/* { dg-require-effective-target vect_float } */ #include #include "tree-vect.h" #define N 256 float pa[N] __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))); float pb[N] __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57}; float pc[N] __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}; /* Check handling of unaligned accesses when the misalignment is known at compile time and different accesses have the same misalignment (e.g. peeling to align one access will align all accesses with the same misalignment. Also, the number of peeled iterations is known in this case, and the vectorizer can use this information (generate prolog and epilog loops with known number of iterations, and only if needed). */ __attribute__ ((noinline)) int main1 () { int i; for (i = 0; i < 10; i++) { pa[i+1] = pb[i+1] * pc[i+1]; } /* check results: */ for (i = 0; i < 10; i++) { if (pa[i+1] != (pb[i+1] * pc[i+1])) abort (); } return 0; } __attribute__ ((noinline)) int main2 () { int i; for (i = 0; i < 12; i++) { pa[i+1] = pb[i+1] * pc[i+1]; } /* check results: */ for (i = 0; i < 12; i++) { if (pa[i+1] != (pb[i+1] * pc[i+1])) abort (); } return 0; } __attribute__ ((noinline)) int main3 (int n) { int i; for (i = 0; i < n; i++) { pa[i+1] = pb[i+1] * pc[i+1]; } /* check results: */ for (i = 0; i < n; i++) { if (pa[i+1] != (pb[i+1] * pc[i+1])) abort (); } return 0; } int main (void) { int i; check_vect (); main1 (); main2 (); main3 (N-1); return 0; } /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 3 "vect" } } */ /* { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 9 "vect" { target vect_hw_misalign } } } */ /* { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 0 "vect" { xfail vect_hw_misalign } } } */ /* { dg-final { scan-tree-dump-times "Alignment of access forced using peeling" 3 "vect" { xfail vect_hw_misalign } } } */ /* { dg-final { cleanup-tree-dump "vect" } } */