/* Register Transfer Language (RTL) definitions for GNU C-Compiler Copyright (C) 1987, 91-98, 1999 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _RTL_H #define _RTL_H #include "machmode.h" #undef FFS /* Some systems predefine this symbol; don't let it interfere. */ #undef FLOAT /* Likewise. */ #undef ABS /* Likewise. */ #undef PC /* Likewise. */ #ifndef TREE_CODE union tree_node; #endif /* Register Transfer Language EXPRESSIONS CODES */ #define RTX_CODE enum rtx_code enum rtx_code { #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM , #include "rtl.def" /* rtl expressions are documented here */ #undef DEF_RTL_EXPR LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for NUM_RTX_CODE. Assumes default enum value assignment. */ #define NUM_RTX_CODE ((int)LAST_AND_UNUSED_RTX_CODE) /* The cast here, saves many elsewhere. */ extern int rtx_length[]; #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)]) extern char *rtx_name[]; #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)]) extern char *rtx_format[]; #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)]) extern char rtx_class[]; #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)]) /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label relative to which the offsets are calculated, as explained in rtl.def. */ typedef struct { /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */ unsigned min_align: 8; /* Flags: */ unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */ unsigned min_after_vec: 1; /* minimum address target label is after the ADDR_DIFF_VEC. */ unsigned max_after_vec: 1; /* maximum address target label is after the ADDR_DIFF_VEC. */ unsigned min_after_base: 1; /* minimum address target label is after BASE. */ unsigned max_after_base: 1; /* maximum address target label is after BASE. */ /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */ unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */ unsigned : 2; unsigned scale : 8; } addr_diff_vec_flags; /* Common union for an element of an rtx. */ typedef union rtunion_def { HOST_WIDE_INT rtwint; int rtint; char *rtstr; struct rtx_def *rtx; struct rtvec_def *rtvec; enum machine_mode rttype; addr_diff_vec_flags rt_addr_diff_vec_flags; struct bitmap_head_def *rtbit; union tree_node *rttree; struct basic_block_def *bb; } rtunion; /* RTL expression ("rtx"). */ typedef struct rtx_def { #ifdef ONLY_INT_FIELDS #ifdef CODE_FIELD_BUG unsigned int code : 16; #else unsigned short code; #endif #else /* The kind of expression this is. */ enum rtx_code code : 16; #endif /* The kind of value the expression has. */ #ifdef ONLY_INT_FIELDS int mode : 8; #else enum machine_mode mode : 8; #endif /* 1 in an INSN if it can alter flow of control within this function. Not yet used! */ unsigned int jump : 1; /* 1 in an INSN if it can call another function. Not yet used! */ unsigned int call : 1; /* 1 in a MEM or REG if value of this expression will never change during the current function, even though it is not manifestly constant. 1 in a SUBREG if it is from a promoted variable that is unsigned. 1 in a SYMBOL_REF if it addresses something in the per-function constants pool. 1 in a CALL_INSN if it is a const call. 1 in a JUMP_INSN if it is a branch that should be annulled. Valid from reorg until end of compilation; cleared before used. */ unsigned int unchanging : 1; /* 1 in a MEM expression if contents of memory are volatile. 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL or BARRIER if it is deleted. 1 in a REG expression if corresponds to a variable declared by the user. 0 for an internally generated temporary. In a SYMBOL_REF, this flag is used for machine-specific purposes. In a LABEL_REF or in a REG_LABEL note, this is LABEL_REF_NONLOCAL_P. */ unsigned int volatil : 1; /* 1 in a MEM referring to a field of an aggregate. 0 if the MEM was a variable or the result of a * operator in C; 1 if it was the result of a . or -> operator (on a struct) in C. 1 in a REG if the register is used only in exit code a loop. 1 in a SUBREG expression if was generated from a variable with a promoted mode. 1 in a CODE_LABEL if the label is used for nonlocal gotos and must not be deleted even if its count is zero. 1 in a LABEL_REF if this is a reference to a label outside the current loop. 1 in an INSN, JUMP_INSN, or CALL_INSN if this insn must be scheduled together with the preceding insn. Valid only within sched. 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and from the target of a branch. Valid from reorg until end of compilation; cleared before used. */ unsigned int in_struct : 1; /* 1 if this rtx is used. This is used for copying shared structure. See `unshare_all_rtl'. In a REG, this is not needed for that purpose, and used instead in `leaf_renumber_regs_insn'. In a SYMBOL_REF, means that emit_library_call has used it as the function. */ unsigned int used : 1; /* Nonzero if this rtx came from procedure integration. In a REG, nonzero means this reg refers to the return value of the current function. */ unsigned integrated : 1; /* 1 in an INSN or a SET if this rtx is related to the call frame, either changing how we compute the frame address or saving and restoring registers in the prologue and epilogue. 1 in a MEM if the MEM refers to a scalar, rather than a member of an aggregate. */ unsigned frame_related : 1; /* The first element of the operands of this rtx. The number of operands and their types are controlled by the `code' field, according to rtl.def. */ rtunion fld[1]; } *rtx; #define NULL_RTX (rtx) 0 /* Define macros to access the `code' field of the rtx. */ #ifdef SHORT_ENUM_BUG #define GET_CODE(RTX) ((enum rtx_code) ((RTX)->code)) #define PUT_CODE(RTX, CODE) ((RTX)->code = ((short) (CODE))) #else #define GET_CODE(RTX) ((RTX)->code) #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE)) #endif #define GET_MODE(RTX) ((RTX)->mode) #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE)) #define RTX_INTEGRATED_P(RTX) ((RTX)->integrated) #define RTX_UNCHANGING_P(RTX) ((RTX)->unchanging) #define RTX_FRAME_RELATED_P(RTX) ((RTX)->frame_related) /* RTL vector. These appear inside RTX's when there is a need for a variable number of things. The principle use is inside PARALLEL expressions. */ typedef struct rtvec_def{ int num_elem; /* number of elements */ rtunion elem[1]; } *rtvec; #define NULL_RTVEC (rtvec) 0 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem) #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM)) #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[(I)].rtx) /* 1 if X is a REG. */ #define REG_P(X) (GET_CODE (X) == REG) /* 1 if X is a constant value that is an integer. */ #define CONSTANT_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE \ || GET_CODE (X) == CONST || GET_CODE (X) == HIGH \ || GET_CODE (X) == CONSTANT_P_RTX) /* General accessor macros for accessing the fields of an rtx. */ #define XEXP(RTX, N) ((RTX)->fld[N].rtx) #define XINT(RTX, N) ((RTX)->fld[N].rtint) #define XWINT(RTX, N) ((RTX)->fld[N].rtwint) #define XSTR(RTX, N) ((RTX)->fld[N].rtstr) #define XVEC(RTX, N) ((RTX)->fld[N].rtvec) #define XVECLEN(RTX, N) ((RTX)->fld[N].rtvec->num_elem) #define XVECEXP(RTX,N,M)((RTX)->fld[N].rtvec->elem[M].rtx) #define XBITMAP(RTX, N) ((RTX)->fld[N].rtbit) #define XTREE(RTX, N) ((RTX)->fld[N].rttree) /* ACCESS MACROS for particular fields of insns. */ /* Holds a unique number for each insn. These are not necessarily sequentially increasing. */ #define INSN_UID(INSN) ((INSN)->fld[0].rtint) /* Chain insns together in sequence. */ #define PREV_INSN(INSN) ((INSN)->fld[1].rtx) #define NEXT_INSN(INSN) ((INSN)->fld[2].rtx) /* The body of an insn. */ #define PATTERN(INSN) ((INSN)->fld[3].rtx) /* Code number of instruction, from when it was recognized. -1 means this instruction has not been recognized yet. */ #define INSN_CODE(INSN) ((INSN)->fld[4].rtint) /* Set up in flow.c; empty before then. Holds a chain of INSN_LIST rtx's whose first operands point at previous insns with direct data-flow connections to this one. That means that those insns set variables whose next use is in this insn. They are always in the same basic block as this insn. */ #define LOG_LINKS(INSN) ((INSN)->fld[5].rtx) /* 1 if insn has been deleted. */ #define INSN_DELETED_P(INSN) ((INSN)->volatil) /* 1 if insn is a call to a const function. */ #define CONST_CALL_P(INSN) ((INSN)->unchanging) /* 1 if insn is a branch that should not unconditionally execute its delay slots, i.e., it is an annulled branch. */ #define INSN_ANNULLED_BRANCH_P(INSN) ((INSN)->unchanging) /* 1 if insn is in a delay slot and is from the target of the branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be executed if the branch is taken. For annulled branches with this bit clear, the insn should be executed only if the branch is not taken. */ #define INSN_FROM_TARGET_P(INSN) ((INSN)->in_struct) /* Holds a list of notes on what this insn does to various REGs. It is a chain of EXPR_LIST rtx's, where the second operand is the chain pointer and the first operand is the REG being described. The mode field of the EXPR_LIST contains not a real machine mode but a value that says what this note says about the REG: REG_DEAD means that the value in REG dies in this insn (i.e., it is not needed past this insn). If REG is set in this insn, the REG_DEAD note may, but need not, be omitted. REG_INC means that the REG is autoincremented or autodecremented. REG_EQUIV describes the insn as a whole; it says that the insn sets a register to a constant value or to be equivalent to a memory address. If the register is spilled to the stack then the constant value should be substituted for it. The contents of the REG_EQUIV is the constant value or memory address, which may be different from the source of the SET although it has the same value. A REG_EQUIV note may also appear on an insn which copies a register parameter to a pseudo-register, if there is a memory address which could be used to hold that pseudo-register throughout the function. REG_EQUAL is like REG_EQUIV except that the destination is only momentarily equal to the specified rtx. Therefore, it cannot be used for substitution; but it can be used for cse. REG_RETVAL means that this insn copies the return-value of a library call out of the hard reg for return values. This note is actually an INSN_LIST and it points to the first insn involved in setting up arguments for the call. flow.c uses this to delete the entire library call when its result is dead. REG_LIBCALL is the inverse of REG_RETVAL: it goes on the first insn of the library call and points at the one that has the REG_RETVAL. REG_WAS_0 says that the register set in this insn held 0 before the insn. The contents of the note is the insn that stored the 0. If that insn is deleted or patched to a NOTE, the REG_WAS_0 is inoperative. The REG_WAS_0 note is actually an INSN_LIST, not an EXPR_LIST. REG_NONNEG means that the register is always nonnegative during the containing loop. This is used in branches so that decrement and branch instructions terminating on zero can be matched. There must be an insn pattern in the md file named `decrement_and_branch_until_zero' or else this will never be added to any instructions. REG_NO_CONFLICT means there is no conflict *after this insn* between the register in the note and the destination of this insn. REG_UNUSED identifies a register set in this insn and never used. REG_CC_SETTER and REG_CC_USER link a pair of insns that set and use CC0, respectively. Normally, these are required to be consecutive insns, but we permit putting a cc0-setting insn in the delay slot of a branch as long as only one copy of the insn exists. In that case, these notes point from one to the other to allow code generation to determine what any require information and to properly update CC_STATUS. REG_LABEL points to a CODE_LABEL. Used by non-JUMP_INSNs to say that the CODE_LABEL contained in the REG_LABEL note is used by the insn. REG_DEP_ANTI is used in LOG_LINKS which represent anti (write after read) dependencies. REG_DEP_OUTPUT is used in LOG_LINKS which represent output (write after write) dependencies. Data dependencies, which are the only type of LOG_LINK created by flow, are represented by a 0 reg note kind. */ /* REG_BR_PROB is attached to JUMP_INSNs and CALL_INSNs when the flag -fbranch-probabilities is given. It has an integer value. For jumps, it is the probability that this is a taken branch. For calls, it is the probability that this call won't return. REG_EXEC_COUNT is attached to the first insn of each basic block, and the first insn after each CALL_INSN. It indicates how many times this block was executed. REG_SAVE_AREA is used to optimize rtl generated by dynamic stack allocations for targets where SETJMP_VIA_SAVE_AREA is true. REG_BR_PRED is attached to JUMP_INSNs only, it holds the branch prediction flags computed by get_jump_flags() after dbr scheduling is complete. REG_FRAME_RELATED_EXPR is attached to insns that are RTX_FRAME_RELATED_P, but are too complex for DWARF to interpret what they imply. The attached rtx is used instead of intuition. */ /* REG_EH_REGION is used to indicate what exception region an INSN belongs in. This can be used to indicate what region a call may throw to. a REGION of 0 indicates that a call cannot throw at all. REG_EH_RETHROW is used to indicate what that a call is actually a call to rethrow, and specifies which region the rethrow is targetting. This provides a way to generate the non standard flow edges required for a rethrow. */ #define REG_NOTES(INSN) ((INSN)->fld[6].rtx) #define ADDR_DIFF_VEC_FLAGS(RTX) ((RTX)->fld[4].rt_addr_diff_vec_flags) /* Don't forget to change reg_note_name in rtl.c. */ enum reg_note { REG_DEAD = 1, REG_INC = 2, REG_EQUIV = 3, REG_WAS_0 = 4, REG_EQUAL = 5, REG_RETVAL = 6, REG_LIBCALL = 7, REG_NONNEG = 8, REG_NO_CONFLICT = 9, REG_UNUSED = 10, REG_CC_SETTER = 11, REG_CC_USER = 12, REG_LABEL = 13, REG_DEP_ANTI = 14, REG_DEP_OUTPUT = 15, REG_BR_PROB = 16, REG_EXEC_COUNT = 17, REG_NOALIAS = 18, REG_SAVE_AREA = 19, REG_BR_PRED = 20, REG_EH_CONTEXT = 21, REG_FRAME_RELATED_EXPR = 22, REG_EH_REGION = 23, REG_EH_RETHROW = 24 }; /* The base value for branch probability notes. */ #define REG_BR_PROB_BASE 10000 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */ #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK)) #define PUT_REG_NOTE_KIND(LINK,KIND) PUT_MODE(LINK, (enum machine_mode) (KIND)) /* Names for REG_NOTE's in EXPR_LIST insn's. */ extern char *reg_note_name[]; #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)]) /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of USE and CLOBBER expressions. USE expressions list the registers filled with arguments that are passed to the function. CLOBBER expressions document the registers explicitly clobbered by this CALL_INSN. Pseudo registers can not be mentioned in this list. */ #define CALL_INSN_FUNCTION_USAGE(INSN) ((INSN)->fld[7].rtx) /* The label-number of a code-label. The assembler label is made from `L' and the label-number printed in decimal. Label numbers are unique in a compilation. */ #define CODE_LABEL_NUMBER(INSN) ((INSN)->fld[3].rtint) #define LINE_NUMBER NOTE /* In a NOTE that is a line number, this is a string for the file name that the line is in. We use the same field to record block numbers temporarily in NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts between ints and pointers if we use a different macro for the block number.) The NOTE_INSN_RANGE_{START,END} and NOTE_INSN_LIVE notes record their information as a rtx in the field. */ #define NOTE_SOURCE_FILE(INSN) ((INSN)->fld[3].rtstr) #define NOTE_BLOCK_NUMBER(INSN) ((INSN)->fld[3].rtint) #define NOTE_RANGE_INFO(INSN) ((INSN)->fld[3].rtx) #define NOTE_LIVE_INFO(INSN) ((INSN)->fld[3].rtx) #define NOTE_BASIC_BLOCK(INSN) ((INSN)->fld[3].bb) /* If the NOTE_BLOCK_NUMBER field gets a -1, it means create a new block node for a live range block. */ #define NOTE_BLOCK_LIVE_RANGE_BLOCK -1 /* In a NOTE that is a line number, this is the line number. Other kinds of NOTEs are identified by negative numbers here. */ #define NOTE_LINE_NUMBER(INSN) ((INSN)->fld[4].rtint) /* Codes that appear in the NOTE_LINE_NUMBER field for kinds of notes that are not line numbers. Notice that we do not try to use zero here for any of the special note codes because sometimes the source line actually can be zero! This happens (for example) when we are generating code for the per-translation-unit constructor and destructor routines for some C++ translation unit. If you should change any of the following values, or if you should add a new value here, don't forget to change the note_insn_name array in rtl.c. */ /* This note is used to get rid of an insn when it isn't safe to patch the insn out of the chain. */ #define NOTE_INSN_DELETED -1 #define NOTE_INSN_BLOCK_BEG -2 #define NOTE_INSN_BLOCK_END -3 #define NOTE_INSN_LOOP_BEG -4 #define NOTE_INSN_LOOP_END -5 /* This kind of note is generated at the end of the function body, just before the return insn or return label. In an optimizing compilation it is deleted by the first jump optimization, after enabling that optimizer to determine whether control can fall off the end of the function body without a return statement. */ #define NOTE_INSN_FUNCTION_END -6 /* This kind of note is generated just after each call to `setjmp', et al. */ #define NOTE_INSN_SETJMP -7 /* Generated at the place in a loop that `continue' jumps to. */ #define NOTE_INSN_LOOP_CONT -8 /* Generated at the start of a duplicated exit test. */ #define NOTE_INSN_LOOP_VTOP -9 /* This marks the point immediately after the last prologue insn. */ #define NOTE_INSN_PROLOGUE_END -10 /* This marks the point immediately prior to the first epilogue insn. */ #define NOTE_INSN_EPILOGUE_BEG -11 /* Generated in place of user-declared labels when they are deleted. */ #define NOTE_INSN_DELETED_LABEL -12 /* This note indicates the start of the real body of the function, i.e. the point just after all of the parms have been moved into their homes, etc. */ #define NOTE_INSN_FUNCTION_BEG -13 /* These note where exception handling regions begin and end. */ #define NOTE_INSN_EH_REGION_BEG -14 #define NOTE_INSN_EH_REGION_END -15 /* Generated whenever a duplicate line number note is output. For example, one is output after the end of an inline function, in order to prevent the line containing the inline call from being counted twice in gcov. */ #define NOTE_REPEATED_LINE_NUMBER -16 /* Start/end of a live range region, where pseudos allocated on the stack can be allocated to temporary registers. */ #define NOTE_INSN_RANGE_START -17 #define NOTE_INSN_RANGE_END -18 /* Record which registers are currently live. */ #define NOTE_INSN_LIVE -19 /* Record the struct for the following basic block. */ #define NOTE_INSN_BASIC_BLOCK -20 #if 0 /* These are not used, and I don't know what they were for. --rms. */ #define NOTE_DECL_NAME(INSN) ((INSN)->fld[3].rtstr) #define NOTE_DECL_CODE(INSN) ((INSN)->fld[4].rtint) #define NOTE_DECL_RTL(INSN) ((INSN)->fld[5].rtx) #define NOTE_DECL_IDENTIFIER(INSN) ((INSN)->fld[6].rtint) #define NOTE_DECL_TYPE(INSN) ((INSN)->fld[7].rtint) #endif /* 0 */ /* Names for NOTE insn's other than line numbers. */ extern char *note_insn_name[]; #define GET_NOTE_INSN_NAME(NOTE_CODE) (note_insn_name[-(NOTE_CODE)]) /* The name of a label, in case it corresponds to an explicit label in the input source code. */ #define LABEL_NAME(LABEL) ((LABEL)->fld[4].rtstr) /* In jump.c, each label contains a count of the number of LABEL_REFs that point at it, so unused labels can be deleted. */ #define LABEL_NUSES(LABEL) ((LABEL)->fld[5].rtint) /* The original regno this ADDRESSOF was built for. */ #define ADDRESSOF_REGNO(RTX) ((RTX)->fld[1].rtint) /* The variable in the register we took the address of. */ #define ADDRESSOF_DECL(X) ((tree) XEXP ((X), 2)) #define SET_ADDRESSOF_DECL(X, T) (XEXP ((X), 2) = (rtx) (T)) /* In jump.c, each JUMP_INSN can point to a label that it can jump to, so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can be decremented and possibly the label can be deleted. */ #define JUMP_LABEL(INSN) ((INSN)->fld[7].rtx) /* Once basic blocks are found in flow.c, each CODE_LABEL starts a chain that goes through all the LABEL_REFs that jump to that label. The chain eventually winds up at the CODE_LABEL; it is circular. */ #define LABEL_REFS(LABEL) ((LABEL)->fld[6].rtx) /* This is the field in the LABEL_REF through which the circular chain of references to a particular label is linked. This chain is set up in flow.c. */ #define LABEL_NEXTREF(REF) ((REF)->fld[1].rtx) /* Once basic blocks are found in flow.c, Each LABEL_REF points to its containing instruction with this field. */ #define CONTAINING_INSN(RTX) ((RTX)->fld[2].rtx) /* For a REG rtx, REGNO extracts the register number. */ #define REGNO(RTX) ((RTX)->fld[0].rtint) /* For a REG rtx, REG_FUNCTION_VALUE_P is nonzero if the reg is the current function's return value. */ #define REG_FUNCTION_VALUE_P(RTX) ((RTX)->integrated) /* 1 in a REG rtx if it corresponds to a variable declared by the user. */ #define REG_USERVAR_P(RTX) ((RTX)->volatil) /* For a CONST_INT rtx, INTVAL extracts the integer. */ #define INTVAL(RTX) ((RTX)->fld[0].rtwint) /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of. SUBREG_WORD extracts the word-number. */ #define SUBREG_REG(RTX) ((RTX)->fld[0].rtx) #define SUBREG_WORD(RTX) ((RTX)->fld[1].rtint) /* 1 if the REG contained in SUBREG_REG is already known to be sign- or zero-extended from the mode of the SUBREG to the mode of the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the extension. When used as a LHS, is means that this extension must be done when assigning to SUBREG_REG. */ #define SUBREG_PROMOTED_VAR_P(RTX) ((RTX)->in_struct) #define SUBREG_PROMOTED_UNSIGNED_P(RTX) ((RTX)->unchanging) /* Access various components of an ASM_OPERANDS rtx. */ #define ASM_OPERANDS_TEMPLATE(RTX) XSTR ((RTX), 0) #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XSTR ((RTX), 1) #define ASM_OPERANDS_OUTPUT_IDX(RTX) XINT ((RTX), 2) #define ASM_OPERANDS_INPUT_VEC(RTX) XVEC ((RTX), 3) #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XVEC ((RTX), 4) #define ASM_OPERANDS_INPUT(RTX, N) XVECEXP ((RTX), 3, (N)) #define ASM_OPERANDS_INPUT_LENGTH(RTX) XVECLEN ((RTX), 3) #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) XSTR (XVECEXP ((RTX), 4, (N)), 0) #define ASM_OPERANDS_INPUT_MODE(RTX, N) GET_MODE (XVECEXP ((RTX), 4, (N))) #define ASM_OPERANDS_SOURCE_FILE(RTX) XSTR ((RTX), 5) #define ASM_OPERANDS_SOURCE_LINE(RTX) XINT ((RTX), 6) /* For a MEM rtx, 1 if it's a volatile reference. Also in an ASM_OPERANDS rtx. */ #define MEM_VOLATILE_P(RTX) ((RTX)->volatil) /* For a MEM rtx, 1 if it refers to a field of an aggregate. If zero, RTX may or may not refer to a field of an aggregate. */ #define MEM_IN_STRUCT_P(RTX) ((RTX)->in_struct) /* For a MEM rtx, 1 if it refers to a scalar. If zero, RTX may or may not refer to a scalar.*/ #define MEM_SCALAR_P(RTX) ((RTX)->frame_related) /* Copy the MEM_VOLATILE_P, MEM_IN_STRUCT_P, and MEM_SCALAR_P attributes from RHS to LHS. */ #define MEM_COPY_ATTRIBUTES(LHS, RHS) \ (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \ MEM_IN_STRUCT_P (LHS) = MEM_IN_STRUCT_P (RHS), \ MEM_SCALAR_P (LHS) = MEM_SCALAR_P (RHS)) /* If VAL is non-zero, set MEM_IN_STRUCT_P and clear MEM_SCALAR_P in RTX. Otherwise, vice versa. Use this macro only when you are *sure* that you know that the MEM is in a structure, or is a scalar. VAL is evaluated only once. */ #define MEM_SET_IN_STRUCT_P(RTX, VAL) \ ((VAL) ? (MEM_IN_STRUCT_P (RTX) = 1, MEM_SCALAR_P (RTX) = 0) \ : (MEM_IN_STRUCT_P (RTX) = 0, MEM_SCALAR_P (RTX) = 1)) /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias set, and may alias anything. Otherwise, the MEM can only alias MEMs in the same alias set. This value is set in a language-dependent manner in the front-end, and should not be altered in the back-end. These set numbers are tested for zero, and compared for equality; they have no other significance. In some front-ends, these numbers may correspond in some way to types, or other language-level entities, but they need not, and the back-end makes no such assumptions. */ #define MEM_ALIAS_SET(RTX) (XINT (RTX, 1)) /* For a LABEL_REF, 1 means that this reference is to a label outside the loop containing the reference. */ #define LABEL_OUTSIDE_LOOP_P(RTX) ((RTX)->in_struct) /* For a LABEL_REF, 1 means it is for a nonlocal label. */ /* Likewise in an EXPR_LIST for a REG_LABEL note. */ #define LABEL_REF_NONLOCAL_P(RTX) ((RTX)->volatil) /* For a CODE_LABEL, 1 means always consider this label to be needed. */ #define LABEL_PRESERVE_P(RTX) ((RTX)->in_struct) /* For a REG, 1 means the register is used only in an exit test of a loop. */ #define REG_LOOP_TEST_P(RTX) ((RTX)->in_struct) /* During sched, for an insn, 1 means that the insn must be scheduled together with the preceding insn. */ #define SCHED_GROUP_P(INSN) ((INSN)->in_struct) /* During sched, for the LOG_LINKS of an insn, these cache the adjusted cost of the dependence link. The cost of executing an instruction may vary based on how the results are used. LINK_COST_ZERO is 1 when the cost through the link varies and is unchanged (i.e., the link has zero additional cost). LINK_COST_FREE is 1 when the cost through the link is zero (i.e., the link makes the cost free). In other cases, the adjustment to the cost is recomputed each time it is needed. */ #define LINK_COST_ZERO(X) ((X)->jump) #define LINK_COST_FREE(X) ((X)->call) /* For a SET rtx, SET_DEST is the place that is set and SET_SRC is the value it is set to. */ #define SET_DEST(RTX) ((RTX)->fld[0].rtx) #define SET_SRC(RTX) ((RTX)->fld[1].rtx) /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */ #define TRAP_CONDITION(RTX) ((RTX)->fld[0].rtx) #define TRAP_CODE(RTX) (RTX)->fld[1].rtx /* 1 in a SYMBOL_REF if it addresses this function's constants pool. */ #define CONSTANT_POOL_ADDRESS_P(RTX) ((RTX)->unchanging) /* Flag in a SYMBOL_REF for machine-specific purposes. */ #define SYMBOL_REF_FLAG(RTX) ((RTX)->volatil) /* 1 in a SYMBOL_REF if it represents a symbol which might have to change if its inlined or unrolled. */ #define SYMBOL_REF_NEED_ADJUST(RTX) ((RTX)->in_struct) /* 1 means a SYMBOL_REF has been the library function in emit_library_call. */ #define SYMBOL_REF_USED(RTX) ((RTX)->used) /* For an INLINE_HEADER rtx, FIRST_FUNCTION_INSN is the first insn of the function that is not involved in copying parameters to pseudo-registers. FIRST_PARM_INSN is the very first insn of the function, including the parameter copying. We keep this around in case we must splice this function into the assembly code at the end of the file. FIRST_LABELNO is the first label number used by the function (inclusive). LAST_LABELNO is the last label used by the function (exclusive). MAX_REGNUM is the largest pseudo-register used by that function. FUNCTION_ARGS_SIZE is the size of the argument block in the stack. POPS_ARGS is the number of bytes of input arguments popped by the function STACK_SLOT_LIST is the list of stack slots. FORCED_LABELS is the list of labels whose address was taken. FUNCTION_FLAGS are where single-bit flags are saved. OUTGOING_ARGS_SIZE is the size of the largest outgoing stack parameter list. ORIGINAL_ARG_VECTOR is a vector of the original DECL_RTX values for the function arguments. ORIGINAL_DECL_INITIAL is a pointer to the original DECL_INITIAL for the function. INLINE_REGNO_REG_RTX, INLINE_REGNO_POINTER_FLAG, and INLINE_REGNO_POINTER_ALIGN are pointers to the corresponding arrays. We want this to lay down like an INSN. The PREV_INSN field is always NULL. The NEXT_INSN field always points to the first function insn of the function being squirreled away. */ #define FIRST_FUNCTION_INSN(RTX) ((RTX)->fld[2].rtx) #define FIRST_PARM_INSN(RTX) ((RTX)->fld[3].rtx) #define FIRST_LABELNO(RTX) ((RTX)->fld[4].rtint) #define LAST_LABELNO(RTX) ((RTX)->fld[5].rtint) #define MAX_PARMREG(RTX) ((RTX)->fld[6].rtint) #define MAX_REGNUM(RTX) ((RTX)->fld[7].rtint) #define FUNCTION_ARGS_SIZE(RTX) ((RTX)->fld[8].rtint) #define POPS_ARGS(RTX) ((RTX)->fld[9].rtint) #define STACK_SLOT_LIST(RTX) ((RTX)->fld[10].rtx) #define FORCED_LABELS(RTX) ((RTX)->fld[11].rtx) #define FUNCTION_FLAGS(RTX) ((RTX)->fld[12].rtint) #define OUTGOING_ARGS_SIZE(RTX) ((RTX)->fld[13].rtint) #define ORIGINAL_ARG_VECTOR(RTX) ((RTX)->fld[14].rtvec) #define ORIGINAL_DECL_INITIAL(RTX) ((RTX)->fld[15].rtx) #define INLINE_REGNO_REG_RTX(RTX) ((RTX)->fld[16].rtvec) #define INLINE_REGNO_POINTER_FLAG(RTX) ((RTX)->fld[17].rtstr) #define INLINE_REGNO_POINTER_ALIGN(RTX) ((RTX)->fld[18].rtstr) #define PARMREG_STACK_LOC(RTX) ((RTX)->fld[19].rtvec) /* In FUNCTION_FLAGS we save some variables computed when emitting the code for the function and which must be `or'ed into the current flag values when insns from that function are being inlined. */ /* These ought to be an enum, but non-ANSI compilers don't like that. */ #define FUNCTION_FLAGS_CALLS_ALLOCA 01 #define FUNCTION_FLAGS_CALLS_SETJMP 02 #define FUNCTION_FLAGS_RETURNS_STRUCT 04 #define FUNCTION_FLAGS_RETURNS_PCC_STRUCT 010 #define FUNCTION_FLAGS_NEEDS_CONTEXT 020 #define FUNCTION_FLAGS_HAS_NONLOCAL_LABEL 040 #define FUNCTION_FLAGS_RETURNS_POINTER 0100 #define FUNCTION_FLAGS_USES_CONST_POOL 0200 #define FUNCTION_FLAGS_CALLS_LONGJMP 0400 #define FUNCTION_FLAGS_USES_PIC_OFFSET_TABLE 01000 #define FUNCTION_FLAGS_HAS_COMPUTED_JUMP 02000 /* Define a macro to look for REG_INC notes, but save time on machines where they never exist. */ /* Don't continue this line--convex cc version 4.1 would lose. */ #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT)) #define FIND_REG_INC_NOTE(insn, reg) (find_reg_note ((insn), REG_INC, (reg))) #else #define FIND_REG_INC_NOTE(insn, reg) 0 #endif /* Indicate whether the machine has any sort of auto increment addressing. If not, we can avoid checking for REG_INC notes. */ /* Don't continue this line--convex cc version 4.1 would lose. */ #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT)) #define AUTO_INC_DEC #endif #ifndef HAVE_PRE_INCREMENT #define HAVE_PRE_INCREMENT 0 #endif #ifndef HAVE_PRE_DECREMENT #define HAVE_PRE_DECREMENT 0 #endif #ifndef HAVE_POST_INCREMENT #define HAVE_POST_INCREMENT 0 #endif #ifndef HAVE_POST_DECREMENT #define HAVE_POST_DECREMENT 0 #endif /* Some architectures do not have complete pre/post increment/decrement instruction sets, or only move some modes efficiently. These macros allow us to tune autoincrement generation. */ #ifndef USE_LOAD_POST_INCREMENT #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT #endif #ifndef USE_LOAD_POST_DECREMENT #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT #endif #ifndef USE_LOAD_PRE_INCREMENT #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT #endif #ifndef USE_LOAD_PRE_DECREMENT #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT #endif #ifndef USE_STORE_POST_INCREMENT #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT #endif #ifndef USE_STORE_POST_DECREMENT #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT #endif #ifndef USE_STORE_PRE_INCREMENT #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT #endif #ifndef USE_STORE_PRE_DECREMENT #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT #endif /* Accessors for RANGE_INFO. */ /* For RANGE_{START,END} notes return the RANGE_START note. */ #define RANGE_INFO_NOTE_START(INSN) (XEXP (INSN, 0)) /* For RANGE_{START,END} notes return the RANGE_START note. */ #define RANGE_INFO_NOTE_END(INSN) (XEXP (INSN, 1)) /* For RANGE_{START,END} notes, return the vector containing the registers used in the range. */ #define RANGE_INFO_REGS(INSN) (XVEC (INSN, 2)) #define RANGE_INFO_REGS_REG(INSN, N) (XVECEXP (INSN, 2, N)) #define RANGE_INFO_NUM_REGS(INSN) (XVECLEN (INSN, 2)) /* For RANGE_{START,END} notes, the number of calls within the range. */ #define RANGE_INFO_NCALLS(INSN) (XINT (INSN, 3)) /* For RANGE_{START,END} notes, the number of insns within the range. */ #define RANGE_INFO_NINSNS(INSN) (XINT (INSN, 4)) /* For RANGE_{START,END} notes, a unique # to identify this range. */ #define RANGE_INFO_UNIQUE(INSN) (XINT (INSN, 5)) /* For RANGE_{START,END} notes, the basic block # the range starts with. */ #define RANGE_INFO_BB_START(INSN) (XINT (INSN, 6)) /* For RANGE_{START,END} notes, the basic block # the range ends with. */ #define RANGE_INFO_BB_END(INSN) (XINT (INSN, 7)) /* For RANGE_{START,END} notes, the loop depth the range is in. */ #define RANGE_INFO_LOOP_DEPTH(INSN) (XINT (INSN, 8)) /* For RANGE_{START,END} notes, the bitmap of live registers at the start of the range. */ #define RANGE_INFO_LIVE_START(INSN) (XBITMAP (INSN, 9)) /* For RANGE_{START,END} notes, the bitmap of live registers at the end of the range. */ #define RANGE_INFO_LIVE_END(INSN) (XBITMAP (INSN, 10)) /* For RANGE_START notes, the marker # of the start of the range. */ #define RANGE_INFO_MARKER_START(INSN) (XINT (INSN, 11)) /* For RANGE_START notes, the marker # of the end of the range. */ #define RANGE_INFO_MARKER_END(INSN) (XINT (INSN, 12)) /* Original pseudo register # for a live range note. */ #define RANGE_REG_PSEUDO(INSN,N) (XINT (XVECEXP (INSN, 2, N), 0)) /* Pseudo register # original register is copied into or -1. */ #define RANGE_REG_COPY(INSN,N) (XINT (XVECEXP (INSN, 2, N), 1)) /* How many times a register in a live range note was referenced. */ #define RANGE_REG_REFS(INSN,N) (XINT (XVECEXP (INSN, 2, N), 2)) /* How many times a register in a live range note was set. */ #define RANGE_REG_SETS(INSN,N) (XINT (XVECEXP (INSN, 2, N), 3)) /* How many times a register in a live range note died. */ #define RANGE_REG_DEATHS(INSN,N) (XINT (XVECEXP (INSN, 2, N), 4)) /* Whether the original value is needed to be copied into the range register at the start of the range. */ #define RANGE_REG_COPY_FLAGS(INSN,N) (XINT (XVECEXP (INSN, 2, N), 5)) /* # of insns the register copy is live over. */ #define RANGE_REG_LIVE_LENGTH(INSN,N) (XINT (XVECEXP (INSN, 2, N), 6)) /* # of calls the register copy is live over. */ #define RANGE_REG_N_CALLS(INSN,N) (XINT (XVECEXP (INSN, 2, N), 7)) /* DECL_NODE pointer of the declaration if the register is a user defined variable. */ #define RANGE_REG_SYMBOL_NODE(INSN,N) (XTREE (XVECEXP (INSN, 2, N), 8)) /* BLOCK_NODE pointer to the block the variable is declared in if the register is a user defined variable. */ #define RANGE_REG_BLOCK_NODE(INSN,N) (XTREE (XVECEXP (INSN, 2, N), 9)) /* EXPR_LIST of the distinct ranges a variable is in. */ #define RANGE_VAR_LIST(INSN) (XEXP (INSN, 0)) /* Block a variable is declared in. */ #define RANGE_VAR_BLOCK(INSN) (XTREE (INSN, 1)) /* # of distinct ranges a variable is in. */ #define RANGE_VAR_NUM(INSN) (XINT (INSN, 2)) /* For a NOTE_INSN_LIVE note, the registers which are currently live. */ #define RANGE_LIVE_BITMAP(INSN) (XBITMAP (INSN, 0)) /* For a NOTE_INSN_LIVE note, the original basic block number. */ #define RANGE_LIVE_ORIG_BLOCK(INSN) (XINT (INSN, 1)) /* Generally useful functions. */ /* The following functions accept a wide integer argument. Rather than having to cast on every function call, we use a macro instead, that is defined here and in tree.h. */ #ifndef exact_log2 #define exact_log2(N) exact_log2_wide ((unsigned HOST_WIDE_INT) (N)) #define floor_log2(N) floor_log2_wide ((unsigned HOST_WIDE_INT) (N)) #endif extern int exact_log2_wide PROTO((unsigned HOST_WIDE_INT)); extern int floor_log2_wide PROTO((unsigned HOST_WIDE_INT)); /* In expmed.c */ extern int ceil_log2 PROTO((unsigned HOST_WIDE_INT)); #define plus_constant(X,C) plus_constant_wide (X, (HOST_WIDE_INT) (C)) #define plus_constant_for_output(X,C) \ plus_constant_for_output_wide (X, (HOST_WIDE_INT) (C)) /* In explow.c */ extern rtx plus_constant_wide PROTO((rtx, HOST_WIDE_INT)); extern rtx plus_constant_for_output_wide PROTO((rtx, HOST_WIDE_INT)); extern void optimize_save_area_alloca PROTO((rtx)); extern rtx gen_rtx PVPROTO((enum rtx_code, enum machine_mode, ...)); extern rtvec gen_rtvec PVPROTO((int, ...)); #ifdef BUFSIZ extern rtx read_rtx PROTO((FILE *)); #endif extern char *oballoc PROTO((int)); extern char *permalloc PROTO((int)); extern rtx rtx_alloc PROTO((RTX_CODE)); extern rtvec rtvec_alloc PROTO((int)); extern rtx copy_rtx PROTO((rtx)); extern rtx copy_rtx_if_shared PROTO((rtx)); extern rtx copy_most_rtx PROTO((rtx, rtx)); extern rtx shallow_copy_rtx PROTO((rtx)); extern rtvec gen_rtvec_v PROTO((int, rtx *)); extern rtvec gen_rtvec_vv PROTO((int, rtunion *)); extern rtx gen_reg_rtx PROTO((enum machine_mode)); extern rtx gen_label_rtx PROTO((void)); extern rtx gen_inline_header_rtx PROTO((rtx, rtx, int, int, int, int, int, int, rtx, rtx, int, int, rtvec, rtx, rtvec, char *, char *, rtvec)); extern rtx gen_lowpart_common PROTO((enum machine_mode, rtx)); extern rtx gen_lowpart PROTO((enum machine_mode, rtx)); extern rtx gen_lowpart_if_possible PROTO((enum machine_mode, rtx)); extern rtx gen_highpart PROTO((enum machine_mode, rtx)); extern rtx gen_realpart PROTO((enum machine_mode, rtx)); extern rtx gen_imagpart PROTO((enum machine_mode, rtx)); extern rtx operand_subword PROTO((rtx, int, int, enum machine_mode)); extern rtx operand_subword_force PROTO((rtx, int, enum machine_mode)); extern int subreg_lowpart_p PROTO((rtx)); extern rtx make_safe_from PROTO((rtx, rtx)); extern rtx convert_memory_address PROTO((enum machine_mode, rtx)); extern rtx memory_address PROTO((enum machine_mode, rtx)); extern rtx get_insns PROTO((void)); extern rtx get_last_insn PROTO((void)); extern rtx get_last_insn_anywhere PROTO((void)); extern void start_sequence PROTO((void)); extern void push_to_sequence PROTO((rtx)); extern void end_sequence PROTO((void)); extern rtx gen_sequence PROTO((void)); extern rtx immed_double_const PROTO((HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode)); extern rtx force_const_mem PROTO((enum machine_mode, rtx)); extern rtx force_reg PROTO((enum machine_mode, rtx)); extern rtx get_pool_constant PROTO((rtx)); extern enum machine_mode get_pool_mode PROTO((rtx)); extern int get_pool_offset PROTO((rtx)); extern rtx simplify_subtraction PROTO((rtx)); extern rtx assign_stack_local PROTO((enum machine_mode, HOST_WIDE_INT, int)); extern rtx assign_stack_temp PROTO((enum machine_mode, HOST_WIDE_INT, int)); extern rtx assign_temp PROTO((union tree_node *, int, int, int)); extern rtx protect_from_queue PROTO((rtx, int)); extern void emit_queue PROTO((void)); extern rtx emit_move_insn PROTO((rtx, rtx)); extern rtx emit_insn_before PROTO((rtx, rtx)); extern rtx emit_jump_insn_before PROTO((rtx, rtx)); extern rtx emit_call_insn_before PROTO((rtx, rtx)); extern rtx emit_barrier_before PROTO((rtx)); extern rtx emit_label_before PROTO((rtx, rtx)); extern rtx emit_note_before PROTO((int, rtx)); extern rtx emit_insn_after PROTO((rtx, rtx)); extern rtx emit_jump_insn_after PROTO((rtx, rtx)); extern rtx emit_barrier_after PROTO((rtx)); extern rtx emit_label_after PROTO((rtx, rtx)); extern rtx emit_note_after PROTO((int, rtx)); extern rtx emit_line_note_after PROTO((char *, int, rtx)); extern rtx emit_insn PROTO((rtx)); extern rtx emit_insns PROTO((rtx)); extern rtx emit_insns_before PROTO((rtx, rtx)); extern rtx emit_insns_after PROTO((rtx, rtx)); extern rtx emit_jump_insn PROTO((rtx)); extern rtx emit_call_insn PROTO((rtx)); extern rtx emit_label PROTO((rtx)); extern rtx emit_barrier PROTO((void)); extern rtx emit_line_note PROTO((char *, int)); extern rtx emit_note PROTO((char *, int)); extern rtx emit_line_note_force PROTO((char *, int)); extern rtx make_insn_raw PROTO((rtx)); extern rtx previous_insn PROTO((rtx)); extern rtx next_insn PROTO((rtx)); extern rtx prev_nonnote_insn PROTO((rtx)); extern rtx next_nonnote_insn PROTO((rtx)); extern rtx prev_real_insn PROTO((rtx)); extern rtx next_real_insn PROTO((rtx)); extern rtx prev_active_insn PROTO((rtx)); extern rtx next_active_insn PROTO((rtx)); extern rtx prev_label PROTO((rtx)); extern rtx next_label PROTO((rtx)); extern rtx next_cc0_user PROTO((rtx)); extern rtx prev_cc0_setter PROTO((rtx)); extern rtx next_nondeleted_insn PROTO((rtx)); extern enum rtx_code reverse_condition PROTO((enum rtx_code)); extern enum rtx_code swap_condition PROTO((enum rtx_code)); extern enum rtx_code unsigned_condition PROTO((enum rtx_code)); extern enum rtx_code signed_condition PROTO((enum rtx_code)); extern rtx find_equiv_reg PROTO((rtx, rtx, enum reg_class, int, short *, int, enum machine_mode)); extern rtx squeeze_notes PROTO((rtx, rtx)); extern rtx delete_insn PROTO((rtx)); extern void delete_jump PROTO((rtx)); extern rtx get_label_before PROTO((rtx)); extern rtx get_label_after PROTO((rtx)); extern rtx follow_jumps PROTO((rtx)); extern rtx adj_offsettable_operand PROTO((rtx, int)); extern rtx try_split PROTO((rtx, rtx, int)); extern rtx split_insns PROTO((rtx, rtx)); extern rtx simplify_unary_operation PROTO((enum rtx_code, enum machine_mode, rtx, enum machine_mode)); extern rtx simplify_binary_operation PROTO((enum rtx_code, enum machine_mode, rtx, rtx)); extern rtx simplify_ternary_operation PROTO((enum rtx_code, enum machine_mode, enum machine_mode, rtx, rtx, rtx)); extern rtx simplify_relational_operation PROTO((enum rtx_code, enum machine_mode, rtx, rtx)); extern rtx gen_move_insn PROTO((rtx, rtx)); extern rtx gen_jump PROTO((rtx)); extern rtx gen_beq PROTO((rtx)); extern rtx gen_bge PROTO((rtx)); extern rtx gen_ble PROTO((rtx)); extern rtx gen_mem_addressof PROTO((rtx, union tree_node *)); extern rtx eliminate_constant_term PROTO((rtx, rtx *)); extern rtx expand_complex_abs PROTO((enum machine_mode, rtx, rtx, int)); extern enum machine_mode choose_hard_reg_mode PROTO((int, int)); extern void set_unique_reg_note PROTO((rtx, enum reg_note, rtx)); /* Functions in rtlanal.c */ extern int rtx_unstable_p PROTO((rtx)); extern int rtx_varies_p PROTO((rtx)); extern int rtx_addr_varies_p PROTO((rtx)); extern HOST_WIDE_INT get_integer_term PROTO((rtx)); extern rtx get_related_value PROTO((rtx)); extern int reg_mentioned_p PROTO((rtx, rtx)); extern int reg_referenced_p PROTO((rtx, rtx)); extern int reg_used_between_p PROTO((rtx, rtx, rtx)); extern int reg_referenced_between_p PROTO((rtx, rtx, rtx)); extern int reg_set_between_p PROTO((rtx, rtx, rtx)); extern int regs_set_between_p PROTO((rtx, rtx, rtx)); extern int modified_between_p PROTO((rtx, rtx, rtx)); extern int no_labels_between_p PROTO((rtx, rtx)); extern int no_jumps_between_p PROTO((rtx, rtx)); extern int modified_in_p PROTO((rtx, rtx)); extern int reg_set_p PROTO((rtx, rtx)); extern rtx single_set PROTO((rtx)); extern int multiple_sets PROTO((rtx)); extern rtx find_last_value PROTO((rtx, rtx *, rtx, int)); extern int refers_to_regno_p PROTO((int, int, rtx, rtx *)); extern int reg_overlap_mentioned_p PROTO((rtx, rtx)); extern void note_stores PROTO((rtx, void (*)(rtx, rtx))); extern rtx reg_set_last PROTO((rtx, rtx)); extern int rtx_equal_p PROTO((rtx, rtx)); extern int dead_or_set_p PROTO((rtx, rtx)); extern int dead_or_set_regno_p PROTO((rtx, int)); extern rtx find_reg_note PROTO((rtx, enum reg_note, rtx)); extern rtx find_regno_note PROTO((rtx, enum reg_note, int)); extern int find_reg_fusage PROTO((rtx, enum rtx_code, rtx)); extern int find_regno_fusage PROTO((rtx, enum rtx_code, int)); extern void remove_note PROTO((rtx, rtx)); extern int side_effects_p PROTO((rtx)); extern int volatile_refs_p PROTO((rtx)); extern int volatile_insn_p PROTO((rtx)); extern int may_trap_p PROTO((rtx)); extern int inequality_comparisons_p PROTO ((rtx)); extern rtx replace_rtx PROTO((rtx, rtx, rtx)); extern rtx replace_regs PROTO((rtx, rtx *, int, int)); extern int computed_jump_p PROTO((rtx)); typedef int (*rtx_function) PROTO((rtx *, void *)); extern int for_each_rtx PROTO((rtx *, rtx_function, void *)); extern rtx regno_use_in PROTO((int, rtx)); extern int auto_inc_p PROTO((rtx)); /* flow.c */ extern rtx find_use_as_address PROTO((rtx, rtx, HOST_WIDE_INT)); /* regclass.c */ /* Maximum number of parallel sets and clobbers in any insn in this fn. Always at least 3, since the combiner could put that many togetherm and we want this to remain correct for all the remaining passes. */ extern int max_parallel; /* Free up register info memory. */ extern void free_reg_info PROTO((void)); /* recog.c */ extern int asm_noperands PROTO((rtx)); extern char *decode_asm_operands PROTO((rtx, rtx *, rtx **, const char **, enum machine_mode *)); extern enum reg_class reg_preferred_class PROTO((int)); extern enum reg_class reg_alternate_class PROTO((int)); extern rtx get_first_nonparm_insn PROTO((void)); extern void split_block_insns PROTO((int, int)); extern void update_flow_info PROTO((rtx, rtx, rtx, rtx)); /* Standard pieces of rtx, to be substituted directly into things. */ #define pc_rtx (&global_rtl.pc_val) #define cc0_rtx (&global_rtl.cc0_val) #define MAX_SAVED_CONST_INT 64 extern struct rtx_def const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; #define const0_rtx (&const_int_rtx[MAX_SAVED_CONST_INT]) #define const1_rtx (&const_int_rtx[MAX_SAVED_CONST_INT+1]) #define const2_rtx (&const_int_rtx[MAX_SAVED_CONST_INT+2]) #define constm1_rtx (&const_int_rtx[MAX_SAVED_CONST_INT-1]) extern rtx const_true_rtx; extern rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE]; /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the same as VOIDmode. */ #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)]) /* Likewise, for the constants 1 and 2. */ #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)]) #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)]) extern struct _global_rtl { struct rtx_def pc_val, cc0_val; struct rtx_def stack_pointer_val, frame_pointer_val; struct rtx_def hard_frame_pointer_val; struct rtx_def arg_pointer_val; struct rtx_def virtual_incoming_args_val; struct rtx_def virtual_stack_vars_val; struct rtx_def virtual_stack_dynamic_val; struct rtx_def virtual_outgoing_args_val; struct rtx_def virtual_cfa_val; } global_rtl; /* All references to certain hard regs, except those created by allocating pseudo regs into them (when that's possible), go through these unique rtx objects. */ #define stack_pointer_rtx (&global_rtl.stack_pointer_val) #define frame_pointer_rtx (&global_rtl.frame_pointer_val) extern rtx pic_offset_table_rtx; extern rtx struct_value_rtx; extern rtx struct_value_incoming_rtx; extern rtx static_chain_rtx; extern rtx static_chain_incoming_rtx; extern rtx return_address_pointer_rtx; /* Include the RTL generation functions. */ #ifndef NO_GENRTL_H #include "genrtl.h" #endif /* There are some RTL codes that require special attention; the generation functions included above do the raw handling. If you add to this list, modify special_rtx in gengenrtl.c as well. You should also modify gen_rtx to use the special function. */ extern rtx gen_rtx_CONST_DOUBLE PROTO((enum machine_mode, rtx, HOST_WIDE_INT, HOST_WIDE_INT)); extern rtx gen_rtx_CONST_INT PROTO((enum machine_mode, HOST_WIDE_INT)); extern rtx gen_rtx_REG PROTO((enum machine_mode, int)); extern rtx gen_rtx_MEM PROTO((enum machine_mode, rtx)); /* We need the cast here to ensure that we get the same result both with and without prototypes. */ #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (HOST_WIDE_INT) (N)) /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg is used to represent the frame pointer. This is because the hard frame pointer and the automatic variables are separated by an amount that cannot be determined until after register allocation. We can assume that in this case ELIMINABLE_REGS will be defined, one action of which will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */ #ifndef HARD_FRAME_POINTER_REGNUM #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM #endif /* For register elimination to work properly these hard_frame_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to the same register. */ #if HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM #define hard_frame_pointer_rtx (&global_rtl.frame_pointer_val) #else #define hard_frame_pointer_rtx (&global_rtl.hard_frame_pointer_val) #endif #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM #define arg_pointer_rtx (&global_rtl.frame_pointer_val) #else #if HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM #define arg_pointer_rtx (&global_rtl.hard_frame_pointer_val) #else #define arg_pointer_rtx (&global_rtl.arg_pointer_val) #endif #endif /* Virtual registers are used during RTL generation to refer to locations into the stack frame when the actual location isn't known until RTL generation is complete. The routine instantiate_virtual_regs replaces these with the proper value, which is normally {frame,arg,stack}_pointer_rtx plus a constant. */ #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER) /* This points to the first word of the incoming arguments passed on the stack, either by the caller or by the callee when pretending it was passed by the caller. */ #define virtual_incoming_args_rtx (&global_rtl.virtual_incoming_args_val) #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER) /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack. */ #define virtual_stack_vars_rtx (&global_rtl.virtual_stack_vars_val) #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1) /* This points to the location of dynamically-allocated memory on the stack immediately after the stack pointer has been adjusted by the amount desired. */ #define virtual_stack_dynamic_rtx (&global_rtl.virtual_stack_dynamic_val) #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2) /* This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns always use sp). */ #define virtual_outgoing_args_rtx (&global_rtl.virtual_outgoing_args_val) #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3) /* This points to the Canonical Frame Address of the function. This should corrospond to the CFA produced by INCOMING_FRAME_SP_OFFSET, but is calculated relative to the arg pointer for simplicity; the frame pointer nor stack pointer are necessarily fixed relative to the CFA until after reload. */ #define virtual_cfa_rtx (&global_rtl.virtual_cfa_val) #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4) #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4) extern rtx find_next_ref PROTO((rtx, rtx)); extern rtx *find_single_use PROTO((rtx, rtx, rtx *)); extern rtx output_constant_def PROTO((union tree_node *)); extern rtx immed_real_const PROTO((union tree_node *)); extern union tree_node *make_tree PROTO((union tree_node *, rtx)); /* Define a default value for STORE_FLAG_VALUE. */ #ifndef STORE_FLAG_VALUE #define STORE_FLAG_VALUE 1 #endif /* Nonzero after the second flow pass has completed. Set to 1 or 0 by toplev.c */ extern int flow2_completed; /* Nonzero after end of reload pass. Set to 1 or 0 by reload1.c. */ extern int reload_completed; /* Set to 1 while reload_as_needed is operating. Required by some machines to handle any generated moves differently. */ extern int reload_in_progress; /* If this is nonzero, we do not bother generating VOLATILE around volatile memory references, and we are willing to output indirect addresses. If cse is to follow, we reject indirect addresses so a useful potential cse is generated; if it is used only once, instruction combination will produce the same indirect address eventually. */ extern int cse_not_expected; /* Set to nonzero before life analysis to indicate that it is unsafe to generate any new pseudo registers. */ extern int no_new_pseudos; /* Indexed by pseudo register number, gives the rtx for that pseudo. Allocated in parallel with regno_pointer_flag. */ extern rtx *regno_reg_rtx; /* Vector indexed by regno; contain the alignment in bytes and type pointed to for a register that contains a pointer, if known. */ extern char *regno_pointer_align; #define REGNO_POINTER_ALIGN(REGNO) regno_pointer_align[REGNO] /* Translates rtx code to tree code, for those codes needed by REAL_ARITHMETIC. The function returns an int because the caller may not know what `enum tree_code' means. */ extern int rtx_to_tree_code PROTO((enum rtx_code)); /* In tree.c */ extern void obfree PROTO ((char *)); struct obstack; extern void gcc_obstack_init PROTO ((struct obstack *)); extern void pop_obstacks PROTO ((void)); extern void push_obstacks PROTO ((struct obstack *, struct obstack *)); #ifdef BUFSIZ extern int read_skip_spaces PROTO ((FILE *)); #endif /* In cse.c */ struct cse_basic_block_data; extern int rtx_cost PROTO ((rtx, enum rtx_code)); extern void delete_trivially_dead_insns PROTO ((rtx, int)); #ifdef BUFSIZ extern int cse_main PROTO ((rtx, int, int, FILE *)); #endif extern void cse_end_of_basic_block PROTO ((rtx, struct cse_basic_block_data *, int, int, int)); /* In jump.c */ extern int comparison_dominates_p PROTO ((enum rtx_code, enum rtx_code)); extern int condjump_p PROTO ((rtx)); extern rtx condjump_label PROTO ((rtx)); extern int simplejump_p PROTO ((rtx)); extern int returnjump_p PROTO ((rtx)); extern int sets_cc0_p PROTO ((rtx)); extern int invert_jump PROTO ((rtx, rtx)); extern int rtx_renumbered_equal_p PROTO ((rtx, rtx)); extern int true_regnum PROTO ((rtx)); extern int redirect_jump PROTO ((rtx, rtx)); extern void jump_optimize PROTO ((rtx, int, int, int)); extern void rebuild_jump_labels PROTO ((rtx)); extern void thread_jumps PROTO ((rtx, int, int)); extern int redirect_exp PROTO ((rtx *, rtx, rtx, rtx)); extern int rtx_equal_for_thread_p PROTO ((rtx, rtx, rtx)); extern int invert_exp PROTO ((rtx, rtx)); extern int can_reverse_comparison_p PROTO ((rtx, rtx)); extern void delete_for_peephole PROTO ((rtx, rtx)); extern int condjump_in_parallel_p PROTO ((rtx)); /* Flags for jump_optimize() */ #define JUMP_CROSS_JUMP 1 #define JUMP_NOOP_MOVES 1 #define JUMP_AFTER_REGSCAN 1 /* In emit-rtl.c. */ extern int max_reg_num PROTO ((void)); extern int max_label_num PROTO ((void)); extern int get_first_label_num PROTO ((void)); extern void delete_insns_since PROTO ((rtx)); extern void mark_reg_pointer PROTO ((rtx, int)); extern void mark_user_reg PROTO ((rtx)); extern void reset_used_flags PROTO ((rtx)); extern void reorder_insns PROTO ((rtx, rtx, rtx)); extern int get_max_uid PROTO ((void)); extern int in_sequence_p PROTO ((void)); extern void force_next_line_note PROTO ((void)); extern void init_emit PROTO ((void)); extern void init_emit_once PROTO ((int)); extern void push_topmost_sequence PROTO ((void)); extern void pop_topmost_sequence PROTO ((void)); extern int subreg_realpart_p PROTO ((rtx)); extern void reverse_comparison PROTO ((rtx)); extern void set_new_first_and_last_insn PROTO ((rtx, rtx)); extern void set_new_first_and_last_label_num PROTO ((int, int)); extern void unshare_all_rtl PROTO ((rtx)); extern void set_last_insn PROTO ((rtx)); extern void link_cc0_insns PROTO ((rtx)); extern void add_insn PROTO ((rtx)); extern void add_insn_before PROTO ((rtx, rtx)); extern void add_insn_after PROTO ((rtx, rtx)); extern void remove_insn PROTO ((rtx)); extern void reorder_insns_with_line_notes PROTO ((rtx, rtx, rtx)); extern void emit_insn_after_with_line_notes PROTO ((rtx, rtx, rtx)); extern enum rtx_code classify_insn PROTO ((rtx)); extern void init_virtual_regs PROTO ((void)); extern rtx emit PROTO ((rtx)); /* Query and clear/ restore no_line_numbers. This is used by the switch / case handling in stmt.c to give proper line numbers in warnings about unreachable code. */ int force_line_numbers PROTO((void)); void restore_line_number_status PROTO((int old_value)); /* In insn-emit.c */ extern void add_clobbers PROTO ((rtx, int)); /* In combine.c */ extern void combine_instructions PROTO ((rtx, int)); extern int extended_count PROTO ((rtx, enum machine_mode, int)); extern rtx remove_death PROTO ((int, rtx)); #ifdef BUFSIZ extern void dump_combine_stats PROTO ((FILE *)); extern void dump_combine_total_stats PROTO ((FILE *)); #endif /* In sched.c. */ #ifdef BUFSIZ extern void schedule_insns PROTO ((FILE *)); #endif #ifdef HAIFA extern void fix_sched_param PROTO ((char *, char *)); #endif /* In print-rtl.c */ extern void debug_rtx PROTO ((rtx)); extern void debug_rtx_list PROTO ((rtx, int)); extern rtx debug_rtx_find PROTO ((rtx, int)); #ifdef BUFSIZ extern void print_rtl PROTO ((FILE *, rtx)); extern int print_rtl_single PROTO ((FILE *, rtx)); extern void print_inline_rtx PROTO ((FILE *, rtx, int)); #endif /* In loop.c */ extern void init_loop PROTO ((void)); extern rtx libcall_other_reg PROTO ((rtx, rtx)); #ifdef BUFSIZ extern void loop_optimize PROTO ((rtx, FILE *, int, int)); #endif extern void record_excess_regs PROTO ((rtx, rtx, rtx *)); /* In function.c */ extern void reposition_prologue_and_epilogue_notes PROTO ((rtx)); extern void thread_prologue_and_epilogue_insns PROTO ((rtx)); extern void use_variable PROTO ((rtx)); extern HOST_WIDE_INT get_frame_size PROTO ((void)); extern void preserve_rtl_expr_result PROTO ((rtx)); extern void mark_temp_addr_taken PROTO ((rtx)); extern void update_temp_slot_address PROTO ((rtx, rtx)); extern void use_variable_after PROTO ((rtx, rtx)); extern void purge_addressof PROTO ((rtx)); /* In reload.c */ extern int operands_match_p PROTO ((rtx, rtx)); extern int safe_from_earlyclobber PROTO ((rtx, rtx)); /* In stmt.c */ extern void expand_null_return PROTO((void)); extern void emit_jump PROTO ((rtx)); extern int preserve_subexpressions_p PROTO ((void)); /* List (chain of EXPR_LIST) of labels heading the current handlers for nonlocal gotos. */ extern rtx nonlocal_goto_handler_labels; /* In expr.c */ extern void init_expr_once PROTO ((void)); extern void move_by_pieces PROTO ((rtx, rtx, int, int)); /* In stupid.c */ #ifdef BUFSIZ extern void stupid_life_analysis PROTO ((rtx, int, FILE *)); #endif /* In flow.c */ extern void allocate_bb_life_data PROTO ((void)); extern void allocate_reg_life_data PROTO ((void)); extern void recompute_reg_usage PROTO ((rtx, int)); #ifdef BUFSIZ extern void dump_flow_info PROTO ((FILE *)); #endif extern void free_bb_mem PROTO ((void)); /* In expmed.c */ extern void init_expmed PROTO ((void)); extern void expand_inc PROTO ((rtx, rtx)); extern void expand_dec PROTO ((rtx, rtx)); extern rtx expand_mult_highpart PROTO ((enum machine_mode, rtx, unsigned HOST_WIDE_INT, rtx, int, int)); /* In gcse.c */ #ifdef BUFSIZ extern int gcse_main PROTO ((rtx, FILE *)); #endif /* In global.c */ extern void mark_elimination PROTO ((int, int)); #ifdef BUFSIZ extern int global_alloc PROTO ((FILE *)); extern void dump_global_regs PROTO ((FILE *)); #endif #ifdef HARD_CONST extern void retry_global_alloc PROTO ((int, HARD_REG_SET)); #endif /* In regclass.c */ extern int reg_classes_intersect_p PROTO ((enum reg_class, enum reg_class)); extern int reg_class_subset_p PROTO ((enum reg_class, enum reg_class)); extern void globalize_reg PROTO ((int)); extern void init_regs PROTO ((void)); extern void init_reg_sets PROTO ((void)); extern void regset_release_memory PROTO ((void)); extern void regclass_init PROTO ((void)); extern void regclass PROTO ((rtx, int)); extern void reg_scan PROTO ((rtx, int, int)); extern void reg_scan_update PROTO ((rtx, rtx, int)); extern void fix_register PROTO ((char *, int, int)); /* In regmove.c */ #ifdef BUFSIZ extern void regmove_optimize PROTO ((rtx, int, FILE *)); #endif /* In reorg.c */ #ifdef BUFSIZ extern void dbr_schedule PROTO ((rtx, FILE *)); #endif /* In optabs.c */ extern void init_optabs PROTO ((void)); /* In local-alloc.c */ #ifdef BUFSIZ extern void dump_local_alloc PROTO ((FILE *)); #endif extern int local_alloc PROTO ((void)); extern int function_invariant_p PROTO ((rtx)); /* In reload1.c */ extern void reload_cse_regs PROTO ((rtx)); extern void init_reload PROTO ((void)); extern void mark_home_live PROTO ((int)); #ifdef BUFSIZ extern int reload PROTO ((rtx, int, FILE *)); #endif /* In caller-save.c */ extern void init_caller_save PROTO ((void)); /* In profile.c */ extern void init_branch_prob PROTO ((const char *)); #ifdef BUFSIZ extern void branch_prob PROTO ((rtx, FILE *)); extern void end_branch_prob PROTO ((FILE *)); #endif extern void output_func_start_profiler PROTO ((void)); /* In reg-stack.c */ #ifdef BUFSIZ extern void reg_to_stack PROTO ((rtx, FILE *)); #endif extern int stack_regs_mentioned_p PROTO ((rtx)); /* In fold-const.c */ extern int add_double PROTO ((HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT *, HOST_WIDE_INT *)); extern int neg_double PROTO ((HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT *, HOST_WIDE_INT *)); extern int mul_double PROTO ((HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT *, HOST_WIDE_INT *)); extern void lshift_double PROTO ((HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, int, HOST_WIDE_INT *, HOST_WIDE_INT *, int)); extern void rshift_double PROTO ((HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, int, HOST_WIDE_INT *, HOST_WIDE_INT *, int)); extern void lrotate_double PROTO ((HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, int, HOST_WIDE_INT *, HOST_WIDE_INT *)); extern void rrotate_double PROTO ((HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, int, HOST_WIDE_INT *, HOST_WIDE_INT *)); /* In calls.c */ /* Emit library call. */ extern void emit_library_call PVPROTO ((rtx, int, enum machine_mode, int, ...)); extern rtx emit_library_call_value PVPROTO((rtx, rtx, int, enum machine_mode, int, ...)); /* In unroll.c */ extern int set_dominates_use PROTO ((int, int, int, rtx, rtx)); /* In varasm.c */ extern void bss_section PROTO ((void)); extern int in_data_section PROTO ((void)); extern int supports_one_only PROTO ((void)); /* In rtl.c */ extern void init_rtl PROTO ((void)); extern void rtx_free PROTO ((rtx)); /* In alias.c */ extern int true_dependence PROTO ((rtx, enum machine_mode, rtx, int (*)(rtx))); extern int read_dependence PROTO ((rtx, rtx)); extern int anti_dependence PROTO ((rtx, rtx)); extern int output_dependence PROTO ((rtx, rtx)); extern void init_alias_once PROTO ((void)); extern void init_alias_analysis PROTO ((void)); extern void end_alias_analysis PROTO ((void)); extern void record_base_value PROTO ((int, rtx, int)); extern void record_alias_subset PROTO ((int, int)); extern rtx addr_side_effect_eval PROTO ((rtx, int, int)); #endif /* _RTL_H */