/* Inline functions for tree-flow.h Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc. Contributed by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _TREE_FLOW_INLINE_H #define _TREE_FLOW_INLINE_H 1 /* Inline functions for manipulating various data structures defined in tree-flow.h. See tree-flow.h for documentation. */ /* Return the variable annotation for T, which must be a _DECL node. Return NULL if the variable annotation doesn't already exist. */ static inline var_ann_t var_ann (tree t) { gcc_assert (t); gcc_assert (DECL_P (t)); gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN); return (var_ann_t) t->common.ann; } /* Return the variable annotation for T, which must be a _DECL node. Create the variable annotation if it doesn't exist. */ static inline var_ann_t get_var_ann (tree var) { var_ann_t ann = var_ann (var); return (ann) ? ann : create_var_ann (var); } /* Return the statement annotation for T, which must be a statement node. Return NULL if the statement annotation doesn't exist. */ static inline stmt_ann_t stmt_ann (tree t) { #ifdef ENABLE_CHECKING gcc_assert (is_gimple_stmt (t)); #endif return (stmt_ann_t) t->common.ann; } /* Return the statement annotation for T, which must be a statement node. Create the statement annotation if it doesn't exist. */ static inline stmt_ann_t get_stmt_ann (tree stmt) { stmt_ann_t ann = stmt_ann (stmt); return (ann) ? ann : create_stmt_ann (stmt); } /* Return the annotation type for annotation ANN. */ static inline enum tree_ann_type ann_type (tree_ann_t ann) { return ann->common.type; } /* Return the basic block for statement T. */ static inline basic_block bb_for_stmt (tree t) { stmt_ann_t ann; if (TREE_CODE (t) == PHI_NODE) return PHI_BB (t); ann = stmt_ann (t); return ann ? ann->bb : NULL; } /* Return the may_aliases varray for variable VAR, or NULL if it has no may aliases. */ static inline varray_type may_aliases (tree var) { var_ann_t ann = var_ann (var); return ann ? ann->may_aliases : NULL; } /* Return the line number for EXPR, or return -1 if we have no line number information for it. */ static inline int get_lineno (tree expr) { if (expr == NULL_TREE) return -1; if (TREE_CODE (expr) == COMPOUND_EXPR) expr = TREE_OPERAND (expr, 0); if (! EXPR_HAS_LOCATION (expr)) return -1; return EXPR_LINENO (expr); } /* Return the file name for EXPR, or return "???" if we have no filename information. */ static inline const char * get_filename (tree expr) { const char *filename; if (expr == NULL_TREE) return "???"; if (TREE_CODE (expr) == COMPOUND_EXPR) expr = TREE_OPERAND (expr, 0); if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr))) return filename; else return "???"; } /* Return true if T is a noreturn call. */ static inline bool noreturn_call_p (tree t) { tree call = get_call_expr_in (t); return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0; } /* Mark statement T as modified. */ static inline void mark_stmt_modified (tree t) { stmt_ann_t ann; if (TREE_CODE (t) == PHI_NODE) return; ann = stmt_ann (t); if (ann == NULL) ann = create_stmt_ann (t); else if (noreturn_call_p (t)) VEC_safe_push (tree, gc, modified_noreturn_calls, t); ann->modified = 1; } /* Mark statement T as modified, and update it. */ static inline void update_stmt (tree t) { if (TREE_CODE (t) == PHI_NODE) return; mark_stmt_modified (t); update_stmt_operands (t); } static inline void update_stmt_if_modified (tree t) { if (stmt_modified_p (t)) update_stmt_operands (t); } /* Return true if T is marked as modified, false otherwise. */ static inline bool stmt_modified_p (tree t) { stmt_ann_t ann = stmt_ann (t); /* Note that if the statement doesn't yet have an annotation, we consider it modified. This will force the next call to update_stmt_operands to scan the statement. */ return ann ? ann->modified : true; } /* Delink an immediate_uses node from its chain. */ static inline void delink_imm_use (ssa_imm_use_t *linknode) { /* Return if this node is not in a list. */ if (linknode->prev == NULL) return; linknode->prev->next = linknode->next; linknode->next->prev = linknode->prev; linknode->prev = NULL; linknode->next = NULL; } /* Link ssa_imm_use node LINKNODE into the chain for LIST. */ static inline void link_imm_use_to_list (ssa_imm_use_t *linknode, ssa_imm_use_t *list) { /* Link the new node at the head of the list. If we are in the process of traversing the list, we wont visit any new nodes added to it. */ linknode->prev = list; linknode->next = list->next; list->next->prev = linknode; list->next = linknode; } /* Link ssa_imm_use node LINKNODE into the chain for DEF. */ static inline void link_imm_use (ssa_imm_use_t *linknode, tree def) { ssa_imm_use_t *root; if (!def || TREE_CODE (def) != SSA_NAME) linknode->prev = NULL; else { root = &(SSA_NAME_IMM_USE_NODE (def)); #ifdef ENABLE_CHECKING if (linknode->use) gcc_assert (*(linknode->use) == def); #endif link_imm_use_to_list (linknode, root); } } /* Set the value of a use pointed by USE to VAL. */ static inline void set_ssa_use_from_ptr (use_operand_p use, tree val) { delink_imm_use (use); *(use->use) = val; link_imm_use (use, val); } /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occuring in STMT. */ static inline void link_imm_use_stmt (ssa_imm_use_t *linknode, tree def, tree stmt) { if (stmt) link_imm_use (linknode, def); else link_imm_use (linknode, NULL); linknode->stmt = stmt; } /* Relink a new node in place of an old node in the list. */ static inline void relink_imm_use (ssa_imm_use_t *node, ssa_imm_use_t *old) { /* The node one had better be in the same list. */ gcc_assert (*(old->use) == *(node->use)); node->prev = old->prev; node->next = old->next; if (old->prev) { old->prev->next = node; old->next->prev = node; /* Remove the old node from the list. */ old->prev = NULL; } } /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occuring in STMT. */ static inline void relink_imm_use_stmt (ssa_imm_use_t *linknode, ssa_imm_use_t *old, tree stmt) { if (stmt) relink_imm_use (linknode, old); else link_imm_use (linknode, NULL); linknode->stmt = stmt; } /* Finished the traverse of an immediate use list IMM by removing it from the list. */ static inline void end_safe_imm_use_traverse (imm_use_iterator *imm) { delink_imm_use (&(imm->iter_node)); } /* Return true if IMM is at the end of the list. */ static inline bool end_safe_imm_use_p (imm_use_iterator *imm) { return (imm->imm_use == imm->end_p); } /* Initialize iterator IMM to process the list for VAR. */ static inline use_operand_p first_safe_imm_use (imm_use_iterator *imm, tree var) { /* Set up and link the iterator node into the linked list for VAR. */ imm->iter_node.use = NULL; imm->iter_node.stmt = NULL_TREE; imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); /* Check if there are 0 elements. */ if (imm->end_p->next == imm->end_p) { imm->imm_use = imm->end_p; return NULL_USE_OPERAND_P; } link_imm_use (&(imm->iter_node), var); imm->imm_use = imm->iter_node.next; return imm->imm_use; } /* Bump IMM to then next use in the list. */ static inline use_operand_p next_safe_imm_use (imm_use_iterator *imm) { ssa_imm_use_t *ptr; use_operand_p old; old = imm->imm_use; /* If the next node following the iter_node is still the one referred to by imm_use, then the list hasn't changed, go to the next node. */ if (imm->iter_node.next == imm->imm_use) { ptr = &(imm->iter_node); /* Remove iternode from the list. */ delink_imm_use (ptr); imm->imm_use = imm->imm_use->next; if (! end_safe_imm_use_p (imm)) { /* This isnt the end, link iternode before the next use. */ ptr->prev = imm->imm_use->prev; ptr->next = imm->imm_use; imm->imm_use->prev->next = ptr; imm->imm_use->prev = ptr; } else return old; } else { /* If the 'next' value after the iterator isn't the same as it was, then a node has been deleted, so we simply proceed to the node following where the iterator is in the list. */ imm->imm_use = imm->iter_node.next; if (end_safe_imm_use_p (imm)) { end_safe_imm_use_traverse (imm); return old; } } return imm->imm_use; } /* Return true is IMM has reached the end of the immediate use list. */ static inline bool end_readonly_imm_use_p (imm_use_iterator *imm) { return (imm->imm_use == imm->end_p); } /* Initialize iterator IMM to process the list for VAR. */ static inline use_operand_p first_readonly_imm_use (imm_use_iterator *imm, tree var) { gcc_assert (TREE_CODE (var) == SSA_NAME); imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); imm->imm_use = imm->end_p->next; #ifdef ENABLE_CHECKING imm->iter_node.next = imm->imm_use->next; #endif if (end_readonly_imm_use_p (imm)) return NULL_USE_OPERAND_P; return imm->imm_use; } /* Bump IMM to then next use in the list. */ static inline use_operand_p next_readonly_imm_use (imm_use_iterator *imm) { use_operand_p old = imm->imm_use; #ifdef ENABLE_CHECKING /* If this assertion fails, it indicates the 'next' pointer has changed since we the last bump. This indicates that the list is being modified via stmt changes, or SET_USE, or somesuch thing, and you need to be using the SAFE version of the iterator. */ gcc_assert (imm->iter_node.next == old->next); imm->iter_node.next = old->next->next; #endif imm->imm_use = old->next; if (end_readonly_imm_use_p (imm)) return old; return imm->imm_use; } /* Return true if VAR has no uses. */ static inline bool has_zero_uses (tree var) { ssa_imm_use_t *ptr; ptr = &(SSA_NAME_IMM_USE_NODE (var)); /* A single use means there is no items in the list. */ return (ptr == ptr->next); } /* Return true if VAR has a single use. */ static inline bool has_single_use (tree var) { ssa_imm_use_t *ptr; ptr = &(SSA_NAME_IMM_USE_NODE (var)); /* A single use means there is one item in the list. */ return (ptr != ptr->next && ptr == ptr->next->next); } /* If VAR has only a single immediate use, return true, and set USE_P and STMT to the use pointer and stmt of occurrence. */ static inline bool single_imm_use (tree var, use_operand_p *use_p, tree *stmt) { ssa_imm_use_t *ptr; ptr = &(SSA_NAME_IMM_USE_NODE (var)); if (ptr != ptr->next && ptr == ptr->next->next) { *use_p = ptr->next; *stmt = ptr->next->stmt; return true; } *use_p = NULL_USE_OPERAND_P; *stmt = NULL_TREE; return false; } /* Return the number of immediate uses of VAR. */ static inline unsigned int num_imm_uses (tree var) { ssa_imm_use_t *ptr, *start; unsigned int num; start = &(SSA_NAME_IMM_USE_NODE (var)); num = 0; for (ptr = start->next; ptr != start; ptr = ptr->next) num++; return num; } /* Return the definitions present in ANN, a statement annotation. Return NULL if this annotation contains no definitions. */ static inline def_optype get_def_ops (stmt_ann_t ann) { return ann ? ann->operands.def_ops : NULL; } /* Return the uses present in ANN, a statement annotation. Return NULL if this annotation contains no uses. */ static inline use_optype get_use_ops (stmt_ann_t ann) { return ann ? ann->operands.use_ops : NULL; } /* Return the virtual may-defs present in ANN, a statement annotation. Return NULL if this annotation contains no virtual may-defs. */ static inline v_may_def_optype get_v_may_def_ops (stmt_ann_t ann) { return ann ? ann->operands.v_may_def_ops : NULL; } /* Return the virtual uses present in ANN, a statement annotation. Return NULL if this annotation contains no virtual uses. */ static inline vuse_optype get_vuse_ops (stmt_ann_t ann) { return ann ? ann->operands.vuse_ops : NULL; } /* Return the virtual must-defs present in ANN, a statement annotation. Return NULL if this annotation contains no must-defs.*/ static inline v_must_def_optype get_v_must_def_ops (stmt_ann_t ann) { return ann ? ann->operands.v_must_def_ops : NULL; } /* Return the tree pointer to by USE. */ static inline tree get_use_from_ptr (use_operand_p use) { return *(use->use); } /* Return the tree pointer to by DEF. */ static inline tree get_def_from_ptr (def_operand_p def) { return *(def.def); } /* Return a pointer to the tree that is at INDEX in the USES array. */ static inline use_operand_p get_use_op_ptr (use_optype uses, unsigned int index) { gcc_assert (index < uses->num_uses); return &(uses->uses[index]); } /* Return a def_operand_p pointer for element INDEX of DEFS. */ static inline def_operand_p get_def_op_ptr (def_optype defs, unsigned int index) { gcc_assert (index < defs->num_defs); return defs->defs[index]; } /* Return the def_operand_p that is the V_MAY_DEF_RESULT for the V_MAY_DEF at INDEX in the V_MAY_DEFS array. */ static inline def_operand_p get_v_may_def_result_ptr(v_may_def_optype v_may_defs, unsigned int index) { def_operand_p op; gcc_assert (index < v_may_defs->num_v_may_defs); op.def = &(v_may_defs->v_may_defs[index].def); return op; } /* Return a use_operand_p that is the V_MAY_DEF_OP for the V_MAY_DEF at INDEX in the V_MAY_DEFS array. */ static inline use_operand_p get_v_may_def_op_ptr(v_may_def_optype v_may_defs, unsigned int index) { gcc_assert (index < v_may_defs->num_v_may_defs); return &(v_may_defs->v_may_defs[index].imm_use); } /* Return a use_operand_p that is at INDEX in the VUSES array. */ static inline use_operand_p get_vuse_op_ptr(vuse_optype vuses, unsigned int index) { gcc_assert (index < vuses->num_vuses); return &(vuses->vuses[index].imm_use); } /* Return a def_operand_p that is the V_MUST_DEF_RESULT for the V_MUST_DEF at INDEX in the V_MUST_DEFS array. */ static inline def_operand_p get_v_must_def_result_ptr (v_must_def_optype v_must_defs, unsigned int index) { def_operand_p op; gcc_assert (index < v_must_defs->num_v_must_defs); op.def = &(v_must_defs->v_must_defs[index].def); return op; } /* Return a use_operand_p that is the V_MUST_DEF_KILL for the V_MUST_DEF at INDEX in the V_MUST_DEFS array. */ static inline use_operand_p get_v_must_def_kill_ptr (v_must_def_optype v_must_defs, unsigned int index) { gcc_assert (index < v_must_defs->num_v_must_defs); return &(v_must_defs->v_must_defs[index].imm_use); } /* Return a def_operand_p pointer for the result of PHI. */ static inline def_operand_p get_phi_result_ptr (tree phi) { def_operand_p op; op.def = &(PHI_RESULT_TREE (phi)); return op; } /* Return a use_operand_p pointer for argument I of phinode PHI. */ static inline use_operand_p get_phi_arg_def_ptr (tree phi, int i) { return &(PHI_ARG_IMM_USE_NODE (phi,i)); } /* Delink all immediate_use information for STMT. */ static inline void delink_stmt_imm_use (tree stmt) { unsigned int x; use_optype uses = STMT_USE_OPS (stmt); vuse_optype vuses = STMT_VUSE_OPS (stmt); v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt); v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt); for (x = 0; x < NUM_USES (uses); x++) delink_imm_use (&(uses->uses[x])); for (x = 0; x < NUM_VUSES (vuses); x++) delink_imm_use (&(vuses->vuses[x].imm_use)); for (x = 0; x < NUM_V_MAY_DEFS (v_may_defs); x++) delink_imm_use (&(v_may_defs->v_may_defs[x].imm_use)); for (x = 0; x < NUM_V_MUST_DEFS (v_must_defs); x++) delink_imm_use (&(v_must_defs->v_must_defs[x].imm_use)); } /* Return the bitmap of addresses taken by STMT, or NULL if it takes no addresses. */ static inline bitmap addresses_taken (tree stmt) { stmt_ann_t ann = stmt_ann (stmt); return ann ? ann->addresses_taken : NULL; } /* Return the basic_block annotation for BB. */ static inline bb_ann_t bb_ann (basic_block bb) { return (bb_ann_t)bb->tree_annotations; } /* Return the PHI nodes for basic block BB, or NULL if there are no PHI nodes. */ static inline tree phi_nodes (basic_block bb) { return bb_ann (bb)->phi_nodes; } /* Set list of phi nodes of a basic block BB to L. */ static inline void set_phi_nodes (basic_block bb, tree l) { tree phi; bb_ann (bb)->phi_nodes = l; for (phi = l; phi; phi = PHI_CHAIN (phi)) set_bb_for_stmt (phi, bb); } /* Return the phi argument which contains the specified use. */ static inline int phi_arg_index_from_use (use_operand_p use) { struct phi_arg_d *element, *root; int index; tree phi; /* Since the use is the first thing in a PHI argument element, we can calculate its index based on casting it to an argument, and performing pointer arithmetic. */ phi = USE_STMT (use); gcc_assert (TREE_CODE (phi) == PHI_NODE); element = (struct phi_arg_d *)use; root = &(PHI_ARG_ELT (phi, 0)); index = element - root; #ifdef ENABLE_CHECKING /* Make sure the calculation doesn't have any leftover bytes. If it does, then imm_use is likely not the first element in phi_arg_d. */ gcc_assert ( (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0); gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi)); #endif return index; } /* Mark VAR as used, so that it'll be preserved during rtl expansion. */ static inline void set_is_used (tree var) { var_ann_t ann = get_var_ann (var); ann->used = 1; } /* ----------------------------------------------------------------------- */ /* Return true if T is an executable statement. */ static inline bool is_exec_stmt (tree t) { return (t && !IS_EMPTY_STMT (t) && t != error_mark_node); } /* Return true if this stmt can be the target of a control transfer stmt such as a goto. */ static inline bool is_label_stmt (tree t) { if (t) switch (TREE_CODE (t)) { case LABEL_DECL: case LABEL_EXPR: case CASE_LABEL_EXPR: return true; default: return false; } return false; } /* Set the default definition for VAR to DEF. */ static inline void set_default_def (tree var, tree def) { var_ann_t ann = get_var_ann (var); ann->default_def = def; } /* Return the default definition for variable VAR, or NULL if none exists. */ static inline tree default_def (tree var) { var_ann_t ann = var_ann (var); return ann ? ann->default_def : NULL_TREE; } /* PHI nodes should contain only ssa_names and invariants. A test for ssa_name is definitely simpler; don't let invalid contents slip in in the meantime. */ static inline bool phi_ssa_name_p (tree t) { if (TREE_CODE (t) == SSA_NAME) return true; #ifdef ENABLE_CHECKING gcc_assert (is_gimple_min_invariant (t)); #endif return false; } /* ----------------------------------------------------------------------- */ /* Return a block_stmt_iterator that points to beginning of basic block BB. */ static inline block_stmt_iterator bsi_start (basic_block bb) { block_stmt_iterator bsi; if (bb->stmt_list) bsi.tsi = tsi_start (bb->stmt_list); else { gcc_assert (bb->index < 0); bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } bsi.bb = bb; return bsi; } /* Return a block statement iterator that points to the last label in block BB. */ static inline block_stmt_iterator bsi_after_labels (basic_block bb) { block_stmt_iterator bsi; tree_stmt_iterator next; bsi.bb = bb; if (!bb->stmt_list) { gcc_assert (bb->index < 0); bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; return bsi; } bsi.tsi = tsi_start (bb->stmt_list); if (tsi_end_p (bsi.tsi)) return bsi; /* Ensure that there are some labels. The rationale is that we want to insert after the bsi that is returned, and these insertions should be placed at the start of the basic block. This would not work if the first statement was not label; rather fail here than enable the user proceed in wrong way. */ gcc_assert (TREE_CODE (tsi_stmt (bsi.tsi)) == LABEL_EXPR); next = bsi.tsi; tsi_next (&next); while (!tsi_end_p (next) && TREE_CODE (tsi_stmt (next)) == LABEL_EXPR) { bsi.tsi = next; tsi_next (&next); } return bsi; } /* Return a block statement iterator that points to the end of basic block BB. */ static inline block_stmt_iterator bsi_last (basic_block bb) { block_stmt_iterator bsi; if (bb->stmt_list) bsi.tsi = tsi_last (bb->stmt_list); else { gcc_assert (bb->index < 0); bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } bsi.bb = bb; return bsi; } /* Return true if block statement iterator I has reached the end of the basic block. */ static inline bool bsi_end_p (block_stmt_iterator i) { return tsi_end_p (i.tsi); } /* Modify block statement iterator I so that it is at the next statement in the basic block. */ static inline void bsi_next (block_stmt_iterator *i) { tsi_next (&i->tsi); } /* Modify block statement iterator I so that it is at the previous statement in the basic block. */ static inline void bsi_prev (block_stmt_iterator *i) { tsi_prev (&i->tsi); } /* Return the statement that block statement iterator I is currently at. */ static inline tree bsi_stmt (block_stmt_iterator i) { return tsi_stmt (i.tsi); } /* Return a pointer to the statement that block statement iterator I is currently at. */ static inline tree * bsi_stmt_ptr (block_stmt_iterator i) { return tsi_stmt_ptr (i.tsi); } /* Returns the loop of the statement STMT. */ static inline struct loop * loop_containing_stmt (tree stmt) { basic_block bb = bb_for_stmt (stmt); if (!bb) return NULL; return bb->loop_father; } /* Return true if VAR is a clobbered by function calls. */ static inline bool is_call_clobbered (tree var) { return is_global_var (var) || bitmap_bit_p (call_clobbered_vars, var_ann (var)->uid); } /* Mark variable VAR as being clobbered by function calls. */ static inline void mark_call_clobbered (tree var) { var_ann_t ann = var_ann (var); /* If VAR is a memory tag, then we need to consider it a global variable. This is because the pointer that VAR represents has been found to point to either an arbitrary location or to a known location in global memory. */ if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD) DECL_EXTERNAL (var) = 1; bitmap_set_bit (call_clobbered_vars, ann->uid); ssa_call_clobbered_cache_valid = false; ssa_ro_call_cache_valid = false; } /* Clear the call-clobbered attribute from variable VAR. */ static inline void clear_call_clobbered (tree var) { var_ann_t ann = var_ann (var); if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD) DECL_EXTERNAL (var) = 0; bitmap_clear_bit (call_clobbered_vars, ann->uid); ssa_call_clobbered_cache_valid = false; ssa_ro_call_cache_valid = false; } /* Mark variable VAR as being non-addressable. */ static inline void mark_non_addressable (tree var) { bitmap_clear_bit (call_clobbered_vars, var_ann (var)->uid); TREE_ADDRESSABLE (var) = 0; ssa_call_clobbered_cache_valid = false; ssa_ro_call_cache_valid = false; } /* Return the common annotation for T. Return NULL if the annotation doesn't already exist. */ static inline tree_ann_t tree_ann (tree t) { return t->common.ann; } /* Return a common annotation for T. Create the constant annotation if it doesn't exist. */ static inline tree_ann_t get_tree_ann (tree t) { tree_ann_t ann = tree_ann (t); return (ann) ? ann : create_tree_ann (t); } /* ----------------------------------------------------------------------- */ /* The following set of routines are used to iterator over various type of SSA operands. */ /* Return true if PTR is finished iterating. */ static inline bool op_iter_done (ssa_op_iter *ptr) { return ptr->done; } /* Get the next iterator use value for PTR. */ static inline use_operand_p op_iter_next_use (ssa_op_iter *ptr) { if (ptr->use_i < ptr->num_use) { return USE_OP_PTR (ptr->ops->use_ops, (ptr->use_i)++); } if (ptr->vuse_i < ptr->num_vuse) { return VUSE_OP_PTR (ptr->ops->vuse_ops, (ptr->vuse_i)++); } if (ptr->v_mayu_i < ptr->num_v_mayu) { return V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++); } if (ptr->v_mustu_i < ptr->num_v_mustu) { return V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++); } ptr->done = true; return NULL_USE_OPERAND_P; } /* Get the next iterator def value for PTR. */ static inline def_operand_p op_iter_next_def (ssa_op_iter *ptr) { if (ptr->def_i < ptr->num_def) { return DEF_OP_PTR (ptr->ops->def_ops, (ptr->def_i)++); } if (ptr->v_mustd_i < ptr->num_v_mustd) { return V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustd_i)++); } if (ptr->v_mayd_i < ptr->num_v_mayd) { return V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayd_i)++); } ptr->done = true; return NULL_DEF_OPERAND_P; } /* Get the next iterator tree value for PTR. */ static inline tree op_iter_next_tree (ssa_op_iter *ptr) { if (ptr->use_i < ptr->num_use) { return USE_OP (ptr->ops->use_ops, (ptr->use_i)++); } if (ptr->vuse_i < ptr->num_vuse) { return VUSE_OP (ptr->ops->vuse_ops, (ptr->vuse_i)++); } if (ptr->v_mayu_i < ptr->num_v_mayu) { return V_MAY_DEF_OP (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++); } if (ptr->v_mustu_i < ptr->num_v_mustu) { return V_MUST_DEF_KILL (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++); } if (ptr->def_i < ptr->num_def) { return DEF_OP (ptr->ops->def_ops, (ptr->def_i)++); } if (ptr->v_mustd_i < ptr->num_v_mustd) { return V_MUST_DEF_RESULT (ptr->ops->v_must_def_ops, (ptr->v_mustd_i)++); } if (ptr->v_mayd_i < ptr->num_v_mayd) { return V_MAY_DEF_RESULT (ptr->ops->v_may_def_ops, (ptr->v_mayd_i)++); } ptr->done = true; return NULL; } /* Initialize the iterator PTR to the virtual defs in STMT. */ static inline void op_iter_init (ssa_op_iter *ptr, tree stmt, int flags) { stmt_operands_p ops; stmt_ann_t ann = get_stmt_ann (stmt); ops = &(ann->operands); ptr->done = false; ptr->ops = ops; ptr->num_def = (flags & SSA_OP_DEF) ? NUM_DEFS (ops->def_ops) : 0; ptr->num_use = (flags & SSA_OP_USE) ? NUM_USES (ops->use_ops) : 0; ptr->num_vuse = (flags & SSA_OP_VUSE) ? NUM_VUSES (ops->vuse_ops) : 0; ptr->num_v_mayu = (flags & SSA_OP_VMAYUSE) ? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0; ptr->num_v_mayd = (flags & SSA_OP_VMAYDEF) ? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0; ptr->num_v_mustu = (flags & SSA_OP_VMUSTDEFKILL) ? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0; ptr->num_v_mustd = (flags & SSA_OP_VMUSTDEF) ? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0; ptr->def_i = 0; ptr->use_i = 0; ptr->vuse_i = 0; ptr->v_mayu_i = 0; ptr->v_mayd_i = 0; ptr->v_mustu_i = 0; ptr->v_mustd_i = 0; } /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return the first use. */ static inline use_operand_p op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags) { op_iter_init (ptr, stmt, flags); return op_iter_next_use (ptr); } /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return the first def. */ static inline def_operand_p op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags) { op_iter_init (ptr, stmt, flags); return op_iter_next_def (ptr); } /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return the first operand as a tree. */ static inline tree op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags) { op_iter_init (ptr, stmt, flags); return op_iter_next_tree (ptr); } /* Get the next iterator mustdef value for PTR, returning the mustdef values in KILL and DEF. */ static inline void op_iter_next_mustdef (use_operand_p *kill, def_operand_p *def, ssa_op_iter *ptr) { if (ptr->v_mustu_i < ptr->num_v_mustu) { *def = V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, ptr->v_mustu_i); *kill = V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++); return; } else { *def = NULL_DEF_OPERAND_P; *kill = NULL_USE_OPERAND_P; } ptr->done = true; return; } /* Get the next iterator maydef value for PTR, returning the maydef values in USE and DEF. */ static inline void op_iter_next_maydef (use_operand_p *use, def_operand_p *def, ssa_op_iter *ptr) { if (ptr->v_mayu_i < ptr->num_v_mayu) { *def = V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, ptr->v_mayu_i); *use = V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++); return; } else { *def = NULL_DEF_OPERAND_P; *use = NULL_USE_OPERAND_P; } ptr->done = true; return; } /* Get the next iterator mustdef or maydef value for PTR, returning the mustdef or maydef values in KILL and DEF. */ static inline void op_iter_next_must_and_may_def (use_operand_p *kill, def_operand_p *def, ssa_op_iter *ptr) { if (ptr->v_mustu_i < ptr->num_v_mustu) { *def = V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, ptr->v_mustu_i); *kill = V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++); return; } else if (ptr->v_mayu_i < ptr->num_v_mayu) { *def = V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, ptr->v_mayu_i); *kill = V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++); return; } else { *def = NULL_DEF_OPERAND_P; *kill = NULL_USE_OPERAND_P; } ptr->done = true; return; } /* Initialize iterator PTR to the operands in STMT. Return the first operands in USE and DEF. */ static inline void op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use, def_operand_p *def) { op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); op_iter_next_maydef (use, def, ptr); } /* Initialize iterator PTR to the operands in STMT. Return the first operands in KILL and DEF. */ static inline void op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, def_operand_p *def) { op_iter_init (ptr, stmt, SSA_OP_VMUSTDEFKILL); op_iter_next_mustdef (kill, def, ptr); } /* Initialize iterator PTR to the operands in STMT. Return the first operands in KILL and DEF. */ static inline void op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, def_operand_p *def) { op_iter_init (ptr, stmt, SSA_OP_VMUSTDEFKILL | SSA_OP_VMAYUSE); op_iter_next_must_and_may_def (kill, def, ptr); } /* Return true if VAR cannot be modified by the program. */ static inline bool unmodifiable_var_p (tree var) { if (TREE_CODE (var) == SSA_NAME) var = SSA_NAME_VAR (var); return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); } /* Return true if REF, a COMPONENT_REF, has an ARRAY_REF somewhere in it. */ static inline bool ref_contains_array_ref (tree ref) { while (handled_component_p (ref)) { if (TREE_CODE (ref) == ARRAY_REF) return true; ref = TREE_OPERAND (ref, 0); } return false; } /* Given a variable VAR, lookup and return a pointer to the list of subvariables for it. */ static inline subvar_t * lookup_subvars_for_var (tree var) { var_ann_t ann = var_ann (var); gcc_assert (ann); return &ann->subvars; } /* Given a variable VAR, return a linked list of subvariables for VAR, or NULL, if there are no subvariables. */ static inline subvar_t get_subvars_for_var (tree var) { subvar_t subvars; gcc_assert (SSA_VAR_P (var)); if (TREE_CODE (var) == SSA_NAME) subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var))); else subvars = *(lookup_subvars_for_var (var)); return subvars; } /* Return true if V is a tree that we can have subvars for. Normally, this is any aggregate type, however, due to implementation limitations ATM, we exclude array types as well. */ static inline bool var_can_have_subvars (tree v) { return (AGGREGATE_TYPE_P (TREE_TYPE (v)) && TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE); } /* Return true if OFFSET and SIZE define a range that overlaps with some portion of the range of SV, a subvar. If there was an exact overlap, *EXACT will be set to true upon return. */ static inline bool overlap_subvar (HOST_WIDE_INT offset, HOST_WIDE_INT size, subvar_t sv, bool *exact) { /* There are three possible cases of overlap. 1. We can have an exact overlap, like so: |offset, offset + size | |sv->offset, sv->offset + sv->size | 2. We can have offset starting after sv->offset, like so: |offset, offset + size | |sv->offset, sv->offset + sv->size | 3. We can have offset starting before sv->offset, like so: |offset, offset + size | |sv->offset, sv->offset + sv->size| */ if (exact) *exact = false; if (offset == sv->offset && size == sv->size) { if (exact) *exact = true; return true; } else if (offset >= sv->offset && offset < (sv->offset + sv->size)) { return true; } else if (offset < sv->offset && (offset + size > sv->offset)) { return true; } return false; } #endif /* _TREE_FLOW_INLINE_H */