/* Simple data type for positive real numbers for the GNU compiler. Copyright (C) 2002-2014 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This library supports positive real numbers and 0; inf and nan are NOT supported. It is written to be simple and fast. Value of sreal is x = sig * 2 ^ exp where sig = significant (for < 64-bit machines sig = sig_lo + sig_hi * 2 ^ SREAL_PART_BITS) exp = exponent One uint64_t is used for the significant. Only a half of significant bits is used (in normalized sreals) so that we do not have problems with overflow, for example when c->sig = a->sig * b->sig. So the precision is 32-bit. Invariant: The numbers are normalized before and after each call of sreal_*. Normalized sreals: All numbers (except zero) meet following conditions: SREAL_MIN_SIG <= sig && sig <= SREAL_MAX_SIG -SREAL_MAX_EXP <= exp && exp <= SREAL_MAX_EXP If the number would be too large, it is set to upper bounds of these conditions. If the number is zero or would be too small it meets following conditions: sig == 0 && exp == -SREAL_MAX_EXP */ #include "config.h" #include "system.h" #include "coretypes.h" #include "sreal.h" /* Print the content of struct sreal. */ void sreal::dump (FILE *file) const { fprintf (file, "(%" PRIu64 " * 2^%d)", m_sig, m_exp); } DEBUG_FUNCTION void debug (sreal &ref) { ref.dump (stderr); } DEBUG_FUNCTION void debug (sreal *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "\n"); } /* Shift this right by S bits. Needed: 0 < S <= SREAL_BITS. When the most significant bit shifted out is 1, add 1 to this (rounding). */ void sreal::shift_right (int s) { gcc_assert (s > 0); gcc_assert (s <= SREAL_BITS); /* Exponent should never be so large because shift_right is used only by sreal_add and sreal_sub ant thus the number cannot be shifted out from exponent range. */ gcc_assert (m_exp + s <= SREAL_MAX_EXP); m_exp += s; m_sig += (uint64_t) 1 << (s - 1); m_sig >>= s; } /* Normalize *this. */ void sreal::normalize () { if (m_sig == 0) { m_exp = -SREAL_MAX_EXP; } else if (m_sig < SREAL_MIN_SIG) { do { m_sig <<= 1; m_exp--; } while (m_sig < SREAL_MIN_SIG); /* Check underflow. */ if (m_exp < -SREAL_MAX_EXP) { m_exp = -SREAL_MAX_EXP; m_sig = 0; } } else if (m_sig > SREAL_MAX_SIG) { int last_bit; do { last_bit = m_sig & 1; m_sig >>= 1; m_exp++; } while (m_sig > SREAL_MAX_SIG); /* Round the number. */ m_sig += last_bit; if (m_sig > SREAL_MAX_SIG) { m_sig >>= 1; m_exp++; } /* Check overflow. */ if (m_exp > SREAL_MAX_EXP) { m_exp = SREAL_MAX_EXP; m_sig = SREAL_MAX_SIG; } } } /* Return integer value of *this. */ int64_t sreal::to_int () const { if (m_exp <= -SREAL_BITS) return 0; if (m_exp >= SREAL_PART_BITS) return INTTYPE_MAXIMUM (int64_t); if (m_exp > 0) return m_sig << m_exp; if (m_exp < 0) return m_sig >> -m_exp; return m_sig; } /* Return *this + other. */ sreal sreal::operator+ (const sreal &other) const { int dexp; sreal tmp, r; const sreal *a_p = this, *b_p = &other, *bb; if (*a_p < *b_p) { const sreal *swap; swap = a_p; a_p = b_p; b_p = swap; } dexp = a_p->m_exp - b_p->m_exp; r.m_exp = a_p->m_exp; if (dexp > SREAL_BITS) { r.m_sig = a_p->m_sig; return r; } if (dexp == 0) bb = b_p; else { tmp = *b_p; tmp.shift_right (dexp); bb = &tmp; } r.m_sig = a_p->m_sig + bb->m_sig; r.normalize (); return r; } /* Return *this - other. */ sreal sreal::operator- (const sreal &other) const { int dexp; sreal tmp, r; const sreal *bb; gcc_assert (*this >= other); dexp = m_exp - other.m_exp; r.m_exp = m_exp; if (dexp > SREAL_BITS) { r.m_sig = m_sig; return r; } if (dexp == 0) bb = &other; else { tmp = other; tmp.shift_right (dexp); bb = &tmp; } r.m_sig = m_sig - bb->m_sig; r.normalize (); return r; } /* Return *this * other. */ sreal sreal::operator* (const sreal &other) const { sreal r; if (m_sig < SREAL_MIN_SIG || other.m_sig < SREAL_MIN_SIG) { r.m_sig = 0; r.m_exp = -SREAL_MAX_EXP; } else { r.m_sig = m_sig * other.m_sig; r.m_exp = m_exp + other.m_exp; r.normalize (); } return r; } /* Return *this / other. */ sreal sreal::operator/ (const sreal &other) const { gcc_assert (other.m_sig != 0); sreal r; r.m_sig = (m_sig << SREAL_PART_BITS) / other.m_sig; r.m_exp = m_exp - other.m_exp - SREAL_PART_BITS; r.normalize (); return r; }