/* Inline functions for tree-flow.h Copyright (C) 2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef _TREE_FLOW_INLINE_H #define _TREE_FLOW_INLINE_H 1 /* Inline functions for manipulating various data structures defined in tree-flow.h. See tree-flow.h for documentation. */ /* Return true when gimple SSA form was built. gimple_in_ssa_p is queried by gimplifier in various early stages before SSA infrastructure is initialized. Check for presence of the datastructures at first place. */ static inline bool gimple_in_ssa_p (const struct function *fun) { return fun && fun->gimple_df && fun->gimple_df->in_ssa_p; } /* 'true' after aliases have been computed (see compute_may_aliases). */ static inline bool gimple_aliases_computed_p (const struct function *fun) { gcc_assert (fun && fun->gimple_df); return fun->gimple_df->aliases_computed_p; } /* Addressable variables in the function. If bit I is set, then REFERENCED_VARS (I) has had its address taken. Note that CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An addressable variable is not necessarily call-clobbered (e.g., a local addressable whose address does not escape) and not all call-clobbered variables are addressable (e.g., a local static variable). */ static inline bitmap gimple_addressable_vars (const struct function *fun) { gcc_assert (fun && fun->gimple_df); return fun->gimple_df->addressable_vars; } /* Call clobbered variables in the function. If bit I is set, then REFERENCED_VARS (I) is call-clobbered. */ static inline bitmap gimple_call_clobbered_vars (const struct function *fun) { gcc_assert (fun && fun->gimple_df); return fun->gimple_df->call_clobbered_vars; } /* Array of all variables referenced in the function. */ static inline htab_t gimple_referenced_vars (const struct function *fun) { if (!fun->gimple_df) return NULL; return fun->gimple_df->referenced_vars; } /* Artificial variable used to model the effects of function calls. */ static inline tree gimple_global_var (const struct function *fun) { gcc_assert (fun && fun->gimple_df); return fun->gimple_df->global_var; } /* Artificial variable used to model the effects of nonlocal variables. */ static inline tree gimple_nonlocal_all (const struct function *fun) { gcc_assert (fun && fun->gimple_df); return fun->gimple_df->nonlocal_all; } /* Hashtable of variables annotations. Used for static variables only; local variables have direct pointer in the tree node. */ static inline htab_t gimple_var_anns (const struct function *fun) { return fun->gimple_df->var_anns; } /* Initialize the hashtable iterator HTI to point to hashtable TABLE */ static inline void * first_htab_element (htab_iterator *hti, htab_t table) { hti->htab = table; hti->slot = table->entries; hti->limit = hti->slot + htab_size (table); do { PTR x = *(hti->slot); if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) break; } while (++(hti->slot) < hti->limit); if (hti->slot < hti->limit) return *(hti->slot); return NULL; } /* Return current non-empty/deleted slot of the hashtable pointed to by HTI, or NULL if we have reached the end. */ static inline bool end_htab_p (const htab_iterator *hti) { if (hti->slot >= hti->limit) return true; return false; } /* Advance the hashtable iterator pointed to by HTI to the next element of the hashtable. */ static inline void * next_htab_element (htab_iterator *hti) { while (++(hti->slot) < hti->limit) { PTR x = *(hti->slot); if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) return x; }; return NULL; } /* Initialize ITER to point to the first referenced variable in the referenced_vars hashtable, and return that variable. */ static inline tree first_referenced_var (referenced_var_iterator *iter) { return (tree) first_htab_element (&iter->hti, gimple_referenced_vars (cfun)); } /* Return true if we have hit the end of the referenced variables ITER is iterating through. */ static inline bool end_referenced_vars_p (const referenced_var_iterator *iter) { return end_htab_p (&iter->hti); } /* Make ITER point to the next referenced_var in the referenced_var hashtable, and return that variable. */ static inline tree next_referenced_var (referenced_var_iterator *iter) { return (tree) next_htab_element (&iter->hti); } /* Fill up VEC with the variables in the referenced vars hashtable. */ static inline void fill_referenced_var_vec (VEC (tree, heap) **vec) { referenced_var_iterator rvi; tree var; *vec = NULL; FOR_EACH_REFERENCED_VAR (var, rvi) VEC_safe_push (tree, heap, *vec, var); } /* Return the variable annotation for T, which must be a _DECL node. Return NULL if the variable annotation doesn't already exist. */ static inline var_ann_t var_ann (const_tree t) { var_ann_t ann; if (!MTAG_P (t) && (TREE_STATIC (t) || DECL_EXTERNAL (t))) { struct static_var_ann_d *sann = ((struct static_var_ann_d *) htab_find_with_hash (gimple_var_anns (cfun), t, DECL_UID (t))); if (!sann) return NULL; ann = &sann->ann; } else { if (!t->base.ann) return NULL; ann = (var_ann_t) t->base.ann; } gcc_assert (ann->common.type == VAR_ANN); return ann; } /* Return the variable annotation for T, which must be a _DECL node. Create the variable annotation if it doesn't exist. */ static inline var_ann_t get_var_ann (tree var) { var_ann_t ann = var_ann (var); return (ann) ? ann : create_var_ann (var); } /* Return the function annotation for T, which must be a FUNCTION_DECL node. Return NULL if the function annotation doesn't already exist. */ static inline function_ann_t function_ann (const_tree t) { gcc_assert (t); gcc_assert (TREE_CODE (t) == FUNCTION_DECL); gcc_assert (!t->base.ann || t->base.ann->common.type == FUNCTION_ANN); return (function_ann_t) t->base.ann; } /* Return the function annotation for T, which must be a FUNCTION_DECL node. Create the function annotation if it doesn't exist. */ static inline function_ann_t get_function_ann (tree var) { function_ann_t ann = function_ann (var); gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN); return (ann) ? ann : create_function_ann (var); } /* Return true if T has a statement annotation attached to it. */ static inline bool has_stmt_ann (tree t) { #ifdef ENABLE_CHECKING gcc_assert (is_gimple_stmt (t)); #endif return t->base.ann && t->base.ann->common.type == STMT_ANN; } /* Return the statement annotation for T, which must be a statement node. Return NULL if the statement annotation doesn't exist. */ static inline stmt_ann_t stmt_ann (tree t) { #ifdef ENABLE_CHECKING gcc_assert (is_gimple_stmt (t)); #endif gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN); return (stmt_ann_t) t->base.ann; } /* Return the statement annotation for T, which must be a statement node. Create the statement annotation if it doesn't exist. */ static inline stmt_ann_t get_stmt_ann (tree stmt) { stmt_ann_t ann = stmt_ann (stmt); return (ann) ? ann : create_stmt_ann (stmt); } /* Return the annotation type for annotation ANN. */ static inline enum tree_ann_type ann_type (tree_ann_t ann) { return ann->common.type; } /* Return the basic block for statement T. */ static inline basic_block bb_for_stmt (tree t) { stmt_ann_t ann; if (TREE_CODE (t) == PHI_NODE) return PHI_BB (t); ann = stmt_ann (t); return ann ? ann->bb : NULL; } /* Return the may_aliases bitmap for variable VAR, or NULL if it has no may aliases. */ static inline bitmap may_aliases (const_tree var) { return MTAG_ALIASES (var); } /* Return the line number for EXPR, or return -1 if we have no line number information for it. */ static inline int get_lineno (const_tree expr) { if (expr == NULL_TREE) return -1; if (TREE_CODE (expr) == COMPOUND_EXPR) expr = TREE_OPERAND (expr, 0); if (! EXPR_HAS_LOCATION (expr)) return -1; return EXPR_LINENO (expr); } /* Return true if T is a noreturn call. */ static inline bool noreturn_call_p (tree t) { tree call = get_call_expr_in (t); return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0; } /* Mark statement T as modified. */ static inline void mark_stmt_modified (tree t) { stmt_ann_t ann; if (TREE_CODE (t) == PHI_NODE) return; ann = stmt_ann (t); if (ann == NULL) ann = create_stmt_ann (t); else if (noreturn_call_p (t) && cfun->gimple_df) VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t); ann->modified = 1; } /* Mark statement T as modified, and update it. */ static inline void update_stmt (tree t) { if (TREE_CODE (t) == PHI_NODE) return; mark_stmt_modified (t); update_stmt_operands (t); } static inline void update_stmt_if_modified (tree t) { if (stmt_modified_p (t)) update_stmt_operands (t); } /* Return true if T is marked as modified, false otherwise. */ static inline bool stmt_modified_p (tree t) { stmt_ann_t ann = stmt_ann (t); /* Note that if the statement doesn't yet have an annotation, we consider it modified. This will force the next call to update_stmt_operands to scan the statement. */ return ann ? ann->modified : true; } /* Delink an immediate_uses node from its chain. */ static inline void delink_imm_use (ssa_use_operand_t *linknode) { /* Return if this node is not in a list. */ if (linknode->prev == NULL) return; linknode->prev->next = linknode->next; linknode->next->prev = linknode->prev; linknode->prev = NULL; linknode->next = NULL; } /* Link ssa_imm_use node LINKNODE into the chain for LIST. */ static inline void link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) { /* Link the new node at the head of the list. If we are in the process of traversing the list, we won't visit any new nodes added to it. */ linknode->prev = list; linknode->next = list->next; list->next->prev = linknode; list->next = linknode; } /* Link ssa_imm_use node LINKNODE into the chain for DEF. */ static inline void link_imm_use (ssa_use_operand_t *linknode, tree def) { ssa_use_operand_t *root; if (!def || TREE_CODE (def) != SSA_NAME) linknode->prev = NULL; else { root = &(SSA_NAME_IMM_USE_NODE (def)); #ifdef ENABLE_CHECKING if (linknode->use) gcc_assert (*(linknode->use) == def); #endif link_imm_use_to_list (linknode, root); } } /* Set the value of a use pointed to by USE to VAL. */ static inline void set_ssa_use_from_ptr (use_operand_p use, tree val) { delink_imm_use (use); *(use->use) = val; link_imm_use (use, val); } /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring in STMT. */ static inline void link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt) { if (stmt) link_imm_use (linknode, def); else link_imm_use (linknode, NULL); linknode->stmt = stmt; } /* Relink a new node in place of an old node in the list. */ static inline void relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) { /* The node one had better be in the same list. */ gcc_assert (*(old->use) == *(node->use)); node->prev = old->prev; node->next = old->next; if (old->prev) { old->prev->next = node; old->next->prev = node; /* Remove the old node from the list. */ old->prev = NULL; } } /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring in STMT. */ static inline void relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt) { if (stmt) relink_imm_use (linknode, old); else link_imm_use (linknode, NULL); linknode->stmt = stmt; } /* Return true is IMM has reached the end of the immediate use list. */ static inline bool end_readonly_imm_use_p (const imm_use_iterator *imm) { return (imm->imm_use == imm->end_p); } /* Initialize iterator IMM to process the list for VAR. */ static inline use_operand_p first_readonly_imm_use (imm_use_iterator *imm, tree var) { gcc_assert (TREE_CODE (var) == SSA_NAME); imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); imm->imm_use = imm->end_p->next; #ifdef ENABLE_CHECKING imm->iter_node.next = imm->imm_use->next; #endif if (end_readonly_imm_use_p (imm)) return NULL_USE_OPERAND_P; return imm->imm_use; } /* Bump IMM to the next use in the list. */ static inline use_operand_p next_readonly_imm_use (imm_use_iterator *imm) { use_operand_p old = imm->imm_use; #ifdef ENABLE_CHECKING /* If this assertion fails, it indicates the 'next' pointer has changed since the last bump. This indicates that the list is being modified via stmt changes, or SET_USE, or somesuch thing, and you need to be using the SAFE version of the iterator. */ gcc_assert (imm->iter_node.next == old->next); imm->iter_node.next = old->next->next; #endif imm->imm_use = old->next; if (end_readonly_imm_use_p (imm)) return NULL_USE_OPERAND_P; return imm->imm_use; } /* Return true if VAR has no uses. */ static inline bool has_zero_uses (const_tree var) { const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); /* A single use means there is no items in the list. */ return (ptr == ptr->next); } /* Return true if VAR has a single use. */ static inline bool has_single_use (const_tree var) { const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); /* A single use means there is one item in the list. */ return (ptr != ptr->next && ptr == ptr->next->next); } /* If VAR has only a single immediate use, return true, and set USE_P and STMT to the use pointer and stmt of occurrence. */ static inline bool single_imm_use (const_tree var, use_operand_p *use_p, tree *stmt) { const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); if (ptr != ptr->next && ptr == ptr->next->next) { *use_p = ptr->next; *stmt = ptr->next->stmt; return true; } *use_p = NULL_USE_OPERAND_P; *stmt = NULL_TREE; return false; } /* Return the number of immediate uses of VAR. */ static inline unsigned int num_imm_uses (const_tree var) { const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); const ssa_use_operand_t *ptr; unsigned int num = 0; for (ptr = start->next; ptr != start; ptr = ptr->next) num++; return num; } /* Return the tree pointer to by USE. */ static inline tree get_use_from_ptr (use_operand_p use) { return *(use->use); } /* Return the tree pointer to by DEF. */ static inline tree get_def_from_ptr (def_operand_p def) { return *def; } /* Return a def_operand_p pointer for the result of PHI. */ static inline def_operand_p get_phi_result_ptr (tree phi) { return &(PHI_RESULT_TREE (phi)); } /* Return a use_operand_p pointer for argument I of phinode PHI. */ static inline use_operand_p get_phi_arg_def_ptr (tree phi, int i) { return &(PHI_ARG_IMM_USE_NODE (phi,i)); } /* Return the bitmap of addresses taken by STMT, or NULL if it takes no addresses. */ static inline bitmap addresses_taken (tree stmt) { stmt_ann_t ann = stmt_ann (stmt); return ann ? ann->addresses_taken : NULL; } /* Return the PHI nodes for basic block BB, or NULL if there are no PHI nodes. */ static inline tree phi_nodes (const_basic_block bb) { gcc_assert (!(bb->flags & BB_RTL)); if (!bb->il.tree) return NULL; return bb->il.tree->phi_nodes; } /* Return pointer to the list of PHI nodes for basic block BB. */ static inline tree * phi_nodes_ptr (basic_block bb) { gcc_assert (!(bb->flags & BB_RTL)); return &bb->il.tree->phi_nodes; } /* Set list of phi nodes of a basic block BB to L. */ static inline void set_phi_nodes (basic_block bb, tree l) { tree phi; gcc_assert (!(bb->flags & BB_RTL)); bb->il.tree->phi_nodes = l; for (phi = l; phi; phi = PHI_CHAIN (phi)) set_bb_for_stmt (phi, bb); } /* Return the phi argument which contains the specified use. */ static inline int phi_arg_index_from_use (use_operand_p use) { struct phi_arg_d *element, *root; int index; tree phi; /* Since the use is the first thing in a PHI argument element, we can calculate its index based on casting it to an argument, and performing pointer arithmetic. */ phi = USE_STMT (use); gcc_assert (TREE_CODE (phi) == PHI_NODE); element = (struct phi_arg_d *)use; root = &(PHI_ARG_ELT (phi, 0)); index = element - root; #ifdef ENABLE_CHECKING /* Make sure the calculation doesn't have any leftover bytes. If it does, then imm_use is likely not the first element in phi_arg_d. */ gcc_assert ( (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0); gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi)); #endif return index; } /* Mark VAR as used, so that it'll be preserved during rtl expansion. */ static inline void set_is_used (tree var) { var_ann_t ann = get_var_ann (var); ann->used = 1; } /* Return true if T (assumed to be a DECL) is a global variable. */ static inline bool is_global_var (const_tree t) { if (MTAG_P (t)) return (TREE_STATIC (t) || MTAG_GLOBAL (t)); else return (TREE_STATIC (t) || DECL_EXTERNAL (t)); } /* PHI nodes should contain only ssa_names and invariants. A test for ssa_name is definitely simpler; don't let invalid contents slip in in the meantime. */ static inline bool phi_ssa_name_p (const_tree t) { if (TREE_CODE (t) == SSA_NAME) return true; #ifdef ENABLE_CHECKING gcc_assert (is_gimple_min_invariant (t)); #endif return false; } /* ----------------------------------------------------------------------- */ /* Returns the list of statements in BB. */ static inline tree bb_stmt_list (const_basic_block bb) { gcc_assert (!(bb->flags & BB_RTL)); return bb->il.tree->stmt_list; } /* Sets the list of statements in BB to LIST. */ static inline void set_bb_stmt_list (basic_block bb, tree list) { gcc_assert (!(bb->flags & BB_RTL)); bb->il.tree->stmt_list = list; } /* Return a block_stmt_iterator that points to beginning of basic block BB. */ static inline block_stmt_iterator bsi_start (basic_block bb) { block_stmt_iterator bsi; if (bb->index < NUM_FIXED_BLOCKS) { bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } else bsi.tsi = tsi_start (bb_stmt_list (bb)); bsi.bb = bb; return bsi; } /* Return a block statement iterator that points to the first non-label statement in block BB. */ static inline block_stmt_iterator bsi_after_labels (basic_block bb) { block_stmt_iterator bsi = bsi_start (bb); while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR) bsi_next (&bsi); return bsi; } /* Return a block statement iterator that points to the end of basic block BB. */ static inline block_stmt_iterator bsi_last (basic_block bb) { block_stmt_iterator bsi; if (bb->index < NUM_FIXED_BLOCKS) { bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } else bsi.tsi = tsi_last (bb_stmt_list (bb)); bsi.bb = bb; return bsi; } /* Return true if block statement iterator I has reached the end of the basic block. */ static inline bool bsi_end_p (block_stmt_iterator i) { return tsi_end_p (i.tsi); } /* Modify block statement iterator I so that it is at the next statement in the basic block. */ static inline void bsi_next (block_stmt_iterator *i) { tsi_next (&i->tsi); } /* Modify block statement iterator I so that it is at the previous statement in the basic block. */ static inline void bsi_prev (block_stmt_iterator *i) { tsi_prev (&i->tsi); } /* Return the statement that block statement iterator I is currently at. */ static inline tree bsi_stmt (block_stmt_iterator i) { return tsi_stmt (i.tsi); } /* Return a pointer to the statement that block statement iterator I is currently at. */ static inline tree * bsi_stmt_ptr (block_stmt_iterator i) { return tsi_stmt_ptr (i.tsi); } /* Returns the loop of the statement STMT. */ static inline struct loop * loop_containing_stmt (tree stmt) { basic_block bb = bb_for_stmt (stmt); if (!bb) return NULL; return bb->loop_father; } /* Return the memory partition tag associated with symbol SYM. */ static inline tree memory_partition (tree sym) { tree tag; /* MPTs belong to their own partition. */ if (TREE_CODE (sym) == MEMORY_PARTITION_TAG) return sym; gcc_assert (!is_gimple_reg (sym)); tag = get_var_ann (sym)->mpt; #if defined ENABLE_CHECKING if (tag) gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG); #endif return tag; } /* Return true if NAME is a memory factoring SSA name (i.e., an SSA name for a memory partition. */ static inline bool factoring_name_p (const_tree name) { return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG; } /* Return true if VAR is a clobbered by function calls. */ static inline bool is_call_clobbered (const_tree var) { if (!MTAG_P (var)) return var_ann (var)->call_clobbered; else return bitmap_bit_p (gimple_call_clobbered_vars (cfun), DECL_UID (var)); } /* Mark variable VAR as being clobbered by function calls. */ static inline void mark_call_clobbered (tree var, unsigned int escape_type) { var_ann (var)->escape_mask |= escape_type; if (!MTAG_P (var)) var_ann (var)->call_clobbered = true; bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); } /* Clear the call-clobbered attribute from variable VAR. */ static inline void clear_call_clobbered (tree var) { var_ann_t ann = var_ann (var); ann->escape_mask = 0; if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG) MTAG_GLOBAL (var) = 0; if (!MTAG_P (var)) var_ann (var)->call_clobbered = false; bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); } /* Return the common annotation for T. Return NULL if the annotation doesn't already exist. */ static inline tree_ann_common_t tree_common_ann (const_tree t) { /* Watch out static variables with unshared annotations. */ if (DECL_P (t) && TREE_CODE (t) == VAR_DECL) return &var_ann (t)->common; return &t->base.ann->common; } /* Return a common annotation for T. Create the constant annotation if it doesn't exist. */ static inline tree_ann_common_t get_tree_common_ann (tree t) { tree_ann_common_t ann = tree_common_ann (t); return (ann) ? ann : create_tree_common_ann (t); } /* ----------------------------------------------------------------------- */ /* The following set of routines are used to iterator over various type of SSA operands. */ /* Return true if PTR is finished iterating. */ static inline bool op_iter_done (const ssa_op_iter *ptr) { return ptr->done; } /* Get the next iterator use value for PTR. */ static inline use_operand_p op_iter_next_use (ssa_op_iter *ptr) { use_operand_p use_p; #ifdef ENABLE_CHECKING gcc_assert (ptr->iter_type == ssa_op_iter_use); #endif if (ptr->uses) { use_p = USE_OP_PTR (ptr->uses); ptr->uses = ptr->uses->next; return use_p; } if (ptr->vuses) { use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index); if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) { ptr->vuse_index = 0; ptr->vuses = ptr->vuses->next; } return use_p; } if (ptr->mayuses) { use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index); if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) { ptr->mayuse_index = 0; ptr->mayuses = ptr->mayuses->next; } return use_p; } if (ptr->phi_i < ptr->num_phi) { return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); } ptr->done = true; return NULL_USE_OPERAND_P; } /* Get the next iterator def value for PTR. */ static inline def_operand_p op_iter_next_def (ssa_op_iter *ptr) { def_operand_p def_p; #ifdef ENABLE_CHECKING gcc_assert (ptr->iter_type == ssa_op_iter_def); #endif if (ptr->defs) { def_p = DEF_OP_PTR (ptr->defs); ptr->defs = ptr->defs->next; return def_p; } if (ptr->vdefs) { def_p = VDEF_RESULT_PTR (ptr->vdefs); ptr->vdefs = ptr->vdefs->next; return def_p; } ptr->done = true; return NULL_DEF_OPERAND_P; } /* Get the next iterator tree value for PTR. */ static inline tree op_iter_next_tree (ssa_op_iter *ptr) { tree val; #ifdef ENABLE_CHECKING gcc_assert (ptr->iter_type == ssa_op_iter_tree); #endif if (ptr->uses) { val = USE_OP (ptr->uses); ptr->uses = ptr->uses->next; return val; } if (ptr->vuses) { val = VUSE_OP (ptr->vuses, ptr->vuse_index); if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) { ptr->vuse_index = 0; ptr->vuses = ptr->vuses->next; } return val; } if (ptr->mayuses) { val = VDEF_OP (ptr->mayuses, ptr->mayuse_index); if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) { ptr->mayuse_index = 0; ptr->mayuses = ptr->mayuses->next; } return val; } if (ptr->defs) { val = DEF_OP (ptr->defs); ptr->defs = ptr->defs->next; return val; } if (ptr->vdefs) { val = VDEF_RESULT (ptr->vdefs); ptr->vdefs = ptr->vdefs->next; return val; } ptr->done = true; return NULL_TREE; } /* This functions clears the iterator PTR, and marks it done. This is normally used to prevent warnings in the compile about might be uninitialized components. */ static inline void clear_and_done_ssa_iter (ssa_op_iter *ptr) { ptr->defs = NULL; ptr->uses = NULL; ptr->vuses = NULL; ptr->vdefs = NULL; ptr->mayuses = NULL; ptr->iter_type = ssa_op_iter_none; ptr->phi_i = 0; ptr->num_phi = 0; ptr->phi_stmt = NULL_TREE; ptr->done = true; ptr->vuse_index = 0; ptr->mayuse_index = 0; } /* Initialize the iterator PTR to the virtual defs in STMT. */ static inline void op_iter_init (ssa_op_iter *ptr, tree stmt, int flags) { #ifdef ENABLE_CHECKING gcc_assert (stmt_ann (stmt)); #endif ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL; ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL; ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL; ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL; ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL; ptr->done = false; ptr->phi_i = 0; ptr->num_phi = 0; ptr->phi_stmt = NULL_TREE; ptr->vuse_index = 0; ptr->mayuse_index = 0; } /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return the first use. */ static inline use_operand_p op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags) { gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0); op_iter_init (ptr, stmt, flags); ptr->iter_type = ssa_op_iter_use; return op_iter_next_use (ptr); } /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return the first def. */ static inline def_operand_p op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags) { gcc_assert ((flags & SSA_OP_ALL_USES) == 0); op_iter_init (ptr, stmt, flags); ptr->iter_type = ssa_op_iter_def; return op_iter_next_def (ptr); } /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return the first operand as a tree. */ static inline tree op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags) { op_iter_init (ptr, stmt, flags); ptr->iter_type = ssa_op_iter_tree; return op_iter_next_tree (ptr); } /* Get the next iterator mustdef value for PTR, returning the mustdef values in KILL and DEF. */ static inline void op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def, ssa_op_iter *ptr) { #ifdef ENABLE_CHECKING gcc_assert (ptr->iter_type == ssa_op_iter_vdef); #endif if (ptr->mayuses) { *def = VDEF_RESULT_PTR (ptr->mayuses); *use = VDEF_VECT (ptr->mayuses); ptr->mayuses = ptr->mayuses->next; return; } *def = NULL_DEF_OPERAND_P; *use = NULL; ptr->done = true; return; } static inline void op_iter_next_mustdef (use_operand_p *use, def_operand_p *def, ssa_op_iter *ptr) { vuse_vec_p vp; op_iter_next_vdef (&vp, def, ptr); if (vp != NULL) { gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1); *use = VUSE_ELEMENT_PTR (*vp, 0); } else *use = NULL_USE_OPERAND_P; } /* Initialize iterator PTR to the operands in STMT. Return the first operands in USE and DEF. */ static inline void op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use, def_operand_p *def) { gcc_assert (TREE_CODE (stmt) != PHI_NODE); op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); ptr->iter_type = ssa_op_iter_vdef; op_iter_next_vdef (use, def, ptr); } /* If there is a single operand in STMT matching FLAGS, return it. Otherwise return NULL. */ static inline tree single_ssa_tree_operand (tree stmt, int flags) { tree var; ssa_op_iter iter; var = op_iter_init_tree (&iter, stmt, flags); if (op_iter_done (&iter)) return NULL_TREE; op_iter_next_tree (&iter); if (op_iter_done (&iter)) return var; return NULL_TREE; } /* If there is a single operand in STMT matching FLAGS, return it. Otherwise return NULL. */ static inline use_operand_p single_ssa_use_operand (tree stmt, int flags) { use_operand_p var; ssa_op_iter iter; var = op_iter_init_use (&iter, stmt, flags); if (op_iter_done (&iter)) return NULL_USE_OPERAND_P; op_iter_next_use (&iter); if (op_iter_done (&iter)) return var; return NULL_USE_OPERAND_P; } /* If there is a single operand in STMT matching FLAGS, return it. Otherwise return NULL. */ static inline def_operand_p single_ssa_def_operand (tree stmt, int flags) { def_operand_p var; ssa_op_iter iter; var = op_iter_init_def (&iter, stmt, flags); if (op_iter_done (&iter)) return NULL_DEF_OPERAND_P; op_iter_next_def (&iter); if (op_iter_done (&iter)) return var; return NULL_DEF_OPERAND_P; } /* Return true if there are zero operands in STMT matching the type given in FLAGS. */ static inline bool zero_ssa_operands (tree stmt, int flags) { ssa_op_iter iter; op_iter_init_tree (&iter, stmt, flags); return op_iter_done (&iter); } /* Return the number of operands matching FLAGS in STMT. */ static inline int num_ssa_operands (tree stmt, int flags) { ssa_op_iter iter; tree t; int num = 0; FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) num++; return num; } /* Delink all immediate_use information for STMT. */ static inline void delink_stmt_imm_use (tree stmt) { ssa_op_iter iter; use_operand_p use_p; if (ssa_operands_active ()) FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) delink_imm_use (use_p); } /* This routine will compare all the operands matching FLAGS in STMT1 to those in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */ static inline bool compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags) { ssa_op_iter iter1, iter2; tree op1 = NULL_TREE; tree op2 = NULL_TREE; bool look1, look2; if (stmt1 == stmt2) return true; look1 = stmt1 && stmt_ann (stmt1); look2 = stmt2 && stmt_ann (stmt2); if (look1) { op1 = op_iter_init_tree (&iter1, stmt1, flags); if (!look2) return op_iter_done (&iter1); } else clear_and_done_ssa_iter (&iter1); if (look2) { op2 = op_iter_init_tree (&iter2, stmt2, flags); if (!look1) return op_iter_done (&iter2); } else clear_and_done_ssa_iter (&iter2); while (!op_iter_done (&iter1) && !op_iter_done (&iter2)) { if (op1 != op2) return false; op1 = op_iter_next_tree (&iter1); op2 = op_iter_next_tree (&iter2); } return (op_iter_done (&iter1) && op_iter_done (&iter2)); } /* If there is a single DEF in the PHI node which matches FLAG, return it. Otherwise return NULL_DEF_OPERAND_P. */ static inline tree single_phi_def (tree stmt, int flags) { tree def = PHI_RESULT (stmt); if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) return def; if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) return def; return NULL_TREE; } /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ static inline use_operand_p op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags) { tree phi_def = PHI_RESULT (phi); int comp; clear_and_done_ssa_iter (ptr); ptr->done = false; gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); /* If the PHI node doesn't the operand type we care about, we're done. */ if ((flags & comp) == 0) { ptr->done = true; return NULL_USE_OPERAND_P; } ptr->phi_stmt = phi; ptr->num_phi = PHI_NUM_ARGS (phi); ptr->iter_type = ssa_op_iter_use; return op_iter_next_use (ptr); } /* Start an iterator for a PHI definition. */ static inline def_operand_p op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags) { tree phi_def = PHI_RESULT (phi); int comp; clear_and_done_ssa_iter (ptr); ptr->done = false; gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); /* If the PHI node doesn't the operand type we care about, we're done. */ if ((flags & comp) == 0) { ptr->done = true; return NULL_USE_OPERAND_P; } ptr->iter_type = ssa_op_iter_def; /* The first call to op_iter_next_def will terminate the iterator since all the fields are NULL. Simply return the result here as the first and therefore only result. */ return PHI_RESULT_PTR (phi); } /* Return true is IMM has reached the end of the immediate use stmt list. */ static inline bool end_imm_use_stmt_p (const imm_use_iterator *imm) { return (imm->imm_use == imm->end_p); } /* Finished the traverse of an immediate use stmt list IMM by removing the placeholder node from the list. */ static inline void end_imm_use_stmt_traverse (imm_use_iterator *imm) { delink_imm_use (&(imm->iter_node)); } /* Immediate use traversal of uses within a stmt require that all the uses on a stmt be sequentially listed. This routine is used to build up this sequential list by adding USE_P to the end of the current list currently delimited by HEAD and LAST_P. The new LAST_P value is returned. */ static inline use_operand_p move_use_after_head (use_operand_p use_p, use_operand_p head, use_operand_p last_p) { gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); /* Skip head when we find it. */ if (use_p != head) { /* If use_p is already linked in after last_p, continue. */ if (last_p->next == use_p) last_p = use_p; else { /* Delink from current location, and link in at last_p. */ delink_imm_use (use_p); link_imm_use_to_list (use_p, last_p); last_p = use_p; } } return last_p; } /* This routine will relink all uses with the same stmt as HEAD into the list immediately following HEAD for iterator IMM. */ static inline void link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) { use_operand_p use_p; use_operand_p last_p = head; tree head_stmt = USE_STMT (head); tree use = USE_FROM_PTR (head); ssa_op_iter op_iter; int flag; /* Only look at virtual or real uses, depending on the type of HEAD. */ flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); if (TREE_CODE (head_stmt) == PHI_NODE) { FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) if (USE_FROM_PTR (use_p) == use) last_p = move_use_after_head (use_p, head, last_p); } else { FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) if (USE_FROM_PTR (use_p) == use) last_p = move_use_after_head (use_p, head, last_p); } /* LInk iter node in after last_p. */ if (imm->iter_node.prev != NULL) delink_imm_use (&imm->iter_node); link_imm_use_to_list (&(imm->iter_node), last_p); } /* Initialize IMM to traverse over uses of VAR. Return the first statement. */ static inline tree first_imm_use_stmt (imm_use_iterator *imm, tree var) { gcc_assert (TREE_CODE (var) == SSA_NAME); imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); imm->imm_use = imm->end_p->next; imm->next_imm_name = NULL_USE_OPERAND_P; /* iter_node is used as a marker within the immediate use list to indicate where the end of the current stmt's uses are. Initialize it to NULL stmt and use, which indicates a marker node. */ imm->iter_node.prev = NULL_USE_OPERAND_P; imm->iter_node.next = NULL_USE_OPERAND_P; imm->iter_node.stmt = NULL_TREE; imm->iter_node.use = NULL_USE_OPERAND_P; if (end_imm_use_stmt_p (imm)) return NULL_TREE; link_use_stmts_after (imm->imm_use, imm); return USE_STMT (imm->imm_use); } /* Bump IMM to the next stmt which has a use of var. */ static inline tree next_imm_use_stmt (imm_use_iterator *imm) { imm->imm_use = imm->iter_node.next; if (end_imm_use_stmt_p (imm)) { if (imm->iter_node.prev != NULL) delink_imm_use (&imm->iter_node); return NULL_TREE; } link_use_stmts_after (imm->imm_use, imm); return USE_STMT (imm->imm_use); } /* This routine will return the first use on the stmt IMM currently refers to. */ static inline use_operand_p first_imm_use_on_stmt (imm_use_iterator *imm) { imm->next_imm_name = imm->imm_use->next; return imm->imm_use; } /* Return TRUE if the last use on the stmt IMM refers to has been visited. */ static inline bool end_imm_use_on_stmt_p (const imm_use_iterator *imm) { return (imm->imm_use == &(imm->iter_node)); } /* Bump to the next use on the stmt IMM refers to, return NULL if done. */ static inline use_operand_p next_imm_use_on_stmt (imm_use_iterator *imm) { imm->imm_use = imm->next_imm_name; if (end_imm_use_on_stmt_p (imm)) return NULL_USE_OPERAND_P; else { imm->next_imm_name = imm->imm_use->next; return imm->imm_use; } } /* Return true if VAR cannot be modified by the program. */ static inline bool unmodifiable_var_p (const_tree var) { if (TREE_CODE (var) == SSA_NAME) var = SSA_NAME_VAR (var); if (MTAG_P (var)) return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var)); return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); } /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ static inline bool array_ref_contains_indirect_ref (const_tree ref) { gcc_assert (TREE_CODE (ref) == ARRAY_REF); do { ref = TREE_OPERAND (ref, 0); } while (handled_component_p (ref)); return TREE_CODE (ref) == INDIRECT_REF; } /* Return true if REF, a handled component reference, has an ARRAY_REF somewhere in it. */ static inline bool ref_contains_array_ref (const_tree ref) { gcc_assert (handled_component_p (ref)); do { if (TREE_CODE (ref) == ARRAY_REF) return true; ref = TREE_OPERAND (ref, 0); } while (handled_component_p (ref)); return false; } /* Given a variable VAR, lookup and return a pointer to the list of subvariables for it. */ static inline subvar_t * lookup_subvars_for_var (const_tree var) { var_ann_t ann = var_ann (var); gcc_assert (ann); return &ann->subvars; } /* Given a variable VAR, return a linked list of subvariables for VAR, or NULL, if there are no subvariables. */ static inline subvar_t get_subvars_for_var (tree var) { subvar_t subvars; gcc_assert (SSA_VAR_P (var)); if (TREE_CODE (var) == SSA_NAME) subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var))); else subvars = *(lookup_subvars_for_var (var)); return subvars; } /* Return the subvariable of VAR at offset OFFSET. */ static inline tree get_subvar_at (tree var, unsigned HOST_WIDE_INT offset) { subvar_t sv = get_subvars_for_var (var); int low, high; low = 0; high = VEC_length (tree, sv) - 1; while (low <= high) { int mid = (low + high) / 2; tree subvar = VEC_index (tree, sv, mid); if (SFT_OFFSET (subvar) == offset) return subvar; else if (SFT_OFFSET (subvar) < offset) low = mid + 1; else high = mid - 1; } return NULL_TREE; } /* Return the first subvariable in SV that overlaps [offset, offset + size[. NULL_TREE is returned, if there is no overlapping subvariable, else *I is set to the index in the SV vector of the first overlap. */ static inline tree get_first_overlapping_subvar (subvar_t sv, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, unsigned int *i) { int low = 0; int high = VEC_length (tree, sv) - 1; int mid; tree subvar; if (low > high) return NULL_TREE; /* Binary search for offset. */ do { mid = (low + high) / 2; subvar = VEC_index (tree, sv, mid); if (SFT_OFFSET (subvar) == offset) { *i = mid; return subvar; } else if (SFT_OFFSET (subvar) < offset) low = mid + 1; else high = mid - 1; } while (low <= high); /* As we didn't find a subvar with offset, adjust to return the first overlapping one. */ if (SFT_OFFSET (subvar) < offset && SFT_OFFSET (subvar) + SFT_SIZE (subvar) <= offset) { mid += 1; if ((unsigned)mid >= VEC_length (tree, sv)) return NULL_TREE; subvar = VEC_index (tree, sv, mid); } else if (SFT_OFFSET (subvar) > offset && size <= SFT_OFFSET (subvar) - offset) { mid -= 1; if (mid < 0) return NULL_TREE; subvar = VEC_index (tree, sv, mid); } if (overlap_subvar (offset, size, subvar, NULL)) { *i = mid; return subvar; } return NULL_TREE; } /* Return true if V is a tree that we can have subvars for. Normally, this is any aggregate type. Also complex types which are not gimple registers can have subvars. */ static inline bool var_can_have_subvars (const_tree v) { /* Volatile variables should never have subvars. */ if (TREE_THIS_VOLATILE (v)) return false; /* Non decls or memory tags can never have subvars. */ if (!DECL_P (v) || MTAG_P (v)) return false; /* Aggregates can have subvars. */ if (AGGREGATE_TYPE_P (TREE_TYPE (v))) return true; /* Complex types variables which are not also a gimple register can have subvars. */ if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE && !DECL_GIMPLE_REG_P (v)) return true; return false; } /* Return true if OFFSET and SIZE define a range that overlaps with some portion of the range of SV, a subvar. If there was an exact overlap, *EXACT will be set to true upon return. */ static inline bool overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, const_tree sv, bool *exact) { /* There are three possible cases of overlap. 1. We can have an exact overlap, like so: |offset, offset + size | |sv->offset, sv->offset + sv->size | 2. We can have offset starting after sv->offset, like so: |offset, offset + size | |sv->offset, sv->offset + sv->size | 3. We can have offset starting before sv->offset, like so: |offset, offset + size | |sv->offset, sv->offset + sv->size| */ if (exact) *exact = false; if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv)) { if (exact) *exact = true; return true; } else if (offset >= SFT_OFFSET (sv) && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv))) { return true; } else if (offset < SFT_OFFSET (sv) && (size > SFT_OFFSET (sv) - offset)) { return true; } return false; } /* Return the memory tag associated with symbol SYM. */ static inline tree symbol_mem_tag (tree sym) { tree tag = get_var_ann (sym)->symbol_mem_tag; #if defined ENABLE_CHECKING if (tag) gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); #endif return tag; } /* Set the memory tag associated with symbol SYM. */ static inline void set_symbol_mem_tag (tree sym, tree tag) { #if defined ENABLE_CHECKING if (tag) gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); #endif get_var_ann (sym)->symbol_mem_tag = tag; } /* Get the value handle of EXPR. This is the only correct way to get the value handle for a "thing". If EXPR does not have a value handle associated, it returns NULL_TREE. NB: If EXPR is min_invariant, this function is *required* to return EXPR. */ static inline tree get_value_handle (tree expr) { if (TREE_CODE (expr) == SSA_NAME) return SSA_NAME_VALUE (expr); else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST || TREE_CODE (expr) == CONSTRUCTOR) { tree_ann_common_t ann = tree_common_ann (expr); return ((ann) ? ann->value_handle : NULL_TREE); } else if (is_gimple_min_invariant (expr)) return expr; else if (EXPR_P (expr)) { tree_ann_common_t ann = tree_common_ann (expr); return ((ann) ? ann->value_handle : NULL_TREE); } else gcc_unreachable (); } /* Accessor to tree-ssa-operands.c caches. */ static inline struct ssa_operands * gimple_ssa_operands (const struct function *fun) { return &fun->gimple_df->ssa_operands; } /* Map describing reference statistics for function FN. */ static inline struct mem_ref_stats_d * gimple_mem_ref_stats (const struct function *fn) { return &fn->gimple_df->mem_ref_stats; } #endif /* _TREE_FLOW_INLINE_H */