/* If-conversion for vectorizer. Copyright (C) 2004-2015 Free Software Foundation, Inc. Contributed by Devang Patel This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* This pass implements a tree level if-conversion of loops. Its initial goal is to help the vectorizer to vectorize loops with conditions. A short description of if-conversion: o Decide if a loop is if-convertible or not. o Walk all loop basic blocks in breadth first order (BFS order). o Remove conditional statements (at the end of basic block) and propagate condition into destination basic blocks' predicate list. o Replace modify expression with conditional modify expression using current basic block's condition. o Merge all basic blocks o Replace phi nodes with conditional modify expr o Merge all basic blocks into header Sample transformation: INPUT ----- # i_23 = PHI <0(0), i_18(10)>; :; j_15 = A[i_23]; if (j_15 > 41) goto ; else goto ; :; goto (); :; # iftmp.2_4 = PHI <0(8), 42(2)>; :; A[i_23] = iftmp.2_4; i_18 = i_23 + 1; if (i_18 <= 15) goto ; else goto ; :; goto (); :; OUTPUT ------ # i_23 = PHI <0(0), i_18(10)>; :; j_15 = A[i_23]; :; iftmp.2_4 = j_15 > 41 ? 42 : 0; A[i_23] = iftmp.2_4; i_18 = i_23 + 1; if (i_18 <= 15) goto ; else goto ; :; goto (); :; */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "ssa.h" #include "expmed.h" #include "optabs-query.h" #include "gimple-pretty-print.h" #include "alias.h" #include "fold-const.h" #include "stor-layout.h" #include "gimple-fold.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimplify-me.h" #include "tree-cfg.h" #include "tree-into-ssa.h" #include "tree-ssa.h" #include "cfgloop.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "tree-ssa-loop-ivopts.h" #include "tree-ssa-address.h" #include "dbgcnt.h" #include "tree-hash-traits.h" #include "varasm.h" /* List of basic blocks in if-conversion-suitable order. */ static basic_block *ifc_bbs; /* Apply more aggressive (extended) if-conversion if true. */ static bool aggressive_if_conv; /* Hash table to store references, DR pairs. */ static hash_map *ref_DR_map; /* Hash table to store base reference, DR pairs. */ static hash_map *baseref_DR_map; /* Structure used to predicate basic blocks. This is attached to the ->aux field of the BBs in the loop to be if-converted. */ struct bb_predicate { /* The condition under which this basic block is executed. */ tree predicate; /* PREDICATE is gimplified, and the sequence of statements is recorded here, in order to avoid the duplication of computations that occur in previous conditions. See PR44483. */ gimple_seq predicate_gimplified_stmts; }; /* Returns true when the basic block BB has a predicate. */ static inline bool bb_has_predicate (basic_block bb) { return bb->aux != NULL; } /* Returns the gimplified predicate for basic block BB. */ static inline tree bb_predicate (basic_block bb) { return ((struct bb_predicate *) bb->aux)->predicate; } /* Sets the gimplified predicate COND for basic block BB. */ static inline void set_bb_predicate (basic_block bb, tree cond) { gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR && is_gimple_condexpr (TREE_OPERAND (cond, 0))) || is_gimple_condexpr (cond)); ((struct bb_predicate *) bb->aux)->predicate = cond; } /* Returns the sequence of statements of the gimplification of the predicate for basic block BB. */ static inline gimple_seq bb_predicate_gimplified_stmts (basic_block bb) { return ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts; } /* Sets the sequence of statements STMTS of the gimplification of the predicate for basic block BB. */ static inline void set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) { ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts = stmts; } /* Adds the sequence of statements STMTS to the sequence of statements of the predicate for basic block BB. */ static inline void add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) { gimple_seq_add_seq (&(((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts), stmts); } /* Initializes to TRUE the predicate of basic block BB. */ static inline void init_bb_predicate (basic_block bb) { bb->aux = XNEW (struct bb_predicate); set_bb_predicate_gimplified_stmts (bb, NULL); set_bb_predicate (bb, boolean_true_node); } /* Release the SSA_NAMEs associated with the predicate of basic block BB, but don't actually free it. */ static inline void release_bb_predicate (basic_block bb) { gimple_seq stmts = bb_predicate_gimplified_stmts (bb); if (stmts) { gimple_stmt_iterator i; for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i)) free_stmt_operands (cfun, gsi_stmt (i)); set_bb_predicate_gimplified_stmts (bb, NULL); } } /* Free the predicate of basic block BB. */ static inline void free_bb_predicate (basic_block bb) { if (!bb_has_predicate (bb)) return; release_bb_predicate (bb); free (bb->aux); bb->aux = NULL; } /* Reinitialize predicate of BB with the true predicate. */ static inline void reset_bb_predicate (basic_block bb) { if (!bb_has_predicate (bb)) init_bb_predicate (bb); else { release_bb_predicate (bb); set_bb_predicate (bb, boolean_true_node); } } /* Returns a new SSA_NAME of type TYPE that is assigned the value of the expression EXPR. Inserts the statement created for this computation before GSI and leaves the iterator GSI at the same statement. */ static tree ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi) { tree new_name = make_temp_ssa_name (type, NULL, "_ifc_"); gimple *stmt = gimple_build_assign (new_name, expr); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); return new_name; } /* Return true when COND is a true predicate. */ static inline bool is_true_predicate (tree cond) { return (cond == NULL_TREE || cond == boolean_true_node || integer_onep (cond)); } /* Returns true when BB has a predicate that is not trivial: true or NULL_TREE. */ static inline bool is_predicated (basic_block bb) { return !is_true_predicate (bb_predicate (bb)); } /* Parses the predicate COND and returns its comparison code and operands OP0 and OP1. */ static enum tree_code parse_predicate (tree cond, tree *op0, tree *op1) { gimple *s; if (TREE_CODE (cond) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond))) { if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) { *op0 = gimple_assign_rhs1 (s); *op1 = gimple_assign_rhs2 (s); return gimple_assign_rhs_code (s); } else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR) { tree op = gimple_assign_rhs1 (s); tree type = TREE_TYPE (op); enum tree_code code = parse_predicate (op, op0, op1); return code == ERROR_MARK ? ERROR_MARK : invert_tree_comparison (code, HONOR_NANS (type)); } return ERROR_MARK; } if (COMPARISON_CLASS_P (cond)) { *op0 = TREE_OPERAND (cond, 0); *op1 = TREE_OPERAND (cond, 1); return TREE_CODE (cond); } return ERROR_MARK; } /* Returns the fold of predicate C1 OR C2 at location LOC. */ static tree fold_or_predicates (location_t loc, tree c1, tree c2) { tree op1a, op1b, op2a, op2b; enum tree_code code1 = parse_predicate (c1, &op1a, &op1b); enum tree_code code2 = parse_predicate (c2, &op2a, &op2b); if (code1 != ERROR_MARK && code2 != ERROR_MARK) { tree t = maybe_fold_or_comparisons (code1, op1a, op1b, code2, op2a, op2b); if (t) return t; } return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2); } /* Returns true if N is either a constant or a SSA_NAME. */ static bool constant_or_ssa_name (tree n) { switch (TREE_CODE (n)) { case SSA_NAME: case INTEGER_CST: case REAL_CST: case COMPLEX_CST: case VECTOR_CST: return true; default: return false; } } /* Returns either a COND_EXPR or the folded expression if the folded expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR, a constant or a SSA_NAME. */ static tree fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs) { tree rhs1, lhs1, cond_expr; /* If COND is comparison r != 0 and r has boolean type, convert COND to SSA_NAME to accept by vect bool pattern. */ if (TREE_CODE (cond) == NE_EXPR) { tree op0 = TREE_OPERAND (cond, 0); tree op1 = TREE_OPERAND (cond, 1); if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE && (integer_zerop (op1))) cond = op0; } cond_expr = fold_ternary (COND_EXPR, type, cond, rhs, lhs); if (cond_expr == NULL_TREE) return build3 (COND_EXPR, type, cond, rhs, lhs); STRIP_USELESS_TYPE_CONVERSION (cond_expr); if (constant_or_ssa_name (cond_expr)) return cond_expr; if (TREE_CODE (cond_expr) == ABS_EXPR) { rhs1 = TREE_OPERAND (cond_expr, 1); STRIP_USELESS_TYPE_CONVERSION (rhs1); if (constant_or_ssa_name (rhs1)) return build1 (ABS_EXPR, type, rhs1); } if (TREE_CODE (cond_expr) == MIN_EXPR || TREE_CODE (cond_expr) == MAX_EXPR) { lhs1 = TREE_OPERAND (cond_expr, 0); STRIP_USELESS_TYPE_CONVERSION (lhs1); rhs1 = TREE_OPERAND (cond_expr, 1); STRIP_USELESS_TYPE_CONVERSION (rhs1); if (constant_or_ssa_name (rhs1) && constant_or_ssa_name (lhs1)) return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1); } return build3 (COND_EXPR, type, cond, rhs, lhs); } /* Add condition NC to the predicate list of basic block BB. LOOP is the loop to be if-converted. Use predicate of cd-equivalent block for join bb if it exists: we call basic blocks bb1 and bb2 cd-equivalent if they are executed under the same condition. */ static inline void add_to_predicate_list (struct loop *loop, basic_block bb, tree nc) { tree bc, *tp; basic_block dom_bb; if (is_true_predicate (nc)) return; /* If dominance tells us this basic block is always executed, don't record any predicates for it. */ if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) return; dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb); /* We use notion of cd equivalence to get simpler predicate for join block, e.g. if join block has 2 predecessors with predicates p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of p1 & p2 | p1 & !p2. */ if (dom_bb != loop->header && get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb) { gcc_assert (flow_bb_inside_loop_p (loop, dom_bb)); bc = bb_predicate (dom_bb); if (!is_true_predicate (bc)) set_bb_predicate (bb, bc); else gcc_assert (is_true_predicate (bb_predicate (bb))); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n", dom_bb->index, bb->index); return; } if (!is_predicated (bb)) bc = nc; else { bc = bb_predicate (bb); bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc); if (is_true_predicate (bc)) { reset_bb_predicate (bb); return; } } /* Allow a TRUTH_NOT_EXPR around the main predicate. */ if (TREE_CODE (bc) == TRUTH_NOT_EXPR) tp = &TREE_OPERAND (bc, 0); else tp = &bc; if (!is_gimple_condexpr (*tp)) { gimple_seq stmts; *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE); add_bb_predicate_gimplified_stmts (bb, stmts); } set_bb_predicate (bb, bc); } /* Add the condition COND to the previous condition PREV_COND, and add this to the predicate list of the destination of edge E. LOOP is the loop to be if-converted. */ static void add_to_dst_predicate_list (struct loop *loop, edge e, tree prev_cond, tree cond) { if (!flow_bb_inside_loop_p (loop, e->dest)) return; if (!is_true_predicate (prev_cond)) cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, prev_cond, cond); if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest)) add_to_predicate_list (loop, e->dest, cond); } /* Return true if one of the successor edges of BB exits LOOP. */ static bool bb_with_exit_edge_p (struct loop *loop, basic_block bb) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) if (loop_exit_edge_p (loop, e)) return true; return false; } /* Return true when PHI is if-convertible. PHI is part of loop LOOP and it belongs to basic block BB. PHI is not if-convertible if: - it has more than 2 arguments. When the flag_tree_loop_if_convert_stores is not set, PHI is not if-convertible if: - a virtual PHI is immediately used in another PHI node, - there is a virtual PHI in a BB other than the loop->header. When the aggressive_if_conv is set, PHI can have more than two arguments. */ static bool if_convertible_phi_p (struct loop *loop, basic_block bb, gphi *phi, bool any_mask_load_store) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "-------------------------\n"); print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); } if (bb != loop->header) { if (gimple_phi_num_args (phi) != 2 && !aggressive_if_conv) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "More than two phi node args.\n"); return false; } } if (flag_tree_loop_if_convert_stores || any_mask_load_store) return true; /* When the flag_tree_loop_if_convert_stores is not set, check that there are no memory writes in the branches of the loop to be if-converted. */ if (virtual_operand_p (gimple_phi_result (phi))) { imm_use_iterator imm_iter; use_operand_p use_p; if (bb != loop->header) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Virtual phi not on loop->header.\n"); return false; } FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi)) { if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI && USE_STMT (use_p) != phi) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Difficult to handle this virtual phi.\n"); return false; } } } return true; } /* Records the status of a data reference. This struct is attached to each DR->aux field. */ struct ifc_dr { /* -1 when not initialized, 0 when false, 1 when true. */ int written_at_least_once; /* -1 when not initialized, 0 when false, 1 when true. */ int rw_unconditionally; tree predicate; }; #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux) #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once) #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally) /* Iterates over DR's and stores refs, DR and base refs, DR pairs in HASH tables. While storing them in HASH table, it checks if the reference is unconditionally read or written and stores that as a flag information. For base reference it checks if it is written atlest once unconditionally and stores it as flag information along with DR. In other words for every data reference A in STMT there exist other accesses to a data reference with the same base with predicates that add up (OR-up) to the true predicate: this ensures that the data reference A is touched (read or written) on every iteration of the if-converted loop. */ static void hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a) { data_reference_p *master_dr, *base_master_dr; tree ref = DR_REF (a); tree base_ref = DR_BASE_OBJECT (a); tree ca = bb_predicate (gimple_bb (DR_STMT (a))); bool exist1, exist2; while (TREE_CODE (ref) == COMPONENT_REF || TREE_CODE (ref) == IMAGPART_EXPR || TREE_CODE (ref) == REALPART_EXPR) ref = TREE_OPERAND (ref, 0); master_dr = &ref_DR_map->get_or_insert (ref, &exist1); if (!exist1) { IFC_DR (a)->predicate = ca; *master_dr = a; } else IFC_DR (*master_dr)->predicate = fold_or_predicates (EXPR_LOCATION (IFC_DR (*master_dr)->predicate), ca, IFC_DR (*master_dr)->predicate); if (is_true_predicate (IFC_DR (*master_dr)->predicate)) DR_RW_UNCONDITIONALLY (*master_dr) = 1; base_master_dr = &baseref_DR_map->get_or_insert (base_ref,&exist2); if (!exist2) { IFC_DR (a)->predicate = ca; *base_master_dr = a; } else IFC_DR (*base_master_dr)->predicate = fold_or_predicates (EXPR_LOCATION (IFC_DR (*base_master_dr)->predicate), ca, IFC_DR (*base_master_dr)->predicate); if (DR_IS_WRITE (a) && (is_true_predicate (IFC_DR (*base_master_dr)->predicate))) DR_WRITTEN_AT_LEAST_ONCE (*base_master_dr) = 1; } /* Return true when the memory references of STMT won't trap in the if-converted code. There are two things that we have to check for: - writes to memory occur to writable memory: if-conversion of memory writes transforms the conditional memory writes into unconditional writes, i.e. "if (cond) A[i] = foo" is transformed into "A[i] = cond ? foo : A[i]", and as the write to memory may not be executed at all in the original code, it may be a readonly memory. To check that A is not const-qualified, we check that there exists at least an unconditional write to A in the current function. - reads or writes to memory are valid memory accesses for every iteration. To check that the memory accesses are correctly formed and that we are allowed to read and write in these locations, we check that the memory accesses to be if-converted occur at every iteration unconditionally. Returns true for the memory reference in STMT, same memory reference is read or written unconditionally atleast once and the base memory reference is written unconditionally once. This is to check reference will not write fault. Also retuns true if the memory reference is unconditionally read once then we are conditionally writing to memory which is defined as read and write and is bound to the definition we are seeing. */ static bool ifcvt_memrefs_wont_trap (gimple *stmt, vec drs) { data_reference_p *master_dr, *base_master_dr; data_reference_p a = drs[gimple_uid (stmt) - 1]; tree ref_base_a = DR_REF (a); tree base = DR_BASE_OBJECT (a); gcc_assert (DR_STMT (a) == stmt); while (TREE_CODE (ref_base_a) == COMPONENT_REF || TREE_CODE (ref_base_a) == IMAGPART_EXPR || TREE_CODE (ref_base_a) == REALPART_EXPR) ref_base_a = TREE_OPERAND (ref_base_a, 0); master_dr = ref_DR_map->get (ref_base_a); base_master_dr = baseref_DR_map->get (base); gcc_assert (master_dr != NULL && base_master_dr != NULL); if (DR_RW_UNCONDITIONALLY (*master_dr) == 1) { if (DR_WRITTEN_AT_LEAST_ONCE (*base_master_dr) == 1) return true; else { tree base_tree = get_base_address (DR_REF (a)); if (DECL_P (base_tree) && decl_binds_to_current_def_p (base_tree) && !TREE_READONLY (base_tree)) return true; } } return false; } /* Wrapper around gimple_could_trap_p refined for the needs of the if-conversion. Try to prove that the memory accesses of STMT could not trap in the innermost loop containing STMT. */ static bool ifcvt_could_trap_p (gimple *stmt, vec refs) { if (gimple_vuse (stmt) && !gimple_could_trap_p_1 (stmt, false, false) && ifcvt_memrefs_wont_trap (stmt, refs)) return false; return gimple_could_trap_p (stmt); } /* Return true if STMT could be converted into a masked load or store (conditional load or store based on a mask computed from bb predicate). */ static bool ifcvt_can_use_mask_load_store (gimple *stmt) { tree lhs, ref; machine_mode mode; basic_block bb = gimple_bb (stmt); bool is_load; if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize) || bb->loop_father->dont_vectorize || !gimple_assign_single_p (stmt) || gimple_has_volatile_ops (stmt)) return false; /* Check whether this is a load or store. */ lhs = gimple_assign_lhs (stmt); if (gimple_store_p (stmt)) { if (!is_gimple_val (gimple_assign_rhs1 (stmt))) return false; is_load = false; ref = lhs; } else if (gimple_assign_load_p (stmt)) { is_load = true; ref = gimple_assign_rhs1 (stmt); } else return false; if (may_be_nonaddressable_p (ref)) return false; /* Mask should be integer mode of the same size as the load/store mode. */ mode = TYPE_MODE (TREE_TYPE (lhs)); if (int_mode_for_mode (mode) == BLKmode || VECTOR_MODE_P (mode)) return false; if (can_vec_mask_load_store_p (mode, VOIDmode, is_load)) return true; return false; } /* Return true when STMT is if-convertible. GIMPLE_ASSIGN statement is not if-convertible if, - it is not movable, - it could trap, - LHS is not var decl. */ static bool if_convertible_gimple_assign_stmt_p (gimple *stmt, vec refs, bool *any_mask_load_store) { tree lhs = gimple_assign_lhs (stmt); basic_block bb; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "-------------------------\n"); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } if (!is_gimple_reg_type (TREE_TYPE (lhs))) return false; /* Some of these constrains might be too conservative. */ if (stmt_ends_bb_p (stmt) || gimple_has_volatile_ops (stmt) || (TREE_CODE (lhs) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) || gimple_has_side_effects (stmt)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "stmt not suitable for ifcvt\n"); return false; } /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because in between if_convertible_loop_p and combine_blocks we can perform loop versioning. */ gimple_set_plf (stmt, GF_PLF_2, false); if (flag_tree_loop_if_convert_stores) { if (ifcvt_could_trap_p (stmt, refs)) { if (ifcvt_can_use_mask_load_store (stmt)) { gimple_set_plf (stmt, GF_PLF_2, true); *any_mask_load_store = true; return true; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "tree could trap...\n"); return false; } return true; } if (ifcvt_could_trap_p (stmt, refs)) { if (ifcvt_can_use_mask_load_store (stmt)) { gimple_set_plf (stmt, GF_PLF_2, true); *any_mask_load_store = true; return true; } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "tree could trap...\n"); return false; } bb = gimple_bb (stmt); if (TREE_CODE (lhs) != SSA_NAME && bb != bb->loop_father->header && !bb_with_exit_edge_p (bb->loop_father, bb)) { if (ifcvt_can_use_mask_load_store (stmt)) { gimple_set_plf (stmt, GF_PLF_2, true); *any_mask_load_store = true; return true; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "LHS is not var\n"); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } return false; } return true; } /* Return true when STMT is if-convertible. A statement is if-convertible if: - it is an if-convertible GIMPLE_ASSIGN, - it is a GIMPLE_LABEL or a GIMPLE_COND, - it is builtins call. */ static bool if_convertible_stmt_p (gimple *stmt, vec refs, bool *any_mask_load_store) { switch (gimple_code (stmt)) { case GIMPLE_LABEL: case GIMPLE_DEBUG: case GIMPLE_COND: return true; case GIMPLE_ASSIGN: return if_convertible_gimple_assign_stmt_p (stmt, refs, any_mask_load_store); case GIMPLE_CALL: { tree fndecl = gimple_call_fndecl (stmt); if (fndecl) { int flags = gimple_call_flags (stmt); if ((flags & ECF_CONST) && !(flags & ECF_LOOPING_CONST_OR_PURE) /* We can only vectorize some builtins at the moment, so restrict if-conversion to those. */ && DECL_BUILT_IN (fndecl)) return true; } return false; } default: /* Don't know what to do with 'em so don't do anything. */ if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "don't know what to do\n"); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } return false; break; } return true; } /* Assumes that BB has more than 1 predecessors. Returns false if at least one successor is not on critical edge and true otherwise. */ static inline bool all_preds_critical_p (basic_block bb) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (EDGE_COUNT (e->src->succs) == 1) return false; return true; } /* Returns true if at least one successor in on critical edge. */ static inline bool has_pred_critical_p (basic_block bb) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (EDGE_COUNT (e->src->succs) > 1) return true; return false; } /* Return true when BB is if-convertible. This routine does not check basic block's statements and phis. A basic block is not if-convertible if: - it is non-empty and it is after the exit block (in BFS order), - it is after the exit block but before the latch, - its edges are not normal. Last restriction is valid if aggressive_if_conv is false. EXIT_BB is the basic block containing the exit of the LOOP. BB is inside LOOP. */ static bool if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb) { edge e; edge_iterator ei; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "----------[%d]-------------\n", bb->index); if (EDGE_COUNT (bb->succs) > 2) return false; if (EDGE_COUNT (bb->preds) > 2 && !aggressive_if_conv) return false; if (exit_bb) { if (bb != loop->latch) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "basic block after exit bb but before latch\n"); return false; } else if (!empty_block_p (bb)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "non empty basic block after exit bb\n"); return false; } else if (bb == loop->latch && bb != exit_bb && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "latch is not dominated by exit_block\n"); return false; } } /* Be less adventurous and handle only normal edges. */ FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Difficult to handle edges\n"); return false; } /* At least one incoming edge has to be non-critical as otherwise edge predicates are not equal to basic-block predicates of the edge source. This check is skipped if aggressive_if_conv is true. */ if (!aggressive_if_conv && EDGE_COUNT (bb->preds) > 1 && bb != loop->header && all_preds_critical_p (bb)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "only critical predecessors\n"); return false; } return true; } /* Return true when all predecessor blocks of BB are visited. The VISITED bitmap keeps track of the visited blocks. */ static bool pred_blocks_visited_p (basic_block bb, bitmap *visited) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (!bitmap_bit_p (*visited, e->src->index)) return false; return true; } /* Get body of a LOOP in suitable order for if-conversion. It is caller's responsibility to deallocate basic block list. If-conversion suitable order is, breadth first sort (BFS) order with an additional constraint: select a block only if all its predecessors are already selected. */ static basic_block * get_loop_body_in_if_conv_order (const struct loop *loop) { basic_block *blocks, *blocks_in_bfs_order; basic_block bb; bitmap visited; unsigned int index = 0; unsigned int visited_count = 0; gcc_assert (loop->num_nodes); gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)); blocks = XCNEWVEC (basic_block, loop->num_nodes); visited = BITMAP_ALLOC (NULL); blocks_in_bfs_order = get_loop_body_in_bfs_order (loop); index = 0; while (index < loop->num_nodes) { bb = blocks_in_bfs_order [index]; if (bb->flags & BB_IRREDUCIBLE_LOOP) { free (blocks_in_bfs_order); BITMAP_FREE (visited); free (blocks); return NULL; } if (!bitmap_bit_p (visited, bb->index)) { if (pred_blocks_visited_p (bb, &visited) || bb == loop->header) { /* This block is now visited. */ bitmap_set_bit (visited, bb->index); blocks[visited_count++] = bb; } } index++; if (index == loop->num_nodes && visited_count != loop->num_nodes) /* Not done yet. */ index = 0; } free (blocks_in_bfs_order); BITMAP_FREE (visited); return blocks; } /* Returns true when the analysis of the predicates for all the basic blocks in LOOP succeeded. predicate_bbs first allocates the predicates of the basic blocks. These fields are then initialized with the tree expressions representing the predicates under which a basic block is executed in the LOOP. As the loop->header is executed at each iteration, it has the "true" predicate. Other statements executed under a condition are predicated with that condition, for example | if (x) | S1; | else | S2; S1 will be predicated with "x", and S2 will be predicated with "!x". */ static void predicate_bbs (loop_p loop) { unsigned int i; for (i = 0; i < loop->num_nodes; i++) init_bb_predicate (ifc_bbs[i]); for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; tree cond; gimple *stmt; /* The loop latch and loop exit block are always executed and have no extra conditions to be processed: skip them. */ if (bb == loop->latch || bb_with_exit_edge_p (loop, bb)) { reset_bb_predicate (bb); continue; } cond = bb_predicate (bb); stmt = last_stmt (bb); if (stmt && gimple_code (stmt) == GIMPLE_COND) { tree c2; edge true_edge, false_edge; location_t loc = gimple_location (stmt); tree c = build2_loc (loc, gimple_cond_code (stmt), boolean_type_node, gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); /* Add new condition into destination's predicate list. */ extract_true_false_edges_from_block (gimple_bb (stmt), &true_edge, &false_edge); /* If C is true, then TRUE_EDGE is taken. */ add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond), unshare_expr (c)); /* If C is false, then FALSE_EDGE is taken. */ c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node, unshare_expr (c)); add_to_dst_predicate_list (loop, false_edge, unshare_expr (cond), c2); cond = NULL_TREE; } /* If current bb has only one successor, then consider it as an unconditional goto. */ if (single_succ_p (bb)) { basic_block bb_n = single_succ (bb); /* The successor bb inherits the predicate of its predecessor. If there is no predicate in the predecessor bb, then consider the successor bb as always executed. */ if (cond == NULL_TREE) cond = boolean_true_node; add_to_predicate_list (loop, bb_n, cond); } } /* The loop header is always executed. */ reset_bb_predicate (loop->header); gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL && bb_predicate_gimplified_stmts (loop->latch) == NULL); } /* Return true when LOOP is if-convertible. This is a helper function for if_convertible_loop_p. REFS and DDRS are initialized and freed in if_convertible_loop_p. */ static bool if_convertible_loop_p_1 (struct loop *loop, vec *loop_nest, vec *refs, vec *ddrs, bool *any_mask_load_store) { bool res; unsigned int i; basic_block exit_bb = NULL; /* Don't if-convert the loop when the data dependences cannot be computed: the loop won't be vectorized in that case. */ res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs); if (!res) return false; calculate_dominance_info (CDI_DOMINATORS); calculate_dominance_info (CDI_POST_DOMINATORS); /* Allow statements that can be handled during if-conversion. */ ifc_bbs = get_loop_body_in_if_conv_order (loop); if (!ifc_bbs) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Irreducible loop\n"); return false; } for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; if (!if_convertible_bb_p (loop, bb, exit_bb)) return false; if (bb_with_exit_edge_p (loop, bb)) exit_bb = bb; } for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; gimple_stmt_iterator gsi; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) switch (gimple_code (gsi_stmt (gsi))) { case GIMPLE_LABEL: case GIMPLE_ASSIGN: case GIMPLE_CALL: case GIMPLE_DEBUG: case GIMPLE_COND: gimple_set_uid (gsi_stmt (gsi), 0); break; default: return false; } } data_reference_p dr; ref_DR_map = new hash_map; baseref_DR_map = new hash_map; predicate_bbs (loop); for (i = 0; refs->iterate (i, &dr); i++) { dr->aux = XNEW (struct ifc_dr); DR_WRITTEN_AT_LEAST_ONCE (dr) = -1; DR_RW_UNCONDITIONALLY (dr) = -1; if (gimple_uid (DR_STMT (dr)) == 0) gimple_set_uid (DR_STMT (dr), i + 1); hash_memrefs_baserefs_and_store_DRs_read_written_info (dr); } for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; gimple_stmt_iterator itr; /* Check the if-convertibility of statements in predicated BBs. */ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr)) if (!if_convertible_stmt_p (gsi_stmt (itr), *refs, any_mask_load_store)) return false; } for (i = 0; i < loop->num_nodes; i++) free_bb_predicate (ifc_bbs[i]); /* Checking PHIs needs to be done after stmts, as the fact whether there are any masked loads or stores affects the tests. */ for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; gphi_iterator itr; for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr)) if (!if_convertible_phi_p (loop, bb, itr.phi (), *any_mask_load_store)) return false; } if (dump_file) fprintf (dump_file, "Applying if-conversion\n"); return true; } /* Return true when LOOP is if-convertible. LOOP is if-convertible if: - it is innermost, - it has two or more basic blocks, - it has only one exit, - loop header is not the exit edge, - if its basic blocks and phi nodes are if convertible. */ static bool if_convertible_loop_p (struct loop *loop, bool *any_mask_load_store) { edge e; edge_iterator ei; bool res = false; vec refs; vec ddrs; /* Handle only innermost loop. */ if (!loop || loop->inner) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "not innermost loop\n"); return false; } /* If only one block, no need for if-conversion. */ if (loop->num_nodes <= 2) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "less than 2 basic blocks\n"); return false; } /* More than one loop exit is too much to handle. */ if (!single_exit (loop)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "multiple exits\n"); return false; } /* If one of the loop header's edge is an exit edge then do not apply if-conversion. */ FOR_EACH_EDGE (e, ei, loop->header->succs) if (loop_exit_edge_p (loop, e)) return false; refs.create (5); ddrs.create (25); auto_vec loop_nest; res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs, any_mask_load_store); data_reference_p dr; unsigned int i; for (i = 0; refs.iterate (i, &dr); i++) free (dr->aux); free_data_refs (refs); free_dependence_relations (ddrs); delete ref_DR_map; ref_DR_map = NULL; delete baseref_DR_map; baseref_DR_map = NULL; return res; } /* Returns true if def-stmt for phi argument ARG is simple increment/decrement which is in predicated basic block. In fact, the following PHI pattern is searching: loop-header: reduc_1 = PHI <..., reduc_2> ... if (...) reduc_3 = ... reduc_2 = PHI ARG_0 and ARG_1 are correspondent PHI arguments. REDUC, OP0 and OP1 contain reduction stmt and its operands. EXTENDED is true if PHI has > 2 arguments. */ static bool is_cond_scalar_reduction (gimple *phi, gimple **reduc, tree arg_0, tree arg_1, tree *op0, tree *op1, bool extended) { tree lhs, r_op1, r_op2; gimple *stmt; gimple *header_phi = NULL; enum tree_code reduction_op; basic_block bb = gimple_bb (phi); struct loop *loop = bb->loop_father; edge latch_e = loop_latch_edge (loop); imm_use_iterator imm_iter; use_operand_p use_p; edge e; edge_iterator ei; bool result = false; if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME) return false; if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI) { lhs = arg_1; header_phi = SSA_NAME_DEF_STMT (arg_0); stmt = SSA_NAME_DEF_STMT (arg_1); } else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI) { lhs = arg_0; header_phi = SSA_NAME_DEF_STMT (arg_1); stmt = SSA_NAME_DEF_STMT (arg_0); } else return false; if (gimple_bb (header_phi) != loop->header) return false; if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi)) return false; if (gimple_code (stmt) != GIMPLE_ASSIGN || gimple_has_volatile_ops (stmt)) return false; if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt))) return false; if (!is_predicated (gimple_bb (stmt))) return false; /* Check that stmt-block is predecessor of phi-block. */ FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) if (e->dest == bb) { result = true; break; } if (!result) return false; if (!has_single_use (lhs)) return false; reduction_op = gimple_assign_rhs_code (stmt); if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR) return false; r_op1 = gimple_assign_rhs1 (stmt); r_op2 = gimple_assign_rhs2 (stmt); /* Make R_OP1 to hold reduction variable. */ if (r_op2 == PHI_RESULT (header_phi) && reduction_op == PLUS_EXPR) std::swap (r_op1, r_op2); else if (r_op1 != PHI_RESULT (header_phi)) return false; /* Check that R_OP1 is used in reduction stmt or in PHI only. */ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1) { gimple *use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; if (use_stmt == stmt) continue; if (gimple_code (use_stmt) != GIMPLE_PHI) return false; } *op0 = r_op1; *op1 = r_op2; *reduc = stmt; return true; } /* Converts conditional scalar reduction into unconditional form, e.g. bb_4 if (_5 != 0) goto bb_5 else goto bb_6 end_bb_4 bb_5 res_6 = res_13 + 1; end_bb_5 bb_6 # res_2 = PHI end_bb_6 will be converted into sequence _ifc__1 = _5 != 0 ? 1 : 0; res_2 = res_13 + _ifc__1; Argument SWAP tells that arguments of conditional expression should be swapped. Returns rhs of resulting PHI assignment. */ static tree convert_scalar_cond_reduction (gimple *reduc, gimple_stmt_iterator *gsi, tree cond, tree op0, tree op1, bool swap) { gimple_stmt_iterator stmt_it; gimple *new_assign; tree rhs; tree rhs1 = gimple_assign_rhs1 (reduc); tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_"); tree c; tree zero = build_zero_cst (TREE_TYPE (rhs1)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found cond scalar reduction.\n"); print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM); } /* Build cond expression using COND and constant operand of reduction rhs. */ c = fold_build_cond_expr (TREE_TYPE (rhs1), unshare_expr (cond), swap ? zero : op1, swap ? op1 : zero); /* Create assignment stmt and insert it at GSI. */ new_assign = gimple_build_assign (tmp, c); gsi_insert_before (gsi, new_assign, GSI_SAME_STMT); /* Build rhs for unconditional increment/decrement. */ rhs = fold_build2 (gimple_assign_rhs_code (reduc), TREE_TYPE (rhs1), op0, tmp); /* Delete original reduction stmt. */ stmt_it = gsi_for_stmt (reduc); gsi_remove (&stmt_it, true); release_defs (reduc); return rhs; } /* Produce condition for all occurrences of ARG in PHI node. */ static tree gen_phi_arg_condition (gphi *phi, vec *occur, gimple_stmt_iterator *gsi) { int len; int i; tree cond = NULL_TREE; tree c; edge e; len = occur->length (); gcc_assert (len > 0); for (i = 0; i < len; i++) { e = gimple_phi_arg_edge (phi, (*occur)[i]); c = bb_predicate (e->src); if (is_true_predicate (c)) continue; c = force_gimple_operand_gsi_1 (gsi, unshare_expr (c), is_gimple_condexpr, NULL_TREE, true, GSI_SAME_STMT); if (cond != NULL_TREE) { /* Must build OR expression. */ cond = fold_or_predicates (EXPR_LOCATION (c), c, cond); cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond), is_gimple_condexpr, NULL_TREE, true, GSI_SAME_STMT); } else cond = c; } gcc_assert (cond != NULL_TREE); return cond; } /* Replace a scalar PHI node with a COND_EXPR using COND as condition. This routine can handle PHI nodes with more than two arguments. For example, S1: A = PHI is converted into, S2: A = cond ? x1 : x2; The generated code is inserted at GSI that points to the top of basic block's statement list. If PHI node has more than two arguments a chain of conditional expression is produced. */ static void predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi) { gimple *new_stmt = NULL, *reduc; tree rhs, res, arg0, arg1, op0, op1, scev; tree cond; unsigned int index0; unsigned int max, args_len; edge e; basic_block bb; unsigned int i; res = gimple_phi_result (phi); if (virtual_operand_p (res)) return; if ((rhs = degenerate_phi_result (phi)) || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father, res)) && !chrec_contains_undetermined (scev) && scev != res && (rhs = gimple_phi_arg_def (phi, 0)))) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Degenerate phi!\n"); print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); } new_stmt = gimple_build_assign (res, rhs); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); update_stmt (new_stmt); return; } bb = gimple_bb (phi); if (EDGE_COUNT (bb->preds) == 2) { /* Predicate ordinary PHI node with 2 arguments. */ edge first_edge, second_edge; basic_block true_bb; first_edge = EDGE_PRED (bb, 0); second_edge = EDGE_PRED (bb, 1); cond = bb_predicate (first_edge->src); if (TREE_CODE (cond) == TRUTH_NOT_EXPR) std::swap (first_edge, second_edge); if (EDGE_COUNT (first_edge->src->succs) > 1) { cond = bb_predicate (second_edge->src); if (TREE_CODE (cond) == TRUTH_NOT_EXPR) cond = TREE_OPERAND (cond, 0); else first_edge = second_edge; } else cond = bb_predicate (first_edge->src); /* Gimplify the condition to a valid cond-expr conditonal operand. */ cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond), is_gimple_condexpr, NULL_TREE, true, GSI_SAME_STMT); true_bb = first_edge->src; if (EDGE_PRED (bb, 1)->src == true_bb) { arg0 = gimple_phi_arg_def (phi, 1); arg1 = gimple_phi_arg_def (phi, 0); } else { arg0 = gimple_phi_arg_def (phi, 0); arg1 = gimple_phi_arg_def (phi, 1); } if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1, &op0, &op1, false)) /* Convert reduction stmt into vectorizable form. */ rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1, true_bb != gimple_bb (reduc)); else /* Build new RHS using selected condition and arguments. */ rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond), arg0, arg1); new_stmt = gimple_build_assign (res, rhs); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); update_stmt (new_stmt); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "new phi replacement stmt\n"); print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM); } return; } /* Create hashmap for PHI node which contain vector of argument indexes having the same value. */ bool swap = false; hash_map > phi_arg_map; unsigned int num_args = gimple_phi_num_args (phi); int max_ind = -1; /* Vector of different PHI argument values. */ auto_vec args (num_args); /* Compute phi_arg_map. */ for (i = 0; i < num_args; i++) { tree arg; arg = gimple_phi_arg_def (phi, i); if (!phi_arg_map.get (arg)) args.quick_push (arg); phi_arg_map.get_or_insert (arg).safe_push (i); } /* Determine element with max number of occurrences. */ max_ind = -1; max = 1; args_len = args.length (); for (i = 0; i < args_len; i++) { unsigned int len; if ((len = phi_arg_map.get (args[i])->length ()) > max) { max_ind = (int) i; max = len; } } /* Put element with max number of occurences to the end of ARGS. */ if (max_ind != -1 && max_ind +1 != (int) args_len) std::swap (args[args_len - 1], args[max_ind]); /* Handle one special case when number of arguments with different values is equal 2 and one argument has the only occurrence. Such PHI can be handled as if would have only 2 arguments. */ if (args_len == 2 && phi_arg_map.get (args[0])->length () == 1) { vec *indexes; indexes = phi_arg_map.get (args[0]); index0 = (*indexes)[0]; arg0 = args[0]; arg1 = args[1]; e = gimple_phi_arg_edge (phi, index0); cond = bb_predicate (e->src); if (TREE_CODE (cond) == TRUTH_NOT_EXPR) { swap = true; cond = TREE_OPERAND (cond, 0); } /* Gimplify the condition to a valid cond-expr conditonal operand. */ cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond), is_gimple_condexpr, NULL_TREE, true, GSI_SAME_STMT); if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1, &op0, &op1, true))) rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond), swap? arg1 : arg0, swap? arg0 : arg1); else /* Convert reduction stmt into vectorizable form. */ rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1, swap); new_stmt = gimple_build_assign (res, rhs); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); update_stmt (new_stmt); } else { /* Common case. */ vec *indexes; tree type = TREE_TYPE (gimple_phi_result (phi)); tree lhs; arg1 = args[1]; for (i = 0; i < args_len; i++) { arg0 = args[i]; indexes = phi_arg_map.get (args[i]); if (i != args_len - 1) lhs = make_temp_ssa_name (type, NULL, "_ifc_"); else lhs = res; cond = gen_phi_arg_condition (phi, indexes, gsi); rhs = fold_build_cond_expr (type, unshare_expr (cond), arg0, arg1); new_stmt = gimple_build_assign (lhs, rhs); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); update_stmt (new_stmt); arg1 = lhs; } } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "new extended phi replacement stmt\n"); print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM); } } /* Replaces in LOOP all the scalar phi nodes other than those in the LOOP->header block with conditional modify expressions. */ static void predicate_all_scalar_phis (struct loop *loop) { basic_block bb; unsigned int orig_loop_num_nodes = loop->num_nodes; unsigned int i; for (i = 1; i < orig_loop_num_nodes; i++) { gphi *phi; gimple_stmt_iterator gsi; gphi_iterator phi_gsi; bb = ifc_bbs[i]; if (bb == loop->header) continue; if (EDGE_COUNT (bb->preds) == 1) continue; phi_gsi = gsi_start_phis (bb); if (gsi_end_p (phi_gsi)) continue; gsi = gsi_after_labels (bb); while (!gsi_end_p (phi_gsi)) { phi = phi_gsi.phi (); predicate_scalar_phi (phi, &gsi); release_phi_node (phi); gsi_next (&phi_gsi); } set_phi_nodes (bb, NULL); } } /* Insert in each basic block of LOOP the statements produced by the gimplification of the predicates. */ static void insert_gimplified_predicates (loop_p loop, bool any_mask_load_store) { unsigned int i; for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; gimple_seq stmts; if (!is_predicated (bb)) gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL); if (!is_predicated (bb)) { /* Do not insert statements for a basic block that is not predicated. Also make sure that the predicate of the basic block is set to true. */ reset_bb_predicate (bb); continue; } stmts = bb_predicate_gimplified_stmts (bb); if (stmts) { if (flag_tree_loop_if_convert_stores || any_mask_load_store) { /* Insert the predicate of the BB just after the label, as the if-conversion of memory writes will use this predicate. */ gimple_stmt_iterator gsi = gsi_after_labels (bb); gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); } else { /* Insert the predicate of the BB at the end of the BB as this would reduce the register pressure: the only use of this predicate will be in successor BBs. */ gimple_stmt_iterator gsi = gsi_last_bb (bb); if (gsi_end_p (gsi) || stmt_ends_bb_p (gsi_stmt (gsi))) gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); else gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT); } /* Once the sequence is code generated, set it to NULL. */ set_bb_predicate_gimplified_stmts (bb, NULL); } } } /* Helper function for predicate_mem_writes. Returns index of existent mask if it was created for given SIZE and -1 otherwise. */ static int mask_exists (int size, vec vec) { unsigned int ix; int v; FOR_EACH_VEC_ELT (vec, ix, v) if (v == size) return (int) ix; return -1; } /* Predicate each write to memory in LOOP. This function transforms control flow constructs containing memory writes of the form: | for (i = 0; i < N; i++) | if (cond) | A[i] = expr; into the following form that does not contain control flow: | for (i = 0; i < N; i++) | A[i] = cond ? expr : A[i]; The original CFG looks like this: | bb_0 | i = 0 | end_bb_0 | | bb_1 | if (i < N) goto bb_5 else goto bb_2 | end_bb_1 | | bb_2 | cond = some_computation; | if (cond) goto bb_3 else goto bb_4 | end_bb_2 | | bb_3 | A[i] = expr; | goto bb_4 | end_bb_3 | | bb_4 | goto bb_1 | end_bb_4 insert_gimplified_predicates inserts the computation of the COND expression at the beginning of the destination basic block: | bb_0 | i = 0 | end_bb_0 | | bb_1 | if (i < N) goto bb_5 else goto bb_2 | end_bb_1 | | bb_2 | cond = some_computation; | if (cond) goto bb_3 else goto bb_4 | end_bb_2 | | bb_3 | cond = some_computation; | A[i] = expr; | goto bb_4 | end_bb_3 | | bb_4 | goto bb_1 | end_bb_4 predicate_mem_writes is then predicating the memory write as follows: | bb_0 | i = 0 | end_bb_0 | | bb_1 | if (i < N) goto bb_5 else goto bb_2 | end_bb_1 | | bb_2 | if (cond) goto bb_3 else goto bb_4 | end_bb_2 | | bb_3 | cond = some_computation; | A[i] = cond ? expr : A[i]; | goto bb_4 | end_bb_3 | | bb_4 | goto bb_1 | end_bb_4 and finally combine_blocks removes the basic block boundaries making the loop vectorizable: | bb_0 | i = 0 | if (i < N) goto bb_5 else goto bb_1 | end_bb_0 | | bb_1 | cond = some_computation; | A[i] = cond ? expr : A[i]; | if (i < N) goto bb_5 else goto bb_4 | end_bb_1 | | bb_4 | goto bb_1 | end_bb_4 */ static void predicate_mem_writes (loop_p loop) { unsigned int i, orig_loop_num_nodes = loop->num_nodes; auto_vec vect_sizes; auto_vec vect_masks; for (i = 1; i < orig_loop_num_nodes; i++) { gimple_stmt_iterator gsi; basic_block bb = ifc_bbs[i]; tree cond = bb_predicate (bb); bool swap; gimple *stmt; int index; if (is_true_predicate (cond)) continue; swap = false; if (TREE_CODE (cond) == TRUTH_NOT_EXPR) { swap = true; cond = TREE_OPERAND (cond, 0); } vect_sizes.truncate (0); vect_masks.truncate (0); for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) if (!gimple_assign_single_p (stmt = gsi_stmt (gsi))) continue; else if (gimple_plf (stmt, GF_PLF_2)) { tree lhs = gimple_assign_lhs (stmt); tree rhs = gimple_assign_rhs1 (stmt); tree ref, addr, ptr, mask; gimple *new_stmt; gimple_seq stmts = NULL; int bitsize = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs))); ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs; mark_addressable (ref); addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref), true, NULL_TREE, true, GSI_SAME_STMT); if (!vect_sizes.is_empty () && (index = mask_exists (bitsize, vect_sizes)) != -1) /* Use created mask. */ mask = vect_masks[index]; else { if (COMPARISON_CLASS_P (cond)) mask = gimple_build (&stmts, TREE_CODE (cond), boolean_type_node, TREE_OPERAND (cond, 0), TREE_OPERAND (cond, 1)); else { gcc_assert (TREE_CODE (cond) == SSA_NAME); mask = cond; } if (swap) { tree true_val = constant_boolean_node (true, TREE_TYPE (mask)); mask = gimple_build (&stmts, BIT_XOR_EXPR, TREE_TYPE (mask), mask, true_val); } gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); mask = ifc_temp_var (TREE_TYPE (mask), mask, &gsi); /* Save mask and its size for further use. */ vect_sizes.safe_push (bitsize); vect_masks.safe_push (mask); } ptr = build_int_cst (reference_alias_ptr_type (ref), 0); /* Copy points-to info if possible. */ if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr)) copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr), ref); if (TREE_CODE (lhs) == SSA_NAME) { new_stmt = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr, ptr, mask); gimple_call_set_lhs (new_stmt, lhs); } else new_stmt = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr, mask, rhs); gsi_replace (&gsi, new_stmt, true); } else if (gimple_vdef (stmt)) { tree lhs = gimple_assign_lhs (stmt); tree rhs = gimple_assign_rhs1 (stmt); tree type = TREE_TYPE (lhs); lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi); rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi); if (swap) std::swap (lhs, rhs); cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond), is_gimple_condexpr, NULL_TREE, true, GSI_SAME_STMT); rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs); gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi)); update_stmt (stmt); } } } /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks other than the exit and latch of the LOOP. Also resets the GIMPLE_DEBUG information. */ static void remove_conditions_and_labels (loop_p loop) { gimple_stmt_iterator gsi; unsigned int i; for (i = 0; i < loop->num_nodes; i++) { basic_block bb = ifc_bbs[i]; if (bb_with_exit_edge_p (loop, bb) || bb == loop->latch) continue; for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) switch (gimple_code (gsi_stmt (gsi))) { case GIMPLE_COND: case GIMPLE_LABEL: gsi_remove (&gsi, true); break; case GIMPLE_DEBUG: /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */ if (gimple_debug_bind_p (gsi_stmt (gsi))) { gimple_debug_bind_reset_value (gsi_stmt (gsi)); update_stmt (gsi_stmt (gsi)); } gsi_next (&gsi); break; default: gsi_next (&gsi); } } } /* Combine all the basic blocks from LOOP into one or two super basic blocks. Replace PHI nodes with conditional modify expressions. */ static void combine_blocks (struct loop *loop, bool any_mask_load_store) { basic_block bb, exit_bb, merge_target_bb; unsigned int orig_loop_num_nodes = loop->num_nodes; unsigned int i; edge e; edge_iterator ei; predicate_bbs (loop); remove_conditions_and_labels (loop); insert_gimplified_predicates (loop, any_mask_load_store); predicate_all_scalar_phis (loop); if (flag_tree_loop_if_convert_stores || any_mask_load_store) predicate_mem_writes (loop); /* Merge basic blocks: first remove all the edges in the loop, except for those from the exit block. */ exit_bb = NULL; bool *predicated = XNEWVEC (bool, orig_loop_num_nodes); for (i = 0; i < orig_loop_num_nodes; i++) { bb = ifc_bbs[i]; predicated[i] = !is_true_predicate (bb_predicate (bb)); free_bb_predicate (bb); if (bb_with_exit_edge_p (loop, bb)) { gcc_assert (exit_bb == NULL); exit_bb = bb; } } gcc_assert (exit_bb != loop->latch); for (i = 1; i < orig_loop_num_nodes; i++) { bb = ifc_bbs[i]; for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));) { if (e->src == exit_bb) ei_next (&ei); else remove_edge (e); } } if (exit_bb != NULL) { if (exit_bb != loop->header) { /* Connect this node to loop header. */ make_edge (loop->header, exit_bb, EDGE_FALLTHRU); set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header); } /* Redirect non-exit edges to loop->latch. */ FOR_EACH_EDGE (e, ei, exit_bb->succs) { if (!loop_exit_edge_p (loop, e)) redirect_edge_and_branch (e, loop->latch); } set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb); } else { /* If the loop does not have an exit, reconnect header and latch. */ make_edge (loop->header, loop->latch, EDGE_FALLTHRU); set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header); } merge_target_bb = loop->header; for (i = 1; i < orig_loop_num_nodes; i++) { gimple_stmt_iterator gsi; gimple_stmt_iterator last; bb = ifc_bbs[i]; if (bb == exit_bb || bb == loop->latch) continue; /* Make stmts member of loop->header and clear range info from all stmts in BB which is now no longer executed conditional on a predicate we could have derived it from. */ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); gimple_set_bb (stmt, merge_target_bb); if (predicated[i]) { ssa_op_iter i; tree op; FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF) reset_flow_sensitive_info (op); } } /* Update stmt list. */ last = gsi_last_bb (merge_target_bb); gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT); set_bb_seq (bb, NULL); delete_basic_block (bb); } /* If possible, merge loop header to the block with the exit edge. This reduces the number of basic blocks to two, to please the vectorizer that handles only loops with two nodes. */ if (exit_bb && exit_bb != loop->header && can_merge_blocks_p (loop->header, exit_bb)) merge_blocks (loop->header, exit_bb); free (ifc_bbs); ifc_bbs = NULL; free (predicated); } /* Version LOOP before if-converting it; the original loop will be if-converted, the new copy of the loop will not, and the LOOP_VECTORIZED internal call will be guarding which loop to execute. The vectorizer pass will fold this internal call into either true or false. */ static bool version_loop_for_if_conversion (struct loop *loop) { basic_block cond_bb; tree cond = make_ssa_name (boolean_type_node); struct loop *new_loop; gimple *g; gimple_stmt_iterator gsi; g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2, build_int_cst (integer_type_node, loop->num), integer_zero_node); gimple_call_set_lhs (g, cond); initialize_original_copy_tables (); new_loop = loop_version (loop, cond, &cond_bb, REG_BR_PROB_BASE, REG_BR_PROB_BASE, REG_BR_PROB_BASE, true); free_original_copy_tables (); if (new_loop == NULL) return false; new_loop->dont_vectorize = true; new_loop->force_vectorize = false; gsi = gsi_last_bb (cond_bb); gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num)); gsi_insert_before (&gsi, g, GSI_SAME_STMT); update_ssa (TODO_update_ssa); return true; } /* Performs splitting of critical edges if aggressive_if_conv is true. Returns false if loop won't be if converted and true otherwise. */ static bool ifcvt_split_critical_edges (struct loop *loop) { basic_block *body; basic_block bb; unsigned int num = loop->num_nodes; unsigned int i; gimple *stmt; edge e; edge_iterator ei; if (num <= 2) return false; if (loop->inner) return false; if (!single_exit (loop)) return false; body = get_loop_body (loop); for (i = 0; i < num; i++) { bb = body[i]; if (bb == loop->latch || bb_with_exit_edge_p (loop, bb)) continue; stmt = last_stmt (bb); /* Skip basic blocks not ending with conditional branch. */ if (!(stmt && gimple_code (stmt) == GIMPLE_COND)) continue; FOR_EACH_EDGE (e, ei, bb->succs) if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop) split_edge (e); } free (body); return true; } /* Assumes that lhs of DEF_STMT have multiple uses. Delete one use by (1) creation of copy DEF_STMT with unique lhs; (2) change original use of lhs in one use statement with newly created lhs. */ static void ifcvt_split_def_stmt (gimple *def_stmt, gimple *use_stmt) { tree var; tree lhs; gimple *copy_stmt; gimple_stmt_iterator gsi; use_operand_p use_p; imm_use_iterator imm_iter; var = gimple_assign_lhs (def_stmt); copy_stmt = gimple_copy (def_stmt); lhs = make_temp_ssa_name (TREE_TYPE (var), NULL, "_ifc_"); gimple_assign_set_lhs (copy_stmt, lhs); SSA_NAME_DEF_STMT (lhs) = copy_stmt; /* Insert copy of DEF_STMT. */ gsi = gsi_for_stmt (def_stmt); gsi_insert_after (&gsi, copy_stmt, GSI_SAME_STMT); /* Change use of var to lhs in use_stmt. */ if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Change use of var "); print_generic_expr (dump_file, var, TDF_SLIM); fprintf (dump_file, " to "); print_generic_expr (dump_file, lhs, TDF_SLIM); fprintf (dump_file, "\n"); } FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var) { if (USE_STMT (use_p) != use_stmt) continue; SET_USE (use_p, lhs); break; } } /* Traverse bool pattern recursively starting from VAR. Save its def and use statements to defuse_list if VAR does not have single use. */ static void ifcvt_walk_pattern_tree (tree var, vec *defuse_list, gimple *use_stmt) { tree rhs1, rhs2; enum tree_code code; gimple *def_stmt; def_stmt = SSA_NAME_DEF_STMT (var); if (gimple_code (def_stmt) != GIMPLE_ASSIGN) return; if (!has_single_use (var)) { /* Put def and use stmts into defuse_list. */ defuse_list->safe_push (def_stmt); defuse_list->safe_push (use_stmt); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Multiple lhs uses in stmt\n"); print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM); } } rhs1 = gimple_assign_rhs1 (def_stmt); code = gimple_assign_rhs_code (def_stmt); switch (code) { case SSA_NAME: ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt); break; CASE_CONVERT: if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1 || !TYPE_UNSIGNED (TREE_TYPE (rhs1))) && TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE) break; ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt); break; case BIT_NOT_EXPR: ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt); break; case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: ifcvt_walk_pattern_tree (rhs1, defuse_list, def_stmt); rhs2 = gimple_assign_rhs2 (def_stmt); ifcvt_walk_pattern_tree (rhs2, defuse_list, def_stmt); break; default: break; } return; } /* Returns true if STMT can be a root of bool pattern applied by vectorizer. */ static bool stmt_is_root_of_bool_pattern (gimple *stmt) { enum tree_code code; tree lhs, rhs; code = gimple_assign_rhs_code (stmt); if (CONVERT_EXPR_CODE_P (code)) { lhs = gimple_assign_lhs (stmt); rhs = gimple_assign_rhs1 (stmt); if (TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE) return false; if (TREE_CODE (TREE_TYPE (lhs)) == BOOLEAN_TYPE) return false; return true; } else if (code == COND_EXPR) { rhs = gimple_assign_rhs1 (stmt); if (TREE_CODE (rhs) != SSA_NAME) return false; return true; } return false; } /* Traverse all statements in BB which correspond to loop header to find out all statements which can start bool pattern applied by vectorizer and convert multiple uses in it to conform pattern restrictions. Such case can occur if the same predicate is used both for phi node conversion and load/store mask. */ static void ifcvt_repair_bool_pattern (basic_block bb) { tree rhs; gimple *stmt; gimple_stmt_iterator gsi; vec defuse_list = vNULL; vec pattern_roots = vNULL; bool repeat = true; int niter = 0; unsigned int ix; /* Collect all root pattern statements. */ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { stmt = gsi_stmt (gsi); if (gimple_code (stmt) != GIMPLE_ASSIGN) continue; if (!stmt_is_root_of_bool_pattern (stmt)) continue; pattern_roots.safe_push (stmt); } if (pattern_roots.is_empty ()) return; /* Split all statements with multiple uses iteratively since splitting may create new multiple uses. */ while (repeat) { repeat = false; niter++; FOR_EACH_VEC_ELT (pattern_roots, ix, stmt) { rhs = gimple_assign_rhs1 (stmt); ifcvt_walk_pattern_tree (rhs, &defuse_list, stmt); while (defuse_list.length () > 0) { repeat = true; gimple *def_stmt, *use_stmt; use_stmt = defuse_list.pop (); def_stmt = defuse_list.pop (); ifcvt_split_def_stmt (def_stmt, use_stmt); } } } if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Repair bool pattern takes %d iterations. \n", niter); } /* Delete redundant statements produced by predication which prevents loop vectorization. */ static void ifcvt_local_dce (basic_block bb) { gimple *stmt; gimple *stmt1; gimple *phi; gimple_stmt_iterator gsi; vec worklist; enum gimple_code code; use_operand_p use_p; imm_use_iterator imm_iter; worklist.create (64); /* Consider all phi as live statements. */ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { phi = gsi_stmt (gsi); gimple_set_plf (phi, GF_PLF_2, true); worklist.safe_push (phi); } /* Consider load/store statements, CALL and COND as live. */ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { stmt = gsi_stmt (gsi); if (gimple_store_p (stmt) || gimple_assign_load_p (stmt) || is_gimple_debug (stmt)) { gimple_set_plf (stmt, GF_PLF_2, true); worklist.safe_push (stmt); continue; } code = gimple_code (stmt); if (code == GIMPLE_COND || code == GIMPLE_CALL) { gimple_set_plf (stmt, GF_PLF_2, true); worklist.safe_push (stmt); continue; } gimple_set_plf (stmt, GF_PLF_2, false); if (code == GIMPLE_ASSIGN) { tree lhs = gimple_assign_lhs (stmt); FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs) { stmt1 = USE_STMT (use_p); if (gimple_bb (stmt1) != bb) { gimple_set_plf (stmt, GF_PLF_2, true); worklist.safe_push (stmt); break; } } } } /* Propagate liveness through arguments of live stmt. */ while (worklist.length () > 0) { ssa_op_iter iter; use_operand_p use_p; tree use; stmt = worklist.pop (); FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE) { use = USE_FROM_PTR (use_p); if (TREE_CODE (use) != SSA_NAME) continue; stmt1 = SSA_NAME_DEF_STMT (use); if (gimple_bb (stmt1) != bb || gimple_plf (stmt1, GF_PLF_2)) continue; gimple_set_plf (stmt1, GF_PLF_2, true); worklist.safe_push (stmt1); } } /* Delete dead statements. */ gsi = gsi_start_bb (bb); while (!gsi_end_p (gsi)) { stmt = gsi_stmt (gsi); if (gimple_plf (stmt, GF_PLF_2)) { gsi_next (&gsi); continue; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } gsi_remove (&gsi, true); release_defs (stmt); } } /* If-convert LOOP when it is legal. For the moment this pass has no profitability analysis. Returns non-zero todo flags when something changed. */ static unsigned int tree_if_conversion (struct loop *loop) { unsigned int todo = 0; ifc_bbs = NULL; bool any_mask_load_store = false; /* Set up aggressive if-conversion for loops marked with simd pragma. */ aggressive_if_conv = loop->force_vectorize; /* Check either outer loop was marked with simd pragma. */ if (!aggressive_if_conv) { struct loop *outer_loop = loop_outer (loop); if (outer_loop && outer_loop->force_vectorize) aggressive_if_conv = true; } if (aggressive_if_conv) if (!ifcvt_split_critical_edges (loop)) goto cleanup; if (!if_convertible_loop_p (loop, &any_mask_load_store) || !dbg_cnt (if_conversion_tree)) goto cleanup; if (any_mask_load_store && ((!flag_tree_loop_vectorize && !loop->force_vectorize) || loop->dont_vectorize)) goto cleanup; if (any_mask_load_store && !version_loop_for_if_conversion (loop)) goto cleanup; /* Now all statements are if-convertible. Combine all the basic blocks into one huge basic block doing the if-conversion on-the-fly. */ combine_blocks (loop, any_mask_load_store); /* Delete dead predicate computations and repair tree correspondent to bool pattern to delete multiple uses of predicates. */ if (aggressive_if_conv) { ifcvt_local_dce (loop->header); ifcvt_repair_bool_pattern (loop->header); } todo |= TODO_cleanup_cfg; if (flag_tree_loop_if_convert_stores || any_mask_load_store) { mark_virtual_operands_for_renaming (cfun); todo |= TODO_update_ssa_only_virtuals; } cleanup: if (ifc_bbs) { unsigned int i; for (i = 0; i < loop->num_nodes; i++) free_bb_predicate (ifc_bbs[i]); free (ifc_bbs); ifc_bbs = NULL; } free_dominance_info (CDI_POST_DOMINATORS); return todo; } /* Tree if-conversion pass management. */ namespace { const pass_data pass_data_if_conversion = { GIMPLE_PASS, /* type */ "ifcvt", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_cfg | PROP_ssa ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_if_conversion : public gimple_opt_pass { public: pass_if_conversion (gcc::context *ctxt) : gimple_opt_pass (pass_data_if_conversion, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *); virtual unsigned int execute (function *); }; // class pass_if_conversion bool pass_if_conversion::gate (function *fun) { return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops) && flag_tree_loop_if_convert != 0) || flag_tree_loop_if_convert == 1 || flag_tree_loop_if_convert_stores == 1); } unsigned int pass_if_conversion::execute (function *fun) { struct loop *loop; unsigned todo = 0; if (number_of_loops (fun) <= 1) return 0; FOR_EACH_LOOP (loop, 0) if (flag_tree_loop_if_convert == 1 || flag_tree_loop_if_convert_stores == 1 || ((flag_tree_loop_vectorize || loop->force_vectorize) && !loop->dont_vectorize)) todo |= tree_if_conversion (loop); if (flag_checking) { basic_block bb; FOR_EACH_BB_FN (bb, fun) gcc_assert (!bb->aux); } return todo; } } // anon namespace gimple_opt_pass * make_pass_if_conversion (gcc::context *ctxt) { return new pass_if_conversion (ctxt); }