/* Functions to determine/estimate number of iterations of a loop. Copyright (C) 2004, 2005 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "tm_p.h" #include "hard-reg-set.h" #include "basic-block.h" #include "output.h" #include "diagnostic.h" #include "tree-flow.h" #include "tree-dump.h" #include "cfgloop.h" #include "tree-pass.h" #include "ggc.h" #include "tree-chrec.h" #include "tree-scalar-evolution.h" #include "tree-data-ref.h" #include "params.h" #include "flags.h" #include "tree-inline.h" #define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0) /* Analysis of number of iterations of an affine exit test. */ /* Returns true if ARG is either NULL_TREE or constant zero. Unlike integer_zerop, it does not care about overflow flags. */ bool zero_p (tree arg) { if (!arg) return true; if (TREE_CODE (arg) != INTEGER_CST) return false; return (TREE_INT_CST_LOW (arg) == 0 && TREE_INT_CST_HIGH (arg) == 0); } /* Returns true if ARG a nonzero constant. Unlike integer_nonzerop, it does not care about overflow flags. */ static bool nonzero_p (tree arg) { if (!arg) return false; if (TREE_CODE (arg) != INTEGER_CST) return false; return (TREE_INT_CST_LOW (arg) != 0 || TREE_INT_CST_HIGH (arg) != 0); } /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */ static tree inverse (tree x, tree mask) { tree type = TREE_TYPE (x); tree rslt; unsigned ctr = tree_floor_log2 (mask); if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT) { unsigned HOST_WIDE_INT ix; unsigned HOST_WIDE_INT imask; unsigned HOST_WIDE_INT irslt = 1; gcc_assert (cst_and_fits_in_hwi (x)); gcc_assert (cst_and_fits_in_hwi (mask)); ix = int_cst_value (x); imask = int_cst_value (mask); for (; ctr; ctr--) { irslt *= ix; ix *= ix; } irslt &= imask; rslt = build_int_cst_type (type, irslt); } else { rslt = build_int_cst_type (type, 1); for (; ctr; ctr--) { rslt = fold_binary_to_constant (MULT_EXPR, type, rslt, x); x = fold_binary_to_constant (MULT_EXPR, type, x, x); } rslt = fold_binary_to_constant (BIT_AND_EXPR, type, rslt, mask); } return rslt; } /* Determine the number of iterations according to condition (for staying inside loop) which compares two induction variables using comparison operator CODE. The induction variable on left side of the comparison has base BASE0 and step STEP0. the right-hand side one has base BASE1 and step STEP1. Both induction variables must have type TYPE, which must be an integer or pointer type. STEP0 and STEP1 must be constants (or NULL_TREE, which is interpreted as constant zero). The results (number of iterations and assumptions as described in comments at struct tree_niter_desc in tree-flow.h) are stored to NITER. In case we are unable to determine number of iterations, contents of this structure is unchanged. */ static void number_of_iterations_cond (tree type, tree base0, tree step0, enum tree_code code, tree base1, tree step1, struct tree_niter_desc *niter) { tree step, delta, mmin, mmax; tree may_xform, bound, s, d, tmp; bool was_sharp = false; tree assumption; tree assumptions = boolean_true_node; tree noloop_assumptions = boolean_false_node; tree niter_type, signed_niter_type; tree bits; /* The meaning of these assumptions is this: if !assumptions then the rest of information does not have to be valid if noloop_assumptions then the loop does not have to roll (but it is only conservative approximation, i.e. it only says that if !noloop_assumptions, then the loop does not end before the computed number of iterations) */ /* Make < comparison from > ones. */ if (code == GE_EXPR || code == GT_EXPR) { SWAP (base0, base1); SWAP (step0, step1); code = swap_tree_comparison (code); } /* We can handle the case when neither of the sides of the comparison is invariant, provided that the test is NE_EXPR. This rarely occurs in practice, but it is simple enough to manage. */ if (!zero_p (step0) && !zero_p (step1)) { if (code != NE_EXPR) return; step0 = fold_binary_to_constant (MINUS_EXPR, type, step0, step1); step1 = NULL_TREE; } /* If the result is a constant, the loop is weird. More precise handling would be possible, but the situation is not common enough to waste time on it. */ if (zero_p (step0) && zero_p (step1)) return; /* Ignore loops of while (i-- < 10) type. */ if (code != NE_EXPR) { if (step0 && !tree_expr_nonnegative_p (step0)) return; if (!zero_p (step1) && tree_expr_nonnegative_p (step1)) return; } if (POINTER_TYPE_P (type)) { /* We assume pointer arithmetic never overflows. */ mmin = mmax = NULL_TREE; } else { mmin = TYPE_MIN_VALUE (type); mmax = TYPE_MAX_VALUE (type); } /* Some more condition normalization. We must record some assumptions due to overflows. */ if (code == LT_EXPR) { /* We want to take care only of <=; this is easy, as in cases the overflow would make the transformation unsafe the loop does not roll. Seemingly it would make more sense to want to take care of <, as NE is more similar to it, but the problem is that here the transformation would be more difficult due to possibly infinite loops. */ if (zero_p (step0)) { if (mmax) assumption = fold_build2 (EQ_EXPR, boolean_type_node, base0, mmax); else assumption = boolean_false_node; if (nonzero_p (assumption)) goto zero_iter; base0 = fold_build2 (PLUS_EXPR, type, base0, build_int_cst_type (type, 1)); } else { if (mmin) assumption = fold_build2 (EQ_EXPR, boolean_type_node, base1, mmin); else assumption = boolean_false_node; if (nonzero_p (assumption)) goto zero_iter; base1 = fold_build2 (MINUS_EXPR, type, base1, build_int_cst_type (type, 1)); } noloop_assumptions = assumption; code = LE_EXPR; /* It will be useful to be able to tell the difference once more in <= -> != reduction. */ was_sharp = true; } /* Take care of trivially infinite loops. */ if (code != NE_EXPR) { if (zero_p (step0) && mmin && operand_equal_p (base0, mmin, 0)) return; if (zero_p (step1) && mmax && operand_equal_p (base1, mmax, 0)) return; } /* If we can we want to take care of NE conditions instead of size comparisons, as they are much more friendly (most importantly this takes care of special handling of loops with step 1). We can do it if we first check that upper bound is greater or equal to lower bound, their difference is constant c modulo step and that there is not an overflow. */ if (code != NE_EXPR) { if (zero_p (step0)) step = fold_unary_to_constant (NEGATE_EXPR, type, step1); else step = step0; delta = build2 (MINUS_EXPR, type, base1, base0); delta = fold_build2 (FLOOR_MOD_EXPR, type, delta, step); may_xform = boolean_false_node; if (TREE_CODE (delta) == INTEGER_CST) { tmp = fold_binary_to_constant (MINUS_EXPR, type, step, build_int_cst_type (type, 1)); if (was_sharp && operand_equal_p (delta, tmp, 0)) { /* A special case. We have transformed condition of type for (i = 0; i < 4; i += 4) into for (i = 0; i <= 3; i += 4) obviously if the test for overflow during that transformation passed, we cannot overflow here. Most importantly any loop with sharp end condition and step 1 falls into this category, so handling this case specially is definitely worth the troubles. */ may_xform = boolean_true_node; } else if (zero_p (step0)) { if (!mmin) may_xform = boolean_true_node; else { bound = fold_binary_to_constant (PLUS_EXPR, type, mmin, step); bound = fold_binary_to_constant (MINUS_EXPR, type, bound, delta); may_xform = fold_build2 (LE_EXPR, boolean_type_node, bound, base0); } } else { if (!mmax) may_xform = boolean_true_node; else { bound = fold_binary_to_constant (MINUS_EXPR, type, mmax, step); bound = fold_binary_to_constant (PLUS_EXPR, type, bound, delta); may_xform = fold_build2 (LE_EXPR, boolean_type_node, base1, bound); } } } if (!zero_p (may_xform)) { /* We perform the transformation always provided that it is not completely senseless. This is OK, as we would need this assumption to determine the number of iterations anyway. */ if (!nonzero_p (may_xform)) assumptions = may_xform; if (zero_p (step0)) { base0 = fold_build2 (PLUS_EXPR, type, base0, delta); base0 = fold_build2 (MINUS_EXPR, type, base0, step); } else { base1 = fold_build2 (MINUS_EXPR, type, base1, delta); base1 = fold_build2 (PLUS_EXPR, type, base1, step); } assumption = fold_build2 (GT_EXPR, boolean_type_node, base0, base1); noloop_assumptions = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, noloop_assumptions, assumption); code = NE_EXPR; } } /* Count the number of iterations. */ niter_type = unsigned_type_for (type); signed_niter_type = signed_type_for (type); if (code == NE_EXPR) { /* Everything we do here is just arithmetics modulo size of mode. This makes us able to do more involved computations of number of iterations than in other cases. First transform the condition into shape s * i <> c, with s positive. */ base1 = fold_build2 (MINUS_EXPR, type, base1, base0); base0 = NULL_TREE; if (!zero_p (step1)) step0 = fold_unary_to_constant (NEGATE_EXPR, type, step1); step1 = NULL_TREE; if (!tree_expr_nonnegative_p (fold_convert (signed_niter_type, step0))) { step0 = fold_unary_to_constant (NEGATE_EXPR, type, step0); base1 = fold_build1 (NEGATE_EXPR, type, base1); } base1 = fold_convert (niter_type, base1); step0 = fold_convert (niter_type, step0); /* Let nsd (step, size of mode) = d. If d does not divide c, the loop is infinite. Otherwise, the number of iterations is (inverse(s/d) * (c/d)) mod (size of mode/d). */ bits = num_ending_zeros (step0); d = fold_binary_to_constant (LSHIFT_EXPR, niter_type, build_int_cst_type (niter_type, 1), bits); s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, step0, bits); bound = build_low_bits_mask (niter_type, (TYPE_PRECISION (niter_type) - tree_low_cst (bits, 1))); assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, base1, d); assumption = fold_build2 (EQ_EXPR, boolean_type_node, assumption, build_int_cst (niter_type, 0)); assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assumptions, assumption); tmp = fold_build2 (EXACT_DIV_EXPR, niter_type, base1, d); tmp = fold_build2 (MULT_EXPR, niter_type, tmp, inverse (s, bound)); niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound); } else { if (zero_p (step1)) /* Condition in shape a + s * i <= b We must know that b + s does not overflow and a <= b + s and then we can compute number of iterations as (b + s - a) / s. (It might seem that we in fact could be more clever about testing the b + s overflow condition using some information about b - a mod s, but it was already taken into account during LE -> NE transform). */ { if (mmax) { bound = fold_binary_to_constant (MINUS_EXPR, type, mmax, step0); assumption = fold_build2 (LE_EXPR, boolean_type_node, base1, bound); assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assumptions, assumption); } step = step0; tmp = fold_build2 (PLUS_EXPR, type, base1, step0); assumption = fold_build2 (GT_EXPR, boolean_type_node, base0, tmp); delta = fold_build2 (PLUS_EXPR, type, base1, step); delta = fold_build2 (MINUS_EXPR, type, delta, base0); delta = fold_convert (niter_type, delta); } else { /* Condition in shape a <= b - s * i We must know that a - s does not overflow and a - s <= b and then we can again compute number of iterations as (b - (a - s)) / s. */ if (mmin) { bound = fold_binary_to_constant (MINUS_EXPR, type, mmin, step1); assumption = fold_build2 (LE_EXPR, boolean_type_node, bound, base0); assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assumptions, assumption); } step = fold_build1 (NEGATE_EXPR, type, step1); tmp = fold_build2 (PLUS_EXPR, type, base0, step1); assumption = fold_build2 (GT_EXPR, boolean_type_node, tmp, base1); delta = fold_build2 (MINUS_EXPR, type, base0, step); delta = fold_build2 (MINUS_EXPR, type, base1, delta); delta = fold_convert (niter_type, delta); } noloop_assumptions = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, noloop_assumptions, assumption); delta = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, fold_convert (niter_type, step)); niter->niter = delta; } niter->assumptions = assumptions; niter->may_be_zero = noloop_assumptions; return; zero_iter: niter->assumptions = boolean_true_node; niter->may_be_zero = boolean_true_node; niter->niter = build_int_cst_type (type, 0); return; } /* Similar to number_of_iterations_cond, but only handles the special case of loops with step 1 or -1. The meaning of the arguments is the same as in number_of_iterations_cond. The function returns true if the special case was recognized, false otherwise. */ static bool number_of_iterations_special (tree type, tree base0, tree step0, enum tree_code code, tree base1, tree step1, struct tree_niter_desc *niter) { tree niter_type = unsigned_type_for (type), mmax, mmin; /* Make < comparison from > ones. */ if (code == GE_EXPR || code == GT_EXPR) { SWAP (base0, base1); SWAP (step0, step1); code = swap_tree_comparison (code); } switch (code) { case NE_EXPR: if (zero_p (step0)) { if (zero_p (step1)) return false; SWAP (base0, base1); SWAP (step0, step1); } else if (!zero_p (step1)) return false; if (integer_onep (step0)) { /* for (i = base0; i != base1; i++) */ niter->assumptions = boolean_true_node; niter->may_be_zero = boolean_false_node; niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0); niter->additional_info = boolean_true_node; } else if (integer_all_onesp (step0)) { /* for (i = base0; i != base1; i--) */ niter->assumptions = boolean_true_node; niter->may_be_zero = boolean_false_node; niter->niter = fold_build2 (MINUS_EXPR, type, base0, base1); } else return false; break; case LT_EXPR: if ((step0 && integer_onep (step0) && zero_p (step1)) || (step1 && integer_all_onesp (step1) && zero_p (step0))) { /* for (i = base0; i < base1; i++) or for (i = base1; i > base0; i--). In both cases # of iterations is base1 - base0. */ niter->assumptions = boolean_true_node; niter->may_be_zero = fold_build2 (GT_EXPR, boolean_type_node, base0, base1); niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0); } else return false; break; case LE_EXPR: if (POINTER_TYPE_P (type)) { /* We assume pointer arithmetic never overflows. */ mmin = mmax = NULL_TREE; } else { mmin = TYPE_MIN_VALUE (type); mmax = TYPE_MAX_VALUE (type); } if (step0 && integer_onep (step0) && zero_p (step1)) { /* for (i = base0; i <= base1; i++) */ if (mmax) niter->assumptions = fold_build2 (NE_EXPR, boolean_type_node, base1, mmax); else niter->assumptions = boolean_true_node; base1 = fold_build2 (PLUS_EXPR, type, base1, build_int_cst_type (type, 1)); } else if (step1 && integer_all_onesp (step1) && zero_p (step0)) { /* for (i = base1; i >= base0; i--) */ if (mmin) niter->assumptions = fold_build2 (NE_EXPR, boolean_type_node, base0, mmin); else niter->assumptions = boolean_true_node; base0 = fold_build2 (MINUS_EXPR, type, base0, build_int_cst_type (type, 1)); } else return false; niter->may_be_zero = fold_build2 (GT_EXPR, boolean_type_node, base0, base1); niter->niter = fold_build2 (MINUS_EXPR, type, base1, base0); break; default: gcc_unreachable (); } niter->niter = fold_convert (niter_type, niter->niter); niter->additional_info = boolean_true_node; return true; } /* Substitute NEW for OLD in EXPR and fold the result. */ static tree simplify_replace_tree (tree expr, tree old, tree new) { unsigned i, n; tree ret = NULL_TREE, e, se; if (!expr) return NULL_TREE; if (expr == old || operand_equal_p (expr, old, 0)) return unshare_expr (new); if (!EXPR_P (expr)) return expr; n = TREE_CODE_LENGTH (TREE_CODE (expr)); for (i = 0; i < n; i++) { e = TREE_OPERAND (expr, i); se = simplify_replace_tree (e, old, new); if (e == se) continue; if (!ret) ret = copy_node (expr); TREE_OPERAND (ret, i) = se; } return (ret ? fold (ret) : expr); } /* Expand definitions of ssa names in EXPR as long as they are simple enough, and return the new expression. */ static tree expand_simple_operations (tree expr) { unsigned i, n; tree ret = NULL_TREE, e, ee, stmt; enum tree_code code = TREE_CODE (expr); if (is_gimple_min_invariant (expr)) return expr; if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) { n = TREE_CODE_LENGTH (code); for (i = 0; i < n; i++) { e = TREE_OPERAND (expr, i); ee = expand_simple_operations (e); if (e == ee) continue; if (!ret) ret = copy_node (expr); TREE_OPERAND (ret, i) = ee; } return (ret ? fold (ret) : expr); } if (TREE_CODE (expr) != SSA_NAME) return expr; stmt = SSA_NAME_DEF_STMT (expr); if (TREE_CODE (stmt) != MODIFY_EXPR) return expr; e = TREE_OPERAND (stmt, 1); if (/* Casts are simple. */ TREE_CODE (e) != NOP_EXPR && TREE_CODE (e) != CONVERT_EXPR /* Copies are simple. */ && TREE_CODE (e) != SSA_NAME /* Assignments of invariants are simple. */ && !is_gimple_min_invariant (e) /* And increments and decrements by a constant are simple. */ && !((TREE_CODE (e) == PLUS_EXPR || TREE_CODE (e) == MINUS_EXPR) && is_gimple_min_invariant (TREE_OPERAND (e, 1)))) return expr; return expand_simple_operations (e); } /* Tries to simplify EXPR using the condition COND. Returns the simplified expression (or EXPR unchanged, if no simplification was possible). */ static tree tree_simplify_using_condition_1 (tree cond, tree expr) { bool changed; tree e, te, e0, e1, e2, notcond; enum tree_code code = TREE_CODE (expr); if (code == INTEGER_CST) return expr; if (code == TRUTH_OR_EXPR || code == TRUTH_AND_EXPR || code == COND_EXPR) { changed = false; e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0)); if (TREE_OPERAND (expr, 0) != e0) changed = true; e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1)); if (TREE_OPERAND (expr, 1) != e1) changed = true; if (code == COND_EXPR) { e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2)); if (TREE_OPERAND (expr, 2) != e2) changed = true; } else e2 = NULL_TREE; if (changed) { if (code == COND_EXPR) expr = fold_build3 (code, boolean_type_node, e0, e1, e2); else expr = fold_build2 (code, boolean_type_node, e0, e1); } return expr; } /* In case COND is equality, we may be able to simplify EXPR by copy/constant propagation, and vice versa. Fold does not handle this, since it is considered too expensive. */ if (TREE_CODE (cond) == EQ_EXPR) { e0 = TREE_OPERAND (cond, 0); e1 = TREE_OPERAND (cond, 1); /* We know that e0 == e1. Check whether we cannot simplify expr using this fact. */ e = simplify_replace_tree (expr, e0, e1); if (zero_p (e) || nonzero_p (e)) return e; e = simplify_replace_tree (expr, e1, e0); if (zero_p (e) || nonzero_p (e)) return e; } if (TREE_CODE (expr) == EQ_EXPR) { e0 = TREE_OPERAND (expr, 0); e1 = TREE_OPERAND (expr, 1); /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */ e = simplify_replace_tree (cond, e0, e1); if (zero_p (e)) return e; e = simplify_replace_tree (cond, e1, e0); if (zero_p (e)) return e; } if (TREE_CODE (expr) == NE_EXPR) { e0 = TREE_OPERAND (expr, 0); e1 = TREE_OPERAND (expr, 1); /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */ e = simplify_replace_tree (cond, e0, e1); if (zero_p (e)) return boolean_true_node; e = simplify_replace_tree (cond, e1, e0); if (zero_p (e)) return boolean_true_node; } te = expand_simple_operations (expr); /* Check whether COND ==> EXPR. */ notcond = invert_truthvalue (cond); e = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, notcond, te); if (nonzero_p (e)) return e; /* Check whether COND ==> not EXPR. */ e = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond, te); if (zero_p (e)) return e; return expr; } /* Tries to simplify EXPR using the condition COND. Returns the simplified expression (or EXPR unchanged, if no simplification was possible). Wrapper around tree_simplify_using_condition_1 that ensures that chains of simple operations in definitions of ssa names in COND are expanded, so that things like casts or incrementing the value of the bound before the loop do not cause us to fail. */ static tree tree_simplify_using_condition (tree cond, tree expr) { cond = expand_simple_operations (cond); return tree_simplify_using_condition_1 (cond, expr); } /* Tries to simplify EXPR using the conditions on entry to LOOP. Record the conditions used for simplification to CONDS_USED. Returns the simplified expression (or EXPR unchanged, if no simplification was possible).*/ static tree simplify_using_initial_conditions (struct loop *loop, tree expr, tree *conds_used) { edge e; basic_block bb; tree exp, cond; if (TREE_CODE (expr) == INTEGER_CST) return expr; for (bb = loop->header; bb != ENTRY_BLOCK_PTR; bb = get_immediate_dominator (CDI_DOMINATORS, bb)) { if (!single_pred_p (bb)) continue; e = single_pred_edge (bb); if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) continue; cond = COND_EXPR_COND (last_stmt (e->src)); if (e->flags & EDGE_FALSE_VALUE) cond = invert_truthvalue (cond); exp = tree_simplify_using_condition (cond, expr); if (exp != expr) *conds_used = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, *conds_used, cond); expr = exp; } return expr; } /* Tries to simplify EXPR using the evolutions of the loop invariants in the superloops of LOOP. Returns the simplified expression (or EXPR unchanged, if no simplification was possible). */ static tree simplify_using_outer_evolutions (struct loop *loop, tree expr) { enum tree_code code = TREE_CODE (expr); bool changed; tree e, e0, e1, e2; if (is_gimple_min_invariant (expr)) return expr; if (code == TRUTH_OR_EXPR || code == TRUTH_AND_EXPR || code == COND_EXPR) { changed = false; e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0)); if (TREE_OPERAND (expr, 0) != e0) changed = true; e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1)); if (TREE_OPERAND (expr, 1) != e1) changed = true; if (code == COND_EXPR) { e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2)); if (TREE_OPERAND (expr, 2) != e2) changed = true; } else e2 = NULL_TREE; if (changed) { if (code == COND_EXPR) expr = fold_build3 (code, boolean_type_node, e0, e1, e2); else expr = fold_build2 (code, boolean_type_node, e0, e1); } return expr; } e = instantiate_parameters (loop, expr); if (is_gimple_min_invariant (e)) return e; return expr; } /* Stores description of number of iterations of LOOP derived from EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful information could be derived (and fields of NITER has meaning described in comments at struct tree_niter_desc declaration), false otherwise. */ bool number_of_iterations_exit (struct loop *loop, edge exit, struct tree_niter_desc *niter) { tree stmt, cond, type; tree op0, base0, step0; tree op1, base1, step1; enum tree_code code; if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src)) return false; niter->assumptions = boolean_false_node; stmt = last_stmt (exit->src); if (!stmt || TREE_CODE (stmt) != COND_EXPR) return false; /* We want the condition for staying inside loop. */ cond = COND_EXPR_COND (stmt); if (exit->flags & EDGE_TRUE_VALUE) cond = invert_truthvalue (cond); code = TREE_CODE (cond); switch (code) { case GT_EXPR: case GE_EXPR: case NE_EXPR: case LT_EXPR: case LE_EXPR: break; default: return false; } op0 = TREE_OPERAND (cond, 0); op1 = TREE_OPERAND (cond, 1); type = TREE_TYPE (op0); if (TREE_CODE (type) != INTEGER_TYPE && !POINTER_TYPE_P (type)) return false; if (!simple_iv (loop, stmt, op0, &base0, &step0, false)) return false; if (!simple_iv (loop, stmt, op1, &base1, &step1, false)) return false; niter->niter = NULL_TREE; /* Handle common special cases first, so that we do not need to use generic (and slow) analysis very often. */ if (!number_of_iterations_special (type, base0, step0, code, base1, step1, niter)) { number_of_iterations_cond (type, base0, step0, code, base1, step1, niter); if (!niter->niter) return false; } if (optimize >= 3) { niter->assumptions = simplify_using_outer_evolutions (loop, niter->assumptions); niter->may_be_zero = simplify_using_outer_evolutions (loop, niter->may_be_zero); niter->niter = simplify_using_outer_evolutions (loop, niter->niter); } niter->additional_info = boolean_true_node; niter->assumptions = simplify_using_initial_conditions (loop, niter->assumptions, &niter->additional_info); niter->may_be_zero = simplify_using_initial_conditions (loop, niter->may_be_zero, &niter->additional_info); return integer_onep (niter->assumptions); } /* Try to determine the number of iterations of LOOP. If we succeed, expression giving number of iterations is returned and *EXIT is set to the edge from that the information is obtained. Otherwise chrec_dont_know is returned. */ tree find_loop_niter (struct loop *loop, edge *exit) { unsigned n_exits, i; edge *exits = get_loop_exit_edges (loop, &n_exits); edge ex; tree niter = NULL_TREE, aniter; struct tree_niter_desc desc; *exit = NULL; for (i = 0; i < n_exits; i++) { ex = exits[i]; if (!just_once_each_iteration_p (loop, ex->src)) continue; if (!number_of_iterations_exit (loop, ex, &desc)) continue; if (nonzero_p (desc.may_be_zero)) { /* We exit in the first iteration through this exit. We won't find anything better. */ niter = build_int_cst_type (unsigned_type_node, 0); *exit = ex; break; } if (!zero_p (desc.may_be_zero)) continue; aniter = desc.niter; if (!niter) { /* Nothing recorded yet. */ niter = aniter; *exit = ex; continue; } /* Prefer constants, the lower the better. */ if (TREE_CODE (aniter) != INTEGER_CST) continue; if (TREE_CODE (niter) != INTEGER_CST) { niter = aniter; *exit = ex; continue; } if (tree_int_cst_lt (aniter, niter)) { niter = aniter; *exit = ex; continue; } } free (exits); return niter ? niter : chrec_dont_know; } /* Analysis of a number of iterations of a loop by a brute-force evaluation. */ /* Bound on the number of iterations we try to evaluate. */ #define MAX_ITERATIONS_TO_TRACK \ ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK)) /* Returns the loop phi node of LOOP such that ssa name X is derived from its result by a chain of operations such that all but exactly one of their operands are constants. */ static tree chain_of_csts_start (struct loop *loop, tree x) { tree stmt = SSA_NAME_DEF_STMT (x); tree use; basic_block bb = bb_for_stmt (stmt); if (!bb || !flow_bb_inside_loop_p (loop, bb)) return NULL_TREE; if (TREE_CODE (stmt) == PHI_NODE) { if (bb == loop->header) return stmt; return NULL_TREE; } if (TREE_CODE (stmt) != MODIFY_EXPR) return NULL_TREE; if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)) return NULL_TREE; if (SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF) == NULL_DEF_OPERAND_P) return NULL_TREE; use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE); if (use == NULL_USE_OPERAND_P) return NULL_TREE; return chain_of_csts_start (loop, use); } /* Determines whether the expression X is derived from a result of a phi node in header of LOOP such that * the derivation of X consists only from operations with constants * the initial value of the phi node is constant * the value of the phi node in the next iteration can be derived from the value in the current iteration by a chain of operations with constants. If such phi node exists, it is returned. If X is a constant, X is returned unchanged. Otherwise NULL_TREE is returned. */ static tree get_base_for (struct loop *loop, tree x) { tree phi, init, next; if (is_gimple_min_invariant (x)) return x; phi = chain_of_csts_start (loop, x); if (!phi) return NULL_TREE; init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop)); if (TREE_CODE (next) != SSA_NAME) return NULL_TREE; if (!is_gimple_min_invariant (init)) return NULL_TREE; if (chain_of_csts_start (loop, next) != phi) return NULL_TREE; return phi; } /* Given an expression X, then * if BASE is NULL_TREE, X must be a constant and we return X. * otherwise X is a SSA name, whose value in the considered loop is derived by a chain of operations with constant from a result of a phi node in the header of the loop. Then we return value of X when the value of the result of this phi node is given by the constant BASE. */ static tree get_val_for (tree x, tree base) { tree stmt, nx, val; use_operand_p op; ssa_op_iter iter; if (!x) return base; stmt = SSA_NAME_DEF_STMT (x); if (TREE_CODE (stmt) == PHI_NODE) return base; FOR_EACH_SSA_USE_OPERAND (op, stmt, iter, SSA_OP_USE) { nx = USE_FROM_PTR (op); val = get_val_for (nx, base); SET_USE (op, val); val = fold (TREE_OPERAND (stmt, 1)); SET_USE (op, nx); /* only iterate loop once. */ return val; } /* Should never reach here. */ gcc_unreachable(); } /* Tries to count the number of iterations of LOOP till it exits by EXIT by brute force -- i.e. by determining the value of the operands of the condition at EXIT in first few iterations of the loop (assuming that these values are constant) and determining the first one in that the condition is not satisfied. Returns the constant giving the number of the iterations of LOOP if successful, chrec_dont_know otherwise. */ tree loop_niter_by_eval (struct loop *loop, edge exit) { tree cond, cnd, acnd; tree op[2], val[2], next[2], aval[2], phi[2]; unsigned i, j; enum tree_code cmp; cond = last_stmt (exit->src); if (!cond || TREE_CODE (cond) != COND_EXPR) return chrec_dont_know; cnd = COND_EXPR_COND (cond); if (exit->flags & EDGE_TRUE_VALUE) cnd = invert_truthvalue (cnd); cmp = TREE_CODE (cnd); switch (cmp) { case EQ_EXPR: case NE_EXPR: case GT_EXPR: case GE_EXPR: case LT_EXPR: case LE_EXPR: for (j = 0; j < 2; j++) op[j] = TREE_OPERAND (cnd, j); break; default: return chrec_dont_know; } for (j = 0; j < 2; j++) { phi[j] = get_base_for (loop, op[j]); if (!phi[j]) return chrec_dont_know; } for (j = 0; j < 2; j++) { if (TREE_CODE (phi[j]) == PHI_NODE) { val[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_preheader_edge (loop)); next[j] = PHI_ARG_DEF_FROM_EDGE (phi[j], loop_latch_edge (loop)); } else { val[j] = phi[j]; next[j] = NULL_TREE; op[j] = NULL_TREE; } } for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++) { for (j = 0; j < 2; j++) aval[j] = get_val_for (op[j], val[j]); acnd = fold_build2 (cmp, boolean_type_node, aval[0], aval[1]); if (zero_p (acnd)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Proved that loop %d iterates %d times using brute force.\n", loop->num, i); return build_int_cst (unsigned_type_node, i); } for (j = 0; j < 2; j++) val[j] = get_val_for (next[j], val[j]); } return chrec_dont_know; } /* Finds the exit of the LOOP by that the loop exits after a constant number of iterations and stores the exit edge to *EXIT. The constant giving the number of iterations of LOOP is returned. The number of iterations is determined using loop_niter_by_eval (i.e. by brute force evaluation). If we are unable to find the exit for that loop_niter_by_eval determines the number of iterations, chrec_dont_know is returned. */ tree find_loop_niter_by_eval (struct loop *loop, edge *exit) { unsigned n_exits, i; edge *exits = get_loop_exit_edges (loop, &n_exits); edge ex; tree niter = NULL_TREE, aniter; *exit = NULL; for (i = 0; i < n_exits; i++) { ex = exits[i]; if (!just_once_each_iteration_p (loop, ex->src)) continue; aniter = loop_niter_by_eval (loop, ex); if (chrec_contains_undetermined (aniter)) continue; if (niter && !tree_int_cst_lt (aniter, niter)) continue; niter = aniter; *exit = ex; } free (exits); return niter ? niter : chrec_dont_know; } /* Analysis of upper bounds on number of iterations of a loop. */ /* Records that AT_STMT is executed at most BOUND times in LOOP. The additional condition ADDITIONAL is recorded with the bound. */ void record_estimate (struct loop *loop, tree bound, tree additional, tree at_stmt) { struct nb_iter_bound *elt = xmalloc (sizeof (struct nb_iter_bound)); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Statements after "); print_generic_expr (dump_file, at_stmt, TDF_SLIM); fprintf (dump_file, " are executed at most "); print_generic_expr (dump_file, bound, TDF_SLIM); fprintf (dump_file, " times in loop %d.\n", loop->num); } elt->bound = bound; elt->at_stmt = at_stmt; elt->additional = additional; elt->next = loop->bounds; loop->bounds = elt; } /* Records estimates on numbers of iterations of LOOP. */ static void estimate_numbers_of_iterations_loop (struct loop *loop) { edge *exits; tree niter, type; unsigned i, n_exits; struct tree_niter_desc niter_desc; exits = get_loop_exit_edges (loop, &n_exits); for (i = 0; i < n_exits; i++) { if (!number_of_iterations_exit (loop, exits[i], &niter_desc)) continue; niter = niter_desc.niter; type = TREE_TYPE (niter); if (!zero_p (niter_desc.may_be_zero) && !nonzero_p (niter_desc.may_be_zero)) niter = build3 (COND_EXPR, type, niter_desc.may_be_zero, build_int_cst_type (type, 0), niter); record_estimate (loop, niter, niter_desc.additional_info, last_stmt (exits[i]->src)); } free (exits); /* Analyzes the bounds of arrays accessed in the loop. */ if (loop->estimated_nb_iterations == NULL_TREE) { varray_type datarefs; VARRAY_GENERIC_PTR_INIT (datarefs, 3, "datarefs"); find_data_references_in_loop (loop, &datarefs); free_data_refs (datarefs); } } /* Records estimates on numbers of iterations of LOOPS. */ void estimate_numbers_of_iterations (struct loops *loops) { unsigned i; struct loop *loop; for (i = 1; i < loops->num; i++) { loop = loops->parray[i]; if (loop) estimate_numbers_of_iterations_loop (loop); } } /* If A > B, returns -1. If A == B, returns 0. If A < B, returns 1. If neither of these relations can be proved, returns 2. */ static int compare_trees (tree a, tree b) { tree typea = TREE_TYPE (a), typeb = TREE_TYPE (b); tree type; if (TYPE_PRECISION (typea) > TYPE_PRECISION (typeb)) type = typea; else type = typeb; a = fold_convert (type, a); b = fold_convert (type, b); if (nonzero_p (fold_build2 (EQ_EXPR, boolean_type_node, a, b))) return 0; if (nonzero_p (fold_build2 (LT_EXPR, boolean_type_node, a, b))) return 1; if (nonzero_p (fold_build2 (GT_EXPR, boolean_type_node, a, b))) return -1; return 2; } /* Returns true if statement S1 dominates statement S2. */ static bool stmt_dominates_stmt_p (tree s1, tree s2) { basic_block bb1 = bb_for_stmt (s1), bb2 = bb_for_stmt (s2); if (!bb1 || s1 == s2) return true; if (bb1 == bb2) { block_stmt_iterator bsi; for (bsi = bsi_start (bb1); bsi_stmt (bsi) != s2; bsi_next (&bsi)) if (bsi_stmt (bsi) == s1) return true; return false; } return dominated_by_p (CDI_DOMINATORS, bb2, bb1); } /* Checks whether it is correct to count the induction variable BASE + STEP * I at AT_STMT in wider TYPE, using the fact that statement OF is executed at most BOUND times in the loop. If it is possible, return the value of step of the induction variable in the TYPE, otherwise return NULL_TREE. ADDITIONAL is the additional condition recorded for operands of the bound. This is useful in the following case, created by loop header copying: i = 0; if (n > 0) do { something; } while (++i < n) If the n > 0 condition is taken into account, the number of iterations of the loop can be expressed as n - 1. If the type of n is signed, the ADDITIONAL assumption "n > 0" says us that the value of the number of iterations is at most MAX_TYPE - 1 (without this assumption, it might overflow). */ static tree can_count_iv_in_wider_type_bound (tree type, tree base, tree step, tree at_stmt, tree bound, tree additional, tree of) { tree inner_type = TREE_TYPE (base), b, bplusstep, new_step, new_step_abs; tree valid_niter, extreme, unsigned_type, delta, bound_type; tree cond; b = fold_convert (type, base); bplusstep = fold_convert (type, fold_build2 (PLUS_EXPR, inner_type, base, step)); new_step = fold_build2 (MINUS_EXPR, type, bplusstep, b); if (TREE_CODE (new_step) != INTEGER_CST) return NULL_TREE; switch (compare_trees (bplusstep, b)) { case -1: extreme = upper_bound_in_type (type, inner_type); delta = fold_build2 (MINUS_EXPR, type, extreme, b); new_step_abs = new_step; break; case 1: extreme = lower_bound_in_type (type, inner_type); new_step_abs = fold_build1 (NEGATE_EXPR, type, new_step); delta = fold_build2 (MINUS_EXPR, type, b, extreme); break; case 0: return new_step; default: return NULL_TREE; } unsigned_type = unsigned_type_for (type); delta = fold_convert (unsigned_type, delta); new_step_abs = fold_convert (unsigned_type, new_step_abs); valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, new_step_abs); bound_type = TREE_TYPE (bound); if (TYPE_PRECISION (type) > TYPE_PRECISION (bound_type)) bound = fold_convert (unsigned_type, bound); else valid_niter = fold_convert (bound_type, valid_niter); if (at_stmt && stmt_dominates_stmt_p (of, at_stmt)) { /* After the statement OF we know that anything is executed at most BOUND times. */ cond = fold_build2 (GE_EXPR, boolean_type_node, valid_niter, bound); } else { /* Before the statement OF we know that anything is executed at most BOUND + 1 times. */ cond = fold_build2 (GT_EXPR, boolean_type_node, valid_niter, bound); } if (nonzero_p (cond)) return new_step; /* Try taking additional conditions into account. */ cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, invert_truthvalue (additional), cond); if (nonzero_p (cond)) return new_step; return NULL_TREE; } /* Checks whether it is correct to count the induction variable BASE + STEP * I at AT_STMT in wider TYPE, using the bounds on numbers of iterations of a LOOP. If it is possible, return the value of step of the induction variable in the TYPE, otherwise return NULL_TREE. */ tree can_count_iv_in_wider_type (struct loop *loop, tree type, tree base, tree step, tree at_stmt) { struct nb_iter_bound *bound; tree new_step; for (bound = loop->bounds; bound; bound = bound->next) { new_step = can_count_iv_in_wider_type_bound (type, base, step, at_stmt, bound->bound, bound->additional, bound->at_stmt); if (new_step) return new_step; } return NULL_TREE; } /* Frees the information on upper bounds on numbers of iterations of LOOP. */ static void free_numbers_of_iterations_estimates_loop (struct loop *loop) { struct nb_iter_bound *bound, *next; for (bound = loop->bounds; bound; bound = next) { next = bound->next; free (bound); } loop->bounds = NULL; } /* Frees the information on upper bounds on numbers of iterations of LOOPS. */ void free_numbers_of_iterations_estimates (struct loops *loops) { unsigned i; struct loop *loop; for (i = 1; i < loops->num; i++) { loop = loops->parray[i]; if (loop) free_numbers_of_iterations_estimates_loop (loop); } }