in[r])
|| GET_CODE (reload_override_in[r]) == SUBREG))
check_reg = reload_override_in[r];
else
continue;
if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
rld[r].opnum, rld[r].when_needed, rld[r].in,
(reload_inherited[r]
? rld[r].out : const0_rtx),
r, 1))
{
if (pass)
continue;
reload_inherited[r] = 0;
reload_override_in[r] = 0;
}
/* If we can inherit a RELOAD_FOR_INPUT, or can use a
reload_override_in, then we do not need its related
RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
likewise for other reload types.
We handle this by removing a reload when its only replacement
is mentioned in reload_in of the reload we are going to inherit.
A special case are auto_inc expressions; even if the input is
inherited, we still need the address for the output. We can
recognize them because they have RELOAD_OUT set to RELOAD_IN.
If we succeeded removing some reload and we are doing a preliminary
pass just to remove such reloads, make another pass, since the
removal of one reload might allow us to inherit another one. */
else if (rld[r].in
&& rld[r].out != rld[r].in
&& remove_address_replacements (rld[r].in) && pass)
pass = 2;
}
}
/* Now that reload_override_in is known valid,
actually override reload_in. */
for (j = 0; j < n_reloads; j++)
if (reload_override_in[j])
rld[j].in = reload_override_in[j];
/* If this reload won't be done because it has been canceled or is
optional and not inherited, clear reload_reg_rtx so other
routines (such as subst_reloads) don't get confused. */
for (j = 0; j < n_reloads; j++)
if (rld[j].reg_rtx != 0
&& ((rld[j].optional && ! reload_inherited[j])
|| (rld[j].in == 0 && rld[j].out == 0
&& ! rld[j].secondary_p)))
{
int regno = true_regnum (rld[j].reg_rtx);
if (spill_reg_order[regno] >= 0)
clear_reload_reg_in_use (regno, rld[j].opnum,
rld[j].when_needed, rld[j].mode);
rld[j].reg_rtx = 0;
reload_spill_index[j] = -1;
}
/* Record which pseudos and which spill regs have output reloads. */
for (j = 0; j < n_reloads; j++)
{
int r = reload_order[j];
i = reload_spill_index[r];
/* I is nonneg if this reload uses a register.
If rld[r].reg_rtx is 0, this is an optional reload
that we opted to ignore. */
if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
&& rld[r].reg_rtx != 0)
{
int nregno = REGNO (rld[r].out_reg);
int nr = 1;
if (nregno < FIRST_PSEUDO_REGISTER)
nr = hard_regno_nregs[nregno][rld[r].mode];
while (--nr >= 0)
SET_REGNO_REG_SET (®_has_output_reload,
nregno + nr);
if (i >= 0)
{
nr = hard_regno_nregs[i][rld[r].mode];
while (--nr >= 0)
SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
}
gcc_assert (rld[r].when_needed == RELOAD_OTHER
|| rld[r].when_needed == RELOAD_FOR_OUTPUT
|| rld[r].when_needed == RELOAD_FOR_INSN);
}
}
}
/* Deallocate the reload register for reload R. This is called from
remove_address_replacements. */
void
deallocate_reload_reg (int r)
{
int regno;
if (! rld[r].reg_rtx)
return;
regno = true_regnum (rld[r].reg_rtx);
rld[r].reg_rtx = 0;
if (spill_reg_order[regno] >= 0)
clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
rld[r].mode);
reload_spill_index[r] = -1;
}
/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
reloads of the same item for fear that we might not have enough reload
registers. However, normally they will get the same reload register
and hence actually need not be loaded twice.
Here we check for the most common case of this phenomenon: when we have
a number of reloads for the same object, each of which were allocated
the same reload_reg_rtx, that reload_reg_rtx is not used for any other
reload, and is not modified in the insn itself. If we find such,
merge all the reloads and set the resulting reload to RELOAD_OTHER.
This will not increase the number of spill registers needed and will
prevent redundant code. */
static void
merge_assigned_reloads (rtx insn)
{
int i, j;
/* Scan all the reloads looking for ones that only load values and
are not already RELOAD_OTHER and ones whose reload_reg_rtx are
assigned and not modified by INSN. */
for (i = 0; i < n_reloads; i++)
{
int conflicting_input = 0;
int max_input_address_opnum = -1;
int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
|| rld[i].out != 0 || rld[i].reg_rtx == 0
|| reg_set_p (rld[i].reg_rtx, insn))
continue;
/* Look at all other reloads. Ensure that the only use of this
reload_reg_rtx is in a reload that just loads the same value
as we do. Note that any secondary reloads must be of the identical
class since the values, modes, and result registers are the
same, so we need not do anything with any secondary reloads. */
for (j = 0; j < n_reloads; j++)
{
if (i == j || rld[j].reg_rtx == 0
|| ! reg_overlap_mentioned_p (rld[j].reg_rtx,
rld[i].reg_rtx))
continue;
if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
&& rld[j].opnum > max_input_address_opnum)
max_input_address_opnum = rld[j].opnum;
/* If the reload regs aren't exactly the same (e.g, different modes)
or if the values are different, we can't merge this reload.
But if it is an input reload, we might still merge
RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
|| rld[j].out != 0 || rld[j].in == 0
|| ! rtx_equal_p (rld[i].in, rld[j].in))
{
if (rld[j].when_needed != RELOAD_FOR_INPUT
|| ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
|| rld[i].opnum > rld[j].opnum)
&& rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
break;
conflicting_input = 1;
if (min_conflicting_input_opnum > rld[j].opnum)
min_conflicting_input_opnum = rld[j].opnum;
}
}
/* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
we, in fact, found any matching reloads. */
if (j == n_reloads
&& max_input_address_opnum <= min_conflicting_input_opnum)
{
gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
for (j = 0; j < n_reloads; j++)
if (i != j && rld[j].reg_rtx != 0
&& rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
&& (! conflicting_input
|| rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
{
rld[i].when_needed = RELOAD_OTHER;
rld[j].in = 0;
reload_spill_index[j] = -1;
transfer_replacements (i, j);
}
/* If this is now RELOAD_OTHER, look for any reloads that
load parts of this operand and set them to
RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
RELOAD_OTHER for outputs. Note that this test is
equivalent to looking for reloads for this operand
number.
We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
it may share registers with a RELOAD_FOR_INPUT, so we can
not change it to RELOAD_FOR_OTHER_ADDRESS. We should
never need to, since we do not modify RELOAD_FOR_OUTPUT.
It is possible that the RELOAD_FOR_OPERAND_ADDRESS
instruction is assigned the same register as the earlier
RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
instructions will cause the RELOAD_FOR_OTHER_ADDRESS
instruction to be deleted later on. */
if (rld[i].when_needed == RELOAD_OTHER)
for (j = 0; j < n_reloads; j++)
if (rld[j].in != 0
&& rld[j].when_needed != RELOAD_OTHER
&& rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
&& rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
&& rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
&& (! conflicting_input
|| rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
&& reg_overlap_mentioned_for_reload_p (rld[j].in,
rld[i].in))
{
int k;
rld[j].when_needed
= ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
/* Check to see if we accidentally converted two
reloads that use the same reload register with
different inputs to the same type. If so, the
resulting code won't work. */
if (rld[j].reg_rtx)
for (k = 0; k < j; k++)
gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
|| rld[k].when_needed != rld[j].when_needed
|| !rtx_equal_p (rld[k].reg_rtx,
rld[j].reg_rtx)
|| rtx_equal_p (rld[k].in,
rld[j].in));
}
}
}
}
/* These arrays are filled by emit_reload_insns and its subroutines. */
static rtx input_reload_insns[MAX_RECOG_OPERANDS];
static rtx other_input_address_reload_insns = 0;
static rtx other_input_reload_insns = 0;
static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx output_reload_insns[MAX_RECOG_OPERANDS];
static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx operand_reload_insns = 0;
static rtx other_operand_reload_insns = 0;
static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
/* Values to be put in spill_reg_store are put here first. */
static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
static HARD_REG_SET reg_reloaded_died;
/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
is nonzero, if that is suitable. On success, change *RELOAD_REG to the
adjusted register, and return true. Otherwise, return false. */
static bool
reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
enum reg_class new_class,
enum machine_mode new_mode)
{
rtx reg;
for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
{
unsigned regno = REGNO (reg);
if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
continue;
if (GET_MODE (reg) != new_mode)
{
if (!HARD_REGNO_MODE_OK (regno, new_mode))
continue;
if (hard_regno_nregs[regno][new_mode]
> hard_regno_nregs[regno][GET_MODE (reg)])
continue;
reg = reload_adjust_reg_for_mode (reg, new_mode);
}
*reload_reg = reg;
return true;
}
return false;
}
/* Check if *RELOAD_REG is suitable as a scratch register for the reload
pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
nonzero, if that is suitable. On success, change *RELOAD_REG to the
adjusted register, and return true. Otherwise, return false. */
static bool
reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
enum insn_code icode)
{
enum reg_class new_class = scratch_reload_class (icode);
enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
new_class, new_mode);
}
/* Generate insns to perform reload RL, which is for the insn in CHAIN and
has the number J. OLD contains the value to be used as input. */
static void
emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
rtx old, int j)
{
rtx insn = chain->insn;
rtx reloadreg;
rtx oldequiv_reg = 0;
rtx oldequiv = 0;
int special = 0;
enum machine_mode mode;
rtx *where;
/* delete_output_reload is only invoked properly if old contains
the original pseudo register. Since this is replaced with a
hard reg when RELOAD_OVERRIDE_IN is set, see if we can
find the pseudo in RELOAD_IN_REG. */
if (reload_override_in[j]
&& REG_P (rl->in_reg))
{
oldequiv = old;
old = rl->in_reg;
}
if (oldequiv == 0)
oldequiv = old;
else if (REG_P (oldequiv))
oldequiv_reg = oldequiv;
else if (GET_CODE (oldequiv) == SUBREG)
oldequiv_reg = SUBREG_REG (oldequiv);
reloadreg = reload_reg_rtx_for_input[j];
mode = GET_MODE (reloadreg);
/* If we are reloading from a register that was recently stored in
with an output-reload, see if we can prove there was
actually no need to store the old value in it. */
if (optimize && REG_P (oldequiv)
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
&& spill_reg_store[REGNO (oldequiv)]
&& REG_P (old)
&& (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
rl->out_reg)))
delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
/* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
OLDEQUIV. */
while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
oldequiv = SUBREG_REG (oldequiv);
if (GET_MODE (oldequiv) != VOIDmode
&& mode != GET_MODE (oldequiv))
oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
/* Switch to the right place to emit the reload insns. */
switch (rl->when_needed)
{
case RELOAD_OTHER:
where = &other_input_reload_insns;
break;
case RELOAD_FOR_INPUT:
where = &input_reload_insns[rl->opnum];
break;
case RELOAD_FOR_INPUT_ADDRESS:
where = &input_address_reload_insns[rl->opnum];
break;
case RELOAD_FOR_INPADDR_ADDRESS:
where = &inpaddr_address_reload_insns[rl->opnum];
break;
case RELOAD_FOR_OUTPUT_ADDRESS:
where = &output_address_reload_insns[rl->opnum];
break;
case RELOAD_FOR_OUTADDR_ADDRESS:
where = &outaddr_address_reload_insns[rl->opnum];
break;
case RELOAD_FOR_OPERAND_ADDRESS:
where = &operand_reload_insns;
break;
case RELOAD_FOR_OPADDR_ADDR:
where = &other_operand_reload_insns;
break;
case RELOAD_FOR_OTHER_ADDRESS:
where = &other_input_address_reload_insns;
break;
default:
gcc_unreachable ();
}
push_to_sequence (*where);
/* Auto-increment addresses must be reloaded in a special way. */
if (rl->out && ! rl->out_reg)
{
/* We are not going to bother supporting the case where a
incremented register can't be copied directly from
OLDEQUIV since this seems highly unlikely. */
gcc_assert (rl->secondary_in_reload < 0);
if (reload_inherited[j])
oldequiv = reloadreg;
old = XEXP (rl->in_reg, 0);
if (optimize && REG_P (oldequiv)
&& REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
&& spill_reg_store[REGNO (oldequiv)]
&& REG_P (old)
&& (dead_or_set_p (insn,
spill_reg_stored_to[REGNO (oldequiv)])
|| rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
old)))
delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
/* Prevent normal processing of this reload. */
special = 1;
/* Output a special code sequence for this case. */
new_spill_reg_store[REGNO (reloadreg)]
= inc_for_reload (reloadreg, oldequiv, rl->out,
rl->inc);
}
/* If we are reloading a pseudo-register that was set by the previous
insn, see if we can get rid of that pseudo-register entirely
by redirecting the previous insn into our reload register. */
else if (optimize && REG_P (old)
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
&& dead_or_set_p (insn, old)
/* This is unsafe if some other reload
uses the same reg first. */
&& ! conflicts_with_override (reloadreg)
&& free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
rl->when_needed, old, rl->out, j, 0))
{
rtx temp = PREV_INSN (insn);
while (temp && NOTE_P (temp))
temp = PREV_INSN (temp);
if (temp
&& NONJUMP_INSN_P (temp)
&& GET_CODE (PATTERN (temp)) == SET
&& SET_DEST (PATTERN (temp)) == old
/* Make sure we can access insn_operand_constraint. */
&& asm_noperands (PATTERN (temp)) < 0
/* This is unsafe if operand occurs more than once in current
insn. Perhaps some occurrences aren't reloaded. */
&& count_occurrences (PATTERN (insn), old, 0) == 1)
{
rtx old = SET_DEST (PATTERN (temp));
/* Store into the reload register instead of the pseudo. */
SET_DEST (PATTERN (temp)) = reloadreg;
/* Verify that resulting insn is valid. */
extract_insn (temp);
if (constrain_operands (1))
{
/* If the previous insn is an output reload, the source is
a reload register, and its spill_reg_store entry will
contain the previous destination. This is now
invalid. */
if (REG_P (SET_SRC (PATTERN (temp)))
&& REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
{
spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
}
/* If these are the only uses of the pseudo reg,
pretend for GDB it lives in the reload reg we used. */
if (REG_N_DEATHS (REGNO (old)) == 1
&& REG_N_SETS (REGNO (old)) == 1)
{
reg_renumber[REGNO (old)] = REGNO (reloadreg);
if (ira_conflicts_p)
/* Inform IRA about the change. */
ira_mark_allocation_change (REGNO (old));
alter_reg (REGNO (old), -1, false);
}
special = 1;
}
else
{
SET_DEST (PATTERN (temp)) = old;
}
}
}
/* We can't do that, so output an insn to load RELOADREG. */
/* If we have a secondary reload, pick up the secondary register
and icode, if any. If OLDEQUIV and OLD are different or
if this is an in-out reload, recompute whether or not we
still need a secondary register and what the icode should
be. If we still need a secondary register and the class or
icode is different, go back to reloading from OLD if using
OLDEQUIV means that we got the wrong type of register. We
cannot have different class or icode due to an in-out reload
because we don't make such reloads when both the input and
output need secondary reload registers. */
if (! special && rl->secondary_in_reload >= 0)
{
rtx second_reload_reg = 0;
rtx third_reload_reg = 0;
int secondary_reload = rl->secondary_in_reload;
rtx real_oldequiv = oldequiv;
rtx real_old = old;
rtx tmp;
enum insn_code icode;
enum insn_code tertiary_icode = CODE_FOR_nothing;
/* If OLDEQUIV is a pseudo with a MEM, get the real MEM
and similarly for OLD.
See comments in get_secondary_reload in reload.c. */
/* If it is a pseudo that cannot be replaced with its
equivalent MEM, we must fall back to reload_in, which
will have all the necessary substitutions registered.
Likewise for a pseudo that can't be replaced with its
equivalent constant.
Take extra care for subregs of such pseudos. Note that
we cannot use reg_equiv_mem in this case because it is
not in the right mode. */
tmp = oldequiv;
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (REG_P (tmp)
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|| reg_equiv_constant[REGNO (tmp)] != 0))
{
if (! reg_equiv_mem[REGNO (tmp)]
|| num_not_at_initial_offset
|| GET_CODE (oldequiv) == SUBREG)
real_oldequiv = rl->in;
else
real_oldequiv = reg_equiv_mem[REGNO (tmp)];
}
tmp = old;
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (REG_P (tmp)
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER
&& (reg_equiv_memory_loc[REGNO (tmp)] != 0
|| reg_equiv_constant[REGNO (tmp)] != 0))
{
if (! reg_equiv_mem[REGNO (tmp)]
|| num_not_at_initial_offset
|| GET_CODE (old) == SUBREG)
real_old = rl->in;
else
real_old = reg_equiv_mem[REGNO (tmp)];
}
second_reload_reg = rld[secondary_reload].reg_rtx;
if (rld[secondary_reload].secondary_in_reload >= 0)
{
int tertiary_reload = rld[secondary_reload].secondary_in_reload;
third_reload_reg = rld[tertiary_reload].reg_rtx;
tertiary_icode = rld[secondary_reload].secondary_in_icode;
/* We'd have to add more code for quartary reloads. */
gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
}
icode = rl->secondary_in_icode;
if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
|| (rl->in != 0 && rl->out != 0))
{
secondary_reload_info sri, sri2;
enum reg_class new_class, new_t_class;
sri.icode = CODE_FOR_nothing;
sri.prev_sri = NULL;
new_class = targetm.secondary_reload (1, real_oldequiv, rl->rclass,
mode, &sri);
if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
second_reload_reg = 0;
else if (new_class == NO_REGS)
{
if (reload_adjust_reg_for_icode (&second_reload_reg,
third_reload_reg,
(enum insn_code) sri.icode))
{
icode = (enum insn_code) sri.icode;
third_reload_reg = 0;
}
else
{
oldequiv = old;
real_oldequiv = real_old;
}
}
else if (sri.icode != CODE_FOR_nothing)
/* We currently lack a way to express this in reloads. */
gcc_unreachable ();
else
{
sri2.icode = CODE_FOR_nothing;
sri2.prev_sri = &sri;
new_t_class = targetm.secondary_reload (1, real_oldequiv,
new_class, mode, &sri);
if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
{
if (reload_adjust_reg_for_temp (&second_reload_reg,
third_reload_reg,
new_class, mode))
{
third_reload_reg = 0;
tertiary_icode = (enum insn_code) sri2.icode;
}
else
{
oldequiv = old;
real_oldequiv = real_old;
}
}
else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
{
rtx intermediate = second_reload_reg;
if (reload_adjust_reg_for_temp (&intermediate, NULL,
new_class, mode)
&& reload_adjust_reg_for_icode (&third_reload_reg, NULL,
((enum insn_code)
sri2.icode)))
{
second_reload_reg = intermediate;
tertiary_icode = (enum insn_code) sri2.icode;
}
else
{
oldequiv = old;
real_oldequiv = real_old;
}
}
else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
{
rtx intermediate = second_reload_reg;
if (reload_adjust_reg_for_temp (&intermediate, NULL,
new_class, mode)
&& reload_adjust_reg_for_temp (&third_reload_reg, NULL,
new_t_class, mode))
{
second_reload_reg = intermediate;
tertiary_icode = (enum insn_code) sri2.icode;
}
else
{
oldequiv = old;
real_oldequiv = real_old;
}
}
else
{
/* This could be handled more intelligently too. */
oldequiv = old;
real_oldequiv = real_old;
}
}
}
/* If we still need a secondary reload register, check
to see if it is being used as a scratch or intermediate
register and generate code appropriately. If we need
a scratch register, use REAL_OLDEQUIV since the form of
the insn may depend on the actual address if it is
a MEM. */
if (second_reload_reg)
{
if (icode != CODE_FOR_nothing)
{
/* We'd have to add extra code to handle this case. */
gcc_assert (!third_reload_reg);
emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
second_reload_reg));
special = 1;
}
else
{
/* See if we need a scratch register to load the
intermediate register (a tertiary reload). */
if (tertiary_icode != CODE_FOR_nothing)
{
emit_insn ((GEN_FCN (tertiary_icode)
(second_reload_reg, real_oldequiv,
third_reload_reg)));
}
else if (third_reload_reg)
{
gen_reload (third_reload_reg, real_oldequiv,
rl->opnum,
rl->when_needed);
gen_reload (second_reload_reg, third_reload_reg,
rl->opnum,
rl->when_needed);
}
else
gen_reload (second_reload_reg, real_oldequiv,
rl->opnum,
rl->when_needed);
oldequiv = second_reload_reg;
}
}
}
if (! special && ! rtx_equal_p (reloadreg, oldequiv))
{
rtx real_oldequiv = oldequiv;
if ((REG_P (oldequiv)
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
&& (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
|| reg_equiv_constant[REGNO (oldequiv)] != 0))
|| (GET_CODE (oldequiv) == SUBREG
&& REG_P (SUBREG_REG (oldequiv))
&& (REGNO (SUBREG_REG (oldequiv))
>= FIRST_PSEUDO_REGISTER)
&& ((reg_equiv_memory_loc
[REGNO (SUBREG_REG (oldequiv))] != 0)
|| (reg_equiv_constant
[REGNO (SUBREG_REG (oldequiv))] != 0)))
|| (CONSTANT_P (oldequiv)
&& (PREFERRED_RELOAD_CLASS (oldequiv,
REGNO_REG_CLASS (REGNO (reloadreg)))
== NO_REGS)))
real_oldequiv = rl->in;
gen_reload (reloadreg, real_oldequiv, rl->opnum,
rl->when_needed);
}
if (flag_non_call_exceptions)
copy_eh_notes (insn, get_insns ());
/* End this sequence. */
*where = get_insns ();
end_sequence ();
/* Update reload_override_in so that delete_address_reloads_1
can see the actual register usage. */
if (oldequiv_reg)
reload_override_in[j] = oldequiv;
}
/* Generate insns to for the output reload RL, which is for the insn described
by CHAIN and has the number J. */
static void
emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
int j)
{
rtx reloadreg;
rtx insn = chain->insn;
int special = 0;
rtx old = rl->out;
enum machine_mode mode;
rtx p;
rtx rl_reg_rtx;
if (rl->when_needed == RELOAD_OTHER)
start_sequence ();
else
push_to_sequence (output_reload_insns[rl->opnum]);
rl_reg_rtx = reload_reg_rtx_for_output[j];
mode = GET_MODE (rl_reg_rtx);
reloadreg = rl_reg_rtx;
/* If we need two reload regs, set RELOADREG to the intermediate
one, since it will be stored into OLD. We might need a secondary
register only for an input reload, so check again here. */
if (rl->secondary_out_reload >= 0)
{
rtx real_old = old;
int secondary_reload = rl->secondary_out_reload;
int tertiary_reload = rld[secondary_reload].secondary_out_reload;
if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
&& reg_equiv_mem[REGNO (old)] != 0)
real_old = reg_equiv_mem[REGNO (old)];
if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
{
rtx second_reloadreg = reloadreg;
reloadreg = rld[secondary_reload].reg_rtx;
/* See if RELOADREG is to be used as a scratch register
or as an intermediate register. */
if (rl->secondary_out_icode != CODE_FOR_nothing)
{
/* We'd have to add extra code to handle this case. */
gcc_assert (tertiary_reload < 0);
emit_insn ((GEN_FCN (rl->secondary_out_icode)
(real_old, second_reloadreg, reloadreg)));
special = 1;
}
else
{
/* See if we need both a scratch and intermediate reload
register. */
enum insn_code tertiary_icode
= rld[secondary_reload].secondary_out_icode;
/* We'd have to add more code for quartary reloads. */
gcc_assert (tertiary_reload < 0
|| rld[tertiary_reload].secondary_out_reload < 0);
if (GET_MODE (reloadreg) != mode)
reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
if (tertiary_icode != CODE_FOR_nothing)
{
rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
rtx tem;
/* Copy primary reload reg to secondary reload reg.
(Note that these have been swapped above, then
secondary reload reg to OLD using our insn.) */
/* If REAL_OLD is a paradoxical SUBREG, remove it
and try to put the opposite SUBREG on
RELOADREG. */
if (GET_CODE (real_old) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (real_old))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
&& 0 != (tem = gen_lowpart_common
(GET_MODE (SUBREG_REG (real_old)),
reloadreg)))
real_old = SUBREG_REG (real_old), reloadreg = tem;
gen_reload (reloadreg, second_reloadreg,
rl->opnum, rl->when_needed);
emit_insn ((GEN_FCN (tertiary_icode)
(real_old, reloadreg, third_reloadreg)));
special = 1;
}
else
{
/* Copy between the reload regs here and then to
OUT later. */
gen_reload (reloadreg, second_reloadreg,
rl->opnum, rl->when_needed);
if (tertiary_reload >= 0)
{
rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
gen_reload (third_reloadreg, reloadreg,
rl->opnum, rl->when_needed);
reloadreg = third_reloadreg;
}
}
}
}
}
/* Output the last reload insn. */
if (! special)
{
rtx set;
/* Don't output the last reload if OLD is not the dest of
INSN and is in the src and is clobbered by INSN. */
if (! flag_expensive_optimizations
|| !REG_P (old)
|| !(set = single_set (insn))
|| rtx_equal_p (old, SET_DEST (set))
|| !reg_mentioned_p (old, SET_SRC (set))
|| !((REGNO (old) < FIRST_PSEUDO_REGISTER)
&& regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
gen_reload (old, reloadreg, rl->opnum,
rl->when_needed);
}
/* Look at all insns we emitted, just to be safe. */
for (p = get_insns (); p; p = NEXT_INSN (p))
if (INSN_P (p))
{
rtx pat = PATTERN (p);
/* If this output reload doesn't come from a spill reg,
clear any memory of reloaded copies of the pseudo reg.
If this output reload comes from a spill reg,
reg_has_output_reload will make this do nothing. */
note_stores (pat, forget_old_reloads_1, NULL);
if (reg_mentioned_p (rl_reg_rtx, pat))
{
rtx set = single_set (insn);
if (reload_spill_index[j] < 0
&& set
&& SET_SRC (set) == rl_reg_rtx)
{
int src = REGNO (SET_SRC (set));
reload_spill_index[j] = src;
SET_HARD_REG_BIT (reg_is_output_reload, src);
if (find_regno_note (insn, REG_DEAD, src))
SET_HARD_REG_BIT (reg_reloaded_died, src);
}
if (HARD_REGISTER_P (rl_reg_rtx))
{
int s = rl->secondary_out_reload;
set = single_set (p);
/* If this reload copies only to the secondary reload
register, the secondary reload does the actual
store. */
if (s >= 0 && set == NULL_RTX)
/* We can't tell what function the secondary reload
has and where the actual store to the pseudo is
made; leave new_spill_reg_store alone. */
;
else if (s >= 0
&& SET_SRC (set) == rl_reg_rtx
&& SET_DEST (set) == rld[s].reg_rtx)
{
/* Usually the next instruction will be the
secondary reload insn; if we can confirm
that it is, setting new_spill_reg_store to
that insn will allow an extra optimization. */
rtx s_reg = rld[s].reg_rtx;
rtx next = NEXT_INSN (p);
rld[s].out = rl->out;
rld[s].out_reg = rl->out_reg;
set = single_set (next);
if (set && SET_SRC (set) == s_reg
&& ! new_spill_reg_store[REGNO (s_reg)])
{
SET_HARD_REG_BIT (reg_is_output_reload,
REGNO (s_reg));
new_spill_reg_store[REGNO (s_reg)] = next;
}
}
else
new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
}
}
}
if (rl->when_needed == RELOAD_OTHER)
{
emit_insn (other_output_reload_insns[rl->opnum]);
other_output_reload_insns[rl->opnum] = get_insns ();
}
else
output_reload_insns[rl->opnum] = get_insns ();
if (flag_non_call_exceptions)
copy_eh_notes (insn, get_insns ());
end_sequence ();
}
/* Do input reloading for reload RL, which is for the insn described by CHAIN
and has the number J. */
static void
do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
{
rtx insn = chain->insn;
rtx old = (rl->in && MEM_P (rl->in)
? rl->in_reg : rl->in);
rtx reg_rtx = rl->reg_rtx;
if (old && reg_rtx)
{
enum machine_mode mode;
/* Determine the mode to reload in.
This is very tricky because we have three to choose from.
There is the mode the insn operand wants (rl->inmode).
There is the mode of the reload register RELOADREG.
There is the intrinsic mode of the operand, which we could find
by stripping some SUBREGs.
It turns out that RELOADREG's mode is irrelevant:
we can change that arbitrarily.
Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
then the reload reg may not support QImode moves, so use SImode.
If foo is in memory due to spilling a pseudo reg, this is safe,
because the QImode value is in the least significant part of a
slot big enough for a SImode. If foo is some other sort of
memory reference, then it is impossible to reload this case,
so previous passes had better make sure this never happens.
Then consider a one-word union which has SImode and one of its
members is a float, being fetched as (SUBREG:SF union:SI).
We must fetch that as SFmode because we could be loading into
a float-only register. In this case OLD's mode is correct.
Consider an immediate integer: it has VOIDmode. Here we need
to get a mode from something else.
In some cases, there is a fourth mode, the operand's
containing mode. If the insn specifies a containing mode for
this operand, it overrides all others.
I am not sure whether the algorithm here is always right,
but it does the right things in those cases. */
mode = GET_MODE (old);
if (mode == VOIDmode)
mode = rl->inmode;
/* We cannot use gen_lowpart_common since it can do the wrong thing
when REG_RTX has a multi-word mode. Note that REG_RTX must
always be a REG here. */
if (GET_MODE (reg_rtx) != mode)
reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
}
reload_reg_rtx_for_input[j] = reg_rtx;
if (old != 0
/* AUTO_INC reloads need to be handled even if inherited. We got an
AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
&& (! reload_inherited[j] || (rl->out && ! rl->out_reg))
&& ! rtx_equal_p (reg_rtx, old)
&& reg_rtx != 0)
emit_input_reload_insns (chain, rld + j, old, j);
/* When inheriting a wider reload, we have a MEM in rl->in,
e.g. inheriting a SImode output reload for
(mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
if (optimize && reload_inherited[j] && rl->in
&& MEM_P (rl->in)
&& MEM_P (rl->in_reg)
&& reload_spill_index[j] >= 0
&& TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
/* If we are reloading a register that was recently stored in with an
output-reload, see if we can prove there was
actually no need to store the old value in it. */
if (optimize
&& (reload_inherited[j] || reload_override_in[j])
&& reg_rtx
&& REG_P (reg_rtx)
&& spill_reg_store[REGNO (reg_rtx)] != 0
#if 0
/* There doesn't seem to be any reason to restrict this to pseudos
and doing so loses in the case where we are copying from a
register of the wrong class. */
&& !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
#endif
/* The insn might have already some references to stackslots
replaced by MEMs, while reload_out_reg still names the
original pseudo. */
&& (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
|| rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
}
/* Do output reloading for reload RL, which is for the insn described by
CHAIN and has the number J.
??? At some point we need to support handling output reloads of
JUMP_INSNs or insns that set cc0. */
static void
do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
{
rtx note, old;
rtx insn = chain->insn;
/* If this is an output reload that stores something that is
not loaded in this same reload, see if we can eliminate a previous
store. */
rtx pseudo = rl->out_reg;
rtx reg_rtx = rl->reg_rtx;
if (rl->out && reg_rtx)
{
enum machine_mode mode;
/* Determine the mode to reload in.
See comments above (for input reloading). */
mode = GET_MODE (rl->out);
if (mode == VOIDmode)
{
/* VOIDmode should never happen for an output. */
if (asm_noperands (PATTERN (insn)) < 0)
/* It's the compiler's fault. */
fatal_insn ("VOIDmode on an output", insn);
error_for_asm (insn, "output operand is constant in %");
/* Prevent crash--use something we know is valid. */
mode = word_mode;
rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
}
if (GET_MODE (reg_rtx) != mode)
reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
}
reload_reg_rtx_for_output[j] = reg_rtx;
if (pseudo
&& optimize
&& REG_P (pseudo)
&& ! rtx_equal_p (rl->in_reg, pseudo)
&& REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
&& reg_last_reload_reg[REGNO (pseudo)])
{
int pseudo_no = REGNO (pseudo);
int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
/* We don't need to test full validity of last_regno for
inherit here; we only want to know if the store actually
matches the pseudo. */
if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
&& reg_reloaded_contents[last_regno] == pseudo_no
&& spill_reg_store[last_regno]
&& rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
delete_output_reload (insn, j, last_regno, reg_rtx);
}
old = rl->out_reg;
if (old == 0
|| reg_rtx == 0
|| rtx_equal_p (old, reg_rtx))
return;
/* An output operand that dies right away does need a reload,
but need not be copied from it. Show the new location in the
REG_UNUSED note. */
if ((REG_P (old) || GET_CODE (old) == SCRATCH)
&& (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
{
XEXP (note, 0) = reg_rtx;
return;
}
/* Likewise for a SUBREG of an operand that dies. */
else if (GET_CODE (old) == SUBREG
&& REG_P (SUBREG_REG (old))
&& 0 != (note = find_reg_note (insn, REG_UNUSED,
SUBREG_REG (old))))
{
XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
return;
}
else if (GET_CODE (old) == SCRATCH)
/* If we aren't optimizing, there won't be a REG_UNUSED note,
but we don't want to make an output reload. */
return;
/* If is a JUMP_INSN, we can't support output reloads yet. */
gcc_assert (NONJUMP_INSN_P (insn));
emit_output_reload_insns (chain, rld + j, j);
}
/* A reload copies values of MODE from register SRC to register DEST.
Return true if it can be treated for inheritance purposes like a
group of reloads, each one reloading a single hard register. The
caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
occupy the same number of hard registers. */
static bool
inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
int src ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
#ifdef CANNOT_CHANGE_MODE_CLASS
return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
&& !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
#else
return true;
#endif
}
/* Output insns to reload values in and out of the chosen reload regs. */
static void
emit_reload_insns (struct insn_chain *chain)
{
rtx insn = chain->insn;
int j;
CLEAR_HARD_REG_SET (reg_reloaded_died);
for (j = 0; j < reload_n_operands; j++)
input_reload_insns[j] = input_address_reload_insns[j]
= inpaddr_address_reload_insns[j]
= output_reload_insns[j] = output_address_reload_insns[j]
= outaddr_address_reload_insns[j]
= other_output_reload_insns[j] = 0;
other_input_address_reload_insns = 0;
other_input_reload_insns = 0;
operand_reload_insns = 0;
other_operand_reload_insns = 0;
/* Dump reloads into the dump file. */
if (dump_file)
{
fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
debug_reload_to_stream (dump_file);
}
/* Now output the instructions to copy the data into and out of the
reload registers. Do these in the order that the reloads were reported,
since reloads of base and index registers precede reloads of operands
and the operands may need the base and index registers reloaded. */
for (j = 0; j < n_reloads; j++)
{
if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
{
unsigned int i;
for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
new_spill_reg_store[i] = 0;
}
do_input_reload (chain, rld + j, j);
do_output_reload (chain, rld + j, j);
}
/* Now write all the insns we made for reloads in the order expected by
the allocation functions. Prior to the insn being reloaded, we write
the following reloads:
RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
RELOAD_OTHER reloads.
For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
RELOAD_FOR_INPUT reload for the operand.
RELOAD_FOR_OPADDR_ADDRS reloads.
RELOAD_FOR_OPERAND_ADDRESS reloads.
After the insn being reloaded, we write the following:
For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
reloads for the operand. The RELOAD_OTHER output reloads are
output in descending order by reload number. */
emit_insn_before (other_input_address_reload_insns, insn);
emit_insn_before (other_input_reload_insns, insn);
for (j = 0; j < reload_n_operands; j++)
{
emit_insn_before (inpaddr_address_reload_insns[j], insn);
emit_insn_before (input_address_reload_insns[j], insn);
emit_insn_before (input_reload_insns[j], insn);
}
emit_insn_before (other_operand_reload_insns, insn);
emit_insn_before (operand_reload_insns, insn);
for (j = 0; j < reload_n_operands; j++)
{
rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
x = emit_insn_after (output_address_reload_insns[j], x);
x = emit_insn_after (output_reload_insns[j], x);
emit_insn_after (other_output_reload_insns[j], x);
}
/* For all the spill regs newly reloaded in this instruction,
record what they were reloaded from, so subsequent instructions
can inherit the reloads.
Update spill_reg_store for the reloads of this insn.
Copy the elements that were updated in the loop above. */
for (j = 0; j < n_reloads; j++)
{
int r = reload_order[j];
int i = reload_spill_index[r];
/* If this is a non-inherited input reload from a pseudo, we must
clear any memory of a previous store to the same pseudo. Only do
something if there will not be an output reload for the pseudo
being reloaded. */
if (rld[r].in_reg != 0
&& ! (reload_inherited[r] || reload_override_in[r]))
{
rtx reg = rld[r].in_reg;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (REG_P (reg)
&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
&& !REGNO_REG_SET_P (®_has_output_reload, REGNO (reg)))
{
int nregno = REGNO (reg);
if (reg_last_reload_reg[nregno])
{
int last_regno = REGNO (reg_last_reload_reg[nregno]);
if (reg_reloaded_contents[last_regno] == nregno)
spill_reg_store[last_regno] = 0;
}
}
}
/* I is nonneg if this reload used a register.
If rld[r].reg_rtx is 0, this is an optional reload
that we opted to ignore. */
if (i >= 0 && rld[r].reg_rtx != 0)
{
int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
int k;
/* For a multi register reload, we need to check if all or part
of the value lives to the end. */
for (k = 0; k < nr; k++)
if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
rld[r].when_needed))
CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
/* Maybe the spill reg contains a copy of reload_out. */
if (rld[r].out != 0
&& (REG_P (rld[r].out)
#ifdef AUTO_INC_DEC
|| ! rld[r].out_reg
#endif
|| REG_P (rld[r].out_reg)))
{
rtx reg;
enum machine_mode mode;
int regno, nregs;
reg = reload_reg_rtx_for_output[r];
mode = GET_MODE (reg);
regno = REGNO (reg);
nregs = hard_regno_nregs[regno][mode];
if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
rld[r].when_needed))
{
rtx out = (REG_P (rld[r].out)
? rld[r].out
: rld[r].out_reg
? rld[r].out_reg
/* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
int out_regno = REGNO (out);
int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
: hard_regno_nregs[out_regno][mode]);
bool piecemeal;
spill_reg_store[regno] = new_spill_reg_store[regno];
spill_reg_stored_to[regno] = out;
reg_last_reload_reg[out_regno] = reg;
piecemeal = (HARD_REGISTER_NUM_P (out_regno)
&& nregs == out_nregs
&& inherit_piecemeal_p (out_regno, regno, mode));
/* If OUT_REGNO is a hard register, it may occupy more than
one register. If it does, say what is in the
rest of the registers assuming that both registers
agree on how many words the object takes. If not,
invalidate the subsequent registers. */
if (HARD_REGISTER_NUM_P (out_regno))
for (k = 1; k < out_nregs; k++)
reg_last_reload_reg[out_regno + k]
= (piecemeal ? regno_reg_rtx[regno + k] : 0);
/* Now do the inverse operation. */
for (k = 0; k < nregs; k++)
{
CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
reg_reloaded_contents[regno + k]
= (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
? out_regno
: out_regno + k);
reg_reloaded_insn[regno + k] = insn;
SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
regno + k);
else
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
regno + k);
}
}
}
/* Maybe the spill reg contains a copy of reload_in. Only do
something if there will not be an output reload for
the register being reloaded. */
else if (rld[r].out_reg == 0
&& rld[r].in != 0
&& ((REG_P (rld[r].in)
&& !HARD_REGISTER_P (rld[r].in)
&& !REGNO_REG_SET_P (®_has_output_reload,
REGNO (rld[r].in)))
|| (REG_P (rld[r].in_reg)
&& !REGNO_REG_SET_P (®_has_output_reload,
REGNO (rld[r].in_reg))))
&& !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
{
rtx reg;
enum machine_mode mode;
int regno, nregs;
reg = reload_reg_rtx_for_input[r];
mode = GET_MODE (reg);
regno = REGNO (reg);
nregs = hard_regno_nregs[regno][mode];
if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
rld[r].when_needed))
{
int in_regno;
int in_nregs;
rtx in;
bool piecemeal;
if (REG_P (rld[r].in)
&& REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
in = rld[r].in;
else if (REG_P (rld[r].in_reg))
in = rld[r].in_reg;
else
in = XEXP (rld[r].in_reg, 0);
in_regno = REGNO (in);
in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
: hard_regno_nregs[in_regno][mode]);
reg_last_reload_reg[in_regno] = reg;
piecemeal = (HARD_REGISTER_NUM_P (in_regno)
&& nregs == in_nregs
&& inherit_piecemeal_p (regno, in_regno, mode));
if (HARD_REGISTER_NUM_P (in_regno))
for (k = 1; k < in_nregs; k++)
reg_last_reload_reg[in_regno + k]
= (piecemeal ? regno_reg_rtx[regno + k] : 0);
/* Unless we inherited this reload, show we haven't
recently done a store.
Previous stores of inherited auto_inc expressions
also have to be discarded. */
if (! reload_inherited[r]
|| (rld[r].out && ! rld[r].out_reg))
spill_reg_store[regno] = 0;
for (k = 0; k < nregs; k++)
{
CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
reg_reloaded_contents[regno + k]
= (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
? in_regno
: in_regno + k);
reg_reloaded_insn[regno + k] = insn;
SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
regno + k);
else
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
regno + k);
}
}
}
}
/* The following if-statement was #if 0'd in 1.34 (or before...).
It's reenabled in 1.35 because supposedly nothing else
deals with this problem. */
/* If a register gets output-reloaded from a non-spill register,
that invalidates any previous reloaded copy of it.
But forget_old_reloads_1 won't get to see it, because
it thinks only about the original insn. So invalidate it here.
Also do the same thing for RELOAD_OTHER constraints where the
output is discarded. */
if (i < 0
&& ((rld[r].out != 0
&& (REG_P (rld[r].out)
|| (MEM_P (rld[r].out)
&& REG_P (rld[r].out_reg))))
|| (rld[r].out == 0 && rld[r].out_reg
&& REG_P (rld[r].out_reg))))
{
rtx out = ((rld[r].out && REG_P (rld[r].out))
? rld[r].out : rld[r].out_reg);
int out_regno = REGNO (out);
enum machine_mode mode = GET_MODE (out);
/* REG_RTX is now set or clobbered by the main instruction.
As the comment above explains, forget_old_reloads_1 only
sees the original instruction, and there is no guarantee
that the original instruction also clobbered REG_RTX.
For example, if find_reloads sees that the input side of
a matched operand pair dies in this instruction, it may
use the input register as the reload register.
Calling forget_old_reloads_1 is a waste of effort if
REG_RTX is also the output register.
If we know that REG_RTX holds the value of a pseudo
register, the code after the call will record that fact. */
if (rld[r].reg_rtx && rld[r].reg_rtx != out)
forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
if (!HARD_REGISTER_NUM_P (out_regno))
{
rtx src_reg, store_insn = NULL_RTX;
reg_last_reload_reg[out_regno] = 0;
/* If we can find a hard register that is stored, record
the storing insn so that we may delete this insn with
delete_output_reload. */
src_reg = reload_reg_rtx_for_output[r];
/* If this is an optional reload, try to find the source reg
from an input reload. */
if (! src_reg)
{
rtx set = single_set (insn);
if (set && SET_DEST (set) == rld[r].out)
{
int k;
src_reg = SET_SRC (set);
store_insn = insn;
for (k = 0; k < n_reloads; k++)
{
if (rld[k].in == src_reg)
{
src_reg = reload_reg_rtx_for_input[k];
break;
}
}
}
}
else
store_insn = new_spill_reg_store[REGNO (src_reg)];
if (src_reg && REG_P (src_reg)
&& REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
{
int src_regno, src_nregs, k;
rtx note;
gcc_assert (GET_MODE (src_reg) == mode);
src_regno = REGNO (src_reg);
src_nregs = hard_regno_nregs[src_regno][mode];
/* The place where to find a death note varies with
PRESERVE_DEATH_INFO_REGNO_P . The condition is not
necessarily checked exactly in the code that moves
notes, so just check both locations. */
note = find_regno_note (insn, REG_DEAD, src_regno);
if (! note && store_insn)
note = find_regno_note (store_insn, REG_DEAD, src_regno);
for (k = 0; k < src_nregs; k++)
{
spill_reg_store[src_regno + k] = store_insn;
spill_reg_stored_to[src_regno + k] = out;
reg_reloaded_contents[src_regno + k] = out_regno;
reg_reloaded_insn[src_regno + k] = store_insn;
CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
mode))
SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
src_regno + k);
else
CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
src_regno + k);
SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
if (note)
SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
else
CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
}
reg_last_reload_reg[out_regno] = src_reg;
/* We have to set reg_has_output_reload here, or else
forget_old_reloads_1 will clear reg_last_reload_reg
right away. */
SET_REGNO_REG_SET (®_has_output_reload,
out_regno);
}
}
else
{
int k, out_nregs = hard_regno_nregs[out_regno][mode];
for (k = 0; k < out_nregs; k++)
reg_last_reload_reg[out_regno + k] = 0;
}
}
}
IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
}
/* Go through the motions to emit INSN and test if it is strictly valid.
Return the emitted insn if valid, else return NULL. */
static rtx
emit_insn_if_valid_for_reload (rtx insn)
{
rtx last = get_last_insn ();
int code;
insn = emit_insn (insn);
code = recog_memoized (insn);
if (code >= 0)
{
extract_insn (insn);
/* We want constrain operands to treat this insn strictly in its
validity determination, i.e., the way it would after reload has
completed. */
if (constrain_operands (1))
return insn;
}
delete_insns_since (last);
return NULL;
}
/* Emit code to perform a reload from IN (which may be a reload register) to
OUT (which may also be a reload register). IN or OUT is from operand
OPNUM with reload type TYPE.
Returns first insn emitted. */
static rtx
gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
{
rtx last = get_last_insn ();
rtx tem;
/* If IN is a paradoxical SUBREG, remove it and try to put the
opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
if (GET_CODE (in) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (in))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
in = SUBREG_REG (in), out = tem;
else if (GET_CODE (out) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (out))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
&& (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
out = SUBREG_REG (out), in = tem;
/* How to do this reload can get quite tricky. Normally, we are being
asked to reload a simple operand, such as a MEM, a constant, or a pseudo
register that didn't get a hard register. In that case we can just
call emit_move_insn.
We can also be asked to reload a PLUS that adds a register or a MEM to
another register, constant or MEM. This can occur during frame pointer
elimination and while reloading addresses. This case is handled by
trying to emit a single insn to perform the add. If it is not valid,
we use a two insn sequence.
Or we can be asked to reload an unary operand that was a fragment of
an addressing mode, into a register. If it isn't recognized as-is,
we try making the unop operand and the reload-register the same:
(set reg:X (unop:X expr:Y))
-> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
Finally, we could be called to handle an 'o' constraint by putting
an address into a register. In that case, we first try to do this
with a named pattern of "reload_load_address". If no such pattern
exists, we just emit a SET insn and hope for the best (it will normally
be valid on machines that use 'o').
This entire process is made complex because reload will never
process the insns we generate here and so we must ensure that
they will fit their constraints and also by the fact that parts of
IN might be being reloaded separately and replaced with spill registers.
Because of this, we are, in some sense, just guessing the right approach
here. The one listed above seems to work.
??? At some point, this whole thing needs to be rethought. */
if (GET_CODE (in) == PLUS
&& (REG_P (XEXP (in, 0))
|| GET_CODE (XEXP (in, 0)) == SUBREG
|| MEM_P (XEXP (in, 0)))
&& (REG_P (XEXP (in, 1))
|| GET_CODE (XEXP (in, 1)) == SUBREG
|| CONSTANT_P (XEXP (in, 1))
|| MEM_P (XEXP (in, 1))))
{
/* We need to compute the sum of a register or a MEM and another
register, constant, or MEM, and put it into the reload
register. The best possible way of doing this is if the machine
has a three-operand ADD insn that accepts the required operands.
The simplest approach is to try to generate such an insn and see if it
is recognized and matches its constraints. If so, it can be used.
It might be better not to actually emit the insn unless it is valid,
but we need to pass the insn as an operand to `recog' and
`extract_insn' and it is simpler to emit and then delete the insn if
not valid than to dummy things up. */
rtx op0, op1, tem, insn;
int code;
op0 = find_replacement (&XEXP (in, 0));
op1 = find_replacement (&XEXP (in, 1));
/* Since constraint checking is strict, commutativity won't be
checked, so we need to do that here to avoid spurious failure
if the add instruction is two-address and the second operand
of the add is the same as the reload reg, which is frequently
the case. If the insn would be A = B + A, rearrange it so
it will be A = A + B as constrain_operands expects. */
if (REG_P (XEXP (in, 1))
&& REGNO (out) == REGNO (XEXP (in, 1)))
tem = op0, op0 = op1, op1 = tem;
if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
if (insn)
return insn;
/* If that failed, we must use a conservative two-insn sequence.
Use a move to copy one operand into the reload register. Prefer
to reload a constant, MEM or pseudo since the move patterns can
handle an arbitrary operand. If OP1 is not a constant, MEM or
pseudo and OP1 is not a valid operand for an add instruction, then
reload OP1.
After reloading one of the operands into the reload register, add
the reload register to the output register.
If there is another way to do this for a specific machine, a
DEFINE_PEEPHOLE should be specified that recognizes the sequence
we emit below. */
code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
|| (REG_P (op1)
&& REGNO (op1) >= FIRST_PSEUDO_REGISTER)
|| (code != CODE_FOR_nothing
&& ! ((*insn_data[code].operand[2].predicate)
(op1, insn_data[code].operand[2].mode))))
tem = op0, op0 = op1, op1 = tem;
gen_reload (out, op0, opnum, type);
/* If OP0 and OP1 are the same, we can use OUT for OP1.
This fixes a problem on the 32K where the stack pointer cannot
be used as an operand of an add insn. */
if (rtx_equal_p (op0, op1))
op1 = out;
insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
if (insn)
{
/* Add a REG_EQUIV note so that find_equiv_reg can find it. */
set_unique_reg_note (insn, REG_EQUIV, in);
return insn;
}
/* If that failed, copy the address register to the reload register.
Then add the constant to the reload register. */
gcc_assert (!reg_overlap_mentioned_p (out, op0));
gen_reload (out, op1, opnum, type);
insn = emit_insn (gen_add2_insn (out, op0));
set_unique_reg_note (insn, REG_EQUIV, in);
}
#ifdef SECONDARY_MEMORY_NEEDED
/* If we need a memory location to do the move, do it that way. */
else if ((REG_P (in)
|| (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
&& reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
&& (REG_P (out)
|| (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
&& reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
REGNO_REG_CLASS (reg_or_subregno (out)),
GET_MODE (out)))
{
/* Get the memory to use and rewrite both registers to its mode. */
rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
if (GET_MODE (loc) != GET_MODE (out))
out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
if (GET_MODE (loc) != GET_MODE (in))
in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
gen_reload (loc, in, opnum, type);
gen_reload (out, loc, opnum, type);
}
#endif
else if (REG_P (out) && UNARY_P (in))
{
rtx insn;
rtx op1;
rtx out_moded;
rtx set;
op1 = find_replacement (&XEXP (in, 0));
if (op1 != XEXP (in, 0))
in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
/* First, try a plain SET. */
set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
if (set)
return set;
/* If that failed, move the inner operand to the reload
register, and try the same unop with the inner expression
replaced with the reload register. */
if (GET_MODE (op1) != GET_MODE (out))
out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
else
out_moded = out;
gen_reload (out_moded, op1, opnum, type);
insn
= gen_rtx_SET (VOIDmode, out,
gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
out_moded));
insn = emit_insn_if_valid_for_reload (insn);
if (insn)
{
set_unique_reg_note (insn, REG_EQUIV, in);
return insn;
}
fatal_insn ("Failure trying to reload:", set);
}
/* If IN is a simple operand, use gen_move_insn. */
else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
{
tem = emit_insn (gen_move_insn (out, in));
/* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
mark_jump_label (in, tem, 0);
}
#ifdef HAVE_reload_load_address
else if (HAVE_reload_load_address)
emit_insn (gen_reload_load_address (out, in));
#endif
/* Otherwise, just write (set OUT IN) and hope for the best. */
else
emit_insn (gen_rtx_SET (VOIDmode, out, in));
/* Return the first insn emitted.
We can not just return get_last_insn, because there may have
been multiple instructions emitted. Also note that gen_move_insn may
emit more than one insn itself, so we can not assume that there is one
insn emitted per emit_insn_before call. */
return last ? NEXT_INSN (last) : get_insns ();
}
/* Delete a previously made output-reload whose result we now believe
is not needed. First we double-check.
INSN is the insn now being processed.
LAST_RELOAD_REG is the hard register number for which we want to delete
the last output reload.
J is the reload-number that originally used REG. The caller has made
certain that reload J doesn't use REG any longer for input.
NEW_RELOAD_REG is reload register that reload J is using for REG. */
static void
delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
{
rtx output_reload_insn = spill_reg_store[last_reload_reg];
rtx reg = spill_reg_stored_to[last_reload_reg];
int k;
int n_occurrences;
int n_inherited = 0;
rtx i1;
rtx substed;
/* It is possible that this reload has been only used to set another reload
we eliminated earlier and thus deleted this instruction too. */
if (INSN_DELETED_P (output_reload_insn))
return;
/* Get the raw pseudo-register referred to. */
while (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
substed = reg_equiv_memory_loc[REGNO (reg)];
/* This is unsafe if the operand occurs more often in the current
insn than it is inherited. */
for (k = n_reloads - 1; k >= 0; k--)
{
rtx reg2 = rld[k].in;
if (! reg2)
continue;
if (MEM_P (reg2) || reload_override_in[k])
reg2 = rld[k].in_reg;
#ifdef AUTO_INC_DEC
if (rld[k].out && ! rld[k].out_reg)
reg2 = XEXP (rld[k].in_reg, 0);
#endif
while (GET_CODE (reg2) == SUBREG)
reg2 = SUBREG_REG (reg2);
if (rtx_equal_p (reg2, reg))
{
if (reload_inherited[k] || reload_override_in[k] || k == j)
n_inherited++;
else
return;
}
}
n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
reg, 0);
if (substed)
n_occurrences += count_occurrences (PATTERN (insn),
eliminate_regs (substed, VOIDmode,
NULL_RTX), 0);
for (i1 = reg_equiv_alt_mem_list[REGNO (reg)]; i1; i1 = XEXP (i1, 1))
{
gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
}
if (n_occurrences > n_inherited)
return;
/* If the pseudo-reg we are reloading is no longer referenced
anywhere between the store into it and here,
and we're within the same basic block, then the value can only
pass through the reload reg and end up here.
Otherwise, give up--return. */
for (i1 = NEXT_INSN (output_reload_insn);
i1 != insn; i1 = NEXT_INSN (i1))
{
if (NOTE_INSN_BASIC_BLOCK_P (i1))
return;
if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
&& reg_mentioned_p (reg, PATTERN (i1)))
{
/* If this is USE in front of INSN, we only have to check that
there are no more references than accounted for by inheritance. */
while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
{
n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
i1 = NEXT_INSN (i1);
}
if (n_occurrences <= n_inherited && i1 == insn)
break;
return;
}
}
/* We will be deleting the insn. Remove the spill reg information. */
for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
{
spill_reg_store[last_reload_reg + k] = 0;
spill_reg_stored_to[last_reload_reg + k] = 0;
}
/* The caller has already checked that REG dies or is set in INSN.
It has also checked that we are optimizing, and thus some
inaccuracies in the debugging information are acceptable.
So we could just delete output_reload_insn. But in some cases
we can improve the debugging information without sacrificing
optimization - maybe even improving the code: See if the pseudo
reg has been completely replaced with reload regs. If so, delete
the store insn and forget we had a stack slot for the pseudo. */
if (rld[j].out != rld[j].in
&& REG_N_DEATHS (REGNO (reg)) == 1
&& REG_N_SETS (REGNO (reg)) == 1
&& REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
&& find_regno_note (insn, REG_DEAD, REGNO (reg)))
{
rtx i2;
/* We know that it was used only between here and the beginning of
the current basic block. (We also know that the last use before
INSN was the output reload we are thinking of deleting, but never
mind that.) Search that range; see if any ref remains. */
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
{
rtx set = single_set (i2);
/* Uses which just store in the pseudo don't count,
since if they are the only uses, they are dead. */
if (set != 0 && SET_DEST (set) == reg)
continue;
if (LABEL_P (i2)
|| JUMP_P (i2))
break;
if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
&& reg_mentioned_p (reg, PATTERN (i2)))
{
/* Some other ref remains; just delete the output reload we
know to be dead. */
delete_address_reloads (output_reload_insn, insn);
delete_insn (output_reload_insn);
return;
}
}
/* Delete the now-dead stores into this pseudo. Note that this
loop also takes care of deleting output_reload_insn. */
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
{
rtx set = single_set (i2);
if (set != 0 && SET_DEST (set) == reg)
{
delete_address_reloads (i2, insn);
delete_insn (i2);
}
if (LABEL_P (i2)
|| JUMP_P (i2))
break;
}
/* For the debugging info, say the pseudo lives in this reload reg. */
reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
if (ira_conflicts_p)
/* Inform IRA about the change. */
ira_mark_allocation_change (REGNO (reg));
alter_reg (REGNO (reg), -1, false);
}
else
{
delete_address_reloads (output_reload_insn, insn);
delete_insn (output_reload_insn);
}
}
/* We are going to delete DEAD_INSN. Recursively delete loads of
reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
CURRENT_INSN is being reloaded, so we have to check its reloads too. */
static void
delete_address_reloads (rtx dead_insn, rtx current_insn)
{
rtx set = single_set (dead_insn);
rtx set2, dst, prev, next;
if (set)
{
rtx dst = SET_DEST (set);
if (MEM_P (dst))
delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
}
/* If we deleted the store from a reloaded post_{in,de}c expression,
we can delete the matching adds. */
prev = PREV_INSN (dead_insn);
next = NEXT_INSN (dead_insn);
if (! prev || ! next)
return;
set = single_set (next);
set2 = single_set (prev);
if (! set || ! set2
|| GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
|| GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
return;
dst = SET_DEST (set);
if (! rtx_equal_p (dst, SET_DEST (set2))
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
|| ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
|| (INTVAL (XEXP (SET_SRC (set), 1))
!= -INTVAL (XEXP (SET_SRC (set2), 1))))
return;
delete_related_insns (prev);
delete_related_insns (next);
}
/* Subfunction of delete_address_reloads: process registers found in X. */
static void
delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
{
rtx prev, set, dst, i2;
int i, j;
enum rtx_code code = GET_CODE (x);
if (code != REG)
{
const char *fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
current_insn);
}
}
return;
}
if (spill_reg_order[REGNO (x)] < 0)
return;
/* Scan backwards for the insn that sets x. This might be a way back due
to inheritance. */
for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
{
code = GET_CODE (prev);
if (code == CODE_LABEL || code == JUMP_INSN)
return;
if (!INSN_P (prev))
continue;
if (reg_set_p (x, PATTERN (prev)))
break;
if (reg_referenced_p (x, PATTERN (prev)))
return;
}
if (! prev || INSN_UID (prev) < reload_first_uid)
return;
/* Check that PREV only sets the reload register. */
set = single_set (prev);
if (! set)
return;
dst = SET_DEST (set);
if (!REG_P (dst)
|| ! rtx_equal_p (dst, x))
return;
if (! reg_set_p (dst, PATTERN (dead_insn)))
{
/* Check if DST was used in a later insn -
it might have been inherited. */
for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
{
if (LABEL_P (i2))
break;
if (! INSN_P (i2))
continue;
if (reg_referenced_p (dst, PATTERN (i2)))
{
/* If there is a reference to the register in the current insn,
it might be loaded in a non-inherited reload. If no other
reload uses it, that means the register is set before
referenced. */
if (i2 == current_insn)
{
for (j = n_reloads - 1; j >= 0; j--)
if ((rld[j].reg_rtx == dst && reload_inherited[j])
|| reload_override_in[j] == dst)
return;
for (j = n_reloads - 1; j >= 0; j--)
if (rld[j].in && rld[j].reg_rtx == dst)
break;
if (j >= 0)
break;
}
return;
}
if (JUMP_P (i2))
break;
/* If DST is still live at CURRENT_INSN, check if it is used for
any reload. Note that even if CURRENT_INSN sets DST, we still
have to check the reloads. */
if (i2 == current_insn)
{
for (j = n_reloads - 1; j >= 0; j--)
if ((rld[j].reg_rtx == dst && reload_inherited[j])
|| reload_override_in[j] == dst)
return;
/* ??? We can't finish the loop here, because dst might be
allocated to a pseudo in this block if no reload in this
block needs any of the classes containing DST - see
spill_hard_reg. There is no easy way to tell this, so we
have to scan till the end of the basic block. */
}
if (reg_set_p (dst, PATTERN (i2)))
break;
}
}
delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
reg_reloaded_contents[REGNO (dst)] = -1;
delete_insn (prev);
}
/* Output reload-insns to reload VALUE into RELOADREG.
VALUE is an autoincrement or autodecrement RTX whose operand
is a register or memory location;
so reloading involves incrementing that location.
IN is either identical to VALUE, or some cheaper place to reload from.
INC_AMOUNT is the number to increment or decrement by (always positive).
This cannot be deduced from VALUE.
Return the instruction that stores into RELOADREG. */
static rtx
inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
{
/* REG or MEM to be copied and incremented. */
rtx incloc = find_replacement (&XEXP (value, 0));
/* Nonzero if increment after copying. */
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
|| GET_CODE (value) == POST_MODIFY);
rtx last;
rtx inc;
rtx add_insn;
int code;
rtx store;
rtx real_in = in == value ? incloc : in;
/* No hard register is equivalent to this register after
inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
we could inc/dec that register as well (maybe even using it for
the source), but I'm not sure it's worth worrying about. */
if (REG_P (incloc))
reg_last_reload_reg[REGNO (incloc)] = 0;
if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
{
gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
inc = find_replacement (&XEXP (XEXP (value, 1), 1));
}
else
{
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
inc_amount = -inc_amount;
inc = GEN_INT (inc_amount);
}
/* If this is post-increment, first copy the location to the reload reg. */
if (post && real_in != reloadreg)
emit_insn (gen_move_insn (reloadreg, real_in));
if (in == value)
{
/* See if we can directly increment INCLOC. Use a method similar to
that in gen_reload. */
last = get_last_insn ();
add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
gen_rtx_PLUS (GET_MODE (incloc),
incloc, inc)));
code = recog_memoized (add_insn);
if (code >= 0)
{
extract_insn (add_insn);
if (constrain_operands (1))
{
/* If this is a pre-increment and we have incremented the value
where it lives, copy the incremented value to RELOADREG to
be used as an address. */
if (! post)
emit_insn (gen_move_insn (reloadreg, incloc));
return add_insn;
}
}
delete_insns_since (last);
}
/* If couldn't do the increment directly, must increment in RELOADREG.
The way we do this depends on whether this is pre- or post-increment.
For pre-increment, copy INCLOC to the reload register, increment it
there, then save back. */
if (! post)
{
if (in != reloadreg)
emit_insn (gen_move_insn (reloadreg, real_in));
emit_insn (gen_add2_insn (reloadreg, inc));
store = emit_insn (gen_move_insn (incloc, reloadreg));
}
else
{
/* Postincrement.
Because this might be a jump insn or a compare, and because RELOADREG
may not be available after the insn in an input reload, we must do
the incrementation before the insn being reloaded for.
We have already copied IN to RELOADREG. Increment the copy in
RELOADREG, save that back, then decrement RELOADREG so it has
the original value. */
emit_insn (gen_add2_insn (reloadreg, inc));
store = emit_insn (gen_move_insn (incloc, reloadreg));
if (GET_CODE (inc) == CONST_INT)
emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
else
emit_insn (gen_sub2_insn (reloadreg, inc));
}
return store;
}
#ifdef AUTO_INC_DEC
static void
add_auto_inc_notes (rtx insn, rtx x)
{
enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
if (code == MEM && auto_inc_p (XEXP (x, 0)))
{
add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
return;
}
/* Scan all the operand sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
add_auto_inc_notes (insn, XEXP (x, i));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_auto_inc_notes (insn, XVECEXP (x, i, j));
}
}
#endif
/* Copy EH notes from an insn to its reloads. */
static void
copy_eh_notes (rtx insn, rtx x)
{
rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
if (eh_note)
{
for (; x != 0; x = NEXT_INSN (x))
{
if (may_trap_p (PATTERN (x)))
add_reg_note (x, REG_EH_REGION, XEXP (eh_note, 0));
}
}
}
/* This is used by reload pass, that does emit some instructions after
abnormal calls moving basic block end, but in fact it wants to emit
them on the edge. Looks for abnormal call edges, find backward the
proper call and fix the damage.
Similar handle instructions throwing exceptions internally. */
void
fixup_abnormal_edges (void)
{
bool inserted = false;
basic_block bb;
FOR_EACH_BB (bb)
{
edge e;
edge_iterator ei;
/* Look for cases we are interested in - calls or instructions causing
exceptions. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->flags & EDGE_ABNORMAL_CALL)
break;
if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
== (EDGE_ABNORMAL | EDGE_EH))
break;
}
if (e && !CALL_P (BB_END (bb))
&& !can_throw_internal (BB_END (bb)))
{
rtx insn;
/* Get past the new insns generated. Allow notes, as the insns
may be already deleted. */
insn = BB_END (bb);
while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
&& !can_throw_internal (insn)
&& insn != BB_HEAD (bb))
insn = PREV_INSN (insn);
if (CALL_P (insn) || can_throw_internal (insn))
{
rtx stop, next;
stop = NEXT_INSN (BB_END (bb));
BB_END (bb) = insn;
insn = NEXT_INSN (insn);
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & EDGE_FALLTHRU)
break;
while (insn && insn != stop)
{
next = NEXT_INSN (insn);
if (INSN_P (insn))
{
delete_insn (insn);
/* Sometimes there's still the return value USE.
If it's placed after a trapping call (i.e. that
call is the last insn anyway), we have no fallthru
edge. Simply delete this use and don't try to insert
on the non-existent edge. */
if (GET_CODE (PATTERN (insn)) != USE)
{
/* We're not deleting it, we're moving it. */
INSN_DELETED_P (insn) = 0;
PREV_INSN (insn) = NULL_RTX;
NEXT_INSN (insn) = NULL_RTX;
insert_insn_on_edge (insn, e);
inserted = true;
}
}
else if (!BARRIER_P (insn))
set_block_for_insn (insn, NULL);
insn = next;
}
}
/* It may be that we don't find any such trapping insn. In this
case we discovered quite late that the insn that had been
marked as can_throw_internal in fact couldn't trap at all.
So we should in fact delete the EH edges out of the block. */
else
purge_dead_edges (bb);
}
}
/* We've possibly turned single trapping insn into multiple ones. */
if (flag_non_call_exceptions)
{
sbitmap blocks;
blocks = sbitmap_alloc (last_basic_block);
sbitmap_ones (blocks);
find_many_sub_basic_blocks (blocks);
sbitmap_free (blocks);
}
if (inserted)
commit_edge_insertions ();
#ifdef ENABLE_CHECKING
/* Verify that we didn't turn one trapping insn into many, and that
we found and corrected all of the problems wrt fixups on the
fallthru edge. */
verify_flow_info ();
#endif
}