/* Dead store elimination Copyright (C) 2004, 2005 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "errors.h" #include "ggc.h" #include "tree.h" #include "rtl.h" #include "tm_p.h" #include "basic-block.h" #include "timevar.h" #include "diagnostic.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-dump.h" #include "domwalk.h" #include "flags.h" /* This file implements dead store elimination. A dead store is a store into a memory location which will later be overwritten by another store without any intervening loads. In this case the earlier store can be deleted. In our SSA + virtual operand world we use immediate uses of virtual operands to detect dead stores. If a store's virtual definition is used precisely once by a later store to the same location which post dominates the first store, then the first store is dead. The single use of the store's virtual definition ensures that there are no intervening aliased loads and the requirement that the second load post dominate the first ensures that if the earlier store executes, then the later stores will execute before the function exits. It may help to think of this as first moving the earlier store to the point immediately before the later store. Again, the single use of the virtual definition and the post-dominance relationship ensure that such movement would be safe. Clearly if there are back to back stores, then the second is redundant. Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler" may also help in understanding this code since it discusses the relationship between dead store and redundant load elimination. In fact, they are the same transformation applied to different views of the CFG. */ struct dse_global_data { /* This is the global bitmap for store statements. Each statement has a unique ID. When we encounter a store statement that we want to record, set the bit corresponding to the statement's unique ID in this bitmap. */ bitmap stores; }; /* We allocate a bitmap-per-block for stores which are encountered during the scan of that block. This allows us to restore the global bitmap of stores when we finish processing a block. */ struct dse_block_local_data { bitmap stores; }; static bool gate_dse (void); static void tree_ssa_dse (void); static void dse_initialize_block_local_data (struct dom_walk_data *, basic_block, bool); static void dse_optimize_stmt (struct dom_walk_data *, basic_block, block_stmt_iterator); static void dse_record_phis (struct dom_walk_data *, basic_block); static void dse_finalize_block (struct dom_walk_data *, basic_block); static void record_voperand_set (bitmap, bitmap *, unsigned int); static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi nodes are assigned using the versions of ssa names they define. */ /* Returns uid of statement STMT. */ static unsigned get_stmt_uid (tree stmt) { if (TREE_CODE (stmt) == PHI_NODE) return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid; return stmt_ann (stmt)->uid; } /* Function indicating whether we ought to include information for 'var' when calculating immediate uses. For this pass we only want use information for virtual variables. */ static bool need_imm_uses_for (tree var) { return !is_gimple_reg (var); } /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */ static void record_voperand_set (bitmap global, bitmap *local, unsigned int uid) { /* Lazily allocate the bitmap. Note that we do not get a notification when the block local data structures die, so we allocate the local bitmap backed by the GC system. */ if (*local == NULL) *local = BITMAP_GGC_ALLOC (); /* Set the bit in the local and global bitmaps. */ bitmap_set_bit (*local, uid); bitmap_set_bit (global, uid); } /* Initialize block local data structures. */ static void dse_initialize_block_local_data (struct dom_walk_data *walk_data, basic_block bb ATTRIBUTE_UNUSED, bool recycled) { struct dse_block_local_data *bd = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); /* If we are given a recycled block local data structure, ensure any bitmap associated with the block is cleared. */ if (recycled) { if (bd->stores) bitmap_clear (bd->stores); } } /* Attempt to eliminate dead stores in the statement referenced by BSI. A dead store is a store into a memory location which will later be overwritten by another store without any intervening loads. In this case the earlier store can be deleted. In our SSA + virtual operand world we use immediate uses of virtual operands to detect dead stores. If a store's virtual definition is used precisely once by a later store to the same location which post dominates the first store, then the first store is dead. */ static void dse_optimize_stmt (struct dom_walk_data *walk_data, basic_block bb ATTRIBUTE_UNUSED, block_stmt_iterator bsi) { struct dse_block_local_data *bd = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); struct dse_global_data *dse_gd = walk_data->global_data; tree stmt = bsi_stmt (bsi); stmt_ann_t ann = stmt_ann (stmt); v_may_def_optype v_may_defs; v_may_defs = V_MAY_DEF_OPS (ann); /* If this statement has no virtual defs, then there is nothing to do. */ if (NUM_V_MAY_DEFS (v_may_defs) == 0) return; /* We know we have virtual definitions. If this is a MODIFY_EXPR that's not also a function call, then record it into our table. */ if (get_call_expr_in (stmt)) return; if (ann->has_volatile_ops) return; if (TREE_CODE (stmt) == MODIFY_EXPR) { unsigned int num_uses = 0, count = 0; use_operand_p first_use_p = NULL_USE_OPERAND_P; use_operand_p use_p; tree use, use_stmt; tree defvar = NULL_TREE, usevar = NULL_TREE; use_operand_p var2; def_operand_p var1; ssa_op_iter op_iter; FOR_EACH_SSA_MAYDEF_OPERAND (var1, var2, stmt, op_iter) { defvar = DEF_FROM_PTR (var1); usevar = USE_FROM_PTR (var2); num_uses += num_imm_uses (defvar); count++; if (num_uses > 1 || count > 1) break; } if (count == 1 && num_uses == 1) { single_imm_use (defvar, &use_p, &use_stmt); gcc_assert (use_p != NULL_USE_OPERAND_P); first_use_p = use_p; use = USE_FROM_PTR (use_p); } else { record_voperand_set (dse_gd->stores, &bd->stores, ann->uid); return; } /* Skip through any PHI nodes we have already seen if the PHI represents the only use of this store. Note this does not handle the case where the store has multiple V_MAY_DEFs which all reach a set of PHI nodes in the same block. */ while (use_p != NULL_USE_OPERAND_P && TREE_CODE (use_stmt) == PHI_NODE && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))) { /* Skip past this PHI and loop again in case we had a PHI chain. */ if (single_imm_use (PHI_RESULT (use_stmt), &use_p, &use_stmt)) use = USE_FROM_PTR (use_p); } /* If we have precisely one immediate use at this point, then we may have found redundant store. */ if (use_p != NULL_USE_OPERAND_P && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt)) && operand_equal_p (TREE_OPERAND (stmt, 0), TREE_OPERAND (use_stmt, 0), 0)) { tree def; ssa_op_iter iter; /* Make sure we propagate the ABNORMAL bit setting. */ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (first_use_p))) SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1; /* Then we need to fix the operand of the consuming stmt. */ SET_USE (first_use_p, usevar); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, " Deleted dead store '"); print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags); fprintf (dump_file, "'\n"); } /* Remove the dead store. */ bsi_remove (&bsi); /* The virtual defs for the dead statement will need to be updated. Since these names are going to disappear, FUD chains for uses downstream need to be updated. */ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_VIRTUAL_DEFS) mark_sym_for_renaming (SSA_NAME_VAR (def)); /* And release any SSA_NAMEs set in this statement back to the SSA_NAME manager. */ release_defs (stmt); } record_voperand_set (dse_gd->stores, &bd->stores, ann->uid); } } /* Record that we have seen the PHIs at the start of BB which correspond to virtual operands. */ static void dse_record_phis (struct dom_walk_data *walk_data, basic_block bb) { struct dse_block_local_data *bd = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); struct dse_global_data *dse_gd = walk_data->global_data; tree phi; for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi)) if (need_imm_uses_for (PHI_RESULT (phi))) record_voperand_set (dse_gd->stores, &bd->stores, get_stmt_uid (phi)); } static void dse_finalize_block (struct dom_walk_data *walk_data, basic_block bb ATTRIBUTE_UNUSED) { struct dse_block_local_data *bd = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); struct dse_global_data *dse_gd = walk_data->global_data; bitmap stores = dse_gd->stores; unsigned int i; bitmap_iterator bi; /* Unwind the stores noted in this basic block. */ if (bd->stores) EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi) { bitmap_clear_bit (stores, i); } } static void tree_ssa_dse (void) { struct dom_walk_data walk_data; struct dse_global_data dse_gd; basic_block bb; /* Create a UID for each statement in the function. Ordering of the UIDs is not important for this pass. */ max_stmt_uid = 0; FOR_EACH_BB (bb) { block_stmt_iterator bsi; for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++; } /* We might consider making this a property of each pass so that it can be [re]computed on an as-needed basis. Particularly since this pass could be seen as an extension of DCE which needs post dominators. */ calculate_dominance_info (CDI_POST_DOMINATORS); /* Dead store elimination is fundamentally a walk of the post-dominator tree and a backwards walk of statements within each block. */ walk_data.walk_stmts_backward = true; walk_data.dom_direction = CDI_POST_DOMINATORS; walk_data.initialize_block_local_data = dse_initialize_block_local_data; walk_data.before_dom_children_before_stmts = NULL; walk_data.before_dom_children_walk_stmts = dse_optimize_stmt; walk_data.before_dom_children_after_stmts = dse_record_phis; walk_data.after_dom_children_before_stmts = NULL; walk_data.after_dom_children_walk_stmts = NULL; walk_data.after_dom_children_after_stmts = dse_finalize_block; walk_data.interesting_blocks = NULL; walk_data.block_local_data_size = sizeof (struct dse_block_local_data); /* This is the main hash table for the dead store elimination pass. */ dse_gd.stores = BITMAP_ALLOC (NULL); walk_data.global_data = &dse_gd; /* Initialize the dominator walker. */ init_walk_dominator_tree (&walk_data); /* Recursively walk the dominator tree. */ walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR); /* Finalize the dominator walker. */ fini_walk_dominator_tree (&walk_data); /* Release the main bitmap. */ BITMAP_FREE (dse_gd.stores); /* For now, just wipe the post-dominator information. */ free_dominance_info (CDI_POST_DOMINATORS); } static bool gate_dse (void) { return flag_tree_dse != 0; } struct tree_opt_pass pass_dse = { "dse", /* name */ gate_dse, /* gate */ tree_ssa_dse, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_DSE, /* tv_id */ PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_ggc_collect | TODO_update_ssa | TODO_verify_ssa, /* todo_flags_finish */ 0 /* letter */ };