/* Instruction scheduling pass. This file computes dependencies between instructions. Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by, and currently maintained by, Jim Wilson (wilson@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "toplev.h" #include "rtl.h" #include "tm_p.h" #include "hard-reg-set.h" #include "regs.h" #include "function.h" #include "flags.h" #include "insn-config.h" #include "insn-attr.h" #include "except.h" #include "toplev.h" #include "recog.h" #include "sched-int.h" #include "params.h" #include "cselib.h" #include "df.h" #ifdef ENABLE_CHECKING #define CHECK (true) #else #define CHECK (false) #endif /* Return the major type present in the DS. */ enum reg_note ds_to_dk (ds_t ds) { if (ds & DEP_TRUE) return REG_DEP_TRUE; if (ds & DEP_OUTPUT) return REG_DEP_OUTPUT; gcc_assert (ds & DEP_ANTI); return REG_DEP_ANTI; } /* Return equivalent dep_status. */ ds_t dk_to_ds (enum reg_note dk) { switch (dk) { case REG_DEP_TRUE: return DEP_TRUE; case REG_DEP_OUTPUT: return DEP_OUTPUT; default: gcc_assert (dk == REG_DEP_ANTI); return DEP_ANTI; } } /* Functions to operate with dependence information container - dep_t. */ /* Init DEP with the arguments. */ static void init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note kind, ds_t ds) { DEP_PRO (dep) = pro; DEP_CON (dep) = con; DEP_KIND (dep) = kind; DEP_STATUS (dep) = ds; } /* Init DEP with the arguments. While most of the scheduler (including targets) only need the major type of the dependency, it is convenient to hide full dep_status from them. */ void init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind) { ds_t ds; if ((current_sched_info->flags & USE_DEPS_LIST) != 0) ds = dk_to_ds (kind); else ds = -1; init_dep_1 (dep, pro, con, kind, ds); } /* Make a copy of FROM in TO. */ static void copy_dep (dep_t to, dep_t from) { memcpy (to, from, sizeof (*to)); } /* Functions to operate with a single link from the dependencies lists - dep_link_t. */ /* Return true if dep_link L is consistent. */ static bool dep_link_consistent_p (dep_link_t l) { dep_link_t next = DEP_LINK_NEXT (l); return (next == NULL || &DEP_LINK_NEXT (l) == DEP_LINK_PREV_NEXTP (next)); } /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by PREV_NEXT_P. */ static void attach_dep_link (dep_link_t l, dep_link_t *prev_nextp) { dep_link_t next = *prev_nextp; gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL && DEP_LINK_NEXT (l) == NULL); /* Init node being inserted. */ DEP_LINK_PREV_NEXTP (l) = prev_nextp; DEP_LINK_NEXT (l) = next; /* Fix next node. */ if (next != NULL) { gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp); DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l); } /* Fix prev node. */ *prev_nextp = l; } /* Add dep_link LINK to deps_list L. */ static void add_to_deps_list (dep_link_t link, deps_list_t l) { attach_dep_link (link, &DEPS_LIST_FIRST (l)); } /* Detach dep_link L from the list. */ static void detach_dep_link (dep_link_t l) { dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l); dep_link_t next = DEP_LINK_NEXT (l); *prev_nextp = next; if (next != NULL) DEP_LINK_PREV_NEXTP (next) = prev_nextp; /* Though this is property is not used anywhere but in the assert in attach_dep_link (), this can prevent latent errors. */ DEP_LINK_PREV_NEXTP (l) = NULL; DEP_LINK_NEXT (l) = NULL; } /* Move LINK from whatever list it is now to L. */ void move_dep_link (dep_link_t link, deps_list_t l) { detach_dep_link (link); add_to_deps_list (link, l); } /* Check L's and its successors' consistency. This is, potentially, an expensive check, hence it should be guarded by ENABLE_CHECKING at all times. */ static bool dep_links_consistent_p (dep_link_t l) { while (l != NULL) { if (dep_link_consistent_p (l)) l = DEP_LINK_NEXT (l); else return false; } return true; } /* Dump dep_nodes starting from l. */ static void dump_dep_links (FILE *dump, dep_link_t l) { while (l != NULL) { dep_t d = DEP_LINK_DEP (l); fprintf (dump, "%d%c>%d ", INSN_UID (DEP_PRO (d)), dep_link_consistent_p (l) ? '-' : '!', INSN_UID (DEP_CON (d))); l = DEP_LINK_NEXT (l); } fprintf (dump, "\n"); } /* Dump dep_nodes starting from L to stderr. */ void debug_dep_links (dep_link_t l) { dump_dep_links (stderr, l); } /* Obstack to allocate dep_nodes and deps_lists on. */ static struct obstack deps_obstack; /* Obstack to hold forward dependencies lists (deps_list_t). */ static struct obstack *dl_obstack = &deps_obstack; /* Obstack to hold all dependency nodes (dep_node_t). */ static struct obstack *dn_obstack = &deps_obstack; /* Functions to operate with dependences lists - deps_list_t. */ /* Allocate deps_list. If ON_OBSTACK_P is true, allocate the list on the obstack. This is done for INSN_FORW_DEPS lists because they should live till the end of scheduling. INSN_BACK_DEPS and INSN_RESOLVED_BACK_DEPS lists are allocated on the free store and are being freed in haifa-sched.c: schedule_insn (). */ static deps_list_t alloc_deps_list (bool on_obstack_p) { if (on_obstack_p) return obstack_alloc (dl_obstack, sizeof (struct _deps_list)); else return xmalloc (sizeof (struct _deps_list)); } /* Initialize deps_list L. */ static void init_deps_list (deps_list_t l) { DEPS_LIST_FIRST (l) = NULL; } /* Create (allocate and init) deps_list. The meaning of ON_OBSTACK_P is the same as in alloc_deps_list (). */ deps_list_t create_deps_list (bool on_obstack_p) { deps_list_t l = alloc_deps_list (on_obstack_p); init_deps_list (l); return l; } /* Free dep_data_nodes that present in L. */ static void clear_deps_list (deps_list_t l) { /* All dep_nodes are allocated on the dn_obstack. They'll be freed with the obstack. */ DEPS_LIST_FIRST (l) = NULL; } /* Free deps_list L. */ void free_deps_list (deps_list_t l) { gcc_assert (deps_list_empty_p (l)); free (l); } /* Delete (clear and free) deps_list L. */ void delete_deps_list (deps_list_t l) { clear_deps_list (l); free_deps_list (l); } /* Return true if L is empty. */ bool deps_list_empty_p (deps_list_t l) { return DEPS_LIST_FIRST (l) == NULL; } /* Check L's consistency. This is, potentially, an expensive check, hence it should be guarded by ENABLE_CHECKING at all times. */ static bool deps_list_consistent_p (deps_list_t l) { dep_link_t first = DEPS_LIST_FIRST (l); return (first == NULL || (&DEPS_LIST_FIRST (l) == DEP_LINK_PREV_NEXTP (first) && dep_links_consistent_p (first))); } /* Dump L to F. */ static void dump_deps_list (FILE *f, deps_list_t l) { dump_dep_links (f, DEPS_LIST_FIRST (l)); } /* Dump L to STDERR. */ void debug_deps_list (deps_list_t l) { dump_deps_list (stderr, l); } /* Add a dependency described by DEP to the list L. L should be either INSN_BACK_DEPS or INSN_RESOLVED_BACK_DEPS. */ void add_back_dep_to_deps_list (deps_list_t l, dep_t dep_from) { dep_node_t n = (dep_node_t) obstack_alloc (dn_obstack, sizeof (*n)); dep_t dep_to = DEP_NODE_DEP (n); dep_link_t back = DEP_NODE_BACK (n); dep_link_t forw = DEP_NODE_FORW (n); copy_dep (dep_to, dep_from); DEP_LINK_NODE (back) = n; DEP_LINK_NODE (forw) = n; /* There is no particular need to initialize these four fields except to make assert in attach_dep_link () happy. */ DEP_LINK_NEXT (back) = NULL; DEP_LINK_PREV_NEXTP (back) = NULL; DEP_LINK_NEXT (forw) = NULL; DEP_LINK_PREV_NEXTP (forw) = NULL; add_to_deps_list (back, l); } /* Find the dep_link with producer PRO in deps_list L. */ dep_link_t find_link_by_pro_in_deps_list (deps_list_t l, rtx pro) { dep_link_t link; FOR_EACH_DEP_LINK (link, l) if (DEP_LINK_PRO (link) == pro) return link; return NULL; } /* Find the dep_link with consumer CON in deps_list L. */ dep_link_t find_link_by_con_in_deps_list (deps_list_t l, rtx con) { dep_link_t link; FOR_EACH_DEP_LINK (link, l) if (DEP_LINK_CON (link) == con) return link; return NULL; } /* Make a copy of FROM in TO with substituting consumer with CON. TO and FROM should be RESOLVED_BACK_DEPS lists. */ void copy_deps_list_change_con (deps_list_t to, deps_list_t from, rtx con) { dep_link_t l; gcc_assert (deps_list_empty_p (to)); FOR_EACH_DEP_LINK (l, from) { add_back_dep_to_deps_list (to, DEP_LINK_DEP (l)); DEP_LINK_CON (DEPS_LIST_FIRST (to)) = con; } } static regset reg_pending_sets; static regset reg_pending_clobbers; static regset reg_pending_uses; /* The following enumeration values tell us what dependencies we should use to implement the barrier. We use true-dependencies for TRUE_BARRIER and anti-dependencies for MOVE_BARRIER. */ enum reg_pending_barrier_mode { NOT_A_BARRIER = 0, MOVE_BARRIER, TRUE_BARRIER }; static enum reg_pending_barrier_mode reg_pending_barrier; /* To speed up the test for duplicate dependency links we keep a record of dependencies created by add_dependence when the average number of instructions in a basic block is very large. Studies have shown that there is typically around 5 instructions between branches for typical C code. So we can make a guess that the average basic block is approximately 5 instructions long; we will choose 100X the average size as a very large basic block. Each insn has associated bitmaps for its dependencies. Each bitmap has enough entries to represent a dependency on any other insn in the insn chain. All bitmap for true dependencies cache is allocated then the rest two ones are also allocated. */ static bitmap_head *true_dependency_cache; static bitmap_head *output_dependency_cache; static bitmap_head *anti_dependency_cache; static bitmap_head *spec_dependency_cache; static int cache_size; /* To speed up checking consistency of formed forward insn dependencies we use the following cache. Another possible solution could be switching off checking duplication of insns in forward dependencies. */ #ifdef ENABLE_CHECKING static bitmap_head *forward_dependency_cache; #endif static int deps_may_trap_p (rtx); static void add_dependence_list (rtx, rtx, int, enum reg_note); static void add_dependence_list_and_free (rtx, rtx *, int, enum reg_note); static void delete_all_dependences (rtx); static void fixup_sched_groups (rtx); static void flush_pending_lists (struct deps *, rtx, int, int); static void sched_analyze_1 (struct deps *, rtx, rtx); static void sched_analyze_2 (struct deps *, rtx, rtx); static void sched_analyze_insn (struct deps *, rtx, rtx); static rtx sched_get_condition (rtx); static int conditions_mutex_p (rtx, rtx); static enum DEPS_ADJUST_RESULT maybe_add_or_update_back_dep_1 (rtx, rtx, enum reg_note, ds_t, rtx, rtx, dep_link_t **); static enum DEPS_ADJUST_RESULT add_or_update_back_dep_1 (rtx, rtx, enum reg_note, ds_t, rtx, rtx, dep_link_t **); static void add_back_dep (rtx, rtx, enum reg_note, ds_t); static void adjust_add_sorted_back_dep (rtx, dep_link_t, dep_link_t *); static void adjust_back_add_forw_dep (rtx, dep_link_t *); static void delete_forw_dep (dep_link_t); static dw_t estimate_dep_weak (rtx, rtx); #ifdef INSN_SCHEDULING #ifdef ENABLE_CHECKING static void check_dep_status (enum reg_note, ds_t, bool); #endif #endif /* Return nonzero if a load of the memory reference MEM can cause a trap. */ static int deps_may_trap_p (rtx mem) { rtx addr = XEXP (mem, 0); if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER) { rtx t = get_reg_known_value (REGNO (addr)); if (t) addr = t; } return rtx_addr_can_trap_p (addr); } /* Find the condition under which INSN is executed. */ static rtx sched_get_condition (rtx insn) { rtx pat = PATTERN (insn); rtx src; if (pat == 0) return 0; if (GET_CODE (pat) == COND_EXEC) return COND_EXEC_TEST (pat); if (!any_condjump_p (insn) || !onlyjump_p (insn)) return 0; src = SET_SRC (pc_set (insn)); if (XEXP (src, 2) == pc_rtx) return XEXP (src, 0); else if (XEXP (src, 1) == pc_rtx) { rtx cond = XEXP (src, 0); enum rtx_code revcode = reversed_comparison_code (cond, insn); if (revcode == UNKNOWN) return 0; return gen_rtx_fmt_ee (revcode, GET_MODE (cond), XEXP (cond, 0), XEXP (cond, 1)); } return 0; } /* Return nonzero if conditions COND1 and COND2 can never be both true. */ static int conditions_mutex_p (rtx cond1, rtx cond2) { if (COMPARISON_P (cond1) && COMPARISON_P (cond2) && GET_CODE (cond1) == reversed_comparison_code (cond2, NULL) && XEXP (cond1, 0) == XEXP (cond2, 0) && XEXP (cond1, 1) == XEXP (cond2, 1)) return 1; return 0; } /* Return true if insn1 and insn2 can never depend on one another because the conditions under which they are executed are mutually exclusive. */ bool sched_insns_conditions_mutex_p (rtx insn1, rtx insn2) { rtx cond1, cond2; /* flow.c doesn't handle conditional lifetimes entirely correctly; calls mess up the conditional lifetimes. */ if (!CALL_P (insn1) && !CALL_P (insn2)) { cond1 = sched_get_condition (insn1); cond2 = sched_get_condition (insn2); if (cond1 && cond2 && conditions_mutex_p (cond1, cond2) /* Make sure first instruction doesn't affect condition of second instruction if switched. */ && !modified_in_p (cond1, insn2) /* Make sure second instruction doesn't affect condition of first instruction if switched. */ && !modified_in_p (cond2, insn1)) return true; } return false; } /* Add ELEM wrapped in an dep_link with reg note kind DEP_TYPE to the INSN_BACK_DEPS (INSN), if it is not already there. DEP_TYPE indicates the type of dependence that this link represents. DS, if nonzero, indicates speculations, through which this dependence can be overcome. MEM1 and MEM2, if non-null, corresponds to memory locations in case of data speculation. The function returns a value indicating if an old entry has been changed or a new entry has been added to insn's backward deps. In case of changed entry CHANGED_LINKPP sets to its address. See also the definition of enum DEPS_ADJUST_RESULT in sched-int.h. Actual manipulation of dependence data structures is performed in add_or_update_back_dep_1. */ static enum DEPS_ADJUST_RESULT maybe_add_or_update_back_dep_1 (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds, rtx mem1, rtx mem2, dep_link_t **changed_linkpp) { gcc_assert (INSN_P (insn) && INSN_P (elem)); /* Don't depend an insn on itself. */ if (insn == elem) { #ifdef INSN_SCHEDULING if (current_sched_info->flags & DO_SPECULATION) /* INSN has an internal dependence, which we can't overcome. */ HAS_INTERNAL_DEP (insn) = 1; #endif return 0; } return add_or_update_back_dep_1 (insn, elem, dep_type, ds, mem1, mem2, changed_linkpp); } /* This function has the same meaning of parameters and return values as maybe_add_or_update_back_dep_1. The only difference between these two functions is that INSN and ELEM are guaranteed not to be the same in this one. */ static enum DEPS_ADJUST_RESULT add_or_update_back_dep_1 (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds ATTRIBUTE_UNUSED, rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED, dep_link_t **changed_linkpp ATTRIBUTE_UNUSED) { bool maybe_present_p = true, present_p = false; gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem); #ifdef INSN_SCHEDULING #ifdef ENABLE_CHECKING check_dep_status (dep_type, ds, mem1 != NULL); #endif /* If we already have a dependency for ELEM, then we do not need to do anything. Avoiding the list walk below can cut compile times dramatically for some code. */ if (true_dependency_cache != NULL) { enum reg_note present_dep_type; gcc_assert (output_dependency_cache); gcc_assert (anti_dependency_cache); if (!(current_sched_info->flags & USE_DEPS_LIST)) { if (bitmap_bit_p (&true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) present_dep_type = REG_DEP_TRUE; else if (bitmap_bit_p (&output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) present_dep_type = REG_DEP_OUTPUT; else if (bitmap_bit_p (&anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) present_dep_type = REG_DEP_ANTI; else maybe_present_p = false; if (maybe_present_p) { if ((int) dep_type >= (int) present_dep_type) return DEP_PRESENT; present_p = true; } } else { ds_t present_dep_types = 0; if (bitmap_bit_p (&true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) present_dep_types |= DEP_TRUE; if (bitmap_bit_p (&output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) present_dep_types |= DEP_OUTPUT; if (bitmap_bit_p (&anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) present_dep_types |= DEP_ANTI; if (present_dep_types) { if (!(current_sched_info->flags & DO_SPECULATION) || !bitmap_bit_p (&spec_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem))) { if ((present_dep_types | (ds & DEP_TYPES)) == present_dep_types) /* We already have all these bits. */ return DEP_PRESENT; } else { /* Only true dependencies can be data speculative and only anti dependencies can be control speculative. */ gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI)) == present_dep_types); /* if (additional dep is SPECULATIVE) then we should update DEP_STATUS else we should reset existing dep to non-speculative. */ } present_p = true; } else maybe_present_p = false; } } #endif /* Check that we don't already have this dependence. */ if (maybe_present_p) { dep_link_t *linkp; for (linkp = &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)); *linkp != NULL; linkp = &DEP_LINK_NEXT (*linkp)) { dep_t link = DEP_LINK_DEP (*linkp); gcc_assert (true_dependency_cache == 0 || present_p); if (DEP_PRO (link) == elem) { enum DEPS_ADJUST_RESULT changed_p = DEP_PRESENT; #ifdef INSN_SCHEDULING if (current_sched_info->flags & USE_DEPS_LIST) { ds_t new_status = ds | DEP_STATUS (link); if (new_status & SPECULATIVE) { if (!(ds & SPECULATIVE) || !(DEP_STATUS (link) & SPECULATIVE)) /* Then this dep can't be speculative. */ { new_status &= ~SPECULATIVE; if (true_dependency_cache && (DEP_STATUS (link) & SPECULATIVE)) bitmap_clear_bit (&spec_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); } else { /* Both are speculative. Merging probabilities. */ if (mem1) { dw_t dw; dw = estimate_dep_weak (mem1, mem2); ds = set_dep_weak (ds, BEGIN_DATA, dw); } new_status = ds_merge (DEP_STATUS (link), ds); } } ds = new_status; } /* Clear corresponding cache entry because type of the link may have changed. Keep them if we use_deps_list. */ if (true_dependency_cache != NULL && !(current_sched_info->flags & USE_DEPS_LIST)) { enum reg_note kind = DEP_KIND (link); switch (kind) { case REG_DEP_OUTPUT: bitmap_clear_bit (&output_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); break; case REG_DEP_ANTI: bitmap_clear_bit (&anti_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); break; default: gcc_unreachable (); } } if ((current_sched_info->flags & USE_DEPS_LIST) && DEP_STATUS (link) != ds) { DEP_STATUS (link) = ds; changed_p = DEP_CHANGED; } #endif /* If this is a more restrictive type of dependence than the existing one, then change the existing dependence to this type. */ if ((int) dep_type < (int) DEP_KIND (link)) { DEP_KIND (link) = dep_type; changed_p = DEP_CHANGED; } #ifdef INSN_SCHEDULING /* If we are adding a dependency to INSN's LOG_LINKs, then note that in the bitmap caches of dependency information. */ if (true_dependency_cache != NULL) { if (!(current_sched_info->flags & USE_DEPS_LIST)) { if (DEP_KIND (link) == REG_DEP_TRUE) bitmap_set_bit (&true_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); else if (DEP_KIND (link) == REG_DEP_OUTPUT) bitmap_set_bit (&output_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); else if (DEP_KIND (link) == REG_DEP_ANTI) bitmap_set_bit (&anti_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); } else { if (ds & DEP_TRUE) bitmap_set_bit (&true_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); if (ds & DEP_OUTPUT) bitmap_set_bit (&output_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); if (ds & DEP_ANTI) bitmap_set_bit (&anti_dependency_cache [INSN_LUID (insn)], INSN_LUID (elem)); /* Note, that dep can become speculative only at the moment of creation. Thus, we don't need to check for it here. */ } } if (changed_linkpp && changed_p == DEP_CHANGED) *changed_linkpp = linkp; #endif return changed_p; } } /* We didn't find a dep. It shouldn't be present in the cache. */ gcc_assert (!present_p); } /* Might want to check one level of transitivity to save conses. This check should be done in maybe_add_or_update_back_dep_1. Since we made it to add_or_update_back_dep_1, we must create (or update) a link. */ if (mem1) { gcc_assert (current_sched_info->flags & DO_SPECULATION); ds = set_dep_weak (ds, BEGIN_DATA, estimate_dep_weak (mem1, mem2)); } add_back_dep (insn, elem, dep_type, ds); return DEP_CREATED; } /* This function creates a link between INSN and ELEM under any conditions. DS describes speculative status of the link. */ static void add_back_dep (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds) { struct _dep _dep, *dep = &_dep; gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem); if (current_sched_info->flags & USE_DEPS_LIST) init_dep_1 (dep, elem, insn, dep_type, ds); else init_dep_1 (dep, elem, insn, dep_type, -1); add_back_dep_to_deps_list (INSN_BACK_DEPS (insn), dep); #ifdef INSN_SCHEDULING #ifdef ENABLE_CHECKING check_dep_status (dep_type, ds, false); #endif /* If we are adding a dependency to INSN's LOG_LINKs, then note that in the bitmap caches of dependency information. */ if (true_dependency_cache != NULL) { if (!(current_sched_info->flags & USE_DEPS_LIST)) { if (dep_type == REG_DEP_TRUE) bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); else if (dep_type == REG_DEP_OUTPUT) bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); else if (dep_type == REG_DEP_ANTI) bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); } else { if (ds & DEP_TRUE) bitmap_set_bit (&true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); if (ds & DEP_OUTPUT) bitmap_set_bit (&output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); if (ds & DEP_ANTI) bitmap_set_bit (&anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); if (ds & SPECULATIVE) { gcc_assert (current_sched_info->flags & DO_SPECULATION); bitmap_set_bit (&spec_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)); } } } #endif } /* A convenience wrapper to operate on an entire list. */ static void add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type) { for (; list; list = XEXP (list, 1)) { if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0))) add_dependence (insn, XEXP (list, 0), dep_type); } } /* Similar, but free *LISTP at the same time. */ static void add_dependence_list_and_free (rtx insn, rtx *listp, int uncond, enum reg_note dep_type) { rtx list, next; for (list = *listp, *listp = NULL; list ; list = next) { next = XEXP (list, 1); if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0))) add_dependence (insn, XEXP (list, 0), dep_type); free_INSN_LIST_node (list); } } /* Clear all dependencies for an insn. */ static void delete_all_dependences (rtx insn) { /* Clear caches, if they exist, as well as free the dependence. */ #ifdef INSN_SCHEDULING if (true_dependency_cache != NULL) { bitmap_clear (&true_dependency_cache[INSN_LUID (insn)]); bitmap_clear (&output_dependency_cache[INSN_LUID (insn)]); bitmap_clear (&anti_dependency_cache[INSN_LUID (insn)]); /* We don't have to clear forward_dependency_cache here, because it is formed later. */ if (current_sched_info->flags & DO_SPECULATION) bitmap_clear (&spec_dependency_cache[INSN_LUID (insn)]); } #endif clear_deps_list (INSN_BACK_DEPS (insn)); } /* All insns in a scheduling group except the first should only have dependencies on the previous insn in the group. So we find the first instruction in the scheduling group by walking the dependence chains backwards. Then we add the dependencies for the group to the previous nonnote insn. */ static void fixup_sched_groups (rtx insn) { dep_link_t link; rtx prev_nonnote; FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (insn)) { rtx i = insn; dep_t dep = DEP_LINK_DEP (link); rtx pro = DEP_PRO (dep); do { i = prev_nonnote_insn (i); if (pro == i) goto next_link; } while (SCHED_GROUP_P (i)); if (! sched_insns_conditions_mutex_p (i, pro)) add_dependence (i, pro, DEP_KIND (dep)); next_link:; } delete_all_dependences (insn); prev_nonnote = prev_nonnote_insn (insn); if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote) && ! sched_insns_conditions_mutex_p (insn, prev_nonnote)) add_dependence (insn, prev_nonnote, REG_DEP_ANTI); } /* Process an insn's memory dependencies. There are four kinds of dependencies: (0) read dependence: read follows read (1) true dependence: read follows write (2) output dependence: write follows write (3) anti dependence: write follows read We are careful to build only dependencies which actually exist, and use transitivity to avoid building too many links. */ /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST. The MEM is a memory reference contained within INSN, which we are saving so that we can do memory aliasing on it. */ static void add_insn_mem_dependence (struct deps *deps, bool read_p, rtx insn, rtx mem) { rtx *insn_list; rtx *mem_list; rtx link; if (read_p) { insn_list = &deps->pending_read_insns; mem_list = &deps->pending_read_mems; deps->pending_read_list_length++; } else { insn_list = &deps->pending_write_insns; mem_list = &deps->pending_write_mems; deps->pending_write_list_length++; } link = alloc_INSN_LIST (insn, *insn_list); *insn_list = link; if (current_sched_info->use_cselib) { mem = shallow_copy_rtx (mem); XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0)); } link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list); *mem_list = link; } /* Make a dependency between every memory reference on the pending lists and INSN, thus flushing the pending lists. FOR_READ is true if emitting dependencies for a read operation, similarly with FOR_WRITE. */ static void flush_pending_lists (struct deps *deps, rtx insn, int for_read, int for_write) { if (for_write) { add_dependence_list_and_free (insn, &deps->pending_read_insns, 1, REG_DEP_ANTI); free_EXPR_LIST_list (&deps->pending_read_mems); deps->pending_read_list_length = 0; } add_dependence_list_and_free (insn, &deps->pending_write_insns, 1, for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT); free_EXPR_LIST_list (&deps->pending_write_mems); deps->pending_write_list_length = 0; add_dependence_list_and_free (insn, &deps->last_pending_memory_flush, 1, for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT); deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX); deps->pending_flush_length = 1; } /* Analyze a single reference to register (reg:MODE REGNO) in INSN. The type of the reference is specified by REF and can be SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */ static void sched_analyze_reg (struct deps *deps, int regno, enum machine_mode mode, enum rtx_code ref, rtx insn) { /* A hard reg in a wide mode may really be multiple registers. If so, mark all of them just like the first. */ if (regno < FIRST_PSEUDO_REGISTER) { int i = hard_regno_nregs[regno][mode]; if (ref == SET) { while (--i >= 0) SET_REGNO_REG_SET (reg_pending_sets, regno + i); } else if (ref == USE) { while (--i >= 0) SET_REGNO_REG_SET (reg_pending_uses, regno + i); } else { while (--i >= 0) SET_REGNO_REG_SET (reg_pending_clobbers, regno + i); } } /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that it does not reload. Ignore these as they have served their purpose already. */ else if (regno >= deps->max_reg) { enum rtx_code code = GET_CODE (PATTERN (insn)); gcc_assert (code == USE || code == CLOBBER); } else { if (ref == SET) SET_REGNO_REG_SET (reg_pending_sets, regno); else if (ref == USE) SET_REGNO_REG_SET (reg_pending_uses, regno); else SET_REGNO_REG_SET (reg_pending_clobbers, regno); /* Pseudos that are REG_EQUIV to something may be replaced by that during reloading. We need only add dependencies for the address in the REG_EQUIV note. */ if (!reload_completed && get_reg_known_equiv_p (regno)) { rtx t = get_reg_known_value (regno); if (MEM_P (t)) sched_analyze_2 (deps, XEXP (t, 0), insn); } /* Don't let it cross a call after scheduling if it doesn't already cross one. */ if (REG_N_CALLS_CROSSED (regno) == 0) { if (ref == USE) deps->sched_before_next_call = alloc_INSN_LIST (insn, deps->sched_before_next_call); else add_dependence_list (insn, deps->last_function_call, 1, REG_DEP_ANTI); } } } /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC rtx, X, creating all dependencies generated by the write to the destination of X, and reads of everything mentioned. */ static void sched_analyze_1 (struct deps *deps, rtx x, rtx insn) { rtx dest = XEXP (x, 0); enum rtx_code code = GET_CODE (x); if (dest == 0) return; if (GET_CODE (dest) == PARALLEL) { int i; for (i = XVECLEN (dest, 0) - 1; i >= 0; i--) if (XEXP (XVECEXP (dest, 0, i), 0) != 0) sched_analyze_1 (deps, gen_rtx_CLOBBER (VOIDmode, XEXP (XVECEXP (dest, 0, i), 0)), insn); if (GET_CODE (x) == SET) sched_analyze_2 (deps, SET_SRC (x), insn); return; } while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG || GET_CODE (dest) == ZERO_EXTRACT) { if (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == ZERO_EXTRACT || df_read_modify_subreg_p (dest)) { /* These both read and modify the result. We must handle them as writes to get proper dependencies for following instructions. We must handle them as reads to get proper dependencies from this to previous instructions. Thus we need to call sched_analyze_2. */ sched_analyze_2 (deps, XEXP (dest, 0), insn); } if (GET_CODE (dest) == ZERO_EXTRACT) { /* The second and third arguments are values read by this insn. */ sched_analyze_2 (deps, XEXP (dest, 1), insn); sched_analyze_2 (deps, XEXP (dest, 2), insn); } dest = XEXP (dest, 0); } if (REG_P (dest)) { int regno = REGNO (dest); enum machine_mode mode = GET_MODE (dest); sched_analyze_reg (deps, regno, mode, code, insn); #ifdef STACK_REGS /* Treat all writes to a stack register as modifying the TOS. */ if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG) { /* Avoid analyzing the same register twice. */ if (regno != FIRST_STACK_REG) sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn); sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn); } #endif } else if (MEM_P (dest)) { /* Writing memory. */ rtx t = dest; if (current_sched_info->use_cselib) { t = shallow_copy_rtx (dest); cselib_lookup (XEXP (t, 0), Pmode, 1); XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0)); } t = canon_rtx (t); if ((deps->pending_read_list_length + deps->pending_write_list_length) > MAX_PENDING_LIST_LENGTH) { /* Flush all pending reads and writes to prevent the pending lists from getting any larger. Insn scheduling runs too slowly when these lists get long. When compiling GCC with itself, this flush occurs 8 times for sparc, and 10 times for m88k using the default value of 32. */ flush_pending_lists (deps, insn, false, true); } else { rtx pending, pending_mem; pending = deps->pending_read_insns; pending_mem = deps->pending_read_mems; while (pending) { if (anti_dependence (XEXP (pending_mem, 0), t) && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0))) add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI); pending = XEXP (pending, 1); pending_mem = XEXP (pending_mem, 1); } pending = deps->pending_write_insns; pending_mem = deps->pending_write_mems; while (pending) { if (output_dependence (XEXP (pending_mem, 0), t) && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0))) add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT); pending = XEXP (pending, 1); pending_mem = XEXP (pending_mem, 1); } add_dependence_list (insn, deps->last_pending_memory_flush, 1, REG_DEP_ANTI); add_insn_mem_dependence (deps, false, insn, dest); } sched_analyze_2 (deps, XEXP (dest, 0), insn); } /* Analyze reads. */ if (GET_CODE (x) == SET) sched_analyze_2 (deps, SET_SRC (x), insn); } /* Analyze the uses of memory and registers in rtx X in INSN. */ static void sched_analyze_2 (struct deps *deps, rtx x, rtx insn) { int i; int j; enum rtx_code code; const char *fmt; if (x == 0) return; code = GET_CODE (x); switch (code) { case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR: case SYMBOL_REF: case CONST: case LABEL_REF: /* Ignore constants. Note that we must handle CONST_DOUBLE here because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but this does not mean that this insn is using cc0. */ return; #ifdef HAVE_cc0 case CC0: /* User of CC0 depends on immediately preceding insn. */ SCHED_GROUP_P (insn) = 1; /* Don't move CC0 setter to another block (it can set up the same flag for previous CC0 users which is safe). */ CANT_MOVE (prev_nonnote_insn (insn)) = 1; return; #endif case REG: { int regno = REGNO (x); enum machine_mode mode = GET_MODE (x); sched_analyze_reg (deps, regno, mode, USE, insn); #ifdef STACK_REGS /* Treat all reads of a stack register as modifying the TOS. */ if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG) { /* Avoid analyzing the same register twice. */ if (regno != FIRST_STACK_REG) sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn); sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn); } #endif return; } case MEM: { /* Reading memory. */ rtx u; rtx pending, pending_mem; rtx t = x; if (current_sched_info->use_cselib) { t = shallow_copy_rtx (t); cselib_lookup (XEXP (t, 0), Pmode, 1); XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0)); } t = canon_rtx (t); pending = deps->pending_read_insns; pending_mem = deps->pending_read_mems; while (pending) { if (read_dependence (XEXP (pending_mem, 0), t) && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0))) add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI); pending = XEXP (pending, 1); pending_mem = XEXP (pending_mem, 1); } pending = deps->pending_write_insns; pending_mem = deps->pending_write_mems; while (pending) { if (true_dependence (XEXP (pending_mem, 0), VOIDmode, t, rtx_varies_p) && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0))) { if (current_sched_info->flags & DO_SPECULATION) maybe_add_or_update_back_dep_1 (insn, XEXP (pending, 0), REG_DEP_TRUE, BEGIN_DATA | DEP_TRUE, XEXP (pending_mem, 0), t, 0); else add_dependence (insn, XEXP (pending, 0), REG_DEP_TRUE); } pending = XEXP (pending, 1); pending_mem = XEXP (pending_mem, 1); } for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1)) if (! JUMP_P (XEXP (u, 0)) || deps_may_trap_p (x)) add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI); /* Always add these dependencies to pending_reads, since this insn may be followed by a write. */ add_insn_mem_dependence (deps, true, insn, x); /* Take advantage of tail recursion here. */ sched_analyze_2 (deps, XEXP (x, 0), insn); return; } /* Force pending stores to memory in case a trap handler needs them. */ case TRAP_IF: flush_pending_lists (deps, insn, true, false); break; case ASM_OPERANDS: case ASM_INPUT: case UNSPEC_VOLATILE: { /* Traditional and volatile asm instructions must be considered to use and clobber all hard registers, all pseudo-registers and all of memory. So must TRAP_IF and UNSPEC_VOLATILE operations. Consider for instance a volatile asm that changes the fpu rounding mode. An insn should not be moved across this even if it only uses pseudo-regs because it might give an incorrectly rounded result. */ if (code != ASM_OPERANDS || MEM_VOLATILE_P (x)) reg_pending_barrier = TRUE_BARRIER; /* For all ASM_OPERANDS, we must traverse the vector of input operands. We can not just fall through here since then we would be confused by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate traditional asms unlike their normal usage. */ if (code == ASM_OPERANDS) { for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++) sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn); return; } break; } case PRE_DEC: case POST_DEC: case PRE_INC: case POST_INC: /* These both read and modify the result. We must handle them as writes to get proper dependencies for following instructions. We must handle them as reads to get proper dependencies from this to previous instructions. Thus we need to pass them to both sched_analyze_1 and sched_analyze_2. We must call sched_analyze_2 first in order to get the proper antecedent for the read. */ sched_analyze_2 (deps, XEXP (x, 0), insn); sched_analyze_1 (deps, x, insn); return; case POST_MODIFY: case PRE_MODIFY: /* op0 = op0 + op1 */ sched_analyze_2 (deps, XEXP (x, 0), insn); sched_analyze_2 (deps, XEXP (x, 1), insn); sched_analyze_1 (deps, x, insn); return; default: break; } /* Other cases: walk the insn. */ fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') sched_analyze_2 (deps, XEXP (x, i), insn); else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) sched_analyze_2 (deps, XVECEXP (x, i, j), insn); } } /* Analyze an INSN with pattern X to find all dependencies. */ static void sched_analyze_insn (struct deps *deps, rtx x, rtx insn) { RTX_CODE code = GET_CODE (x); rtx link; unsigned i; reg_set_iterator rsi; if (code == COND_EXEC) { sched_analyze_2 (deps, COND_EXEC_TEST (x), insn); /* ??? Should be recording conditions so we reduce the number of false dependencies. */ x = COND_EXEC_CODE (x); code = GET_CODE (x); } if (code == SET || code == CLOBBER) { sched_analyze_1 (deps, x, insn); /* Bare clobber insns are used for letting life analysis, reg-stack and others know that a value is dead. Depend on the last call instruction so that reg-stack won't get confused. */ if (code == CLOBBER) add_dependence_list (insn, deps->last_function_call, 1, REG_DEP_OUTPUT); } else if (code == PARALLEL) { for (i = XVECLEN (x, 0); i--;) { rtx sub = XVECEXP (x, 0, i); code = GET_CODE (sub); if (code == COND_EXEC) { sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn); sub = COND_EXEC_CODE (sub); code = GET_CODE (sub); } if (code == SET || code == CLOBBER) sched_analyze_1 (deps, sub, insn); else sched_analyze_2 (deps, sub, insn); } } else sched_analyze_2 (deps, x, insn); /* Mark registers CLOBBERED or used by called function. */ if (CALL_P (insn)) { for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { if (GET_CODE (XEXP (link, 0)) == CLOBBER) sched_analyze_1 (deps, XEXP (link, 0), insn); else sched_analyze_2 (deps, XEXP (link, 0), insn); } if (find_reg_note (insn, REG_SETJMP, NULL)) reg_pending_barrier = MOVE_BARRIER; } if (JUMP_P (insn)) { rtx next; next = next_nonnote_insn (insn); if (next && BARRIER_P (next)) reg_pending_barrier = TRUE_BARRIER; else { rtx pending, pending_mem; regset_head tmp_uses, tmp_sets; INIT_REG_SET (&tmp_uses); INIT_REG_SET (&tmp_sets); (*current_sched_info->compute_jump_reg_dependencies) (insn, &deps->reg_conditional_sets, &tmp_uses, &tmp_sets); /* Make latency of jump equal to 0 by using anti-dependence. */ EXECUTE_IF_SET_IN_REG_SET (&tmp_uses, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI); add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI); reg_last->uses_length++; reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses); } IOR_REG_SET (reg_pending_sets, &tmp_sets); CLEAR_REG_SET (&tmp_uses); CLEAR_REG_SET (&tmp_sets); /* All memory writes and volatile reads must happen before the jump. Non-volatile reads must happen before the jump iff the result is needed by the above register used mask. */ pending = deps->pending_write_insns; pending_mem = deps->pending_write_mems; while (pending) { if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0))) add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT); pending = XEXP (pending, 1); pending_mem = XEXP (pending_mem, 1); } pending = deps->pending_read_insns; pending_mem = deps->pending_read_mems; while (pending) { if (MEM_VOLATILE_P (XEXP (pending_mem, 0)) && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0))) add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT); pending = XEXP (pending, 1); pending_mem = XEXP (pending_mem, 1); } add_dependence_list (insn, deps->last_pending_memory_flush, 1, REG_DEP_ANTI); } } /* If this instruction can throw an exception, then moving it changes where block boundaries fall. This is mighty confusing elsewhere. Therefore, prevent such an instruction from being moved. Same for non-jump instructions that define block boundaries. ??? Unclear whether this is still necessary in EBB mode. If not, add_branch_dependences should be adjusted for RGN mode instead. */ if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn)) || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn))) reg_pending_barrier = MOVE_BARRIER; /* Add dependencies if a scheduling barrier was found. */ if (reg_pending_barrier) { /* In the case of barrier the most added dependencies are not real, so we use anti-dependence here. */ if (sched_get_condition (insn)) { EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI); add_dependence_list (insn, reg_last->sets, 0, reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI); add_dependence_list (insn, reg_last->clobbers, 0, reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI); } } else { EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list_and_free (insn, ®_last->uses, 0, REG_DEP_ANTI); add_dependence_list_and_free (insn, ®_last->sets, 0, reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI); add_dependence_list_and_free (insn, ®_last->clobbers, 0, reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI); reg_last->uses_length = 0; reg_last->clobbers_length = 0; } } for (i = 0; i < (unsigned)deps->max_reg; i++) { struct deps_reg *reg_last = &deps->reg_last[i]; reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets); SET_REGNO_REG_SET (&deps->reg_last_in_use, i); } flush_pending_lists (deps, insn, true, true); CLEAR_REG_SET (&deps->reg_conditional_sets); reg_pending_barrier = NOT_A_BARRIER; } else { /* If the current insn is conditional, we can't free any of the lists. */ if (sched_get_condition (insn)) { EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE); add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE); reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses); reg_last->uses_length++; } EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT); add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI); reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers); reg_last->clobbers_length++; } EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT); add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT); add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI); reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets); SET_REGNO_REG_SET (&deps->reg_conditional_sets, i); } } else { EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE); add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE); reg_last->uses_length++; reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses); } EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH) { add_dependence_list_and_free (insn, ®_last->sets, 0, REG_DEP_OUTPUT); add_dependence_list_and_free (insn, ®_last->uses, 0, REG_DEP_ANTI); add_dependence_list_and_free (insn, ®_last->clobbers, 0, REG_DEP_OUTPUT); reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets); reg_last->clobbers_length = 0; reg_last->uses_length = 0; } else { add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT); add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI); } reg_last->clobbers_length++; reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers); } EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; add_dependence_list_and_free (insn, ®_last->sets, 0, REG_DEP_OUTPUT); add_dependence_list_and_free (insn, ®_last->clobbers, 0, REG_DEP_OUTPUT); add_dependence_list_and_free (insn, ®_last->uses, 0, REG_DEP_ANTI); reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets); reg_last->uses_length = 0; reg_last->clobbers_length = 0; CLEAR_REGNO_REG_SET (&deps->reg_conditional_sets, i); } } IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses); IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers); IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets); } CLEAR_REG_SET (reg_pending_uses); CLEAR_REG_SET (reg_pending_clobbers); CLEAR_REG_SET (reg_pending_sets); /* If we are currently in a libcall scheduling group, then mark the current insn as being in a scheduling group and that it can not be moved into a different basic block. */ if (deps->libcall_block_tail_insn) { SCHED_GROUP_P (insn) = 1; CANT_MOVE (insn) = 1; } /* If a post-call group is still open, see if it should remain so. This insn must be a simple move of a hard reg to a pseudo or vice-versa. We must avoid moving these insns for correctness on SMALL_REGISTER_CLASS machines, and for special registers like PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all hard regs for all targets. */ if (deps->in_post_call_group_p) { rtx tmp, set = single_set (insn); int src_regno, dest_regno; if (set == NULL) goto end_call_group; tmp = SET_DEST (set); if (GET_CODE (tmp) == SUBREG) tmp = SUBREG_REG (tmp); if (REG_P (tmp)) dest_regno = REGNO (tmp); else goto end_call_group; tmp = SET_SRC (set); if (GET_CODE (tmp) == SUBREG) tmp = SUBREG_REG (tmp); if ((GET_CODE (tmp) == PLUS || GET_CODE (tmp) == MINUS) && REG_P (XEXP (tmp, 0)) && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM && dest_regno == STACK_POINTER_REGNUM) src_regno = STACK_POINTER_REGNUM; else if (REG_P (tmp)) src_regno = REGNO (tmp); else goto end_call_group; if (src_regno < FIRST_PSEUDO_REGISTER || dest_regno < FIRST_PSEUDO_REGISTER) { if (deps->in_post_call_group_p == post_call_initial) deps->in_post_call_group_p = post_call; SCHED_GROUP_P (insn) = 1; CANT_MOVE (insn) = 1; } else { end_call_group: deps->in_post_call_group_p = not_post_call; } } /* Fixup the dependencies in the sched group. */ if (SCHED_GROUP_P (insn)) fixup_sched_groups (insn); } /* Analyze every insn between HEAD and TAIL inclusive, creating backward dependencies for each insn. */ void sched_analyze (struct deps *deps, rtx head, rtx tail) { rtx insn; if (current_sched_info->use_cselib) cselib_init (true); /* Before reload, if the previous block ended in a call, show that we are inside a post-call group, so as to keep the lifetimes of hard registers correct. */ if (! reload_completed && !LABEL_P (head)) { insn = prev_nonnote_insn (head); if (insn && CALL_P (insn)) deps->in_post_call_group_p = post_call_initial; } for (insn = head;; insn = NEXT_INSN (insn)) { rtx link, end_seq, r0, set; if (INSN_P (insn)) { /* Clear out the stale LOG_LINKS from flow. */ free_INSN_LIST_list (&LOG_LINKS (insn)); /* These two lists will be freed in schedule_insn (). */ INSN_BACK_DEPS (insn) = create_deps_list (false); INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list (false); /* This one should be allocated on the obstack because it should live till the scheduling ends. */ INSN_FORW_DEPS (insn) = create_deps_list (true); } if (NONJUMP_INSN_P (insn) || JUMP_P (insn)) { /* Make each JUMP_INSN a scheduling barrier for memory references. */ if (JUMP_P (insn)) { /* Keep the list a reasonable size. */ if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH) flush_pending_lists (deps, insn, true, true); else deps->last_pending_memory_flush = alloc_INSN_LIST (insn, deps->last_pending_memory_flush); } sched_analyze_insn (deps, PATTERN (insn), insn); } else if (CALL_P (insn)) { int i; CANT_MOVE (insn) = 1; if (find_reg_note (insn, REG_SETJMP, NULL)) { /* This is setjmp. Assume that all registers, not just hard registers, may be clobbered by this call. */ reg_pending_barrier = MOVE_BARRIER; } else { for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) /* A call may read and modify global register variables. */ if (global_regs[i]) { SET_REGNO_REG_SET (reg_pending_sets, i); SET_REGNO_REG_SET (reg_pending_uses, i); } /* Other call-clobbered hard regs may be clobbered. Since we only have a choice between 'might be clobbered' and 'definitely not clobbered', we must include all partly call-clobbered registers here. */ else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i]) || TEST_HARD_REG_BIT (regs_invalidated_by_call, i)) SET_REGNO_REG_SET (reg_pending_clobbers, i); /* We don't know what set of fixed registers might be used by the function, but it is certain that the stack pointer is among them, but be conservative. */ else if (fixed_regs[i]) SET_REGNO_REG_SET (reg_pending_uses, i); /* The frame pointer is normally not used by the function itself, but by the debugger. */ /* ??? MIPS o32 is an exception. It uses the frame pointer in the macro expansion of jal but does not represent this fact in the call_insn rtl. */ else if (i == FRAME_POINTER_REGNUM || (i == HARD_FRAME_POINTER_REGNUM && (! reload_completed || frame_pointer_needed))) SET_REGNO_REG_SET (reg_pending_uses, i); } /* For each insn which shouldn't cross a call, add a dependence between that insn and this call insn. */ add_dependence_list_and_free (insn, &deps->sched_before_next_call, 1, REG_DEP_ANTI); sched_analyze_insn (deps, PATTERN (insn), insn); /* In the absence of interprocedural alias analysis, we must flush all pending reads and writes, and start new dependencies starting from here. But only flush writes for constant calls (which may be passed a pointer to something we haven't written yet). */ flush_pending_lists (deps, insn, true, !CONST_OR_PURE_CALL_P (insn)); /* Remember the last function call for limiting lifetimes. */ free_INSN_LIST_list (&deps->last_function_call); deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX); /* Before reload, begin a post-call group, so as to keep the lifetimes of hard registers correct. */ if (! reload_completed) deps->in_post_call_group_p = post_call; } /* EH_REGION insn notes can not appear until well after we complete scheduling. */ if (NOTE_P (insn)) gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END); if (current_sched_info->use_cselib) cselib_process_insn (insn); /* Now that we have completed handling INSN, check and see if it is a CLOBBER beginning a libcall block. If it is, record the end of the libcall sequence. We want to schedule libcall blocks as a unit before reload. While this restricts scheduling, it preserves the meaning of a libcall block. As a side effect, we may get better code due to decreased register pressure as well as less chance of a foreign insn appearing in a libcall block. */ if (!reload_completed /* Note we may have nested libcall sequences. We only care about the outermost libcall sequence. */ && deps->libcall_block_tail_insn == 0 /* The sequence must start with a clobber of a register. */ && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == CLOBBER && (r0 = XEXP (PATTERN (insn), 0), REG_P (r0)) && REG_P (XEXP (PATTERN (insn), 0)) /* The CLOBBER must also have a REG_LIBCALL note attached. */ && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0 && (end_seq = XEXP (link, 0)) != 0 /* The insn referenced by the REG_LIBCALL note must be a simple nop copy with the same destination as the register mentioned in the clobber. */ && (set = single_set (end_seq)) != 0 && SET_DEST (set) == r0 && SET_SRC (set) == r0 /* And finally the insn referenced by the REG_LIBCALL must also contain a REG_EQUAL note and a REG_RETVAL note. */ && find_reg_note (end_seq, REG_EQUAL, NULL_RTX) != 0 && find_reg_note (end_seq, REG_RETVAL, NULL_RTX) != 0) deps->libcall_block_tail_insn = XEXP (link, 0); /* If we have reached the end of a libcall block, then close the block. */ if (deps->libcall_block_tail_insn == insn) deps->libcall_block_tail_insn = 0; if (insn == tail) { if (current_sched_info->use_cselib) cselib_finish (); return; } } gcc_unreachable (); } /* The following function adds forward dependence (FROM, TO) with given DEP_TYPE. The forward dependence should be not exist before. */ void add_forw_dep (dep_link_t link) { dep_t dep = DEP_LINK_DEP (link); rtx to = DEP_CON (dep); rtx from = DEP_PRO (dep); #ifdef ENABLE_CHECKING /* If add_dependence is working properly there should never be notes, deleted insns or duplicates in the backward links. Thus we need not check for them here. However, if we have enabled checking we might as well go ahead and verify that add_dependence worked properly. */ gcc_assert (INSN_P (from)); gcc_assert (!INSN_DELETED_P (from)); if (true_dependency_cache) { gcc_assert (!bitmap_bit_p (&forward_dependency_cache[INSN_LUID (from)], INSN_LUID (to))); bitmap_set_bit (&forward_dependency_cache[INSN_LUID (from)], INSN_LUID (to)); } gcc_assert (find_link_by_con_in_deps_list (INSN_FORW_DEPS (from), to) == NULL); #endif add_to_deps_list (DEP_NODE_FORW (DEP_LINK_NODE (link)), INSN_FORW_DEPS (from)); INSN_DEP_COUNT (to) += 1; } /* Examine insns in the range [ HEAD, TAIL ] and Use the backward dependences from INSN_BACK_DEPS list to build forward dependences in INSN_FORW_DEPS. */ void compute_forward_dependences (rtx head, rtx tail) { rtx insn; rtx next_tail; next_tail = NEXT_INSN (tail); for (insn = head; insn != next_tail; insn = NEXT_INSN (insn)) { dep_link_t link; if (! INSN_P (insn)) continue; if (current_sched_info->flags & DO_SPECULATION) { /* We will add links, preserving order, from INSN_BACK_DEPS to NEW. */ dep_link_t new = NULL; link = DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)); while (link != NULL) { dep_link_t next = DEP_LINK_NEXT (link); detach_dep_link (link); adjust_add_sorted_back_dep (insn, link, &new); link = next; } /* Attach NEW to be the list of backward dependencies. */ if (new != NULL) { DEP_LINK_PREV_NEXTP (new) = &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)); DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)) = new; } } FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (insn)) add_forw_dep (link); } } /* Initialize variables for region data dependence analysis. n_bbs is the number of region blocks. */ void init_deps (struct deps *deps) { int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ()); deps->max_reg = max_reg; deps->reg_last = XCNEWVEC (struct deps_reg, max_reg); INIT_REG_SET (&deps->reg_last_in_use); INIT_REG_SET (&deps->reg_conditional_sets); deps->pending_read_insns = 0; deps->pending_read_mems = 0; deps->pending_write_insns = 0; deps->pending_write_mems = 0; deps->pending_read_list_length = 0; deps->pending_write_list_length = 0; deps->pending_flush_length = 0; deps->last_pending_memory_flush = 0; deps->last_function_call = 0; deps->sched_before_next_call = 0; deps->in_post_call_group_p = not_post_call; deps->libcall_block_tail_insn = 0; } /* Free insn lists found in DEPS. */ void free_deps (struct deps *deps) { unsigned i; reg_set_iterator rsi; free_INSN_LIST_list (&deps->pending_read_insns); free_EXPR_LIST_list (&deps->pending_read_mems); free_INSN_LIST_list (&deps->pending_write_insns); free_EXPR_LIST_list (&deps->pending_write_mems); free_INSN_LIST_list (&deps->last_pending_memory_flush); /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions times. For a testcase with 42000 regs and 8000 small basic blocks, this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */ EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi) { struct deps_reg *reg_last = &deps->reg_last[i]; if (reg_last->uses) free_INSN_LIST_list (®_last->uses); if (reg_last->sets) free_INSN_LIST_list (®_last->sets); if (reg_last->clobbers) free_INSN_LIST_list (®_last->clobbers); } CLEAR_REG_SET (&deps->reg_last_in_use); CLEAR_REG_SET (&deps->reg_conditional_sets); free (deps->reg_last); } /* If it is profitable to use them, initialize caches for tracking dependency information. LUID is the number of insns to be scheduled, it is used in the estimate of profitability. */ void init_dependency_caches (int luid) { /* ?!? We could save some memory by computing a per-region luid mapping which could reduce both the number of vectors in the cache and the size of each vector. Instead we just avoid the cache entirely unless the average number of instructions in a basic block is very high. See the comment before the declaration of true_dependency_cache for what we consider "very high". */ if (luid / n_basic_blocks > 100 * 5) { cache_size = 0; extend_dependency_caches (luid, true); } /* Lifetime of this obstack is whole function scheduling (not single region scheduling) because some dependencies can be manually generated for outside regions. See dont_calc_deps in sched-{rgn, ebb}.c . Possible solution would be to have two obstacks: * the big one for regular dependencies with region scheduling lifetime, * and the small one for manually generated dependencies with function scheduling lifetime. */ gcc_obstack_init (&deps_obstack); } /* Create or extend (depending on CREATE_P) dependency caches to size N. */ void extend_dependency_caches (int n, bool create_p) { if (create_p || true_dependency_cache) { int i, luid = cache_size + n; true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache, luid); output_dependency_cache = XRESIZEVEC (bitmap_head, output_dependency_cache, luid); anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache, luid); #ifdef ENABLE_CHECKING forward_dependency_cache = XRESIZEVEC (bitmap_head, forward_dependency_cache, luid); #endif if (current_sched_info->flags & DO_SPECULATION) spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache, luid); for (i = cache_size; i < luid; i++) { bitmap_initialize (&true_dependency_cache[i], 0); bitmap_initialize (&output_dependency_cache[i], 0); bitmap_initialize (&anti_dependency_cache[i], 0); #ifdef ENABLE_CHECKING bitmap_initialize (&forward_dependency_cache[i], 0); #endif if (current_sched_info->flags & DO_SPECULATION) bitmap_initialize (&spec_dependency_cache[i], 0); } cache_size = luid; } } /* Free the caches allocated in init_dependency_caches. */ void free_dependency_caches (void) { obstack_free (&deps_obstack, NULL); if (true_dependency_cache) { int i; for (i = 0; i < cache_size; i++) { bitmap_clear (&true_dependency_cache[i]); bitmap_clear (&output_dependency_cache[i]); bitmap_clear (&anti_dependency_cache[i]); #ifdef ENABLE_CHECKING bitmap_clear (&forward_dependency_cache[i]); #endif if (current_sched_info->flags & DO_SPECULATION) bitmap_clear (&spec_dependency_cache[i]); } free (true_dependency_cache); true_dependency_cache = NULL; free (output_dependency_cache); output_dependency_cache = NULL; free (anti_dependency_cache); anti_dependency_cache = NULL; #ifdef ENABLE_CHECKING free (forward_dependency_cache); forward_dependency_cache = NULL; #endif if (current_sched_info->flags & DO_SPECULATION) { free (spec_dependency_cache); spec_dependency_cache = NULL; } } } /* Initialize some global variables needed by the dependency analysis code. */ void init_deps_global (void) { reg_pending_sets = ALLOC_REG_SET (®_obstack); reg_pending_clobbers = ALLOC_REG_SET (®_obstack); reg_pending_uses = ALLOC_REG_SET (®_obstack); reg_pending_barrier = NOT_A_BARRIER; } /* Free everything used by the dependency analysis code. */ void finish_deps_global (void) { FREE_REG_SET (reg_pending_sets); FREE_REG_SET (reg_pending_clobbers); FREE_REG_SET (reg_pending_uses); } /* Insert LINK into the dependence chain pointed to by LINKP and maintain the sort order. */ static void adjust_add_sorted_back_dep (rtx insn, dep_link_t link, dep_link_t *linkp) { gcc_assert (current_sched_info->flags & DO_SPECULATION); /* If the insn cannot move speculatively, but the link is speculative, make it hard dependence. */ if (HAS_INTERNAL_DEP (insn) && (DEP_LINK_STATUS (link) & SPECULATIVE)) { DEP_LINK_STATUS (link) &= ~SPECULATIVE; if (true_dependency_cache) bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)], INSN_LUID (DEP_LINK_PRO (link))); } /* Non-speculative links go at the head of deps_list, followed by speculative links. */ if (DEP_LINK_STATUS (link) & SPECULATIVE) while (*linkp && !(DEP_LINK_STATUS (*linkp) & SPECULATIVE)) linkp = &DEP_LINK_NEXT (*linkp); attach_dep_link (link, linkp); if (CHECK) gcc_assert (deps_list_consistent_p (INSN_BACK_DEPS (insn))); } /* Move the dependence pointed to by LINKP to the back dependencies of INSN, and also add this dependence to the forward ones. All dep_links, except one pointed to by LINKP, must be sorted. */ static void adjust_back_add_forw_dep (rtx insn, dep_link_t *linkp) { dep_link_t link; gcc_assert (current_sched_info->flags & DO_SPECULATION); link = *linkp; detach_dep_link (link); adjust_add_sorted_back_dep (insn, link, &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn))); add_forw_dep (link); } /* Remove forward dependence described by L. */ static void delete_forw_dep (dep_link_t l) { gcc_assert (current_sched_info->flags & DO_SPECULATION); #ifdef ENABLE_CHECKING if (true_dependency_cache) bitmap_clear_bit (&forward_dependency_cache[INSN_LUID (DEP_LINK_PRO (l))], INSN_LUID (DEP_LINK_CON (l))); #endif detach_dep_link (l); INSN_DEP_COUNT (DEP_LINK_CON (l))--; } /* Estimate the weakness of dependence between MEM1 and MEM2. */ static dw_t estimate_dep_weak (rtx mem1, rtx mem2) { rtx r1, r2; if (mem1 == mem2) /* MEMs are the same - don't speculate. */ return MIN_DEP_WEAK; r1 = XEXP (mem1, 0); r2 = XEXP (mem2, 0); if (r1 == r2 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2))) /* Again, MEMs are the same. */ return MIN_DEP_WEAK; else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2))) /* Different addressing modes - reason to be more speculative, than usual. */ return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2; else /* We can't say anything about the dependence. */ return UNCERTAIN_DEP_WEAK; } /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE. This function can handle same INSN and ELEM (INSN == ELEM). It is a convenience wrapper. */ void add_dependence (rtx insn, rtx elem, enum reg_note dep_type) { ds_t ds; if (dep_type == REG_DEP_TRUE) ds = DEP_TRUE; else if (dep_type == REG_DEP_OUTPUT) ds = DEP_OUTPUT; else if (dep_type == REG_DEP_ANTI) ds = DEP_ANTI; else gcc_unreachable (); maybe_add_or_update_back_dep_1 (insn, elem, dep_type, ds, 0, 0, 0); } /* Add or update backward dependence between INSN and ELEM with given type DEP_TYPE and dep_status DS. This function is a convenience wrapper. */ enum DEPS_ADJUST_RESULT add_or_update_back_dep (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds) { return add_or_update_back_dep_1 (insn, elem, dep_type, ds, 0, 0, 0); } /* Add or update both backward and forward dependencies between INSN and ELEM with given type DEP_TYPE and dep_status DS. */ void add_or_update_back_forw_dep (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds) { enum DEPS_ADJUST_RESULT res; dep_link_t *linkp; res = add_or_update_back_dep_1 (insn, elem, dep_type, ds, 0, 0, &linkp); if (res == DEP_CHANGED || res == DEP_CREATED) { if (res == DEP_CHANGED) delete_forw_dep (DEP_NODE_FORW (DEP_LINK_NODE (*linkp))); else if (res == DEP_CREATED) linkp = &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn)); adjust_back_add_forw_dep (insn, linkp); } } /* Add both backward and forward dependencies between INSN and ELEM with given type DEP_TYPE and dep_status DS. */ void add_back_forw_dep (rtx insn, rtx elem, enum reg_note dep_type, ds_t ds) { add_back_dep (insn, elem, dep_type, ds); adjust_back_add_forw_dep (insn, &DEPS_LIST_FIRST (INSN_BACK_DEPS (insn))); if (CHECK) gcc_assert (deps_list_consistent_p (INSN_BACK_DEPS (insn))); } /* Remove a dependency referred to by L. */ void delete_back_forw_dep (dep_link_t l) { dep_node_t n = DEP_LINK_NODE (l); gcc_assert (current_sched_info->flags & DO_SPECULATION); if (true_dependency_cache != NULL) { dep_t dep = DEP_NODE_DEP (n); int elem_luid = INSN_LUID (DEP_PRO (dep)); int insn_luid = INSN_LUID (DEP_CON (dep)); bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid); bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid); bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid); bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid); } delete_forw_dep (DEP_NODE_FORW (n)); detach_dep_link (DEP_NODE_BACK (n)); } /* Return weakness of speculative type TYPE in the dep_status DS. */ dw_t get_dep_weak (ds_t ds, ds_t type) { ds = ds & type; switch (type) { case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break; case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break; case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break; case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break; default: gcc_unreachable (); } gcc_assert (MIN_DEP_WEAK <= ds && ds <= MAX_DEP_WEAK); return (dw_t) ds; } /* Return the dep_status, which has the same parameters as DS, except for speculative type TYPE, that will have weakness DW. */ ds_t set_dep_weak (ds_t ds, ds_t type, dw_t dw) { gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK); ds &= ~type; switch (type) { case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break; case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break; case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break; case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break; default: gcc_unreachable (); } return ds; } /* Return the join of two dep_statuses DS1 and DS2. */ ds_t ds_merge (ds_t ds1, ds_t ds2) { ds_t ds, t; gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE)); ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES); t = FIRST_SPEC_TYPE; do { if ((ds1 & t) && !(ds2 & t)) ds |= ds1 & t; else if (!(ds1 & t) && (ds2 & t)) ds |= ds2 & t; else if ((ds1 & t) && (ds2 & t)) { ds_t dw; dw = ((ds_t) get_dep_weak (ds1, t)) * ((ds_t) get_dep_weak (ds2, t)); dw /= MAX_DEP_WEAK; if (dw < MIN_DEP_WEAK) dw = MIN_DEP_WEAK; ds = set_dep_weak (ds, t, (dw_t) dw); } if (t == LAST_SPEC_TYPE) break; t <<= SPEC_TYPE_SHIFT; } while (1); return ds; } #ifdef INSN_SCHEDULING #ifdef ENABLE_CHECKING /* Verify that dependence type and status are consistent. If RELAXED_P is true, then skip dep_weakness checks. */ static void check_dep_status (enum reg_note dt, ds_t ds, bool relaxed_p) { /* Check that dependence type contains the same bits as the status. */ if (dt == REG_DEP_TRUE) gcc_assert (ds & DEP_TRUE); else if (dt == REG_DEP_OUTPUT) gcc_assert ((ds & DEP_OUTPUT) && !(ds & DEP_TRUE)); else gcc_assert ((dt == REG_DEP_ANTI) && (ds & DEP_ANTI) && !(ds & (DEP_OUTPUT | DEP_TRUE))); /* HARD_DEP can not appear in dep_status of a link. */ gcc_assert (!(ds & HARD_DEP)); /* Check that dependence status is set correctly when speculation is not supported. */ if (!(current_sched_info->flags & DO_SPECULATION)) gcc_assert (!(ds & SPECULATIVE)); else if (ds & SPECULATIVE) { if (!relaxed_p) { ds_t type = FIRST_SPEC_TYPE; /* Check that dependence weakness is in proper range. */ do { if (ds & type) get_dep_weak (ds, type); if (type == LAST_SPEC_TYPE) break; type <<= SPEC_TYPE_SHIFT; } while (1); } if (ds & BEGIN_SPEC) { /* Only true dependence can be data speculative. */ if (ds & BEGIN_DATA) gcc_assert (ds & DEP_TRUE); /* Control dependencies in the insn scheduler are represented by anti-dependencies, therefore only anti dependence can be control speculative. */ if (ds & BEGIN_CONTROL) gcc_assert (ds & DEP_ANTI); } else { /* Subsequent speculations should resolve true dependencies. */ gcc_assert ((ds & DEP_TYPES) == DEP_TRUE); } /* Check that true and anti dependencies can't have other speculative statuses. */ if (ds & DEP_TRUE) gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC)); /* An output dependence can't be speculative at all. */ gcc_assert (!(ds & DEP_OUTPUT)); if (ds & DEP_ANTI) gcc_assert (ds & BEGIN_CONTROL); } } #endif #endif