/* Simple data type for positive real numbers for the GNU compiler. Copyright (C) 2002-2014 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This library supports positive real numbers and 0; inf and nan are NOT supported. It is written to be simple and fast. Value of sreal is x = sig * 2 ^ exp where sig = significant (for < 64-bit machines sig = sig_lo + sig_hi * 2 ^ SREAL_PART_BITS) exp = exponent One HOST_WIDE_INT is used for the significant on 64-bit (and more than 64-bit) machines, otherwise two HOST_WIDE_INTs are used for the significant. Only a half of significant bits is used (in normalized sreals) so that we do not have problems with overflow, for example when c->sig = a->sig * b->sig. So the precision for 64-bit and 32-bit machines is 32-bit. Invariant: The numbers are normalized before and after each call of sreal_*. Normalized sreals: All numbers (except zero) meet following conditions: SREAL_MIN_SIG <= sig && sig <= SREAL_MAX_SIG -SREAL_MAX_EXP <= exp && exp <= SREAL_MAX_EXP If the number would be too large, it is set to upper bounds of these conditions. If the number is zero or would be too small it meets following conditions: sig == 0 && exp == -SREAL_MAX_EXP */ #include "config.h" #include "system.h" #include "coretypes.h" #include "sreal.h" static inline void copy (sreal *, sreal *); static inline void shift_right (sreal *, int); static void normalize (sreal *); /* Print the content of struct sreal. */ void dump_sreal (FILE *file, sreal *x) { #if SREAL_PART_BITS < 32 fprintf (file, "((" HOST_WIDE_INT_PRINT_UNSIGNED " * 2^16 + " HOST_WIDE_INT_PRINT_UNSIGNED ") * 2^%d)", x->sig_hi, x->sig_lo, x->exp); #else fprintf (file, "(" HOST_WIDE_INT_PRINT_UNSIGNED " * 2^%d)", x->sig, x->exp); #endif } DEBUG_FUNCTION void debug (sreal &ref) { dump_sreal (stderr, &ref); } DEBUG_FUNCTION void debug (sreal *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "<nil>\n"); } /* Copy the sreal number. */ static inline void copy (sreal *r, sreal *a) { #if SREAL_PART_BITS < 32 r->sig_lo = a->sig_lo; r->sig_hi = a->sig_hi; #else r->sig = a->sig; #endif r->exp = a->exp; } /* Shift X right by S bits. Needed: 0 < S <= SREAL_BITS. When the most significant bit shifted out is 1, add 1 to X (rounding). */ static inline void shift_right (sreal *x, int s) { gcc_assert (s > 0); gcc_assert (s <= SREAL_BITS); /* Exponent should never be so large because shift_right is used only by sreal_add and sreal_sub ant thus the number cannot be shifted out from exponent range. */ gcc_assert (x->exp + s <= SREAL_MAX_EXP); x->exp += s; #if SREAL_PART_BITS < 32 if (s > SREAL_PART_BITS) { s -= SREAL_PART_BITS; x->sig_hi += (uhwi) 1 << (s - 1); x->sig_lo = x->sig_hi >> s; x->sig_hi = 0; } else { x->sig_lo += (uhwi) 1 << (s - 1); if (x->sig_lo & ((uhwi) 1 << SREAL_PART_BITS)) { x->sig_hi++; x->sig_lo -= (uhwi) 1 << SREAL_PART_BITS; } x->sig_lo >>= s; x->sig_lo |= (x->sig_hi & (((uhwi) 1 << s) - 1)) << (SREAL_PART_BITS - s); x->sig_hi >>= s; } #else x->sig += (uhwi) 1 << (s - 1); x->sig >>= s; #endif } /* Normalize *X. */ static void normalize (sreal *x) { #if SREAL_PART_BITS < 32 int shift; HOST_WIDE_INT mask; if (x->sig_lo == 0 && x->sig_hi == 0) { x->exp = -SREAL_MAX_EXP; } else if (x->sig_hi < SREAL_MIN_SIG) { if (x->sig_hi == 0) { /* Move lower part of significant to higher part. */ x->sig_hi = x->sig_lo; x->sig_lo = 0; x->exp -= SREAL_PART_BITS; } shift = 0; while (x->sig_hi < SREAL_MIN_SIG) { x->sig_hi <<= 1; x->exp--; shift++; } /* Check underflow. */ if (x->exp < -SREAL_MAX_EXP) { x->exp = -SREAL_MAX_EXP; x->sig_hi = 0; x->sig_lo = 0; } else if (shift) { mask = (1 << SREAL_PART_BITS) - (1 << (SREAL_PART_BITS - shift)); x->sig_hi |= (x->sig_lo & mask) >> (SREAL_PART_BITS - shift); x->sig_lo = (x->sig_lo << shift) & (((uhwi) 1 << SREAL_PART_BITS) - 1); } } else if (x->sig_hi > SREAL_MAX_SIG) { unsigned HOST_WIDE_INT tmp = x->sig_hi; /* Find out how many bits will be shifted. */ shift = 0; do { tmp >>= 1; shift++; } while (tmp > SREAL_MAX_SIG); /* Round the number. */ x->sig_lo += (uhwi) 1 << (shift - 1); x->sig_lo >>= shift; x->sig_lo += ((x->sig_hi & (((uhwi) 1 << shift) - 1)) << (SREAL_PART_BITS - shift)); x->sig_hi >>= shift; x->exp += shift; if (x->sig_lo & ((uhwi) 1 << SREAL_PART_BITS)) { x->sig_lo -= (uhwi) 1 << SREAL_PART_BITS; x->sig_hi++; if (x->sig_hi > SREAL_MAX_SIG) { /* x->sig_hi was SREAL_MAX_SIG before increment so now last bit is zero. */ x->sig_hi >>= 1; x->sig_lo >>= 1; x->exp++; } } /* Check overflow. */ if (x->exp > SREAL_MAX_EXP) { x->exp = SREAL_MAX_EXP; x->sig_hi = SREAL_MAX_SIG; x->sig_lo = SREAL_MAX_SIG; } } #else if (x->sig == 0) { x->exp = -SREAL_MAX_EXP; } else if (x->sig < SREAL_MIN_SIG) { do { x->sig <<= 1; x->exp--; } while (x->sig < SREAL_MIN_SIG); /* Check underflow. */ if (x->exp < -SREAL_MAX_EXP) { x->exp = -SREAL_MAX_EXP; x->sig = 0; } } else if (x->sig > SREAL_MAX_SIG) { int last_bit; do { last_bit = x->sig & 1; x->sig >>= 1; x->exp++; } while (x->sig > SREAL_MAX_SIG); /* Round the number. */ x->sig += last_bit; if (x->sig > SREAL_MAX_SIG) { x->sig >>= 1; x->exp++; } /* Check overflow. */ if (x->exp > SREAL_MAX_EXP) { x->exp = SREAL_MAX_EXP; x->sig = SREAL_MAX_SIG; } } #endif } /* Set *R to SIG * 2 ^ EXP. Return R. */ sreal * sreal_init (sreal *r, unsigned HOST_WIDE_INT sig, signed int exp) { #if SREAL_PART_BITS < 32 r->sig_lo = 0; r->sig_hi = sig; r->exp = exp - 16; #else r->sig = sig; r->exp = exp; #endif normalize (r); return r; } /* Return integer value of *R. */ HOST_WIDE_INT sreal_to_int (sreal *r) { #if SREAL_PART_BITS < 32 if (r->exp <= -SREAL_BITS) return 0; if (r->exp >= 0) return MAX_HOST_WIDE_INT; return ((r->sig_hi << SREAL_PART_BITS) + r->sig_lo) >> -r->exp; #else if (r->exp <= -SREAL_BITS) return 0; if (r->exp >= SREAL_PART_BITS) return MAX_HOST_WIDE_INT; if (r->exp > 0) return r->sig << r->exp; if (r->exp < 0) return r->sig >> -r->exp; return r->sig; #endif } /* Compare *A and *B. Return -1 if *A < *B, 1 if *A > *B and 0 if *A == *B. */ int sreal_compare (sreal *a, sreal *b) { if (a->exp > b->exp) return 1; if (a->exp < b->exp) return -1; #if SREAL_PART_BITS < 32 if (a->sig_hi > b->sig_hi) return 1; if (a->sig_hi < b->sig_hi) return -1; if (a->sig_lo > b->sig_lo) return 1; if (a->sig_lo < b->sig_lo) return -1; #else if (a->sig > b->sig) return 1; if (a->sig < b->sig) return -1; #endif return 0; } /* *R = *A + *B. Return R. */ sreal * sreal_add (sreal *r, sreal *a, sreal *b) { int dexp; sreal tmp; sreal *bb; if (sreal_compare (a, b) < 0) { sreal *swap; swap = a; a = b; b = swap; } dexp = a->exp - b->exp; r->exp = a->exp; if (dexp > SREAL_BITS) { #if SREAL_PART_BITS < 32 r->sig_hi = a->sig_hi; r->sig_lo = a->sig_lo; #else r->sig = a->sig; #endif return r; } if (dexp == 0) bb = b; else { copy (&tmp, b); shift_right (&tmp, dexp); bb = &tmp; } #if SREAL_PART_BITS < 32 r->sig_hi = a->sig_hi + bb->sig_hi; r->sig_lo = a->sig_lo + bb->sig_lo; if (r->sig_lo & ((uhwi) 1 << SREAL_PART_BITS)) { r->sig_hi++; r->sig_lo -= (uhwi) 1 << SREAL_PART_BITS; } #else r->sig = a->sig + bb->sig; #endif normalize (r); return r; } /* *R = *A - *B. Return R. */ sreal * sreal_sub (sreal *r, sreal *a, sreal *b) { int dexp; sreal tmp; sreal *bb; gcc_assert (sreal_compare (a, b) >= 0); dexp = a->exp - b->exp; r->exp = a->exp; if (dexp > SREAL_BITS) { #if SREAL_PART_BITS < 32 r->sig_hi = a->sig_hi; r->sig_lo = a->sig_lo; #else r->sig = a->sig; #endif return r; } if (dexp == 0) bb = b; else { copy (&tmp, b); shift_right (&tmp, dexp); bb = &tmp; } #if SREAL_PART_BITS < 32 if (a->sig_lo < bb->sig_lo) { r->sig_hi = a->sig_hi - bb->sig_hi - 1; r->sig_lo = a->sig_lo + ((uhwi) 1 << SREAL_PART_BITS) - bb->sig_lo; } else { r->sig_hi = a->sig_hi - bb->sig_hi; r->sig_lo = a->sig_lo - bb->sig_lo; } #else r->sig = a->sig - bb->sig; #endif normalize (r); return r; } /* *R = *A * *B. Return R. */ sreal * sreal_mul (sreal *r, sreal *a, sreal *b) { #if SREAL_PART_BITS < 32 if (a->sig_hi < SREAL_MIN_SIG || b->sig_hi < SREAL_MIN_SIG) { r->sig_lo = 0; r->sig_hi = 0; r->exp = -SREAL_MAX_EXP; } else { unsigned HOST_WIDE_INT tmp1, tmp2, tmp3; if (sreal_compare (a, b) < 0) { sreal *swap; swap = a; a = b; b = swap; } r->exp = a->exp + b->exp + SREAL_PART_BITS; tmp1 = a->sig_lo * b->sig_lo; tmp2 = a->sig_lo * b->sig_hi; tmp3 = a->sig_hi * b->sig_lo + (tmp1 >> SREAL_PART_BITS); r->sig_hi = a->sig_hi * b->sig_hi; r->sig_hi += (tmp2 >> SREAL_PART_BITS) + (tmp3 >> SREAL_PART_BITS); tmp2 &= ((uhwi) 1 << SREAL_PART_BITS) - 1; tmp3 &= ((uhwi) 1 << SREAL_PART_BITS) - 1; tmp1 = tmp2 + tmp3; r->sig_lo = tmp1 & (((uhwi) 1 << SREAL_PART_BITS) - 1); r->sig_hi += tmp1 >> SREAL_PART_BITS; normalize (r); } #else if (a->sig < SREAL_MIN_SIG || b->sig < SREAL_MIN_SIG) { r->sig = 0; r->exp = -SREAL_MAX_EXP; } else { r->sig = a->sig * b->sig; r->exp = a->exp + b->exp; normalize (r); } #endif return r; } /* *R = *A / *B. Return R. */ sreal * sreal_div (sreal *r, sreal *a, sreal *b) { #if SREAL_PART_BITS < 32 unsigned HOST_WIDE_INT tmp, tmp1, tmp2; gcc_assert (b->sig_hi >= SREAL_MIN_SIG); if (a->sig_hi < SREAL_MIN_SIG) { r->sig_hi = 0; r->sig_lo = 0; r->exp = -SREAL_MAX_EXP; } else { /* Since division by the whole number is pretty ugly to write we are dividing by first 3/4 of bits of number. */ tmp1 = (a->sig_hi << SREAL_PART_BITS) + a->sig_lo; tmp2 = ((b->sig_hi << (SREAL_PART_BITS / 2)) + (b->sig_lo >> (SREAL_PART_BITS / 2))); if (b->sig_lo & ((uhwi) 1 << ((SREAL_PART_BITS / 2) - 1))) tmp2++; r->sig_lo = 0; tmp = tmp1 / tmp2; tmp1 = (tmp1 % tmp2) << (SREAL_PART_BITS / 2); r->sig_hi = tmp << SREAL_PART_BITS; tmp = tmp1 / tmp2; tmp1 = (tmp1 % tmp2) << (SREAL_PART_BITS / 2); r->sig_hi += tmp << (SREAL_PART_BITS / 2); tmp = tmp1 / tmp2; r->sig_hi += tmp; r->exp = a->exp - b->exp - SREAL_BITS - SREAL_PART_BITS / 2; normalize (r); } #else gcc_assert (b->sig != 0); r->sig = (a->sig << SREAL_PART_BITS) / b->sig; r->exp = a->exp - b->exp - SREAL_PART_BITS; normalize (r); #endif return r; }