/* Data references and dependences detectors. Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Sebastian Pop This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This pass walks a given loop structure searching for array references. The information about the array accesses is recorded in DATA_REFERENCE structures. The basic test for determining the dependences is: given two access functions chrec1 and chrec2 to a same array, and x and y two vectors from the iteration domain, the same element of the array is accessed twice at iterations x and y if and only if: | chrec1 (x) == chrec2 (y). The goals of this analysis are: - to determine the independence: the relation between two independent accesses is qualified with the chrec_known (this information allows a loop parallelization), - when two data references access the same data, to qualify the dependence relation with classic dependence representations: - distance vectors - direction vectors - loop carried level dependence - polyhedron dependence or with the chains of recurrences based representation, - to define a knowledge base for storing the data dependence information, - to define an interface to access this data. Definitions: - subscript: given two array accesses a subscript is the tuple composed of the access functions for a given dimension. Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts: (f1, g1), (f2, g2), (f3, g3). - Diophantine equation: an equation whose coefficients and solutions are integer constants, for example the equation | 3*x + 2*y = 1 has an integer solution x = 1 and y = -1. References: - "Advanced Compilation for High Performance Computing" by Randy Allen and Ken Kennedy. http://citeseer.ist.psu.edu/goff91practical.html - "Loop Transformations for Restructuring Compilers - The Foundations" by Utpal Banerjee. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "gimple-pretty-print.h" #include "tree-flow.h" #include "cfgloop.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "tree-pass.h" #include "langhooks.h" #include "tree-affine.h" static struct datadep_stats { int num_dependence_tests; int num_dependence_dependent; int num_dependence_independent; int num_dependence_undetermined; int num_subscript_tests; int num_subscript_undetermined; int num_same_subscript_function; int num_ziv; int num_ziv_independent; int num_ziv_dependent; int num_ziv_unimplemented; int num_siv; int num_siv_independent; int num_siv_dependent; int num_siv_unimplemented; int num_miv; int num_miv_independent; int num_miv_dependent; int num_miv_unimplemented; } dependence_stats; static bool subscript_dependence_tester_1 (struct data_dependence_relation *, struct data_reference *, struct data_reference *, struct loop *); /* Returns true iff A divides B. */ static inline bool tree_fold_divides_p (const_tree a, const_tree b) { gcc_assert (TREE_CODE (a) == INTEGER_CST); gcc_assert (TREE_CODE (b) == INTEGER_CST); return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a)); } /* Returns true iff A divides B. */ static inline bool int_divides_p (int a, int b) { return ((b % a) == 0); } /* Dump into FILE all the data references from DATAREFS. */ void dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs) { unsigned int i; struct data_reference *dr; FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr) dump_data_reference (file, dr); } /* Dump into STDERR all the data references from DATAREFS. */ DEBUG_FUNCTION void debug_data_references (VEC (data_reference_p, heap) *datarefs) { dump_data_references (stderr, datarefs); } /* Dump to STDERR all the dependence relations from DDRS. */ DEBUG_FUNCTION void debug_data_dependence_relations (VEC (ddr_p, heap) *ddrs) { dump_data_dependence_relations (stderr, ddrs); } /* Dump into FILE all the dependence relations from DDRS. */ void dump_data_dependence_relations (FILE *file, VEC (ddr_p, heap) *ddrs) { unsigned int i; struct data_dependence_relation *ddr; FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr) dump_data_dependence_relation (file, ddr); } /* Print to STDERR the data_reference DR. */ DEBUG_FUNCTION void debug_data_reference (struct data_reference *dr) { dump_data_reference (stderr, dr); } /* Dump function for a DATA_REFERENCE structure. */ void dump_data_reference (FILE *outf, struct data_reference *dr) { unsigned int i; fprintf (outf, "#(Data Ref: \n"); fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index); fprintf (outf, "# stmt: "); print_gimple_stmt (outf, DR_STMT (dr), 0, 0); fprintf (outf, "# ref: "); print_generic_stmt (outf, DR_REF (dr), 0); fprintf (outf, "# base_object: "); print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0); for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++) { fprintf (outf, "# Access function %d: ", i); print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0); } fprintf (outf, "#)\n"); } /* Dumps the affine function described by FN to the file OUTF. */ static void dump_affine_function (FILE *outf, affine_fn fn) { unsigned i; tree coef; print_generic_expr (outf, VEC_index (tree, fn, 0), TDF_SLIM); for (i = 1; VEC_iterate (tree, fn, i, coef); i++) { fprintf (outf, " + "); print_generic_expr (outf, coef, TDF_SLIM); fprintf (outf, " * x_%u", i); } } /* Dumps the conflict function CF to the file OUTF. */ static void dump_conflict_function (FILE *outf, conflict_function *cf) { unsigned i; if (cf->n == NO_DEPENDENCE) fprintf (outf, "no dependence\n"); else if (cf->n == NOT_KNOWN) fprintf (outf, "not known\n"); else { for (i = 0; i < cf->n; i++) { fprintf (outf, "["); dump_affine_function (outf, cf->fns[i]); fprintf (outf, "]\n"); } } } /* Dump function for a SUBSCRIPT structure. */ void dump_subscript (FILE *outf, struct subscript *subscript) { conflict_function *cf = SUB_CONFLICTS_IN_A (subscript); fprintf (outf, "\n (subscript \n"); fprintf (outf, " iterations_that_access_an_element_twice_in_A: "); dump_conflict_function (outf, cf); if (CF_NONTRIVIAL_P (cf)) { tree last_iteration = SUB_LAST_CONFLICT (subscript); fprintf (outf, " last_conflict: "); print_generic_stmt (outf, last_iteration, 0); } cf = SUB_CONFLICTS_IN_B (subscript); fprintf (outf, " iterations_that_access_an_element_twice_in_B: "); dump_conflict_function (outf, cf); if (CF_NONTRIVIAL_P (cf)) { tree last_iteration = SUB_LAST_CONFLICT (subscript); fprintf (outf, " last_conflict: "); print_generic_stmt (outf, last_iteration, 0); } fprintf (outf, " (Subscript distance: "); print_generic_stmt (outf, SUB_DISTANCE (subscript), 0); fprintf (outf, " )\n"); fprintf (outf, " )\n"); } /* Print the classic direction vector DIRV to OUTF. */ void print_direction_vector (FILE *outf, lambda_vector dirv, int length) { int eq; for (eq = 0; eq < length; eq++) { enum data_dependence_direction dir = ((enum data_dependence_direction) dirv[eq]); switch (dir) { case dir_positive: fprintf (outf, " +"); break; case dir_negative: fprintf (outf, " -"); break; case dir_equal: fprintf (outf, " ="); break; case dir_positive_or_equal: fprintf (outf, " +="); break; case dir_positive_or_negative: fprintf (outf, " +-"); break; case dir_negative_or_equal: fprintf (outf, " -="); break; case dir_star: fprintf (outf, " *"); break; default: fprintf (outf, "indep"); break; } } fprintf (outf, "\n"); } /* Print a vector of direction vectors. */ void print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects, int length) { unsigned j; lambda_vector v; FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, v) print_direction_vector (outf, v, length); } /* Print out a vector VEC of length N to OUTFILE. */ static inline void print_lambda_vector (FILE * outfile, lambda_vector vector, int n) { int i; for (i = 0; i < n; i++) fprintf (outfile, "%3d ", vector[i]); fprintf (outfile, "\n"); } /* Print a vector of distance vectors. */ void print_dist_vectors (FILE *outf, VEC (lambda_vector, heap) *dist_vects, int length) { unsigned j; lambda_vector v; FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, v) print_lambda_vector (outf, v, length); } /* Debug version. */ DEBUG_FUNCTION void debug_data_dependence_relation (struct data_dependence_relation *ddr) { dump_data_dependence_relation (stderr, ddr); } /* Dump function for a DATA_DEPENDENCE_RELATION structure. */ void dump_data_dependence_relation (FILE *outf, struct data_dependence_relation *ddr) { struct data_reference *dra, *drb; fprintf (outf, "(Data Dep: \n"); if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) { if (ddr) { dra = DDR_A (ddr); drb = DDR_B (ddr); if (dra) dump_data_reference (outf, dra); else fprintf (outf, " (nil)\n"); if (drb) dump_data_reference (outf, drb); else fprintf (outf, " (nil)\n"); } fprintf (outf, " (don't know)\n)\n"); return; } dra = DDR_A (ddr); drb = DDR_B (ddr); dump_data_reference (outf, dra); dump_data_reference (outf, drb); if (DDR_ARE_DEPENDENT (ddr) == chrec_known) fprintf (outf, " (no dependence)\n"); else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE) { unsigned int i; struct loop *loopi; for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) { fprintf (outf, " access_fn_A: "); print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0); fprintf (outf, " access_fn_B: "); print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0); dump_subscript (outf, DDR_SUBSCRIPT (ddr, i)); } fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr)); fprintf (outf, " loop nest: ("); FOR_EACH_VEC_ELT (loop_p, DDR_LOOP_NEST (ddr), i, loopi) fprintf (outf, "%d ", loopi->num); fprintf (outf, ")\n"); for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++) { fprintf (outf, " distance_vector: "); print_lambda_vector (outf, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr)); } for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++) { fprintf (outf, " direction_vector: "); print_direction_vector (outf, DDR_DIR_VECT (ddr, i), DDR_NB_LOOPS (ddr)); } } fprintf (outf, ")\n"); } /* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */ void dump_data_dependence_direction (FILE *file, enum data_dependence_direction dir) { switch (dir) { case dir_positive: fprintf (file, "+"); break; case dir_negative: fprintf (file, "-"); break; case dir_equal: fprintf (file, "="); break; case dir_positive_or_negative: fprintf (file, "+-"); break; case dir_positive_or_equal: fprintf (file, "+="); break; case dir_negative_or_equal: fprintf (file, "-="); break; case dir_star: fprintf (file, "*"); break; default: break; } } /* Dumps the distance and direction vectors in FILE. DDRS contains the dependence relations, and VECT_SIZE is the size of the dependence vectors, or in other words the number of loops in the considered nest. */ void dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs) { unsigned int i, j; struct data_dependence_relation *ddr; lambda_vector v; FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr) if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr)) { FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), j, v) { fprintf (file, "DISTANCE_V ("); print_lambda_vector (file, v, DDR_NB_LOOPS (ddr)); fprintf (file, ")\n"); } FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), j, v) { fprintf (file, "DIRECTION_V ("); print_direction_vector (file, v, DDR_NB_LOOPS (ddr)); fprintf (file, ")\n"); } } fprintf (file, "\n\n"); } /* Dumps the data dependence relations DDRS in FILE. */ void dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs) { unsigned int i; struct data_dependence_relation *ddr; FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr) dump_data_dependence_relation (file, ddr); fprintf (file, "\n\n"); } /* Helper function for split_constant_offset. Expresses OP0 CODE OP1 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero constant of type ssizetype, and returns true. If we cannot do this with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false is returned. */ static bool split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1, tree *var, tree *off) { tree var0, var1; tree off0, off1; enum tree_code ocode = code; *var = NULL_TREE; *off = NULL_TREE; switch (code) { case INTEGER_CST: *var = build_int_cst (type, 0); *off = fold_convert (ssizetype, op0); return true; case POINTER_PLUS_EXPR: ocode = PLUS_EXPR; /* FALLTHROUGH */ case PLUS_EXPR: case MINUS_EXPR: split_constant_offset (op0, &var0, &off0); split_constant_offset (op1, &var1, &off1); *var = fold_build2 (code, type, var0, var1); *off = size_binop (ocode, off0, off1); return true; case MULT_EXPR: if (TREE_CODE (op1) != INTEGER_CST) return false; split_constant_offset (op0, &var0, &off0); *var = fold_build2 (MULT_EXPR, type, var0, op1); *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1)); return true; case ADDR_EXPR: { tree base, poffset; HOST_WIDE_INT pbitsize, pbitpos; enum machine_mode pmode; int punsignedp, pvolatilep; op0 = TREE_OPERAND (op0, 0); if (!handled_component_p (op0)) return false; base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode, &punsignedp, &pvolatilep, false); if (pbitpos % BITS_PER_UNIT != 0) return false; base = build_fold_addr_expr (base); off0 = ssize_int (pbitpos / BITS_PER_UNIT); if (poffset) { split_constant_offset (poffset, &poffset, &off1); off0 = size_binop (PLUS_EXPR, off0, off1); if (POINTER_TYPE_P (TREE_TYPE (base))) base = fold_build_pointer_plus (base, poffset); else base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base, fold_convert (TREE_TYPE (base), poffset)); } var0 = fold_convert (type, base); /* If variable length types are involved, punt, otherwise casts might be converted into ARRAY_REFs in gimplify_conversion. To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which possibly no longer appears in current GIMPLE, might resurface. This perhaps could run if (CONVERT_EXPR_P (var0)) { gimplify_conversion (&var0); // Attempt to fill in any within var0 found ARRAY_REF's // element size from corresponding op embedded ARRAY_REF, // if unsuccessful, just punt. } */ while (POINTER_TYPE_P (type)) type = TREE_TYPE (type); if (int_size_in_bytes (type) < 0) return false; *var = var0; *off = off0; return true; } case SSA_NAME: { gimple def_stmt = SSA_NAME_DEF_STMT (op0); enum tree_code subcode; if (gimple_code (def_stmt) != GIMPLE_ASSIGN) return false; var0 = gimple_assign_rhs1 (def_stmt); subcode = gimple_assign_rhs_code (def_stmt); var1 = gimple_assign_rhs2 (def_stmt); return split_constant_offset_1 (type, var0, subcode, var1, var, off); } CASE_CONVERT: { /* We must not introduce undefined overflow, and we must not change the value. Hence we're okay if the inner type doesn't overflow to start with (pointer or signed), the outer type also is an integer or pointer and the outer precision is at least as large as the inner. */ tree itype = TREE_TYPE (op0); if ((POINTER_TYPE_P (itype) || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype))) && TYPE_PRECISION (type) >= TYPE_PRECISION (itype) && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))) { split_constant_offset (op0, &var0, off); *var = fold_convert (type, var0); return true; } return false; } default: return false; } } /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF will be ssizetype. */ void split_constant_offset (tree exp, tree *var, tree *off) { tree type = TREE_TYPE (exp), otype, op0, op1, e, o; enum tree_code code; *var = exp; *off = ssize_int (0); STRIP_NOPS (exp); if (tree_is_chrec (exp) || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS) return; otype = TREE_TYPE (exp); code = TREE_CODE (exp); extract_ops_from_tree (exp, &code, &op0, &op1); if (split_constant_offset_1 (otype, op0, code, op1, &e, &o)) { *var = fold_convert (type, e); *off = o; } } /* Returns the address ADDR of an object in a canonical shape (without nop casts, and with type of pointer to the object). */ static tree canonicalize_base_object_address (tree addr) { tree orig = addr; STRIP_NOPS (addr); /* The base address may be obtained by casting from integer, in that case keep the cast. */ if (!POINTER_TYPE_P (TREE_TYPE (addr))) return orig; if (TREE_CODE (addr) != ADDR_EXPR) return addr; return build_fold_addr_expr (TREE_OPERAND (addr, 0)); } /* Analyzes the behavior of the memory reference DR in the innermost loop or basic block that contains it. Returns true if analysis succeed or false otherwise. */ bool dr_analyze_innermost (struct data_reference *dr) { gimple stmt = DR_STMT (dr); struct loop *loop = loop_containing_stmt (stmt); tree ref = DR_REF (dr); HOST_WIDE_INT pbitsize, pbitpos; tree base, poffset; enum machine_mode pmode; int punsignedp, pvolatilep; affine_iv base_iv, offset_iv; tree init, dinit, step; bool in_loop = (loop && loop->num); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "analyze_innermost: "); base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode, &punsignedp, &pvolatilep, false); gcc_assert (base != NULL_TREE); if (pbitpos % BITS_PER_UNIT != 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "failed: bit offset alignment.\n"); return false; } if (TREE_CODE (base) == MEM_REF) { if (!integer_zerop (TREE_OPERAND (base, 1))) { if (!poffset) { double_int moff = mem_ref_offset (base); poffset = double_int_to_tree (sizetype, moff); } else poffset = size_binop (PLUS_EXPR, poffset, TREE_OPERAND (base, 1)); } base = TREE_OPERAND (base, 0); } else base = build_fold_addr_expr (base); if (in_loop) { if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv, false)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "failed: evolution of base is not affine.\n"); return false; } } else { base_iv.base = base; base_iv.step = ssize_int (0); base_iv.no_overflow = true; } if (!poffset) { offset_iv.base = ssize_int (0); offset_iv.step = ssize_int (0); } else { if (!in_loop) { offset_iv.base = poffset; offset_iv.step = ssize_int (0); } else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset, &offset_iv, false)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "failed: evolution of offset is not" " affine.\n"); return false; } } init = ssize_int (pbitpos / BITS_PER_UNIT); split_constant_offset (base_iv.base, &base_iv.base, &dinit); init = size_binop (PLUS_EXPR, init, dinit); split_constant_offset (offset_iv.base, &offset_iv.base, &dinit); init = size_binop (PLUS_EXPR, init, dinit); step = size_binop (PLUS_EXPR, fold_convert (ssizetype, base_iv.step), fold_convert (ssizetype, offset_iv.step)); DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base); DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base); DR_INIT (dr) = init; DR_STEP (dr) = step; DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base)); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "success.\n"); return true; } /* Determines the base object and the list of indices of memory reference DR, analyzed in LOOP and instantiated in loop nest NEST. */ static void dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop) { VEC (tree, heap) *access_fns = NULL; tree ref, aref, op; tree base, off, access_fn; basic_block before_loop; /* If analyzing a basic-block there are no indices to analyze and thus no access functions. */ if (!nest) { DR_BASE_OBJECT (dr) = DR_REF (dr); DR_ACCESS_FNS (dr) = NULL; return; } ref = unshare_expr (DR_REF (dr)); before_loop = block_before_loop (nest); /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses into a two element array with a constant index. The base is then just the immediate underlying object. */ if (TREE_CODE (ref) == REALPART_EXPR) { ref = TREE_OPERAND (ref, 0); VEC_safe_push (tree, heap, access_fns, integer_zero_node); } else if (TREE_CODE (ref) == IMAGPART_EXPR) { ref = TREE_OPERAND (ref, 0); VEC_safe_push (tree, heap, access_fns, integer_one_node); } /* Analyze access functions of dimensions we know to be independent. */ aref = ref; while (handled_component_p (aref)) { if (TREE_CODE (aref) == ARRAY_REF) { op = TREE_OPERAND (aref, 1); access_fn = analyze_scalar_evolution (loop, op); access_fn = instantiate_scev (before_loop, loop, access_fn); VEC_safe_push (tree, heap, access_fns, access_fn); /* For ARRAY_REFs the base is the reference with the index replaced by zero if we can not strip it as the outermost component. */ if (aref == ref) ref = TREE_OPERAND (ref, 0); else TREE_OPERAND (aref, 1) = build_int_cst (TREE_TYPE (op), 0); } aref = TREE_OPERAND (aref, 0); } /* If the address operand of a MEM_REF base has an evolution in the analyzed nest, add it as an additional independent access-function. */ if (TREE_CODE (aref) == MEM_REF) { op = TREE_OPERAND (aref, 0); access_fn = analyze_scalar_evolution (loop, op); access_fn = instantiate_scev (before_loop, loop, access_fn); if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC) { base = initial_condition (access_fn); split_constant_offset (base, &base, &off); /* Fold the MEM_REF offset into the evolutions initial value to make more bases comparable. */ if (!integer_zerop (TREE_OPERAND (aref, 1))) { off = size_binop (PLUS_EXPR, off, fold_convert (ssizetype, TREE_OPERAND (aref, 1))); TREE_OPERAND (aref, 1) = build_int_cst (TREE_TYPE (TREE_OPERAND (aref, 1)), 0); } access_fn = chrec_replace_initial_condition (access_fn, fold_convert (TREE_TYPE (base), off)); TREE_OPERAND (aref, 0) = base; VEC_safe_push (tree, heap, access_fns, access_fn); } } DR_BASE_OBJECT (dr) = ref; DR_ACCESS_FNS (dr) = access_fns; } /* Extracts the alias analysis information from the memory reference DR. */ static void dr_analyze_alias (struct data_reference *dr) { tree ref = DR_REF (dr); tree base = get_base_address (ref), addr; if (INDIRECT_REF_P (base) || TREE_CODE (base) == MEM_REF) { addr = TREE_OPERAND (base, 0); if (TREE_CODE (addr) == SSA_NAME) DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr); } } /* Frees data reference DR. */ void free_data_ref (data_reference_p dr) { VEC_free (tree, heap, DR_ACCESS_FNS (dr)); free (dr); } /* Analyzes memory reference MEMREF accessed in STMT. The reference is read if IS_READ is true, write otherwise. Returns the data_reference description of MEMREF. NEST is the outermost loop in which the reference should be instantiated, LOOP is the loop in which the data reference should be analyzed. */ struct data_reference * create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt, bool is_read) { struct data_reference *dr; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Creating dr for "); print_generic_expr (dump_file, memref, TDF_SLIM); fprintf (dump_file, "\n"); } dr = XCNEW (struct data_reference); DR_STMT (dr) = stmt; DR_REF (dr) = memref; DR_IS_READ (dr) = is_read; dr_analyze_innermost (dr); dr_analyze_indices (dr, nest, loop); dr_analyze_alias (dr); if (dump_file && (dump_flags & TDF_DETAILS)) { unsigned i; fprintf (dump_file, "\tbase_address: "); print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM); fprintf (dump_file, "\n\toffset from base address: "); print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM); fprintf (dump_file, "\n\tconstant offset from base address: "); print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM); fprintf (dump_file, "\n\tstep: "); print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM); fprintf (dump_file, "\n\taligned to: "); print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM); fprintf (dump_file, "\n\tbase_object: "); print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM); fprintf (dump_file, "\n"); for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++) { fprintf (dump_file, "\tAccess function %d: ", i); print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM); } } return dr; } /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical expressions. */ static bool dr_equal_offsets_p1 (tree offset1, tree offset2) { bool res; STRIP_NOPS (offset1); STRIP_NOPS (offset2); if (offset1 == offset2) return true; if (TREE_CODE (offset1) != TREE_CODE (offset2) || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1))) return false; res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0), TREE_OPERAND (offset2, 0)); if (!res || !BINARY_CLASS_P (offset1)) return res; res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1), TREE_OPERAND (offset2, 1)); return res; } /* Check if DRA and DRB have equal offsets. */ bool dr_equal_offsets_p (struct data_reference *dra, struct data_reference *drb) { tree offset1, offset2; offset1 = DR_OFFSET (dra); offset2 = DR_OFFSET (drb); return dr_equal_offsets_p1 (offset1, offset2); } /* Returns true if FNA == FNB. */ static bool affine_function_equal_p (affine_fn fna, affine_fn fnb) { unsigned i, n = VEC_length (tree, fna); if (n != VEC_length (tree, fnb)) return false; for (i = 0; i < n; i++) if (!operand_equal_p (VEC_index (tree, fna, i), VEC_index (tree, fnb, i), 0)) return false; return true; } /* If all the functions in CF are the same, returns one of them, otherwise returns NULL. */ static affine_fn common_affine_function (conflict_function *cf) { unsigned i; affine_fn comm; if (!CF_NONTRIVIAL_P (cf)) return NULL; comm = cf->fns[0]; for (i = 1; i < cf->n; i++) if (!affine_function_equal_p (comm, cf->fns[i])) return NULL; return comm; } /* Returns the base of the affine function FN. */ static tree affine_function_base (affine_fn fn) { return VEC_index (tree, fn, 0); } /* Returns true if FN is a constant. */ static bool affine_function_constant_p (affine_fn fn) { unsigned i; tree coef; for (i = 1; VEC_iterate (tree, fn, i, coef); i++) if (!integer_zerop (coef)) return false; return true; } /* Returns true if FN is the zero constant function. */ static bool affine_function_zero_p (affine_fn fn) { return (integer_zerop (affine_function_base (fn)) && affine_function_constant_p (fn)); } /* Returns a signed integer type with the largest precision from TA and TB. */ static tree signed_type_for_types (tree ta, tree tb) { if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb)) return signed_type_for (ta); else return signed_type_for (tb); } /* Applies operation OP on affine functions FNA and FNB, and returns the result. */ static affine_fn affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb) { unsigned i, n, m; affine_fn ret; tree coef; if (VEC_length (tree, fnb) > VEC_length (tree, fna)) { n = VEC_length (tree, fna); m = VEC_length (tree, fnb); } else { n = VEC_length (tree, fnb); m = VEC_length (tree, fna); } ret = VEC_alloc (tree, heap, m); for (i = 0; i < n; i++) { tree type = signed_type_for_types (TREE_TYPE (VEC_index (tree, fna, i)), TREE_TYPE (VEC_index (tree, fnb, i))); VEC_quick_push (tree, ret, fold_build2 (op, type, VEC_index (tree, fna, i), VEC_index (tree, fnb, i))); } for (; VEC_iterate (tree, fna, i, coef); i++) VEC_quick_push (tree, ret, fold_build2 (op, signed_type_for (TREE_TYPE (coef)), coef, integer_zero_node)); for (; VEC_iterate (tree, fnb, i, coef); i++) VEC_quick_push (tree, ret, fold_build2 (op, signed_type_for (TREE_TYPE (coef)), integer_zero_node, coef)); return ret; } /* Returns the sum of affine functions FNA and FNB. */ static affine_fn affine_fn_plus (affine_fn fna, affine_fn fnb) { return affine_fn_op (PLUS_EXPR, fna, fnb); } /* Returns the difference of affine functions FNA and FNB. */ static affine_fn affine_fn_minus (affine_fn fna, affine_fn fnb) { return affine_fn_op (MINUS_EXPR, fna, fnb); } /* Frees affine function FN. */ static void affine_fn_free (affine_fn fn) { VEC_free (tree, heap, fn); } /* Determine for each subscript in the data dependence relation DDR the distance. */ static void compute_subscript_distance (struct data_dependence_relation *ddr) { conflict_function *cf_a, *cf_b; affine_fn fn_a, fn_b, diff; if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE) { unsigned int i; for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) { struct subscript *subscript; subscript = DDR_SUBSCRIPT (ddr, i); cf_a = SUB_CONFLICTS_IN_A (subscript); cf_b = SUB_CONFLICTS_IN_B (subscript); fn_a = common_affine_function (cf_a); fn_b = common_affine_function (cf_b); if (!fn_a || !fn_b) { SUB_DISTANCE (subscript) = chrec_dont_know; return; } diff = affine_fn_minus (fn_a, fn_b); if (affine_function_constant_p (diff)) SUB_DISTANCE (subscript) = affine_function_base (diff); else SUB_DISTANCE (subscript) = chrec_dont_know; affine_fn_free (diff); } } } /* Returns the conflict function for "unknown". */ static conflict_function * conflict_fn_not_known (void) { conflict_function *fn = XCNEW (conflict_function); fn->n = NOT_KNOWN; return fn; } /* Returns the conflict function for "independent". */ static conflict_function * conflict_fn_no_dependence (void) { conflict_function *fn = XCNEW (conflict_function); fn->n = NO_DEPENDENCE; return fn; } /* Returns true if the address of OBJ is invariant in LOOP. */ static bool object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj) { while (handled_component_p (obj)) { if (TREE_CODE (obj) == ARRAY_REF) { /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only need to check the stride and the lower bound of the reference. */ if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2), loop->num) || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3), loop->num)) return false; } else if (TREE_CODE (obj) == COMPONENT_REF) { if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2), loop->num)) return false; } obj = TREE_OPERAND (obj, 0); } if (!INDIRECT_REF_P (obj) && TREE_CODE (obj) != MEM_REF) return true; return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0), loop->num); } /* Returns false if we can prove that data references A and B do not alias, true otherwise. If LOOP_NEST is false no cross-iteration aliases are considered. */ bool dr_may_alias_p (const struct data_reference *a, const struct data_reference *b, bool loop_nest) { tree addr_a = DR_BASE_OBJECT (a); tree addr_b = DR_BASE_OBJECT (b); /* If we are not processing a loop nest but scalar code we do not need to care about possible cross-iteration dependences and thus can process the full original reference. Do so, similar to how loop invariant motion applies extra offset-based disambiguation. */ if (!loop_nest) { aff_tree off1, off2; double_int size1, size2; get_inner_reference_aff (DR_REF (a), &off1, &size1); get_inner_reference_aff (DR_REF (b), &off2, &size2); aff_combination_scale (&off1, double_int_minus_one); aff_combination_add (&off2, &off1); if (aff_comb_cannot_overlap_p (&off2, size1, size2)) return false; } if (DR_IS_WRITE (a) && DR_IS_WRITE (b)) return refs_output_dependent_p (addr_a, addr_b); else if (DR_IS_READ (a) && DR_IS_WRITE (b)) return refs_anti_dependent_p (addr_a, addr_b); return refs_may_alias_p (addr_a, addr_b); } static void compute_self_dependence (struct data_dependence_relation *); /* Initialize a data dependence relation between data accesses A and B. NB_LOOPS is the number of loops surrounding the references: the size of the classic distance/direction vectors. */ static struct data_dependence_relation * initialize_data_dependence_relation (struct data_reference *a, struct data_reference *b, VEC (loop_p, heap) *loop_nest) { struct data_dependence_relation *res; unsigned int i; res = XNEW (struct data_dependence_relation); DDR_A (res) = a; DDR_B (res) = b; DDR_LOOP_NEST (res) = NULL; DDR_REVERSED_P (res) = false; DDR_SUBSCRIPTS (res) = NULL; DDR_DIR_VECTS (res) = NULL; DDR_DIST_VECTS (res) = NULL; if (a == NULL || b == NULL) { DDR_ARE_DEPENDENT (res) = chrec_dont_know; return res; } /* If the data references do not alias, then they are independent. */ if (!dr_may_alias_p (a, b, loop_nest != NULL)) { DDR_ARE_DEPENDENT (res) = chrec_known; return res; } /* When the references are exactly the same, don't spend time doing the data dependence tests, just initialize the ddr and return. */ if (operand_equal_p (DR_REF (a), DR_REF (b), 0)) { DDR_AFFINE_P (res) = true; DDR_ARE_DEPENDENT (res) = NULL_TREE; DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a)); DDR_LOOP_NEST (res) = loop_nest; DDR_INNER_LOOP (res) = 0; DDR_SELF_REFERENCE (res) = true; compute_self_dependence (res); return res; } /* If the references do not access the same object, we do not know whether they alias or not. */ if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0)) { DDR_ARE_DEPENDENT (res) = chrec_dont_know; return res; } /* If the base of the object is not invariant in the loop nest, we cannot analyze it. TODO -- in fact, it would suffice to record that there may be arbitrary dependences in the loops where the base object varies. */ if (loop_nest && !object_address_invariant_in_loop_p (VEC_index (loop_p, loop_nest, 0), DR_BASE_OBJECT (a))) { DDR_ARE_DEPENDENT (res) = chrec_dont_know; return res; } /* If the number of dimensions of the access to not agree we can have a pointer access to a component of the array element type and an array access while the base-objects are still the same. Punt. */ if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)) { DDR_ARE_DEPENDENT (res) = chrec_dont_know; return res; } DDR_AFFINE_P (res) = true; DDR_ARE_DEPENDENT (res) = NULL_TREE; DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a)); DDR_LOOP_NEST (res) = loop_nest; DDR_INNER_LOOP (res) = 0; DDR_SELF_REFERENCE (res) = false; for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) { struct subscript *subscript; subscript = XNEW (struct subscript); SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known (); SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known (); SUB_LAST_CONFLICT (subscript) = chrec_dont_know; SUB_DISTANCE (subscript) = chrec_dont_know; VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript); } return res; } /* Frees memory used by the conflict function F. */ static void free_conflict_function (conflict_function *f) { unsigned i; if (CF_NONTRIVIAL_P (f)) { for (i = 0; i < f->n; i++) affine_fn_free (f->fns[i]); } free (f); } /* Frees memory used by SUBSCRIPTS. */ static void free_subscripts (VEC (subscript_p, heap) *subscripts) { unsigned i; subscript_p s; FOR_EACH_VEC_ELT (subscript_p, subscripts, i, s) { free_conflict_function (s->conflicting_iterations_in_a); free_conflict_function (s->conflicting_iterations_in_b); free (s); } VEC_free (subscript_p, heap, subscripts); } /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap description. */ static inline void finalize_ddr_dependent (struct data_dependence_relation *ddr, tree chrec) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "(dependence classified: "); print_generic_expr (dump_file, chrec, 0); fprintf (dump_file, ")\n"); } DDR_ARE_DEPENDENT (ddr) = chrec; free_subscripts (DDR_SUBSCRIPTS (ddr)); DDR_SUBSCRIPTS (ddr) = NULL; } /* The dependence relation DDR cannot be represented by a distance vector. */ static inline void non_affine_dependence_relation (struct data_dependence_relation *ddr) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n"); DDR_AFFINE_P (ddr) = false; } /* This section contains the classic Banerjee tests. */ /* Returns true iff CHREC_A and CHREC_B are not dependent on any index variables, i.e., if the ZIV (Zero Index Variable) test is true. */ static inline bool ziv_subscript_p (const_tree chrec_a, const_tree chrec_b) { return (evolution_function_is_constant_p (chrec_a) && evolution_function_is_constant_p (chrec_b)); } /* Returns true iff CHREC_A and CHREC_B are dependent on an index variable, i.e., if the SIV (Single Index Variable) test is true. */ static bool siv_subscript_p (const_tree chrec_a, const_tree chrec_b) { if ((evolution_function_is_constant_p (chrec_a) && evolution_function_is_univariate_p (chrec_b)) || (evolution_function_is_constant_p (chrec_b) && evolution_function_is_univariate_p (chrec_a))) return true; if (evolution_function_is_univariate_p (chrec_a) && evolution_function_is_univariate_p (chrec_b)) { switch (TREE_CODE (chrec_a)) { case POLYNOMIAL_CHREC: switch (TREE_CODE (chrec_b)) { case POLYNOMIAL_CHREC: if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b)) return false; default: return true; } default: return true; } } return false; } /* Creates a conflict function with N dimensions. The affine functions in each dimension follow. */ static conflict_function * conflict_fn (unsigned n, ...) { unsigned i; conflict_function *ret = XCNEW (conflict_function); va_list ap; gcc_assert (0 < n && n <= MAX_DIM); va_start(ap, n); ret->n = n; for (i = 0; i < n; i++) ret->fns[i] = va_arg (ap, affine_fn); va_end(ap); return ret; } /* Returns constant affine function with value CST. */ static affine_fn affine_fn_cst (tree cst) { affine_fn fn = VEC_alloc (tree, heap, 1); VEC_quick_push (tree, fn, cst); return fn; } /* Returns affine function with single variable, CST + COEF * x_DIM. */ static affine_fn affine_fn_univar (tree cst, unsigned dim, tree coef) { affine_fn fn = VEC_alloc (tree, heap, dim + 1); unsigned i; gcc_assert (dim > 0); VEC_quick_push (tree, fn, cst); for (i = 1; i < dim; i++) VEC_quick_push (tree, fn, integer_zero_node); VEC_quick_push (tree, fn, coef); return fn; } /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and *OVERLAPS_B are initialized to the functions that describe the relation between the elements accessed twice by CHREC_A and CHREC_B. For k >= 0, the following property is verified: CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ static void analyze_ziv_subscript (tree chrec_a, tree chrec_b, conflict_function **overlaps_a, conflict_function **overlaps_b, tree *last_conflicts) { tree type, difference; dependence_stats.num_ziv++; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "(analyze_ziv_subscript \n"); type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b)); chrec_a = chrec_convert (type, chrec_a, NULL); chrec_b = chrec_convert (type, chrec_b, NULL); difference = chrec_fold_minus (type, chrec_a, chrec_b); switch (TREE_CODE (difference)) { case INTEGER_CST: if (integer_zerop (difference)) { /* The difference is equal to zero: the accessed index overlaps for each iteration in the loop. */ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); *last_conflicts = chrec_dont_know; dependence_stats.num_ziv_dependent++; } else { /* The accesses do not overlap. */ *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_ziv_independent++; } break; default: /* We're not sure whether the indexes overlap. For the moment, conservatively answer "don't know". */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "ziv test failed: difference is non-integer.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; dependence_stats.num_ziv_unimplemented++; break; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, ")\n"); } /* Similar to max_stmt_executions_int, but returns the bound as a tree, and only if it fits to the int type. If this is not the case, or the bound on the number of iterations of LOOP could not be derived, returns chrec_dont_know. */ static tree max_stmt_executions_tree (struct loop *loop) { double_int nit; if (!max_stmt_executions (loop, true, &nit)) return chrec_dont_know; if (!double_int_fits_to_tree_p (unsigned_type_node, nit)) return chrec_dont_know; return double_int_to_tree (unsigned_type_node, nit); } /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a constant, and CHREC_B is an affine function. *OVERLAPS_A and *OVERLAPS_B are initialized to the functions that describe the relation between the elements accessed twice by CHREC_A and CHREC_B. For k >= 0, the following property is verified: CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ static void analyze_siv_subscript_cst_affine (tree chrec_a, tree chrec_b, conflict_function **overlaps_a, conflict_function **overlaps_b, tree *last_conflicts) { bool value0, value1, value2; tree type, difference, tmp; type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b)); chrec_a = chrec_convert (type, chrec_a, NULL); chrec_b = chrec_convert (type, chrec_b, NULL); difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a); if (!chrec_is_positive (initial_condition (difference), &value0)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "siv test failed: chrec is not positive.\n"); dependence_stats.num_siv_unimplemented++; *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; return; } else { if (value0 == false) { if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "siv test failed: chrec not positive.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; dependence_stats.num_siv_unimplemented++; return; } else { if (value1 == true) { /* Example: chrec_a = 12 chrec_b = {10, +, 1} */ if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference)) { HOST_WIDE_INT numiter; struct loop *loop = get_chrec_loop (chrec_b); *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); tmp = fold_build2 (EXACT_DIV_EXPR, type, fold_build1 (ABS_EXPR, type, difference), CHREC_RIGHT (chrec_b)); *overlaps_b = conflict_fn (1, affine_fn_cst (tmp)); *last_conflicts = integer_one_node; /* Perform weak-zero siv test to see if overlap is outside the loop bounds. */ numiter = max_stmt_executions_int (loop, true); if (numiter >= 0 && compare_tree_int (tmp, numiter) > 0) { free_conflict_function (*overlaps_a); free_conflict_function (*overlaps_b); *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_siv_independent++; return; } dependence_stats.num_siv_dependent++; return; } /* When the step does not divide the difference, there are no overlaps. */ else { *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_siv_independent++; return; } } else { /* Example: chrec_a = 12 chrec_b = {10, +, -1} In this case, chrec_a will not overlap with chrec_b. */ *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_siv_independent++; return; } } } else { if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "siv test failed: chrec not positive.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; dependence_stats.num_siv_unimplemented++; return; } else { if (value2 == false) { /* Example: chrec_a = 3 chrec_b = {10, +, -1} */ if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference)) { HOST_WIDE_INT numiter; struct loop *loop = get_chrec_loop (chrec_b); *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); tmp = fold_build2 (EXACT_DIV_EXPR, type, difference, CHREC_RIGHT (chrec_b)); *overlaps_b = conflict_fn (1, affine_fn_cst (tmp)); *last_conflicts = integer_one_node; /* Perform weak-zero siv test to see if overlap is outside the loop bounds. */ numiter = max_stmt_executions_int (loop, true); if (numiter >= 0 && compare_tree_int (tmp, numiter) > 0) { free_conflict_function (*overlaps_a); free_conflict_function (*overlaps_b); *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_siv_independent++; return; } dependence_stats.num_siv_dependent++; return; } /* When the step does not divide the difference, there are no overlaps. */ else { *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_siv_independent++; return; } } else { /* Example: chrec_a = 3 chrec_b = {4, +, 1} In this case, chrec_a will not overlap with chrec_b. */ *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_siv_independent++; return; } } } } } /* Helper recursive function for initializing the matrix A. Returns the initial value of CHREC. */ static tree initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult) { gcc_assert (chrec); switch (TREE_CODE (chrec)) { case POLYNOMIAL_CHREC: gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST); A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec)); return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult); case PLUS_EXPR: case MULT_EXPR: case MINUS_EXPR: { tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult); tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult); return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1); } case NOP_EXPR: { tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult); return chrec_convert (chrec_type (chrec), op, NULL); } case BIT_NOT_EXPR: { /* Handle ~X as -1 - X. */ tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult); return chrec_fold_op (MINUS_EXPR, chrec_type (chrec), build_int_cst (TREE_TYPE (chrec), -1), op); } case INTEGER_CST: return chrec; default: gcc_unreachable (); return NULL_TREE; } } #define FLOOR_DIV(x,y) ((x) / (y)) /* Solves the special case of the Diophantine equation: | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B) Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the number of iterations that loops X and Y run. The overlaps will be constructed as evolutions in dimension DIM. */ static void compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b, affine_fn *overlaps_a, affine_fn *overlaps_b, tree *last_conflicts, int dim) { if (((step_a > 0 && step_b > 0) || (step_a < 0 && step_b < 0))) { int step_overlaps_a, step_overlaps_b; int gcd_steps_a_b, last_conflict, tau2; gcd_steps_a_b = gcd (step_a, step_b); step_overlaps_a = step_b / gcd_steps_a_b; step_overlaps_b = step_a / gcd_steps_a_b; if (niter > 0) { tau2 = FLOOR_DIV (niter, step_overlaps_a); tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b)); last_conflict = tau2; *last_conflicts = build_int_cst (NULL_TREE, last_conflict); } else *last_conflicts = chrec_dont_know; *overlaps_a = affine_fn_univar (integer_zero_node, dim, build_int_cst (NULL_TREE, step_overlaps_a)); *overlaps_b = affine_fn_univar (integer_zero_node, dim, build_int_cst (NULL_TREE, step_overlaps_b)); } else { *overlaps_a = affine_fn_cst (integer_zero_node); *overlaps_b = affine_fn_cst (integer_zero_node); *last_conflicts = integer_zero_node; } } /* Solves the special case of a Diophantine equation where CHREC_A is an affine bivariate function, and CHREC_B is an affine univariate function. For example, | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z has the following overlapping functions: | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v FORNOW: This is a specialized implementation for a case occurring in a common benchmark. Implement the general algorithm. */ static void compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b, conflict_function **overlaps_a, conflict_function **overlaps_b, tree *last_conflicts) { bool xz_p, yz_p, xyz_p; int step_x, step_y, step_z; HOST_WIDE_INT niter_x, niter_y, niter_z, niter; affine_fn overlaps_a_xz, overlaps_b_xz; affine_fn overlaps_a_yz, overlaps_b_yz; affine_fn overlaps_a_xyz, overlaps_b_xyz; affine_fn ova1, ova2, ovb; tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz; step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a))); step_y = int_cst_value (CHREC_RIGHT (chrec_a)); step_z = int_cst_value (CHREC_RIGHT (chrec_b)); niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)), true); niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a), true); niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b), true); if (niter_x < 0 || niter_y < 0 || niter_z < 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "overlap steps test failed: no iteration counts.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; return; } niter = MIN (niter_x, niter_z); compute_overlap_steps_for_affine_univar (niter, step_x, step_z, &overlaps_a_xz, &overlaps_b_xz, &last_conflicts_xz, 1); niter = MIN (niter_y, niter_z); compute_overlap_steps_for_affine_univar (niter, step_y, step_z, &overlaps_a_yz, &overlaps_b_yz, &last_conflicts_yz, 2); niter = MIN (niter_x, niter_z); niter = MIN (niter_y, niter); compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z, &overlaps_a_xyz, &overlaps_b_xyz, &last_conflicts_xyz, 3); xz_p = !integer_zerop (last_conflicts_xz); yz_p = !integer_zerop (last_conflicts_yz); xyz_p = !integer_zerop (last_conflicts_xyz); if (xz_p || yz_p || xyz_p) { ova1 = affine_fn_cst (integer_zero_node); ova2 = affine_fn_cst (integer_zero_node); ovb = affine_fn_cst (integer_zero_node); if (xz_p) { affine_fn t0 = ova1; affine_fn t2 = ovb; ova1 = affine_fn_plus (ova1, overlaps_a_xz); ovb = affine_fn_plus (ovb, overlaps_b_xz); affine_fn_free (t0); affine_fn_free (t2); *last_conflicts = last_conflicts_xz; } if (yz_p) { affine_fn t0 = ova2; affine_fn t2 = ovb; ova2 = affine_fn_plus (ova2, overlaps_a_yz); ovb = affine_fn_plus (ovb, overlaps_b_yz); affine_fn_free (t0); affine_fn_free (t2); *last_conflicts = last_conflicts_yz; } if (xyz_p) { affine_fn t0 = ova1; affine_fn t2 = ova2; affine_fn t4 = ovb; ova1 = affine_fn_plus (ova1, overlaps_a_xyz); ova2 = affine_fn_plus (ova2, overlaps_a_xyz); ovb = affine_fn_plus (ovb, overlaps_b_xyz); affine_fn_free (t0); affine_fn_free (t2); affine_fn_free (t4); *last_conflicts = last_conflicts_xyz; } *overlaps_a = conflict_fn (2, ova1, ova2); *overlaps_b = conflict_fn (1, ovb); } else { *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); *last_conflicts = integer_zero_node; } affine_fn_free (overlaps_a_xz); affine_fn_free (overlaps_b_xz); affine_fn_free (overlaps_a_yz); affine_fn_free (overlaps_b_yz); affine_fn_free (overlaps_a_xyz); affine_fn_free (overlaps_b_xyz); } /* Copy the elements of vector VEC1 with length SIZE to VEC2. */ static void lambda_vector_copy (lambda_vector vec1, lambda_vector vec2, int size) { memcpy (vec2, vec1, size * sizeof (*vec1)); } /* Copy the elements of M x N matrix MAT1 to MAT2. */ static void lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2, int m, int n) { int i; for (i = 0; i < m; i++) lambda_vector_copy (mat1[i], mat2[i], n); } /* Store the N x N identity matrix in MAT. */ static void lambda_matrix_id (lambda_matrix mat, int size) { int i, j; for (i = 0; i < size; i++) for (j = 0; j < size; j++) mat[i][j] = (i == j) ? 1 : 0; } /* Return the first nonzero element of vector VEC1 between START and N. We must have START <= N. Returns N if VEC1 is the zero vector. */ static int lambda_vector_first_nz (lambda_vector vec1, int n, int start) { int j = start; while (j < n && vec1[j] == 0) j++; return j; } /* Add a multiple of row R1 of matrix MAT with N columns to row R2: R2 = R2 + CONST1 * R1. */ static void lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1) { int i; if (const1 == 0) return; for (i = 0; i < n; i++) mat[r2][i] += const1 * mat[r1][i]; } /* Swap rows R1 and R2 in matrix MAT. */ static void lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2) { lambda_vector row; row = mat[r1]; mat[r1] = mat[r2]; mat[r2] = row; } /* Multiply vector VEC1 of length SIZE by a constant CONST1, and store the result in VEC2. */ static void lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2, int size, int const1) { int i; if (const1 == 0) lambda_vector_clear (vec2, size); else for (i = 0; i < size; i++) vec2[i] = const1 * vec1[i]; } /* Negate vector VEC1 with length SIZE and store it in VEC2. */ static void lambda_vector_negate (lambda_vector vec1, lambda_vector vec2, int size) { lambda_vector_mult_const (vec1, vec2, size, -1); } /* Negate row R1 of matrix MAT which has N columns. */ static void lambda_matrix_row_negate (lambda_matrix mat, int n, int r1) { lambda_vector_negate (mat[r1], mat[r1], n); } /* Return true if two vectors are equal. */ static bool lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size) { int i; for (i = 0; i < size; i++) if (vec1[i] != vec2[i]) return false; return true; } /* Given an M x N integer matrix A, this function determines an M x M unimodular matrix U, and an M x N echelon matrix S such that "U.A = S". This decomposition is also known as "right Hermite". Ref: Algorithm 2.1 page 33 in "Loop Transformations for Restructuring Compilers" Utpal Banerjee. */ static void lambda_matrix_right_hermite (lambda_matrix A, int m, int n, lambda_matrix S, lambda_matrix U) { int i, j, i0 = 0; lambda_matrix_copy (A, S, m, n); lambda_matrix_id (U, m); for (j = 0; j < n; j++) { if (lambda_vector_first_nz (S[j], m, i0) < m) { ++i0; for (i = m - 1; i >= i0; i--) { while (S[i][j] != 0) { int sigma, factor, a, b; a = S[i-1][j]; b = S[i][j]; sigma = (a * b < 0) ? -1: 1; a = abs (a); b = abs (b); factor = sigma * (a / b); lambda_matrix_row_add (S, n, i, i-1, -factor); lambda_matrix_row_exchange (S, i, i-1); lambda_matrix_row_add (U, m, i, i-1, -factor); lambda_matrix_row_exchange (U, i, i-1); } } } } } /* Determines the overlapping elements due to accesses CHREC_A and CHREC_B, that are affine functions. This function cannot handle symbolic evolution functions, ie. when initial conditions are parameters, because it uses lambda matrices of integers. */ static void analyze_subscript_affine_affine (tree chrec_a, tree chrec_b, conflict_function **overlaps_a, conflict_function **overlaps_b, tree *last_conflicts) { unsigned nb_vars_a, nb_vars_b, dim; HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta; lambda_matrix A, U, S; struct obstack scratch_obstack; if (eq_evolutions_p (chrec_a, chrec_b)) { /* The accessed index overlaps for each iteration in the loop. */ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); *last_conflicts = chrec_dont_know; return; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "(analyze_subscript_affine_affine \n"); /* For determining the initial intersection, we have to solve a Diophantine equation. This is the most time consuming part. For answering to the question: "Is there a dependence?" we have to prove that there exists a solution to the Diophantine equation, and that the solution is in the iteration domain, i.e. the solution is positive or zero, and that the solution happens before the upper bound loop.nb_iterations. Otherwise there is no dependence. This function outputs a description of the iterations that hold the intersections. */ nb_vars_a = nb_vars_in_chrec (chrec_a); nb_vars_b = nb_vars_in_chrec (chrec_b); gcc_obstack_init (&scratch_obstack); dim = nb_vars_a + nb_vars_b; U = lambda_matrix_new (dim, dim, &scratch_obstack); A = lambda_matrix_new (dim, 1, &scratch_obstack); S = lambda_matrix_new (dim, 1, &scratch_obstack); init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1)); init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1)); gamma = init_b - init_a; /* Don't do all the hard work of solving the Diophantine equation when we already know the solution: for example, | {3, +, 1}_1 | {3, +, 4}_2 | gamma = 3 - 3 = 0. Then the first overlap occurs during the first iterations: | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x) */ if (gamma == 0) { if (nb_vars_a == 1 && nb_vars_b == 1) { HOST_WIDE_INT step_a, step_b; HOST_WIDE_INT niter, niter_a, niter_b; affine_fn ova, ovb; niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a), true); niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b), true); niter = MIN (niter_a, niter_b); step_a = int_cst_value (CHREC_RIGHT (chrec_a)); step_b = int_cst_value (CHREC_RIGHT (chrec_b)); compute_overlap_steps_for_affine_univar (niter, step_a, step_b, &ova, &ovb, last_conflicts, 1); *overlaps_a = conflict_fn (1, ova); *overlaps_b = conflict_fn (1, ovb); } else if (nb_vars_a == 2 && nb_vars_b == 1) compute_overlap_steps_for_affine_1_2 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts); else if (nb_vars_a == 1 && nb_vars_b == 2) compute_overlap_steps_for_affine_1_2 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts); else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "affine-affine test failed: too many variables.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; } goto end_analyze_subs_aa; } /* U.A = S */ lambda_matrix_right_hermite (A, dim, 1, S, U); if (S[0][0] < 0) { S[0][0] *= -1; lambda_matrix_row_negate (U, dim, 0); } gcd_alpha_beta = S[0][0]; /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5, but that is a quite strange case. Instead of ICEing, answer don't know. */ if (gcd_alpha_beta == 0) { *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; goto end_analyze_subs_aa; } /* The classic "gcd-test". */ if (!int_divides_p (gcd_alpha_beta, gamma)) { /* The "gcd-test" has determined that there is no integer solution, i.e. there is no dependence. */ *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; } /* Both access functions are univariate. This includes SIV and MIV cases. */ else if (nb_vars_a == 1 && nb_vars_b == 1) { /* Both functions should have the same evolution sign. */ if (((A[0][0] > 0 && -A[1][0] > 0) || (A[0][0] < 0 && -A[1][0] < 0))) { /* The solutions are given by: | | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0] | [u21 u22] [y0] For a given integer t. Using the following variables, | i0 = u11 * gamma / gcd_alpha_beta | j0 = u12 * gamma / gcd_alpha_beta | i1 = u21 | j1 = u22 the solutions are: | x0 = i0 + i1 * t, | y0 = j0 + j1 * t. */ HOST_WIDE_INT i0, j0, i1, j1; i0 = U[0][0] * gamma / gcd_alpha_beta; j0 = U[0][1] * gamma / gcd_alpha_beta; i1 = U[1][0]; j1 = U[1][1]; if ((i1 == 0 && i0 < 0) || (j1 == 0 && j0 < 0)) { /* There is no solution. FIXME: The case "i0 > nb_iterations, j0 > nb_iterations" falls in here, but for the moment we don't look at the upper bound of the iteration domain. */ *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; goto end_analyze_subs_aa; } if (i1 > 0 && j1 > 0) { HOST_WIDE_INT niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a), true); HOST_WIDE_INT niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b), true); HOST_WIDE_INT niter = MIN (niter_a, niter_b); /* (X0, Y0) is a solution of the Diophantine equation: "chrec_a (X0) = chrec_b (Y0)". */ HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1), CEIL (-j0, j1)); HOST_WIDE_INT x0 = i1 * tau1 + i0; HOST_WIDE_INT y0 = j1 * tau1 + j0; /* (X1, Y1) is the smallest positive solution of the eq "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the first conflict occurs. */ HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1); HOST_WIDE_INT x1 = x0 - i1 * min_multiple; HOST_WIDE_INT y1 = y0 - j1 * min_multiple; if (niter > 0) { HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1), FLOOR_DIV (niter - j0, j1)); HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1; /* If the overlap occurs outside of the bounds of the loop, there is no dependence. */ if (x1 >= niter || y1 >= niter) { *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; goto end_analyze_subs_aa; } else *last_conflicts = build_int_cst (NULL_TREE, last_conflict); } else *last_conflicts = chrec_dont_know; *overlaps_a = conflict_fn (1, affine_fn_univar (build_int_cst (NULL_TREE, x1), 1, build_int_cst (NULL_TREE, i1))); *overlaps_b = conflict_fn (1, affine_fn_univar (build_int_cst (NULL_TREE, y1), 1, build_int_cst (NULL_TREE, j1))); } else { /* FIXME: For the moment, the upper bound of the iteration domain for i and j is not checked. */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "affine-affine test failed: unimplemented.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; } } else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "affine-affine test failed: unimplemented.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; } } else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "affine-affine test failed: unimplemented.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; } end_analyze_subs_aa: obstack_free (&scratch_obstack, NULL); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " (overlaps_a = "); dump_conflict_function (dump_file, *overlaps_a); fprintf (dump_file, ")\n (overlaps_b = "); dump_conflict_function (dump_file, *overlaps_b); fprintf (dump_file, ")\n"); fprintf (dump_file, ")\n"); } } /* Returns true when analyze_subscript_affine_affine can be used for determining the dependence relation between chrec_a and chrec_b, that contain symbols. This function modifies chrec_a and chrec_b such that the analysis result is the same, and such that they don't contain symbols, and then can safely be passed to the analyzer. Example: The analysis of the following tuples of evolutions produce the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1 vs. {0, +, 1}_1 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1) {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1) */ static bool can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b) { tree diff, type, left_a, left_b, right_b; if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a)) || chrec_contains_symbols (CHREC_RIGHT (*chrec_b))) /* FIXME: For the moment not handled. Might be refined later. */ return false; type = chrec_type (*chrec_a); left_a = CHREC_LEFT (*chrec_a); left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL); diff = chrec_fold_minus (type, left_a, left_b); if (!evolution_function_is_constant_p (diff)) return false; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n"); *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a), diff, CHREC_RIGHT (*chrec_a)); right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL); *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b), build_int_cst (type, 0), right_b); return true; } /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and *OVERLAPS_B are initialized to the functions that describe the relation between the elements accessed twice by CHREC_A and CHREC_B. For k >= 0, the following property is verified: CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ static void analyze_siv_subscript (tree chrec_a, tree chrec_b, conflict_function **overlaps_a, conflict_function **overlaps_b, tree *last_conflicts, int loop_nest_num) { dependence_stats.num_siv++; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "(analyze_siv_subscript \n"); if (evolution_function_is_constant_p (chrec_a) && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num)) analyze_siv_subscript_cst_affine (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts); else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num) && evolution_function_is_constant_p (chrec_b)) analyze_siv_subscript_cst_affine (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts); else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num) && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num)) { if (!chrec_contains_symbols (chrec_a) && !chrec_contains_symbols (chrec_b)) { analyze_subscript_affine_affine (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts); if (CF_NOT_KNOWN_P (*overlaps_a) || CF_NOT_KNOWN_P (*overlaps_b)) dependence_stats.num_siv_unimplemented++; else if (CF_NO_DEPENDENCE_P (*overlaps_a) || CF_NO_DEPENDENCE_P (*overlaps_b)) dependence_stats.num_siv_independent++; else dependence_stats.num_siv_dependent++; } else if (can_use_analyze_subscript_affine_affine (&chrec_a, &chrec_b)) { analyze_subscript_affine_affine (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts); if (CF_NOT_KNOWN_P (*overlaps_a) || CF_NOT_KNOWN_P (*overlaps_b)) dependence_stats.num_siv_unimplemented++; else if (CF_NO_DEPENDENCE_P (*overlaps_a) || CF_NO_DEPENDENCE_P (*overlaps_b)) dependence_stats.num_siv_independent++; else dependence_stats.num_siv_dependent++; } else goto siv_subscript_dontknow; } else { siv_subscript_dontknow:; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "siv test failed: unimplemented.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; dependence_stats.num_siv_unimplemented++; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, ")\n"); } /* Returns false if we can prove that the greatest common divisor of the steps of CHREC does not divide CST, false otherwise. */ static bool gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst) { HOST_WIDE_INT cd = 0, val; tree step; if (!host_integerp (cst, 0)) return true; val = tree_low_cst (cst, 0); while (TREE_CODE (chrec) == POLYNOMIAL_CHREC) { step = CHREC_RIGHT (chrec); if (!host_integerp (step, 0)) return true; cd = gcd (cd, tree_low_cst (step, 0)); chrec = CHREC_LEFT (chrec); } return val % cd == 0; } /* Analyze a MIV (Multiple Index Variable) subscript with respect to LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the functions that describe the relation between the elements accessed twice by CHREC_A and CHREC_B. For k >= 0, the following property is verified: CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */ static void analyze_miv_subscript (tree chrec_a, tree chrec_b, conflict_function **overlaps_a, conflict_function **overlaps_b, tree *last_conflicts, struct loop *loop_nest) { tree type, difference; dependence_stats.num_miv++; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "(analyze_miv_subscript \n"); type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b)); chrec_a = chrec_convert (type, chrec_a, NULL); chrec_b = chrec_convert (type, chrec_b, NULL); difference = chrec_fold_minus (type, chrec_a, chrec_b); if (eq_evolutions_p (chrec_a, chrec_b)) { /* Access functions are the same: all the elements are accessed in the same order. */ *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a)); dependence_stats.num_miv_dependent++; } else if (evolution_function_is_constant_p (difference) /* For the moment, the following is verified: evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num) */ && !gcd_of_steps_may_divide_p (chrec_a, difference)) { /* testsuite/.../ssa-chrec-33.c {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2 The difference is 1, and all the evolution steps are multiples of 2, consequently there are no overlapping elements. */ *overlaps_a = conflict_fn_no_dependence (); *overlaps_b = conflict_fn_no_dependence (); *last_conflicts = integer_zero_node; dependence_stats.num_miv_independent++; } else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num) && !chrec_contains_symbols (chrec_a) && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num) && !chrec_contains_symbols (chrec_b)) { /* testsuite/.../ssa-chrec-35.c {0, +, 1}_2 vs. {0, +, 1}_3 the overlapping elements are respectively located at iterations: {0, +, 1}_x and {0, +, 1}_x, in other words, we have the equality: {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x) Other examples: {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) = {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y) {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) = {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) */ analyze_subscript_affine_affine (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts); if (CF_NOT_KNOWN_P (*overlaps_a) || CF_NOT_KNOWN_P (*overlaps_b)) dependence_stats.num_miv_unimplemented++; else if (CF_NO_DEPENDENCE_P (*overlaps_a) || CF_NO_DEPENDENCE_P (*overlaps_b)) dependence_stats.num_miv_independent++; else dependence_stats.num_miv_dependent++; } else { /* When the analysis is too difficult, answer "don't know". */ if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n"); *overlaps_a = conflict_fn_not_known (); *overlaps_b = conflict_fn_not_known (); *last_conflicts = chrec_dont_know; dependence_stats.num_miv_unimplemented++; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, ")\n"); } /* Determines the iterations for which CHREC_A is equal to CHREC_B in with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with two functions that describe the iterations that contain conflicting elements. Remark: For an integer k >= 0, the following equality is true: CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)). */ static void analyze_overlapping_iterations (tree chrec_a, tree chrec_b, conflict_function **overlap_iterations_a, conflict_function **overlap_iterations_b, tree *last_conflicts, struct loop *loop_nest) { unsigned int lnn = loop_nest->num; dependence_stats.num_subscript_tests++; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "(analyze_overlapping_iterations \n"); fprintf (dump_file, " (chrec_a = "); print_generic_expr (dump_file, chrec_a, 0); fprintf (dump_file, ")\n (chrec_b = "); print_generic_expr (dump_file, chrec_b, 0); fprintf (dump_file, ")\n"); } if (chrec_a == NULL_TREE || chrec_b == NULL_TREE || chrec_contains_undetermined (chrec_a) || chrec_contains_undetermined (chrec_b)) { dependence_stats.num_subscript_undetermined++; *overlap_iterations_a = conflict_fn_not_known (); *overlap_iterations_b = conflict_fn_not_known (); } /* If they are the same chrec, and are affine, they overlap on every iteration. */ else if (eq_evolutions_p (chrec_a, chrec_b) && (evolution_function_is_affine_multivariate_p (chrec_a, lnn) || operand_equal_p (chrec_a, chrec_b, 0))) { dependence_stats.num_same_subscript_function++; *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node)); *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node)); *last_conflicts = chrec_dont_know; } /* If they aren't the same, and aren't affine, we can't do anything yet. */ else if ((chrec_contains_symbols (chrec_a) || chrec_contains_symbols (chrec_b)) && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn) || !evolution_function_is_affine_multivariate_p (chrec_b, lnn))) { dependence_stats.num_subscript_undetermined++; *overlap_iterations_a = conflict_fn_not_known (); *overlap_iterations_b = conflict_fn_not_known (); } else if (ziv_subscript_p (chrec_a, chrec_b)) analyze_ziv_subscript (chrec_a, chrec_b, overlap_iterations_a, overlap_iterations_b, last_conflicts); else if (siv_subscript_p (chrec_a, chrec_b)) analyze_siv_subscript (chrec_a, chrec_b, overlap_iterations_a, overlap_iterations_b, last_conflicts, lnn); else analyze_miv_subscript (chrec_a, chrec_b, overlap_iterations_a, overlap_iterations_b, last_conflicts, loop_nest); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " (overlap_iterations_a = "); dump_conflict_function (dump_file, *overlap_iterations_a); fprintf (dump_file, ")\n (overlap_iterations_b = "); dump_conflict_function (dump_file, *overlap_iterations_b); fprintf (dump_file, ")\n"); fprintf (dump_file, ")\n"); } } /* Helper function for uniquely inserting distance vectors. */ static void save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v) { unsigned i; lambda_vector v; FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, v) if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr))) return; VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v); } /* Helper function for uniquely inserting direction vectors. */ static void save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v) { unsigned i; lambda_vector v; FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), i, v) if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr))) return; VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v); } /* Add a distance of 1 on all the loops outer than INDEX. If we haven't yet determined a distance for this outer loop, push a new distance vector composed of the previous distance, and a distance of 1 for this outer loop. Example: | loop_1 | loop_2 | A[10] | endloop_2 | endloop_1 Saved vectors are of the form (dist_in_1, dist_in_2). First, we save (0, 1), then we have to save (1, 0). */ static void add_outer_distances (struct data_dependence_relation *ddr, lambda_vector dist_v, int index) { /* For each outer loop where init_v is not set, the accesses are in dependence of distance 1 in the loop. */ while (--index >= 0) { lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr)); save_v[index] = 1; save_dist_v (ddr, save_v); } } /* Return false when fail to represent the data dependence as a distance vector. INIT_B is set to true when a component has been added to the distance vector DIST_V. INDEX_CARRY is then set to the index in DIST_V that carries the dependence. */ static bool build_classic_dist_vector_1 (struct data_dependence_relation *ddr, struct data_reference *ddr_a, struct data_reference *ddr_b, lambda_vector dist_v, bool *init_b, int *index_carry) { unsigned i; lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) { tree access_fn_a, access_fn_b; struct subscript *subscript = DDR_SUBSCRIPT (ddr, i); if (chrec_contains_undetermined (SUB_DISTANCE (subscript))) { non_affine_dependence_relation (ddr); return false; } access_fn_a = DR_ACCESS_FN (ddr_a, i); access_fn_b = DR_ACCESS_FN (ddr_b, i); if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC) { int dist, index; int var_a = CHREC_VARIABLE (access_fn_a); int var_b = CHREC_VARIABLE (access_fn_b); if (var_a != var_b || chrec_contains_undetermined (SUB_DISTANCE (subscript))) { non_affine_dependence_relation (ddr); return false; } dist = int_cst_value (SUB_DISTANCE (subscript)); index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr)); *index_carry = MIN (index, *index_carry); /* This is the subscript coupling test. If we have already recorded a distance for this loop (a distance coming from another subscript), it should be the same. For example, in the following code, there is no dependence: | loop i = 0, N, 1 | T[i+1][i] = ... | ... = T[i][i] | endloop */ if (init_v[index] != 0 && dist_v[index] != dist) { finalize_ddr_dependent (ddr, chrec_known); return false; } dist_v[index] = dist; init_v[index] = 1; *init_b = true; } else if (!operand_equal_p (access_fn_a, access_fn_b, 0)) { /* This can be for example an affine vs. constant dependence (T[i] vs. T[3]) that is not an affine dependence and is not representable as a distance vector. */ non_affine_dependence_relation (ddr); return false; } } return true; } /* Return true when the DDR contains only constant access functions. */ static bool constant_access_functions (const struct data_dependence_relation *ddr) { unsigned i; for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i)) || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i))) return false; return true; } /* Helper function for the case where DDR_A and DDR_B are the same multivariate access function with a constant step. For an example see pr34635-1.c. */ static void add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2) { int x_1, x_2; tree c_1 = CHREC_LEFT (c_2); tree c_0 = CHREC_LEFT (c_1); lambda_vector dist_v; int v1, v2, cd; /* Polynomials with more than 2 variables are not handled yet. When the evolution steps are parameters, it is not possible to represent the dependence using classical distance vectors. */ if (TREE_CODE (c_0) != INTEGER_CST || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST) { DDR_AFFINE_P (ddr) = false; return; } x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr)); x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr)); /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); v1 = int_cst_value (CHREC_RIGHT (c_1)); v2 = int_cst_value (CHREC_RIGHT (c_2)); cd = gcd (v1, v2); v1 /= cd; v2 /= cd; if (v2 < 0) { v2 = -v2; v1 = -v1; } dist_v[x_1] = v2; dist_v[x_2] = -v1; save_dist_v (ddr, dist_v); add_outer_distances (ddr, dist_v, x_1); } /* Helper function for the case where DDR_A and DDR_B are the same access functions. */ static void add_other_self_distances (struct data_dependence_relation *ddr) { lambda_vector dist_v; unsigned i; int index_carry = DDR_NB_LOOPS (ddr); for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) { tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i); if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC) { if (!evolution_function_is_univariate_p (access_fun)) { if (DDR_NUM_SUBSCRIPTS (ddr) != 1) { DDR_ARE_DEPENDENT (ddr) = chrec_dont_know; return; } access_fun = DR_ACCESS_FN (DDR_A (ddr), 0); if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC) add_multivariate_self_dist (ddr, access_fun); else /* The evolution step is not constant: it varies in the outer loop, so this cannot be represented by a distance vector. For example in pr34635.c the evolution is {0, +, {0, +, 4}_1}_2. */ DDR_AFFINE_P (ddr) = false; return; } index_carry = MIN (index_carry, index_in_loop_nest (CHREC_VARIABLE (access_fun), DDR_LOOP_NEST (ddr))); } } dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); add_outer_distances (ddr, dist_v, index_carry); } static void insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr) { lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); dist_v[DDR_INNER_LOOP (ddr)] = 1; save_dist_v (ddr, dist_v); } /* Adds a unit distance vector to DDR when there is a 0 overlap. This is the case for example when access functions are the same and equal to a constant, as in: | loop_1 | A[3] = ... | ... = A[3] | endloop_1 in which case the distance vectors are (0) and (1). */ static void add_distance_for_zero_overlaps (struct data_dependence_relation *ddr) { unsigned i, j; for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) { subscript_p sub = DDR_SUBSCRIPT (ddr, i); conflict_function *ca = SUB_CONFLICTS_IN_A (sub); conflict_function *cb = SUB_CONFLICTS_IN_B (sub); for (j = 0; j < ca->n; j++) if (affine_function_zero_p (ca->fns[j])) { insert_innermost_unit_dist_vector (ddr); return; } for (j = 0; j < cb->n; j++) if (affine_function_zero_p (cb->fns[j])) { insert_innermost_unit_dist_vector (ddr); return; } } } /* Compute the classic per loop distance vector. DDR is the data dependence relation to build a vector from. Return false when fail to represent the data dependence as a distance vector. */ static bool build_classic_dist_vector (struct data_dependence_relation *ddr, struct loop *loop_nest) { bool init_b = false; int index_carry = DDR_NB_LOOPS (ddr); lambda_vector dist_v; if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE) return false; if (same_access_functions (ddr)) { /* Save the 0 vector. */ dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); save_dist_v (ddr, dist_v); if (constant_access_functions (ddr)) add_distance_for_zero_overlaps (ddr); if (DDR_NB_LOOPS (ddr) > 1) add_other_self_distances (ddr); return true; } dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr), dist_v, &init_b, &index_carry)) return false; /* Save the distance vector if we initialized one. */ if (init_b) { /* Verify a basic constraint: classic distance vectors should always be lexicographically positive. Data references are collected in the order of execution of the program, thus for the following loop | for (i = 1; i < 100; i++) | for (j = 1; j < 100; j++) | { | t = T[j+1][i-1]; // A | T[j][i] = t + 2; // B | } references are collected following the direction of the wind: A then B. The data dependence tests are performed also following this order, such that we're looking at the distance separating the elements accessed by A from the elements later accessed by B. But in this example, the distance returned by test_dep (A, B) is lexicographically negative (-1, 1), that means that the access A occurs later than B with respect to the outer loop, ie. we're actually looking upwind. In this case we solve test_dep (B, A) looking downwind to the lexicographically positive solution, that returns the distance vector (1, -1). */ if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr))) { lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr), loop_nest)) return false; compute_subscript_distance (ddr); if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr), save_v, &init_b, &index_carry)) return false; save_dist_v (ddr, save_v); DDR_REVERSED_P (ddr) = true; /* In this case there is a dependence forward for all the outer loops: | for (k = 1; k < 100; k++) | for (i = 1; i < 100; i++) | for (j = 1; j < 100; j++) | { | t = T[j+1][i-1]; // A | T[j][i] = t + 2; // B | } the vectors are: (0, 1, -1) (1, 1, -1) (1, -1, 1) */ if (DDR_NB_LOOPS (ddr) > 1) { add_outer_distances (ddr, save_v, index_carry); add_outer_distances (ddr, dist_v, index_carry); } } else { lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr)); if (DDR_NB_LOOPS (ddr) > 1) { lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr), loop_nest)) return false; compute_subscript_distance (ddr); if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr), opposite_v, &init_b, &index_carry)) return false; save_dist_v (ddr, save_v); add_outer_distances (ddr, dist_v, index_carry); add_outer_distances (ddr, opposite_v, index_carry); } else save_dist_v (ddr, save_v); } } else { /* There is a distance of 1 on all the outer loops: Example: there is a dependence of distance 1 on loop_1 for the array A. | loop_1 | A[5] = ... | endloop */ add_outer_distances (ddr, dist_v, lambda_vector_first_nz (dist_v, DDR_NB_LOOPS (ddr), 0)); } if (dump_file && (dump_flags & TDF_DETAILS)) { unsigned i; fprintf (dump_file, "(build_classic_dist_vector\n"); for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++) { fprintf (dump_file, " dist_vector = ("); print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr)); fprintf (dump_file, " )\n"); } fprintf (dump_file, ")\n"); } return true; } /* Return the direction for a given distance. FIXME: Computing dir this way is suboptimal, since dir can catch cases that dist is unable to represent. */ static inline enum data_dependence_direction dir_from_dist (int dist) { if (dist > 0) return dir_positive; else if (dist < 0) return dir_negative; else return dir_equal; } /* Compute the classic per loop direction vector. DDR is the data dependence relation to build a vector from. */ static void build_classic_dir_vector (struct data_dependence_relation *ddr) { unsigned i, j; lambda_vector dist_v; FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v) { lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); for (j = 0; j < DDR_NB_LOOPS (ddr); j++) dir_v[j] = dir_from_dist (dist_v[j]); save_dir_v (ddr, dir_v); } } /* Helper function. Returns true when there is a dependence between data references DRA and DRB. */ static bool subscript_dependence_tester_1 (struct data_dependence_relation *ddr, struct data_reference *dra, struct data_reference *drb, struct loop *loop_nest) { unsigned int i; tree last_conflicts; struct subscript *subscript; for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript); i++) { conflict_function *overlaps_a, *overlaps_b; analyze_overlapping_iterations (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i), &overlaps_a, &overlaps_b, &last_conflicts, loop_nest); if (CF_NOT_KNOWN_P (overlaps_a) || CF_NOT_KNOWN_P (overlaps_b)) { finalize_ddr_dependent (ddr, chrec_dont_know); dependence_stats.num_dependence_undetermined++; free_conflict_function (overlaps_a); free_conflict_function (overlaps_b); return false; } else if (CF_NO_DEPENDENCE_P (overlaps_a) || CF_NO_DEPENDENCE_P (overlaps_b)) { finalize_ddr_dependent (ddr, chrec_known); dependence_stats.num_dependence_independent++; free_conflict_function (overlaps_a); free_conflict_function (overlaps_b); return false; } else { if (SUB_CONFLICTS_IN_A (subscript)) free_conflict_function (SUB_CONFLICTS_IN_A (subscript)); if (SUB_CONFLICTS_IN_B (subscript)) free_conflict_function (SUB_CONFLICTS_IN_B (subscript)); SUB_CONFLICTS_IN_A (subscript) = overlaps_a; SUB_CONFLICTS_IN_B (subscript) = overlaps_b; SUB_LAST_CONFLICT (subscript) = last_conflicts; } } return true; } /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */ static void subscript_dependence_tester (struct data_dependence_relation *ddr, struct loop *loop_nest) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "(subscript_dependence_tester \n"); if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest)) dependence_stats.num_dependence_dependent++; compute_subscript_distance (ddr); if (build_classic_dist_vector (ddr, loop_nest)) build_classic_dir_vector (ddr); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, ")\n"); } /* Returns true when all the access functions of A are affine or constant with respect to LOOP_NEST. */ static bool access_functions_are_affine_or_constant_p (const struct data_reference *a, const struct loop *loop_nest) { unsigned int i; VEC(tree,heap) *fns = DR_ACCESS_FNS (a); tree t; FOR_EACH_VEC_ELT (tree, fns, i, t) if (!evolution_function_is_invariant_p (t, loop_nest->num) && !evolution_function_is_affine_multivariate_p (t, loop_nest->num)) return false; return true; } /* Initializes an equation for an OMEGA problem using the information contained in the ACCESS_FUN. Returns true when the operation succeeded. PB is the omega constraint system. EQ is the number of the equation to be initialized. OFFSET is used for shifting the variables names in the constraints: a constrain is composed of 2 * the number of variables surrounding dependence accesses. OFFSET is set either to 0 for the first n variables, then it is set to n. ACCESS_FUN is expected to be an affine chrec. */ static bool init_omega_eq_with_af (omega_pb pb, unsigned eq, unsigned int offset, tree access_fun, struct data_dependence_relation *ddr) { switch (TREE_CODE (access_fun)) { case POLYNOMIAL_CHREC: { tree left = CHREC_LEFT (access_fun); tree right = CHREC_RIGHT (access_fun); int var = CHREC_VARIABLE (access_fun); unsigned var_idx; if (TREE_CODE (right) != INTEGER_CST) return false; var_idx = index_in_loop_nest (var, DDR_LOOP_NEST (ddr)); pb->eqs[eq].coef[offset + var_idx + 1] = int_cst_value (right); /* Compute the innermost loop index. */ DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx); if (offset == 0) pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1] += int_cst_value (right); switch (TREE_CODE (left)) { case POLYNOMIAL_CHREC: return init_omega_eq_with_af (pb, eq, offset, left, ddr); case INTEGER_CST: pb->eqs[eq].coef[0] += int_cst_value (left); return true; default: return false; } } case INTEGER_CST: pb->eqs[eq].coef[0] += int_cst_value (access_fun); return true; default: return false; } } /* As explained in the comments preceding init_omega_for_ddr, we have to set up a system for each loop level, setting outer loops variation to zero, and current loop variation to positive or zero. Save each lexico positive distance vector. */ static void omega_extract_distance_vectors (omega_pb pb, struct data_dependence_relation *ddr) { int eq, geq; unsigned i, j; struct loop *loopi, *loopj; enum omega_result res; /* Set a new problem for each loop in the nest. The basis is the problem that we have initialized until now. On top of this we add new constraints. */ for (i = 0; i <= DDR_INNER_LOOP (ddr) && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++) { int dist = 0; omega_pb copy = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr)); omega_copy_problem (copy, pb); /* For all the outer loops "loop_j", add "dj = 0". */ for (j = 0; j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++) { eq = omega_add_zero_eq (copy, omega_black); copy->eqs[eq].coef[j + 1] = 1; } /* For "loop_i", add "0 <= di". */ geq = omega_add_zero_geq (copy, omega_black); copy->geqs[geq].coef[i + 1] = 1; /* Reduce the constraint system, and test that the current problem is feasible. */ res = omega_simplify_problem (copy); if (res == omega_false || res == omega_unknown || copy->num_geqs > (int) DDR_NB_LOOPS (ddr)) goto next_problem; for (eq = 0; eq < copy->num_subs; eq++) if (copy->subs[eq].key == (int) i + 1) { dist = copy->subs[eq].coef[0]; goto found_dist; } if (dist == 0) { /* Reinitialize problem... */ omega_copy_problem (copy, pb); for (j = 0; j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++) { eq = omega_add_zero_eq (copy, omega_black); copy->eqs[eq].coef[j + 1] = 1; } /* ..., but this time "di = 1". */ eq = omega_add_zero_eq (copy, omega_black); copy->eqs[eq].coef[i + 1] = 1; copy->eqs[eq].coef[0] = -1; res = omega_simplify_problem (copy); if (res == omega_false || res == omega_unknown || copy->num_geqs > (int) DDR_NB_LOOPS (ddr)) goto next_problem; for (eq = 0; eq < copy->num_subs; eq++) if (copy->subs[eq].key == (int) i + 1) { dist = copy->subs[eq].coef[0]; goto found_dist; } } found_dist:; /* Save the lexicographically positive distance vector. */ if (dist >= 0) { lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); dist_v[i] = dist; for (eq = 0; eq < copy->num_subs; eq++) if (copy->subs[eq].key > 0) { dist = copy->subs[eq].coef[0]; dist_v[copy->subs[eq].key - 1] = dist; } for (j = 0; j < DDR_NB_LOOPS (ddr); j++) dir_v[j] = dir_from_dist (dist_v[j]); save_dist_v (ddr, dist_v); save_dir_v (ddr, dir_v); } next_problem:; omega_free_problem (copy); } } /* This is called for each subscript of a tuple of data references: insert an equality for representing the conflicts. */ static bool omega_setup_subscript (tree access_fun_a, tree access_fun_b, struct data_dependence_relation *ddr, omega_pb pb, bool *maybe_dependent) { int eq; tree type = signed_type_for_types (TREE_TYPE (access_fun_a), TREE_TYPE (access_fun_b)); tree fun_a = chrec_convert (type, access_fun_a, NULL); tree fun_b = chrec_convert (type, access_fun_b, NULL); tree difference = chrec_fold_minus (type, fun_a, fun_b); tree minus_one; /* When the fun_a - fun_b is not constant, the dependence is not captured by the classic distance vector representation. */ if (TREE_CODE (difference) != INTEGER_CST) return false; /* ZIV test. */ if (ziv_subscript_p (fun_a, fun_b) && !integer_zerop (difference)) { /* There is no dependence. */ *maybe_dependent = false; return true; } minus_one = build_int_cst (type, -1); fun_b = chrec_fold_multiply (type, fun_b, minus_one); eq = omega_add_zero_eq (pb, omega_black); if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr) || !init_omega_eq_with_af (pb, eq, 0, fun_b, ddr)) /* There is probably a dependence, but the system of constraints cannot be built: answer "don't know". */ return false; /* GCD test. */ if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0] && !int_divides_p (lambda_vector_gcd ((lambda_vector) &(pb->eqs[eq].coef[1]), 2 * DDR_NB_LOOPS (ddr)), pb->eqs[eq].coef[0])) { /* There is no dependence. */ *maybe_dependent = false; return true; } return true; } /* Helper function, same as init_omega_for_ddr but specialized for data references A and B. */ static bool init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb, struct data_dependence_relation *ddr, omega_pb pb, bool *maybe_dependent) { unsigned i; int ineq; struct loop *loopi; unsigned nb_loops = DDR_NB_LOOPS (ddr); /* Insert an equality per subscript. */ for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++) { if (!omega_setup_subscript (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i), ddr, pb, maybe_dependent)) return false; else if (*maybe_dependent == false) { /* There is no dependence. */ DDR_ARE_DEPENDENT (ddr) = chrec_known; return true; } } /* Insert inequalities: constraints corresponding to the iteration domain, i.e. the loops surrounding the references "loop_x" and the distance variables "dx". The layout of the OMEGA representation is as follows: - coef[0] is the constant - coef[1..nb_loops] are the protected variables that will not be removed by the solver: the "dx" - coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x". */ for (i = 0; i <= DDR_INNER_LOOP (ddr) && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++) { HOST_WIDE_INT nbi = max_stmt_executions_int (loopi, true); /* 0 <= loop_x */ ineq = omega_add_zero_geq (pb, omega_black); pb->geqs[ineq].coef[i + nb_loops + 1] = 1; /* 0 <= loop_x + dx */ ineq = omega_add_zero_geq (pb, omega_black); pb->geqs[ineq].coef[i + nb_loops + 1] = 1; pb->geqs[ineq].coef[i + 1] = 1; if (nbi != -1) { /* loop_x <= nb_iters */ ineq = omega_add_zero_geq (pb, omega_black); pb->geqs[ineq].coef[i + nb_loops + 1] = -1; pb->geqs[ineq].coef[0] = nbi; /* loop_x + dx <= nb_iters */ ineq = omega_add_zero_geq (pb, omega_black); pb->geqs[ineq].coef[i + nb_loops + 1] = -1; pb->geqs[ineq].coef[i + 1] = -1; pb->geqs[ineq].coef[0] = nbi; /* A step "dx" bigger than nb_iters is not feasible, so add "0 <= nb_iters + dx", */ ineq = omega_add_zero_geq (pb, omega_black); pb->geqs[ineq].coef[i + 1] = 1; pb->geqs[ineq].coef[0] = nbi; /* and "dx <= nb_iters". */ ineq = omega_add_zero_geq (pb, omega_black); pb->geqs[ineq].coef[i + 1] = -1; pb->geqs[ineq].coef[0] = nbi; } } omega_extract_distance_vectors (pb, ddr); return true; } /* Sets up the Omega dependence problem for the data dependence relation DDR. Returns false when the constraint system cannot be built, ie. when the test answers "don't know". Returns true otherwise, and when independence has been proved (using one of the trivial dependence test), set MAYBE_DEPENDENT to false, otherwise set MAYBE_DEPENDENT to true. Example: for setting up the dependence system corresponding to the conflicting accesses | loop_i | loop_j | A[i, i+1] = ... | ... A[2*j, 2*(i + j)] | endloop_j | endloop_i the following constraints come from the iteration domain: 0 <= i <= Ni 0 <= i + di <= Ni 0 <= j <= Nj 0 <= j + dj <= Nj where di, dj are the distance variables. The constraints representing the conflicting elements are: i = 2 * (j + dj) i + 1 = 2 * (i + di + j + dj) For asking that the resulting distance vector (di, dj) be lexicographically positive, we insert the constraint "di >= 0". If "di = 0" in the solution, we fix that component to zero, and we look at the inner loops: we set a new problem where all the outer loop distances are zero, and fix this inner component to be positive. When one of the components is positive, we save that distance, and set a new problem where the distance on this loop is zero, searching for other distances in the inner loops. Here is the classic example that illustrates that we have to set for each inner loop a new problem: | loop_1 | loop_2 | A[10] | endloop_2 | endloop_1 we have to save two distances (1, 0) and (0, 1). Given two array references, refA and refB, we have to set the dependence problem twice, refA vs. refB and refB vs. refA, and we cannot do a single test, as refB might occur before refA in the inner loops, and the contrary when considering outer loops: ex. | loop_0 | loop_1 | loop_2 | T[{1,+,1}_2][{1,+,1}_1] // refA | T[{2,+,1}_2][{0,+,1}_1] // refB | endloop_2 | endloop_1 | endloop_0 refB touches the elements in T before refA, and thus for the same loop_0 refB precedes refA: ie. the distance vector (0, 1, -1) but for successive loop_0 iterations, we have (1, -1, 1) The Omega solver expects the distance variables ("di" in the previous example) to come first in the constraint system (as variables to be protected, or "safe" variables), the constraint system is built using the following layout: "cst | distance vars | index vars". */ static bool init_omega_for_ddr (struct data_dependence_relation *ddr, bool *maybe_dependent) { omega_pb pb; bool res = false; *maybe_dependent = true; if (same_access_functions (ddr)) { unsigned j; lambda_vector dir_v; /* Save the 0 vector. */ save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr))); dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr)); for (j = 0; j < DDR_NB_LOOPS (ddr); j++) dir_v[j] = dir_equal; save_dir_v (ddr, dir_v); /* Save the dependences carried by outer loops. */ pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr)); res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb, maybe_dependent); omega_free_problem (pb); return res; } /* Omega expects the protected variables (those that have to be kept after elimination) to appear first in the constraint system. These variables are the distance variables. In the following initialization we declare NB_LOOPS safe variables, and the total number of variables for the constraint system is 2*NB_LOOPS. */ pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr)); res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb, maybe_dependent); omega_free_problem (pb); /* Stop computation if not decidable, or no dependence. */ if (res == false || *maybe_dependent == false) return res; pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr)); res = init_omega_for_ddr_1 (DDR_B (ddr), DDR_A (ddr), ddr, pb, maybe_dependent); omega_free_problem (pb); return res; } /* Return true when DDR contains the same information as that stored in DIR_VECTS and in DIST_VECTS, return false otherwise. */ static bool ddr_consistent_p (FILE *file, struct data_dependence_relation *ddr, VEC (lambda_vector, heap) *dist_vects, VEC (lambda_vector, heap) *dir_vects) { unsigned int i, j; /* If dump_file is set, output there. */ if (dump_file && (dump_flags & TDF_DETAILS)) file = dump_file; if (VEC_length (lambda_vector, dist_vects) != DDR_NUM_DIST_VECTS (ddr)) { lambda_vector b_dist_v; fprintf (file, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n", VEC_length (lambda_vector, dist_vects), DDR_NUM_DIST_VECTS (ddr)); fprintf (file, "Banerjee dist vectors:\n"); FOR_EACH_VEC_ELT (lambda_vector, dist_vects, i, b_dist_v) print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr)); fprintf (file, "Omega dist vectors:\n"); for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++) print_lambda_vector (file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr)); fprintf (file, "data dependence relation:\n"); dump_data_dependence_relation (file, ddr); fprintf (file, ")\n"); return false; } if (VEC_length (lambda_vector, dir_vects) != DDR_NUM_DIR_VECTS (ddr)) { fprintf (file, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n", VEC_length (lambda_vector, dir_vects), DDR_NUM_DIR_VECTS (ddr)); return false; } for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++) { lambda_vector a_dist_v; lambda_vector b_dist_v = DDR_DIST_VECT (ddr, i); /* Distance vectors are not ordered in the same way in the DDR and in the DIST_VECTS: search for a matching vector. */ FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, a_dist_v) if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr))) break; if (j == VEC_length (lambda_vector, dist_vects)) { fprintf (file, "\n(Dist vectors from the first dependence analyzer:\n"); print_dist_vectors (file, dist_vects, DDR_NB_LOOPS (ddr)); fprintf (file, "not found in Omega dist vectors:\n"); print_dist_vectors (file, DDR_DIST_VECTS (ddr), DDR_NB_LOOPS (ddr)); fprintf (file, "data dependence relation:\n"); dump_data_dependence_relation (file, ddr); fprintf (file, ")\n"); } } for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++) { lambda_vector a_dir_v; lambda_vector b_dir_v = DDR_DIR_VECT (ddr, i); /* Direction vectors are not ordered in the same way in the DDR and in the DIR_VECTS: search for a matching vector. */ FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, a_dir_v) if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr))) break; if (j == VEC_length (lambda_vector, dist_vects)) { fprintf (file, "\n(Dir vectors from the first dependence analyzer:\n"); print_dir_vectors (file, dir_vects, DDR_NB_LOOPS (ddr)); fprintf (file, "not found in Omega dir vectors:\n"); print_dir_vectors (file, DDR_DIR_VECTS (ddr), DDR_NB_LOOPS (ddr)); fprintf (file, "data dependence relation:\n"); dump_data_dependence_relation (file, ddr); fprintf (file, ")\n"); } } return true; } /* This computes the affine dependence relation between A and B with respect to LOOP_NEST. CHREC_KNOWN is used for representing the independence between two accesses, while CHREC_DONT_KNOW is used for representing the unknown relation. Note that it is possible to stop the computation of the dependence relation the first time we detect a CHREC_KNOWN element for a given subscript. */ static void compute_affine_dependence (struct data_dependence_relation *ddr, struct loop *loop_nest) { struct data_reference *dra = DDR_A (ddr); struct data_reference *drb = DDR_B (ddr); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "(compute_affine_dependence\n"); fprintf (dump_file, " (stmt_a = \n"); print_gimple_stmt (dump_file, DR_STMT (dra), 0, 0); fprintf (dump_file, ")\n (stmt_b = \n"); print_gimple_stmt (dump_file, DR_STMT (drb), 0, 0); fprintf (dump_file, ")\n"); } /* Analyze only when the dependence relation is not yet known. */ if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && !DDR_SELF_REFERENCE (ddr)) { dependence_stats.num_dependence_tests++; if (access_functions_are_affine_or_constant_p (dra, loop_nest) && access_functions_are_affine_or_constant_p (drb, loop_nest)) { if (flag_check_data_deps) { /* Compute the dependences using the first algorithm. */ subscript_dependence_tester (ddr, loop_nest); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\n\nBanerjee Analyzer\n"); dump_data_dependence_relation (dump_file, ddr); } if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE) { bool maybe_dependent; VEC (lambda_vector, heap) *dir_vects, *dist_vects; /* Save the result of the first DD analyzer. */ dist_vects = DDR_DIST_VECTS (ddr); dir_vects = DDR_DIR_VECTS (ddr); /* Reset the information. */ DDR_DIST_VECTS (ddr) = NULL; DDR_DIR_VECTS (ddr) = NULL; /* Compute the same information using Omega. */ if (!init_omega_for_ddr (ddr, &maybe_dependent)) goto csys_dont_know; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Omega Analyzer\n"); dump_data_dependence_relation (dump_file, ddr); } /* Check that we get the same information. */ if (maybe_dependent) gcc_assert (ddr_consistent_p (stderr, ddr, dist_vects, dir_vects)); } } else subscript_dependence_tester (ddr, loop_nest); } /* As a last case, if the dependence cannot be determined, or if the dependence is considered too difficult to determine, answer "don't know". */ else { csys_dont_know:; dependence_stats.num_dependence_undetermined++; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Data ref a:\n"); dump_data_reference (dump_file, dra); fprintf (dump_file, "Data ref b:\n"); dump_data_reference (dump_file, drb); fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n"); } finalize_ddr_dependent (ddr, chrec_dont_know); } } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, ")\n"); } /* This computes the dependence relation for the same data reference into DDR. */ static void compute_self_dependence (struct data_dependence_relation *ddr) { unsigned int i; struct subscript *subscript; if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE) return; for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript); i++) { if (SUB_CONFLICTS_IN_A (subscript)) free_conflict_function (SUB_CONFLICTS_IN_A (subscript)); if (SUB_CONFLICTS_IN_B (subscript)) free_conflict_function (SUB_CONFLICTS_IN_B (subscript)); /* The accessed index overlaps for each iteration. */ SUB_CONFLICTS_IN_A (subscript) = conflict_fn (1, affine_fn_cst (integer_zero_node)); SUB_CONFLICTS_IN_B (subscript) = conflict_fn (1, affine_fn_cst (integer_zero_node)); SUB_LAST_CONFLICT (subscript) = chrec_dont_know; } /* The distance vector is the zero vector. */ save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr))); save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr))); } /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all the data references in DATAREFS, in the LOOP_NEST. When COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self relations. */ void compute_all_dependences (VEC (data_reference_p, heap) *datarefs, VEC (ddr_p, heap) **dependence_relations, VEC (loop_p, heap) *loop_nest, bool compute_self_and_rr) { struct data_dependence_relation *ddr; struct data_reference *a, *b; unsigned int i, j; FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a) for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++) if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr) { ddr = initialize_data_dependence_relation (a, b, loop_nest); VEC_safe_push (ddr_p, heap, *dependence_relations, ddr); if (loop_nest) compute_affine_dependence (ddr, VEC_index (loop_p, loop_nest, 0)); } if (compute_self_and_rr) FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a) { ddr = initialize_data_dependence_relation (a, a, loop_nest); VEC_safe_push (ddr_p, heap, *dependence_relations, ddr); compute_self_dependence (ddr); } } /* Stores the locations of memory references in STMT to REFERENCES. Returns true if STMT clobbers memory, false otherwise. */ bool get_references_in_stmt (gimple stmt, VEC (data_ref_loc, heap) **references) { bool clobbers_memory = false; data_ref_loc *ref; tree *op0, *op1; enum gimple_code stmt_code = gimple_code (stmt); *references = NULL; /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects. Calls have side-effects, except those to const or pure functions. */ if ((stmt_code == GIMPLE_CALL && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))) || (stmt_code == GIMPLE_ASM && gimple_asm_volatile_p (stmt))) clobbers_memory = true; if (!gimple_vuse (stmt)) return clobbers_memory; if (stmt_code == GIMPLE_ASSIGN) { tree base; op0 = gimple_assign_lhs_ptr (stmt); op1 = gimple_assign_rhs1_ptr (stmt); if (DECL_P (*op1) || (REFERENCE_CLASS_P (*op1) && (base = get_base_address (*op1)) && TREE_CODE (base) != SSA_NAME)) { ref = VEC_safe_push (data_ref_loc, heap, *references, NULL); ref->pos = op1; ref->is_read = true; } } else if (stmt_code == GIMPLE_CALL) { unsigned i, n; op0 = gimple_call_lhs_ptr (stmt); n = gimple_call_num_args (stmt); for (i = 0; i < n; i++) { op1 = gimple_call_arg_ptr (stmt, i); if (DECL_P (*op1) || (REFERENCE_CLASS_P (*op1) && get_base_address (*op1))) { ref = VEC_safe_push (data_ref_loc, heap, *references, NULL); ref->pos = op1; ref->is_read = true; } } } else return clobbers_memory; if (*op0 && (DECL_P (*op0) || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))) { ref = VEC_safe_push (data_ref_loc, heap, *references, NULL); ref->pos = op0; ref->is_read = false; } return clobbers_memory; } /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable reference, returns false, otherwise returns true. NEST is the outermost loop of the loop nest in which the references should be analyzed. */ bool find_data_references_in_stmt (struct loop *nest, gimple stmt, VEC (data_reference_p, heap) **datarefs) { unsigned i; VEC (data_ref_loc, heap) *references; data_ref_loc *ref; bool ret = true; data_reference_p dr; if (get_references_in_stmt (stmt, &references)) { VEC_free (data_ref_loc, heap, references); return false; } FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref) { dr = create_data_ref (nest, loop_containing_stmt (stmt), *ref->pos, stmt, ref->is_read); gcc_assert (dr != NULL); VEC_safe_push (data_reference_p, heap, *datarefs, dr); } VEC_free (data_ref_loc, heap, references); return ret; } /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable reference, returns false, otherwise returns true. NEST is the outermost loop of the loop nest in which the references should be instantiated, LOOP is the loop in which the references should be analyzed. */ bool graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple stmt, VEC (data_reference_p, heap) **datarefs) { unsigned i; VEC (data_ref_loc, heap) *references; data_ref_loc *ref; bool ret = true; data_reference_p dr; if (get_references_in_stmt (stmt, &references)) { VEC_free (data_ref_loc, heap, references); return false; } FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref) { dr = create_data_ref (nest, loop, *ref->pos, stmt, ref->is_read); gcc_assert (dr != NULL); VEC_safe_push (data_reference_p, heap, *datarefs, dr); } VEC_free (data_ref_loc, heap, references); return ret; } /* Search the data references in LOOP, and record the information into DATAREFS. Returns chrec_dont_know when failing to analyze a difficult case, returns NULL_TREE otherwise. */ tree find_data_references_in_bb (struct loop *loop, basic_block bb, VEC (data_reference_p, heap) **datarefs) { gimple_stmt_iterator bsi; for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) { gimple stmt = gsi_stmt (bsi); if (!find_data_references_in_stmt (loop, stmt, datarefs)) { struct data_reference *res; res = XCNEW (struct data_reference); VEC_safe_push (data_reference_p, heap, *datarefs, res); return chrec_dont_know; } } return NULL_TREE; } /* Search the data references in LOOP, and record the information into DATAREFS. Returns chrec_dont_know when failing to analyze a difficult case, returns NULL_TREE otherwise. TODO: This function should be made smarter so that it can handle address arithmetic as if they were array accesses, etc. */ tree find_data_references_in_loop (struct loop *loop, VEC (data_reference_p, heap) **datarefs) { basic_block bb, *bbs; unsigned int i; bbs = get_loop_body_in_dom_order (loop); for (i = 0; i < loop->num_nodes; i++) { bb = bbs[i]; if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know) { free (bbs); return chrec_dont_know; } } free (bbs); return NULL_TREE; } /* Recursive helper function. */ static bool find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest) { /* Inner loops of the nest should not contain siblings. Example: when there are two consecutive loops, | loop_0 | loop_1 | A[{0, +, 1}_1] | endloop_1 | loop_2 | A[{0, +, 1}_2] | endloop_2 | endloop_0 the dependence relation cannot be captured by the distance abstraction. */ if (loop->next) return false; VEC_safe_push (loop_p, heap, *loop_nest, loop); if (loop->inner) return find_loop_nest_1 (loop->inner, loop_nest); return true; } /* Return false when the LOOP is not well nested. Otherwise return true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will contain the loops from the outermost to the innermost, as they will appear in the classic distance vector. */ bool find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest) { VEC_safe_push (loop_p, heap, *loop_nest, loop); if (loop->inner) return find_loop_nest_1 (loop->inner, loop_nest); return true; } /* Returns true when the data dependences have been computed, false otherwise. Given a loop nest LOOP, the following vectors are returned: DATAREFS is initialized to all the array elements contained in this loop, DEPENDENCE_RELATIONS contains the relations between the data references. Compute read-read and self relations if COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */ bool compute_data_dependences_for_loop (struct loop *loop, bool compute_self_and_read_read_dependences, VEC (loop_p, heap) **loop_nest, VEC (data_reference_p, heap) **datarefs, VEC (ddr_p, heap) **dependence_relations) { bool res = true; memset (&dependence_stats, 0, sizeof (dependence_stats)); /* If the loop nest is not well formed, or one of the data references is not computable, give up without spending time to compute other dependences. */ if (!loop || !find_loop_nest (loop, loop_nest) || find_data_references_in_loop (loop, datarefs) == chrec_dont_know) { struct data_dependence_relation *ddr; /* Insert a single relation into dependence_relations: chrec_dont_know. */ ddr = initialize_data_dependence_relation (NULL, NULL, *loop_nest); VEC_safe_push (ddr_p, heap, *dependence_relations, ddr); res = false; } else compute_all_dependences (*datarefs, dependence_relations, *loop_nest, compute_self_and_read_read_dependences); if (dump_file && (dump_flags & TDF_STATS)) { fprintf (dump_file, "Dependence tester statistics:\n"); fprintf (dump_file, "Number of dependence tests: %d\n", dependence_stats.num_dependence_tests); fprintf (dump_file, "Number of dependence tests classified dependent: %d\n", dependence_stats.num_dependence_dependent); fprintf (dump_file, "Number of dependence tests classified independent: %d\n", dependence_stats.num_dependence_independent); fprintf (dump_file, "Number of undetermined dependence tests: %d\n", dependence_stats.num_dependence_undetermined); fprintf (dump_file, "Number of subscript tests: %d\n", dependence_stats.num_subscript_tests); fprintf (dump_file, "Number of undetermined subscript tests: %d\n", dependence_stats.num_subscript_undetermined); fprintf (dump_file, "Number of same subscript function: %d\n", dependence_stats.num_same_subscript_function); fprintf (dump_file, "Number of ziv tests: %d\n", dependence_stats.num_ziv); fprintf (dump_file, "Number of ziv tests returning dependent: %d\n", dependence_stats.num_ziv_dependent); fprintf (dump_file, "Number of ziv tests returning independent: %d\n", dependence_stats.num_ziv_independent); fprintf (dump_file, "Number of ziv tests unimplemented: %d\n", dependence_stats.num_ziv_unimplemented); fprintf (dump_file, "Number of siv tests: %d\n", dependence_stats.num_siv); fprintf (dump_file, "Number of siv tests returning dependent: %d\n", dependence_stats.num_siv_dependent); fprintf (dump_file, "Number of siv tests returning independent: %d\n", dependence_stats.num_siv_independent); fprintf (dump_file, "Number of siv tests unimplemented: %d\n", dependence_stats.num_siv_unimplemented); fprintf (dump_file, "Number of miv tests: %d\n", dependence_stats.num_miv); fprintf (dump_file, "Number of miv tests returning dependent: %d\n", dependence_stats.num_miv_dependent); fprintf (dump_file, "Number of miv tests returning independent: %d\n", dependence_stats.num_miv_independent); fprintf (dump_file, "Number of miv tests unimplemented: %d\n", dependence_stats.num_miv_unimplemented); } return res; } /* Returns true when the data dependences for the basic block BB have been computed, false otherwise. DATAREFS is initialized to all the array elements contained in this basic block, DEPENDENCE_RELATIONS contains the relations between the data references. Compute read-read and self relations if COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */ bool compute_data_dependences_for_bb (basic_block bb, bool compute_self_and_read_read_dependences, VEC (data_reference_p, heap) **datarefs, VEC (ddr_p, heap) **dependence_relations) { if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know) return false; compute_all_dependences (*datarefs, dependence_relations, NULL, compute_self_and_read_read_dependences); return true; } /* Entry point (for testing only). Analyze all the data references and the dependence relations in LOOP. The data references are computed first. A relation on these nodes is represented by a complete graph. Some of the relations could be of no interest, thus the relations can be computed on demand. In the following function we compute all the relations. This is just a first implementation that is here for: - for showing how to ask for the dependence relations, - for the debugging the whole dependence graph, - for the dejagnu testcases and maintenance. It is possible to ask only for a part of the graph, avoiding to compute the whole dependence graph. The computed dependences are stored in a knowledge base (KB) such that later queries don't recompute the same information. The implementation of this KB is transparent to the optimizer, and thus the KB can be changed with a more efficient implementation, or the KB could be disabled. */ static void analyze_all_data_dependences (struct loop *loop) { unsigned int i; int nb_data_refs = 10; VEC (data_reference_p, heap) *datarefs = VEC_alloc (data_reference_p, heap, nb_data_refs); VEC (ddr_p, heap) *dependence_relations = VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs); VEC (loop_p, heap) *loop_nest = VEC_alloc (loop_p, heap, 3); /* Compute DDs on the whole function. */ compute_data_dependences_for_loop (loop, false, &loop_nest, &datarefs, &dependence_relations); if (dump_file) { dump_data_dependence_relations (dump_file, dependence_relations); fprintf (dump_file, "\n\n"); if (dump_flags & TDF_DETAILS) dump_dist_dir_vectors (dump_file, dependence_relations); if (dump_flags & TDF_STATS) { unsigned nb_top_relations = 0; unsigned nb_bot_relations = 0; unsigned nb_chrec_relations = 0; struct data_dependence_relation *ddr; FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr) { if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr))) nb_top_relations++; else if (DDR_ARE_DEPENDENT (ddr) == chrec_known) nb_bot_relations++; else nb_chrec_relations++; } gather_stats_on_scev_database (); } } VEC_free (loop_p, heap, loop_nest); free_dependence_relations (dependence_relations); free_data_refs (datarefs); } /* Computes all the data dependences and check that the results of several analyzers are the same. */ void tree_check_data_deps (void) { loop_iterator li; struct loop *loop_nest; FOR_EACH_LOOP (li, loop_nest, 0) analyze_all_data_dependences (loop_nest); } /* Free the memory used by a data dependence relation DDR. */ void free_dependence_relation (struct data_dependence_relation *ddr) { if (ddr == NULL) return; if (DDR_SUBSCRIPTS (ddr)) free_subscripts (DDR_SUBSCRIPTS (ddr)); if (DDR_DIST_VECTS (ddr)) VEC_free (lambda_vector, heap, DDR_DIST_VECTS (ddr)); if (DDR_DIR_VECTS (ddr)) VEC_free (lambda_vector, heap, DDR_DIR_VECTS (ddr)); free (ddr); } /* Free the memory used by the data dependence relations from DEPENDENCE_RELATIONS. */ void free_dependence_relations (VEC (ddr_p, heap) *dependence_relations) { unsigned int i; struct data_dependence_relation *ddr; FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr) if (ddr) free_dependence_relation (ddr); VEC_free (ddr_p, heap, dependence_relations); } /* Free the memory used by the data references from DATAREFS. */ void free_data_refs (VEC (data_reference_p, heap) *datarefs) { unsigned int i; struct data_reference *dr; FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr) free_data_ref (dr); VEC_free (data_reference_p, heap, datarefs); } /* Dump vertex I in RDG to FILE. */ void dump_rdg_vertex (FILE *file, struct graph *rdg, int i) { struct vertex *v = &(rdg->vertices[i]); struct graph_edge *e; fprintf (file, "(vertex %d: (%s%s) (in:", i, RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "", RDG_MEM_READS_STMT (rdg, i) ? "r" : ""); if (v->pred) for (e = v->pred; e; e = e->pred_next) fprintf (file, " %d", e->src); fprintf (file, ") (out:"); if (v->succ) for (e = v->succ; e; e = e->succ_next) fprintf (file, " %d", e->dest); fprintf (file, ")\n"); print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS); fprintf (file, ")\n"); } /* Call dump_rdg_vertex on stderr. */ DEBUG_FUNCTION void debug_rdg_vertex (struct graph *rdg, int i) { dump_rdg_vertex (stderr, rdg, i); } /* Dump component C of RDG to FILE. If DUMPED is non-null, set the dumped vertices to that bitmap. */ void dump_rdg_component (FILE *file, struct graph *rdg, int c, bitmap dumped) { int i; fprintf (file, "(%d\n", c); for (i = 0; i < rdg->n_vertices; i++) if (rdg->vertices[i].component == c) { if (dumped) bitmap_set_bit (dumped, i); dump_rdg_vertex (file, rdg, i); } fprintf (file, ")\n"); } /* Call dump_rdg_vertex on stderr. */ DEBUG_FUNCTION void debug_rdg_component (struct graph *rdg, int c) { dump_rdg_component (stderr, rdg, c, NULL); } /* Dump the reduced dependence graph RDG to FILE. */ void dump_rdg (FILE *file, struct graph *rdg) { int i; bitmap dumped = BITMAP_ALLOC (NULL); fprintf (file, "(rdg\n"); for (i = 0; i < rdg->n_vertices; i++) if (!bitmap_bit_p (dumped, i)) dump_rdg_component (file, rdg, rdg->vertices[i].component, dumped); fprintf (file, ")\n"); BITMAP_FREE (dumped); } /* Call dump_rdg on stderr. */ DEBUG_FUNCTION void debug_rdg (struct graph *rdg) { dump_rdg (stderr, rdg); } static void dot_rdg_1 (FILE *file, struct graph *rdg) { int i; fprintf (file, "digraph RDG {\n"); for (i = 0; i < rdg->n_vertices; i++) { struct vertex *v = &(rdg->vertices[i]); struct graph_edge *e; /* Highlight reads from memory. */ if (RDG_MEM_READS_STMT (rdg, i)) fprintf (file, "%d [style=filled, fillcolor=green]\n", i); /* Highlight stores to memory. */ if (RDG_MEM_WRITE_STMT (rdg, i)) fprintf (file, "%d [style=filled, fillcolor=red]\n", i); if (v->succ) for (e = v->succ; e; e = e->succ_next) switch (RDGE_TYPE (e)) { case input_dd: fprintf (file, "%d -> %d [label=input] \n", i, e->dest); break; case output_dd: fprintf (file, "%d -> %d [label=output] \n", i, e->dest); break; case flow_dd: /* These are the most common dependences: don't print these. */ fprintf (file, "%d -> %d \n", i, e->dest); break; case anti_dd: fprintf (file, "%d -> %d [label=anti] \n", i, e->dest); break; default: gcc_unreachable (); } } fprintf (file, "}\n\n"); } /* Display the Reduced Dependence Graph using dotty. */ extern void dot_rdg (struct graph *); DEBUG_FUNCTION void dot_rdg (struct graph *rdg) { /* When debugging, enable the following code. This cannot be used in production compilers because it calls "system". */ #if 0 FILE *file = fopen ("/tmp/rdg.dot", "w"); gcc_assert (file != NULL); dot_rdg_1 (file, rdg); fclose (file); system ("dotty /tmp/rdg.dot &"); #else dot_rdg_1 (stderr, rdg); #endif } /* This structure is used for recording the mapping statement index in the RDG. */ struct GTY(()) rdg_vertex_info { gimple stmt; int index; }; /* Returns the index of STMT in RDG. */ int rdg_vertex_for_stmt (struct graph *rdg, gimple stmt) { struct rdg_vertex_info rvi, *slot; rvi.stmt = stmt; slot = (struct rdg_vertex_info *) htab_find (rdg->indices, &rvi); if (!slot) return -1; return slot->index; } /* Creates an edge in RDG for each distance vector from DDR. The order that we keep track of in the RDG is the order in which statements have to be executed. */ static void create_rdg_edge_for_ddr (struct graph *rdg, ddr_p ddr) { struct graph_edge *e; int va, vb; data_reference_p dra = DDR_A (ddr); data_reference_p drb = DDR_B (ddr); unsigned level = ddr_dependence_level (ddr); /* For non scalar dependences, when the dependence is REVERSED, statement B has to be executed before statement A. */ if (level > 0 && !DDR_REVERSED_P (ddr)) { data_reference_p tmp = dra; dra = drb; drb = tmp; } va = rdg_vertex_for_stmt (rdg, DR_STMT (dra)); vb = rdg_vertex_for_stmt (rdg, DR_STMT (drb)); if (va < 0 || vb < 0) return; e = add_edge (rdg, va, vb); e->data = XNEW (struct rdg_edge); RDGE_LEVEL (e) = level; RDGE_RELATION (e) = ddr; /* Determines the type of the data dependence. */ if (DR_IS_READ (dra) && DR_IS_READ (drb)) RDGE_TYPE (e) = input_dd; else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb)) RDGE_TYPE (e) = output_dd; else if (DR_IS_WRITE (dra) && DR_IS_READ (drb)) RDGE_TYPE (e) = flow_dd; else if (DR_IS_READ (dra) && DR_IS_WRITE (drb)) RDGE_TYPE (e) = anti_dd; } /* Creates dependence edges in RDG for all the uses of DEF. IDEF is the index of DEF in RDG. */ static void create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef) { use_operand_p imm_use_p; imm_use_iterator iterator; FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def) { struct graph_edge *e; int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p)); if (use < 0) continue; e = add_edge (rdg, idef, use); e->data = XNEW (struct rdg_edge); RDGE_TYPE (e) = flow_dd; RDGE_RELATION (e) = NULL; } } /* Creates the edges of the reduced dependence graph RDG. */ static void create_rdg_edges (struct graph *rdg, VEC (ddr_p, heap) *ddrs) { int i; struct data_dependence_relation *ddr; def_operand_p def_p; ssa_op_iter iter; FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr) if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE) create_rdg_edge_for_ddr (rdg, ddr); for (i = 0; i < rdg->n_vertices; i++) FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i), iter, SSA_OP_DEF) create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i); } /* Build the vertices of the reduced dependence graph RDG. */ void create_rdg_vertices (struct graph *rdg, VEC (gimple, heap) *stmts) { int i, j; gimple stmt; FOR_EACH_VEC_ELT (gimple, stmts, i, stmt) { VEC (data_ref_loc, heap) *references; data_ref_loc *ref; struct vertex *v = &(rdg->vertices[i]); struct rdg_vertex_info *rvi = XNEW (struct rdg_vertex_info); struct rdg_vertex_info **slot; rvi->stmt = stmt; rvi->index = i; slot = (struct rdg_vertex_info **) htab_find_slot (rdg->indices, rvi, INSERT); if (!*slot) *slot = rvi; else free (rvi); v->data = XNEW (struct rdg_vertex); RDG_STMT (rdg, i) = stmt; RDG_MEM_WRITE_STMT (rdg, i) = false; RDG_MEM_READS_STMT (rdg, i) = false; if (gimple_code (stmt) == GIMPLE_PHI) continue; get_references_in_stmt (stmt, &references); FOR_EACH_VEC_ELT (data_ref_loc, references, j, ref) if (!ref->is_read) RDG_MEM_WRITE_STMT (rdg, i) = true; else RDG_MEM_READS_STMT (rdg, i) = true; VEC_free (data_ref_loc, heap, references); } } /* Initialize STMTS with all the statements of LOOP. When INCLUDE_PHIS is true, include also the PHI nodes. The order in which we discover statements is important as generate_loops_for_partition is using the same traversal for identifying statements. */ static void stmts_from_loop (struct loop *loop, VEC (gimple, heap) **stmts) { unsigned int i; basic_block *bbs = get_loop_body_in_dom_order (loop); for (i = 0; i < loop->num_nodes; i++) { basic_block bb = bbs[i]; gimple_stmt_iterator bsi; gimple stmt; for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi)) VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi)); for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) { stmt = gsi_stmt (bsi); if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt)) VEC_safe_push (gimple, heap, *stmts, stmt); } } free (bbs); } /* Returns true when all the dependences are computable. */ static bool known_dependences_p (VEC (ddr_p, heap) *dependence_relations) { ddr_p ddr; unsigned int i; FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr) if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) return false; return true; } /* Computes a hash function for element ELT. */ static hashval_t hash_stmt_vertex_info (const void *elt) { const struct rdg_vertex_info *const rvi = (const struct rdg_vertex_info *) elt; gimple stmt = rvi->stmt; return htab_hash_pointer (stmt); } /* Compares database elements E1 and E2. */ static int eq_stmt_vertex_info (const void *e1, const void *e2) { const struct rdg_vertex_info *elt1 = (const struct rdg_vertex_info *) e1; const struct rdg_vertex_info *elt2 = (const struct rdg_vertex_info *) e2; return elt1->stmt == elt2->stmt; } /* Free the element E. */ static void hash_stmt_vertex_del (void *e) { free (e); } /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of the loop nest, and one edge per data dependence or scalar dependence. */ struct graph * build_empty_rdg (int n_stmts) { int nb_data_refs = 10; struct graph *rdg = new_graph (n_stmts); rdg->indices = htab_create (nb_data_refs, hash_stmt_vertex_info, eq_stmt_vertex_info, hash_stmt_vertex_del); return rdg; } /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of the loop nest, and one edge per data dependence or scalar dependence. */ struct graph * build_rdg (struct loop *loop, VEC (loop_p, heap) **loop_nest, VEC (ddr_p, heap) **dependence_relations, VEC (data_reference_p, heap) **datarefs) { struct graph *rdg = NULL; VEC (gimple, heap) *stmts = VEC_alloc (gimple, heap, 10); compute_data_dependences_for_loop (loop, false, loop_nest, datarefs, dependence_relations); if (known_dependences_p (*dependence_relations)) { stmts_from_loop (loop, &stmts); rdg = build_empty_rdg (VEC_length (gimple, stmts)); create_rdg_vertices (rdg, stmts); create_rdg_edges (rdg, *dependence_relations); } VEC_free (gimple, heap, stmts); return rdg; } /* Free the reduced dependence graph RDG. */ void free_rdg (struct graph *rdg) { int i; for (i = 0; i < rdg->n_vertices; i++) { struct vertex *v = &(rdg->vertices[i]); struct graph_edge *e; for (e = v->succ; e; e = e->succ_next) free (e->data); free (v->data); } htab_delete (rdg->indices); free_graph (rdg); } /* Initialize STMTS with all the statements of LOOP that contain a store to memory. */ void stores_from_loop (struct loop *loop, VEC (gimple, heap) **stmts) { unsigned int i; basic_block *bbs = get_loop_body_in_dom_order (loop); for (i = 0; i < loop->num_nodes; i++) { basic_block bb = bbs[i]; gimple_stmt_iterator bsi; for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) if (gimple_vdef (gsi_stmt (bsi))) VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi)); } free (bbs); } /* Returns true when the statement at STMT is of the form "A[i] = 0" that contains a data reference on its LHS with a stride of the same size as its unit type. */ bool stmt_with_adjacent_zero_store_dr_p (gimple stmt) { tree op0, op1; bool res; struct data_reference *dr; if (!stmt || !gimple_vdef (stmt) || !is_gimple_assign (stmt) || !gimple_assign_single_p (stmt) || !(op1 = gimple_assign_rhs1 (stmt)) || !(integer_zerop (op1) || real_zerop (op1))) return false; dr = XCNEW (struct data_reference); op0 = gimple_assign_lhs (stmt); DR_STMT (dr) = stmt; DR_REF (dr) = op0; res = dr_analyze_innermost (dr) && stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0)); free_data_ref (dr); return res; } /* Initialize STMTS with all the statements of LOOP that contain a store to memory of the form "A[i] = 0". */ void stores_zero_from_loop (struct loop *loop, VEC (gimple, heap) **stmts) { unsigned int i; basic_block bb; gimple_stmt_iterator si; gimple stmt; basic_block *bbs = get_loop_body_in_dom_order (loop); for (i = 0; i < loop->num_nodes; i++) for (bb = bbs[i], si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) if ((stmt = gsi_stmt (si)) && stmt_with_adjacent_zero_store_dr_p (stmt)) VEC_safe_push (gimple, heap, *stmts, gsi_stmt (si)); free (bbs); } /* For a data reference REF, return the declaration of its base address or NULL_TREE if the base is not determined. */ static inline tree ref_base_address (gimple stmt, data_ref_loc *ref) { tree base = NULL_TREE; tree base_address; struct data_reference *dr = XCNEW (struct data_reference); DR_STMT (dr) = stmt; DR_REF (dr) = *ref->pos; dr_analyze_innermost (dr); base_address = DR_BASE_ADDRESS (dr); if (!base_address) goto end; switch (TREE_CODE (base_address)) { case ADDR_EXPR: base = TREE_OPERAND (base_address, 0); break; default: base = base_address; break; } end: free_data_ref (dr); return base; } /* Determines whether the statement from vertex V of the RDG has a definition used outside the loop that contains this statement. */ bool rdg_defs_used_in_other_loops_p (struct graph *rdg, int v) { gimple stmt = RDG_STMT (rdg, v); struct loop *loop = loop_containing_stmt (stmt); use_operand_p imm_use_p; imm_use_iterator iterator; ssa_op_iter it; def_operand_p def_p; if (!loop) return true; FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, it, SSA_OP_DEF) { FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, DEF_FROM_PTR (def_p)) { if (loop_containing_stmt (USE_STMT (imm_use_p)) != loop) return true; } } return false; } /* Determines whether statements S1 and S2 access to similar memory locations. Two memory accesses are considered similar when they have the same base address declaration, i.e. when their ref_base_address is the same. */ bool have_similar_memory_accesses (gimple s1, gimple s2) { bool res = false; unsigned i, j; VEC (data_ref_loc, heap) *refs1, *refs2; data_ref_loc *ref1, *ref2; get_references_in_stmt (s1, &refs1); get_references_in_stmt (s2, &refs2); FOR_EACH_VEC_ELT (data_ref_loc, refs1, i, ref1) { tree base1 = ref_base_address (s1, ref1); if (base1) FOR_EACH_VEC_ELT (data_ref_loc, refs2, j, ref2) if (base1 == ref_base_address (s2, ref2)) { res = true; goto end; } } end: VEC_free (data_ref_loc, heap, refs1); VEC_free (data_ref_loc, heap, refs2); return res; } /* Helper function for the hashtab. */ static int have_similar_memory_accesses_1 (const void *s1, const void *s2) { return have_similar_memory_accesses (CONST_CAST_GIMPLE ((const_gimple) s1), CONST_CAST_GIMPLE ((const_gimple) s2)); } /* Helper function for the hashtab. */ static hashval_t ref_base_address_1 (const void *s) { gimple stmt = CONST_CAST_GIMPLE ((const_gimple) s); unsigned i; VEC (data_ref_loc, heap) *refs; data_ref_loc *ref; hashval_t res = 0; get_references_in_stmt (stmt, &refs); FOR_EACH_VEC_ELT (data_ref_loc, refs, i, ref) if (!ref->is_read) { res = htab_hash_pointer (ref_base_address (stmt, ref)); break; } VEC_free (data_ref_loc, heap, refs); return res; } /* Try to remove duplicated write data references from STMTS. */ void remove_similar_memory_refs (VEC (gimple, heap) **stmts) { unsigned i; gimple stmt; htab_t seen = htab_create (VEC_length (gimple, *stmts), ref_base_address_1, have_similar_memory_accesses_1, NULL); for (i = 0; VEC_iterate (gimple, *stmts, i, stmt); ) { void **slot; slot = htab_find_slot (seen, stmt, INSERT); if (*slot) VEC_ordered_remove (gimple, *stmts, i); else { *slot = (void *) stmt; i++; } } htab_delete (seen); } /* Returns the index of PARAMETER in the parameters vector of the ACCESS_MATRIX. If PARAMETER does not exist return -1. */ int access_matrix_get_index_for_parameter (tree parameter, struct access_matrix *access_matrix) { int i; VEC (tree,heap) *lambda_parameters = AM_PARAMETERS (access_matrix); tree lambda_parameter; FOR_EACH_VEC_ELT (tree, lambda_parameters, i, lambda_parameter) if (lambda_parameter == parameter) return i + AM_NB_INDUCTION_VARS (access_matrix); return -1; }