/* Global, SSA-based optimizations using mathematical identities. Copyright (C) 2005-2015 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Currently, the only mini-pass in this file tries to CSE reciprocal operations. These are common in sequences such as this one: modulus = sqrt(x*x + y*y + z*z); x = x / modulus; y = y / modulus; z = z / modulus; that can be optimized to modulus = sqrt(x*x + y*y + z*z); rmodulus = 1.0 / modulus; x = x * rmodulus; y = y * rmodulus; z = z * rmodulus; We do this for loop invariant divisors, and with this pass whenever we notice that a division has the same divisor multiple times. Of course, like in PRE, we don't insert a division if a dominator already has one. However, this cannot be done as an extension of PRE for several reasons. First of all, with some experiments it was found out that the transformation is not always useful if there are only two divisions hy the same divisor. This is probably because modern processors can pipeline the divisions; on older, in-order processors it should still be effective to optimize two divisions by the same number. We make this a param, and it shall be called N in the remainder of this comment. Second, if trapping math is active, we have less freedom on where to insert divisions: we can only do so in basic blocks that already contain one. (If divisions don't trap, instead, we can insert divisions elsewhere, which will be in blocks that are common dominators of those that have the division). We really don't want to compute the reciprocal unless a division will be found. To do this, we won't insert the division in a basic block that has less than N divisions *post-dominating* it. The algorithm constructs a subset of the dominator tree, holding the blocks containing the divisions and the common dominators to them, and walk it twice. The first walk is in post-order, and it annotates each block with the number of divisions that post-dominate it: this gives information on where divisions can be inserted profitably. The second walk is in pre-order, and it inserts divisions as explained above, and replaces divisions by multiplications. In the best case, the cost of the pass is O(n_statements). In the worst-case, the cost is due to creating the dominator tree subset, with a cost of O(n_basic_blocks ^ 2); however this can only happen for n_statements / n_basic_blocks statements. So, the amortized cost of creating the dominator tree subset is O(n_basic_blocks) and the worst-case cost of the pass is O(n_statements * n_basic_blocks). More practically, the cost will be small because there are few divisions, and they tend to be in the same basic block, so insert_bb is called very few times. If we did this using domwalk.c, an efficient implementation would have to work on all the variables in a single pass, because we could not work on just a subset of the dominator tree, as we do now, and the cost would also be something like O(n_statements * n_basic_blocks). The data structures would be more complex in order to work on all the variables in a single pass. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "flags.h" #include "hash-set.h" #include "vec.h" #include "input.h" #include "alias.h" #include "symtab.h" #include "inchash.h" #include "tree.h" #include "fold-const.h" #include "predict.h" #include "hard-reg-set.h" #include "function.h" #include "dominance.h" #include "cfg.h" #include "basic-block.h" #include "tree-ssa-alias.h" #include "internal-fn.h" #include "gimple-fold.h" #include "gimple-expr.h" #include "is-a.h" #include "gimple.h" #include "gimple-iterator.h" #include "gimplify.h" #include "gimplify-me.h" #include "stor-layout.h" #include "gimple-ssa.h" #include "tree-cfg.h" #include "tree-phinodes.h" #include "ssa-iterators.h" #include "stringpool.h" #include "tree-ssanames.h" #include "hashtab.h" #include "rtl.h" #include "statistics.h" #include "insn-config.h" #include "expmed.h" #include "dojump.h" #include "explow.h" #include "calls.h" #include "emit-rtl.h" #include "varasm.h" #include "stmt.h" #include "expr.h" #include "tree-dfa.h" #include "tree-ssa.h" #include "tree-pass.h" #include "alloc-pool.h" #include "target.h" #include "gimple-pretty-print.h" #include "builtins.h" #include "params.h" /* FIXME: RTL headers have to be included here for optabs. */ #include "rtl.h" /* Because optabs.h wants enum rtx_code. */ #include "expr.h" /* Because optabs.h wants sepops. */ #include "insn-codes.h" #include "optabs.h" /* This structure represents one basic block that either computes a division, or is a common dominator for basic block that compute a division. */ struct occurrence { /* The basic block represented by this structure. */ basic_block bb; /* If non-NULL, the SSA_NAME holding the definition for a reciprocal inserted in BB. */ tree recip_def; /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that was inserted in BB. */ gimple recip_def_stmt; /* Pointer to a list of "struct occurrence"s for blocks dominated by BB. */ struct occurrence *children; /* Pointer to the next "struct occurrence"s in the list of blocks sharing a common dominator. */ struct occurrence *next; /* The number of divisions that are in BB before compute_merit. The number of divisions that are in BB or post-dominate it after compute_merit. */ int num_divisions; /* True if the basic block has a division, false if it is a common dominator for basic blocks that do. If it is false and trapping math is active, BB is not a candidate for inserting a reciprocal. */ bool bb_has_division; }; static struct { /* Number of 1.0/X ops inserted. */ int rdivs_inserted; /* Number of 1.0/FUNC ops inserted. */ int rfuncs_inserted; } reciprocal_stats; static struct { /* Number of cexpi calls inserted. */ int inserted; } sincos_stats; static struct { /* Number of hand-written 16-bit nop / bswaps found. */ int found_16bit; /* Number of hand-written 32-bit nop / bswaps found. */ int found_32bit; /* Number of hand-written 64-bit nop / bswaps found. */ int found_64bit; } nop_stats, bswap_stats; static struct { /* Number of widening multiplication ops inserted. */ int widen_mults_inserted; /* Number of integer multiply-and-accumulate ops inserted. */ int maccs_inserted; /* Number of fp fused multiply-add ops inserted. */ int fmas_inserted; } widen_mul_stats; /* The instance of "struct occurrence" representing the highest interesting block in the dominator tree. */ static struct occurrence *occ_head; /* Allocation pool for getting instances of "struct occurrence". */ static pool_allocator *occ_pool; /* Allocate and return a new struct occurrence for basic block BB, and whose children list is headed by CHILDREN. */ static struct occurrence * occ_new (basic_block bb, struct occurrence *children) { struct occurrence *occ; bb->aux = occ = occ_pool->allocate (); memset (occ, 0, sizeof (struct occurrence)); occ->bb = bb; occ->children = children; return occ; } /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a list of "struct occurrence"s, one per basic block, having IDOM as their common dominator. We try to insert NEW_OCC as deep as possible in the tree, and we also insert any other block that is a common dominator for BB and one block already in the tree. */ static void insert_bb (struct occurrence *new_occ, basic_block idom, struct occurrence **p_head) { struct occurrence *occ, **p_occ; for (p_occ = p_head; (occ = *p_occ) != NULL; ) { basic_block bb = new_occ->bb, occ_bb = occ->bb; basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb); if (dom == bb) { /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC from its list. */ *p_occ = occ->next; occ->next = new_occ->children; new_occ->children = occ; /* Try the next block (it may as well be dominated by BB). */ } else if (dom == occ_bb) { /* OCC_BB dominates BB. Tail recurse to look deeper. */ insert_bb (new_occ, dom, &occ->children); return; } else if (dom != idom) { gcc_assert (!dom->aux); /* There is a dominator between IDOM and BB, add it and make two children out of NEW_OCC and OCC. First, remove OCC from its list. */ *p_occ = occ->next; new_occ->next = occ; occ->next = NULL; /* None of the previous blocks has DOM as a dominator: if we tail recursed, we would reexamine them uselessly. Just switch BB with DOM, and go on looking for blocks dominated by DOM. */ new_occ = occ_new (dom, new_occ); } else { /* Nothing special, go on with the next element. */ p_occ = &occ->next; } } /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */ new_occ->next = *p_head; *p_head = new_occ; } /* Register that we found a division in BB. */ static inline void register_division_in (basic_block bb) { struct occurrence *occ; occ = (struct occurrence *) bb->aux; if (!occ) { occ = occ_new (bb, NULL); insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head); } occ->bb_has_division = true; occ->num_divisions++; } /* Compute the number of divisions that postdominate each block in OCC and its children. */ static void compute_merit (struct occurrence *occ) { struct occurrence *occ_child; basic_block dom = occ->bb; for (occ_child = occ->children; occ_child; occ_child = occ_child->next) { basic_block bb; if (occ_child->children) compute_merit (occ_child); if (flag_exceptions) bb = single_noncomplex_succ (dom); else bb = dom; if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb)) occ->num_divisions += occ_child->num_divisions; } } /* Return whether USE_STMT is a floating-point division by DEF. */ static inline bool is_division_by (gimple use_stmt, tree def) { return is_gimple_assign (use_stmt) && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR && gimple_assign_rhs2 (use_stmt) == def /* Do not recognize x / x as valid division, as we are getting confused later by replacing all immediate uses x in such a stmt. */ && gimple_assign_rhs1 (use_stmt) != def; } /* Walk the subset of the dominator tree rooted at OCC, setting the RECIP_DEF field to a definition of 1.0 / DEF that can be used in the given basic block. The field may be left NULL, of course, if it is not possible or profitable to do the optimization. DEF_BSI is an iterator pointing at the statement defining DEF. If RECIP_DEF is set, a dominator already has a computation that can be used. */ static void insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ, tree def, tree recip_def, int threshold) { tree type; gassign *new_stmt; gimple_stmt_iterator gsi; struct occurrence *occ_child; if (!recip_def && (occ->bb_has_division || !flag_trapping_math) && occ->num_divisions >= threshold) { /* Make a variable with the replacement and substitute it. */ type = TREE_TYPE (def); recip_def = create_tmp_reg (type, "reciptmp"); new_stmt = gimple_build_assign (recip_def, RDIV_EXPR, build_one_cst (type), def); if (occ->bb_has_division) { /* Case 1: insert before an existing division. */ gsi = gsi_after_labels (occ->bb); while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def)) gsi_next (&gsi); gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT); } else if (def_gsi && occ->bb == def_gsi->bb) { /* Case 2: insert right after the definition. Note that this will never happen if the definition statement can throw, because in that case the sole successor of the statement's basic block will dominate all the uses as well. */ gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT); } else { /* Case 3: insert in a basic block not containing defs/uses. */ gsi = gsi_after_labels (occ->bb); gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT); } reciprocal_stats.rdivs_inserted++; occ->recip_def_stmt = new_stmt; } occ->recip_def = recip_def; for (occ_child = occ->children; occ_child; occ_child = occ_child->next) insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold); } /* Replace the division at USE_P with a multiplication by the reciprocal, if possible. */ static inline void replace_reciprocal (use_operand_p use_p) { gimple use_stmt = USE_STMT (use_p); basic_block bb = gimple_bb (use_stmt); struct occurrence *occ = (struct occurrence *) bb->aux; if (optimize_bb_for_speed_p (bb) && occ->recip_def && use_stmt != occ->recip_def_stmt) { gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); gimple_assign_set_rhs_code (use_stmt, MULT_EXPR); SET_USE (use_p, occ->recip_def); fold_stmt_inplace (&gsi); update_stmt (use_stmt); } } /* Free OCC and return one more "struct occurrence" to be freed. */ static struct occurrence * free_bb (struct occurrence *occ) { struct occurrence *child, *next; /* First get the two pointers hanging off OCC. */ next = occ->next; child = occ->children; occ->bb->aux = NULL; occ_pool->remove (occ); /* Now ensure that we don't recurse unless it is necessary. */ if (!child) return next; else { while (next) next = free_bb (next); return child; } } /* Look for floating-point divisions among DEF's uses, and try to replace them by multiplications with the reciprocal. Add as many statements computing the reciprocal as needed. DEF must be a GIMPLE register of a floating-point type. */ static void execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def) { use_operand_p use_p; imm_use_iterator use_iter; struct occurrence *occ; int count = 0, threshold; gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def)); FOR_EACH_IMM_USE_FAST (use_p, use_iter, def) { gimple use_stmt = USE_STMT (use_p); if (is_division_by (use_stmt, def)) { register_division_in (gimple_bb (use_stmt)); count++; } } /* Do the expensive part only if we can hope to optimize something. */ threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def))); if (count >= threshold) { gimple use_stmt; for (occ = occ_head; occ; occ = occ->next) { compute_merit (occ); insert_reciprocals (def_gsi, occ, def, NULL, threshold); } FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def) { if (is_division_by (use_stmt, def)) { FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter) replace_reciprocal (use_p); } } } for (occ = occ_head; occ; ) occ = free_bb (occ); occ_head = NULL; } /* Go through all the floating-point SSA_NAMEs, and call execute_cse_reciprocals_1 on each of them. */ namespace { const pass_data pass_data_cse_reciprocals = { GIMPLE_PASS, /* type */ "recip", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_cse_reciprocals : public gimple_opt_pass { public: pass_cse_reciprocals (gcc::context *ctxt) : gimple_opt_pass (pass_data_cse_reciprocals, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return optimize && flag_reciprocal_math; } virtual unsigned int execute (function *); }; // class pass_cse_reciprocals unsigned int pass_cse_reciprocals::execute (function *fun) { basic_block bb; tree arg; occ_pool = new pool_allocator ("dominators for recip", n_basic_blocks_for_fn (fun) / 3 + 1); memset (&reciprocal_stats, 0, sizeof (reciprocal_stats)); calculate_dominance_info (CDI_DOMINATORS); calculate_dominance_info (CDI_POST_DOMINATORS); #ifdef ENABLE_CHECKING FOR_EACH_BB_FN (bb, fun) gcc_assert (!bb->aux); #endif for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg)) if (FLOAT_TYPE_P (TREE_TYPE (arg)) && is_gimple_reg (arg)) { tree name = ssa_default_def (fun, arg); if (name) execute_cse_reciprocals_1 (NULL, name); } FOR_EACH_BB_FN (bb, fun) { tree def; for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gphi *phi = gsi.phi (); def = PHI_RESULT (phi); if (! virtual_operand_p (def) && FLOAT_TYPE_P (TREE_TYPE (def))) execute_cse_reciprocals_1 (NULL, def); } for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); if (gimple_has_lhs (stmt) && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL && FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME) execute_cse_reciprocals_1 (&gsi, def); } if (optimize_bb_for_size_p (bb)) continue; /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */ for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); tree fndecl; if (is_gimple_assign (stmt) && gimple_assign_rhs_code (stmt) == RDIV_EXPR) { tree arg1 = gimple_assign_rhs2 (stmt); gimple stmt1; if (TREE_CODE (arg1) != SSA_NAME) continue; stmt1 = SSA_NAME_DEF_STMT (arg1); if (is_gimple_call (stmt1) && gimple_call_lhs (stmt1) && (fndecl = gimple_call_fndecl (stmt1)) && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)) { enum built_in_function code; bool md_code, fail; imm_use_iterator ui; use_operand_p use_p; code = DECL_FUNCTION_CODE (fndecl); md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD; fndecl = targetm.builtin_reciprocal (code, md_code, false); if (!fndecl) continue; /* Check that all uses of the SSA name are divisions, otherwise replacing the defining statement will do the wrong thing. */ fail = false; FOR_EACH_IMM_USE_FAST (use_p, ui, arg1) { gimple stmt2 = USE_STMT (use_p); if (is_gimple_debug (stmt2)) continue; if (!is_gimple_assign (stmt2) || gimple_assign_rhs_code (stmt2) != RDIV_EXPR || gimple_assign_rhs1 (stmt2) == arg1 || gimple_assign_rhs2 (stmt2) != arg1) { fail = true; break; } } if (fail) continue; gimple_replace_ssa_lhs (stmt1, arg1); gimple_call_set_fndecl (stmt1, fndecl); update_stmt (stmt1); reciprocal_stats.rfuncs_inserted++; FOR_EACH_IMM_USE_STMT (stmt, ui, arg1) { gimple_stmt_iterator gsi = gsi_for_stmt (stmt); gimple_assign_set_rhs_code (stmt, MULT_EXPR); fold_stmt_inplace (&gsi); update_stmt (stmt); } } } } } statistics_counter_event (fun, "reciprocal divs inserted", reciprocal_stats.rdivs_inserted); statistics_counter_event (fun, "reciprocal functions inserted", reciprocal_stats.rfuncs_inserted); free_dominance_info (CDI_DOMINATORS); free_dominance_info (CDI_POST_DOMINATORS); delete occ_pool; return 0; } } // anon namespace gimple_opt_pass * make_pass_cse_reciprocals (gcc::context *ctxt) { return new pass_cse_reciprocals (ctxt); } /* Records an occurrence at statement USE_STMT in the vector of trees STMTS if it is dominated by *TOP_BB or dominates it or this basic block is not yet initialized. Returns true if the occurrence was pushed on the vector. Adjusts *TOP_BB to be the basic block dominating all statements in the vector. */ static bool maybe_record_sincos (vec *stmts, basic_block *top_bb, gimple use_stmt) { basic_block use_bb = gimple_bb (use_stmt); if (*top_bb && (*top_bb == use_bb || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb))) stmts->safe_push (use_stmt); else if (!*top_bb || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb)) { stmts->safe_push (use_stmt); *top_bb = use_bb; } else return false; return true; } /* Look for sin, cos and cexpi calls with the same argument NAME and create a single call to cexpi CSEing the result in this case. We first walk over all immediate uses of the argument collecting statements that we can CSE in a vector and in a second pass replace the statement rhs with a REALPART or IMAGPART expression on the result of the cexpi call we insert before the use statement that dominates all other candidates. */ static bool execute_cse_sincos_1 (tree name) { gimple_stmt_iterator gsi; imm_use_iterator use_iter; tree fndecl, res, type; gimple def_stmt, use_stmt, stmt; int seen_cos = 0, seen_sin = 0, seen_cexpi = 0; auto_vec stmts; basic_block top_bb = NULL; int i; bool cfg_changed = false; type = TREE_TYPE (name); FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name) { if (gimple_code (use_stmt) != GIMPLE_CALL || !gimple_call_lhs (use_stmt) || !(fndecl = gimple_call_fndecl (use_stmt)) || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL) continue; switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_COS): seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0; break; CASE_FLT_FN (BUILT_IN_SIN): seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0; break; CASE_FLT_FN (BUILT_IN_CEXPI): seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0; break; default:; } } if (seen_cos + seen_sin + seen_cexpi <= 1) return false; /* Simply insert cexpi at the beginning of top_bb but not earlier than the name def statement. */ fndecl = mathfn_built_in (type, BUILT_IN_CEXPI); if (!fndecl) return false; stmt = gimple_build_call (fndecl, 1, name); res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp"); gimple_call_set_lhs (stmt, res); def_stmt = SSA_NAME_DEF_STMT (name); if (!SSA_NAME_IS_DEFAULT_DEF (name) && gimple_code (def_stmt) != GIMPLE_PHI && gimple_bb (def_stmt) == top_bb) { gsi = gsi_for_stmt (def_stmt); gsi_insert_after (&gsi, stmt, GSI_SAME_STMT); } else { gsi = gsi_after_labels (top_bb); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); } sincos_stats.inserted++; /* And adjust the recorded old call sites. */ for (i = 0; stmts.iterate (i, &use_stmt); ++i) { tree rhs = NULL; fndecl = gimple_call_fndecl (use_stmt); switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_COS): rhs = fold_build1 (REALPART_EXPR, type, res); break; CASE_FLT_FN (BUILT_IN_SIN): rhs = fold_build1 (IMAGPART_EXPR, type, res); break; CASE_FLT_FN (BUILT_IN_CEXPI): rhs = res; break; default:; gcc_unreachable (); } /* Replace call with a copy. */ stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs); gsi = gsi_for_stmt (use_stmt); gsi_replace (&gsi, stmt, true); if (gimple_purge_dead_eh_edges (gimple_bb (stmt))) cfg_changed = true; } return cfg_changed; } /* To evaluate powi(x,n), the floating point value x raised to the constant integer exponent n, we use a hybrid algorithm that combines the "window method" with look-up tables. For an introduction to exponentiation algorithms and "addition chains", see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth, "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming", 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */ /* Provide a default value for POWI_MAX_MULTS, the maximum number of multiplications to inline before calling the system library's pow function. powi(x,n) requires at worst 2*bits(n)-2 multiplications, so this default never requires calling pow, powf or powl. */ #ifndef POWI_MAX_MULTS #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2) #endif /* The size of the "optimal power tree" lookup table. All exponents less than this value are simply looked up in the powi_table below. This threshold is also used to size the cache of pseudo registers that hold intermediate results. */ #define POWI_TABLE_SIZE 256 /* The size, in bits of the window, used in the "window method" exponentiation algorithm. This is equivalent to a radix of (1<= POWI_TABLE_SIZE) { if (val & 1) { digit = val & ((1 << POWI_WINDOW_SIZE) - 1); result += powi_lookup_cost (digit, cache) + POWI_WINDOW_SIZE + 1; val >>= POWI_WINDOW_SIZE; } else { val >>= 1; result++; } } return result + powi_lookup_cost (val, cache); } /* Recursive subroutine of powi_as_mults. This function takes the array, CACHE, of already calculated exponents and an exponent N and returns a tree that corresponds to CACHE[1]**N, with type TYPE. */ static tree powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type, HOST_WIDE_INT n, tree *cache) { tree op0, op1, ssa_target; unsigned HOST_WIDE_INT digit; gassign *mult_stmt; if (n < POWI_TABLE_SIZE && cache[n]) return cache[n]; ssa_target = make_temp_ssa_name (type, NULL, "powmult"); if (n < POWI_TABLE_SIZE) { cache[n] = ssa_target; op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache); op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache); } else if (n & 1) { digit = n & ((1 << POWI_WINDOW_SIZE) - 1); op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache); op1 = powi_as_mults_1 (gsi, loc, type, digit, cache); } else { op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache); op1 = op0; } mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1); gimple_set_location (mult_stmt, loc); gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT); return ssa_target; } /* Convert ARG0**N to a tree of multiplications of ARG0 with itself. This function needs to be kept in sync with powi_cost above. */ static tree powi_as_mults (gimple_stmt_iterator *gsi, location_t loc, tree arg0, HOST_WIDE_INT n) { tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0); gassign *div_stmt; tree target; if (n == 0) return build_real (type, dconst1); memset (cache, 0, sizeof (cache)); cache[1] = arg0; result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache); if (n >= 0) return result; /* If the original exponent was negative, reciprocate the result. */ target = make_temp_ssa_name (type, NULL, "powmult"); div_stmt = gimple_build_assign (target, RDIV_EXPR, build_real (type, dconst1), result); gimple_set_location (div_stmt, loc); gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT); return target; } /* ARG0 and N are the two arguments to a powi builtin in GSI with location info LOC. If the arguments are appropriate, create an equivalent sequence of statements prior to GSI using an optimal number of multiplications, and return an expession holding the result. */ static tree gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc, tree arg0, HOST_WIDE_INT n) { /* Avoid largest negative number. */ if (n != -n && ((n >= -1 && n <= 2) || (optimize_function_for_speed_p (cfun) && powi_cost (n) <= POWI_MAX_MULTS))) return powi_as_mults (gsi, loc, arg0, n); return NULL_TREE; } /* Build a gimple call statement that calls FN with argument ARG. Set the lhs of the call statement to a fresh SSA name. Insert the statement prior to GSI's current position, and return the fresh SSA name. */ static tree build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc, tree fn, tree arg) { gcall *call_stmt; tree ssa_target; call_stmt = gimple_build_call (fn, 1, arg); ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot"); gimple_set_lhs (call_stmt, ssa_target); gimple_set_location (call_stmt, loc); gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT); return ssa_target; } /* Build a gimple binary operation with the given CODE and arguments ARG0, ARG1, assigning the result to a new SSA name for variable TARGET. Insert the statement prior to GSI's current position, and return the fresh SSA name.*/ static tree build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc, const char *name, enum tree_code code, tree arg0, tree arg1) { tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name); gassign *stmt = gimple_build_assign (result, code, arg0, arg1); gimple_set_location (stmt, loc); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); return result; } /* Build a gimple reference operation with the given CODE and argument ARG, assigning the result to a new SSA name of TYPE with NAME. Insert the statement prior to GSI's current position, and return the fresh SSA name. */ static inline tree build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type, const char *name, enum tree_code code, tree arg0) { tree result = make_temp_ssa_name (type, NULL, name); gimple stmt = gimple_build_assign (result, build1 (code, type, arg0)); gimple_set_location (stmt, loc); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); return result; } /* Build a gimple assignment to cast VAL to TYPE. Insert the statement prior to GSI's current position, and return the fresh SSA name. */ static tree build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc, tree type, tree val) { tree result = make_ssa_name (type); gassign *stmt = gimple_build_assign (result, NOP_EXPR, val); gimple_set_location (stmt, loc); gsi_insert_before (gsi, stmt, GSI_SAME_STMT); return result; } struct pow_synth_sqrt_info { bool *factors; unsigned int deepest; unsigned int num_mults; }; /* Return true iff the real value C can be represented as a sum of powers of 0.5 up to N. That is: C == SUM (a[i]*(0.5**i)) where a[i] is either 0 or 1. Record in INFO the various parameters of the synthesis algorithm such as the factors a[i], the maximum 0.5 power and the number of multiplications that will be required. */ bool representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n, struct pow_synth_sqrt_info *info) { REAL_VALUE_TYPE factor = dconsthalf; REAL_VALUE_TYPE remainder = c; info->deepest = 0; info->num_mults = 0; memset (info->factors, 0, n * sizeof (bool)); for (unsigned i = 0; i < n; i++) { REAL_VALUE_TYPE res; /* If something inexact happened bail out now. */ if (REAL_ARITHMETIC (res, MINUS_EXPR, remainder, factor)) return false; /* We have hit zero. The number is representable as a sum of powers of 0.5. */ if (REAL_VALUES_EQUAL (res, dconst0)) { info->factors[i] = true; info->deepest = i + 1; return true; } else if (!REAL_VALUE_NEGATIVE (res)) { remainder = res; info->factors[i] = true; info->num_mults++; } else info->factors[i] = false; REAL_ARITHMETIC (factor, MULT_EXPR, factor, dconsthalf); } return false; } /* Return the tree corresponding to FN being applied to ARG N times at GSI and LOC. Look up previous results from CACHE if need be. cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */ static tree get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi, tree fn, location_t loc, tree *cache) { tree res = cache[n]; if (!res) { tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache); res = build_and_insert_call (gsi, loc, fn, prev); cache[n] = res; } return res; } /* Print to STREAM the repeated application of function FNAME to ARG N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print: "foo (foo (x))". */ static void print_nested_fn (FILE* stream, const char *fname, const char* arg, unsigned int n) { if (n == 0) fprintf (stream, "%s", arg); else { fprintf (stream, "%s (", fname); print_nested_fn (stream, fname, arg, n - 1); fprintf (stream, ")"); } } /* Print to STREAM the fractional sequence of sqrt chains applied to ARG, described by INFO. Used for the dump file. */ static void dump_fractional_sqrt_sequence (FILE *stream, const char *arg, struct pow_synth_sqrt_info *info) { for (unsigned int i = 0; i < info->deepest; i++) { bool is_set = info->factors[i]; if (is_set) { print_nested_fn (stream, "sqrt", arg, i + 1); if (i != info->deepest - 1) fprintf (stream, " * "); } } } /* Print to STREAM a representation of raising ARG to an integer power N. Used for the dump file. */ static void dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n) { if (n > 1) fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n); else if (n == 1) fprintf (stream, "%s", arg); } /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of square roots. Place at GSI and LOC. Limit the maximum depth of the sqrt chains to MAX_DEPTH. Return the tree holding the result of the expanded sequence or NULL_TREE if the expansion failed. This routine assumes that ARG1 is a real number with a fractional part (the integer exponent case will have been handled earlier in gimple_expand_builtin_pow). For ARG1 > 0.0: * For ARG1 composed of a whole part WHOLE_PART and a fractional part FRAC_PART i.e. WHOLE_PART == floor (ARG1) and FRAC_PART == ARG1 - WHOLE_PART: Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where POW (ARG0, FRAC_PART) is expanded as a product of square root chains if it can be expressed as such, that is if FRAC_PART satisfies: FRAC_PART == (a[i] * (0.5**i)) where integer a[i] is either 0 or 1. Example: POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625) --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x))) For ARG1 < 0.0 there are two approaches: * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1) is calculated as above. Example: POW (x, -5.625) == 1.0 / POW (x, 5.625) --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x)))) * (B) : WHOLE_PART := - ceil (abs (ARG1)) FRAC_PART := ARG1 - WHOLE_PART and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART). Example: POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6) --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6)) For ARG1 < 0.0 we choose between (A) and (B) depending on how many multiplications we'd have to do. So, for the example in (B): POW (x, -5.875), if we were to follow algorithm (A) we would produce: 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X))) which contains more multiplications than approach (B). Hopefully, this approach will eliminate potentially expensive POW library calls when unsafe floating point math is enabled and allow the compiler to further optimise the multiplies, square roots and divides produced by this function. */ static tree expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc, tree arg0, tree arg1, HOST_WIDE_INT max_depth) { tree type = TREE_TYPE (arg0); machine_mode mode = TYPE_MODE (type); tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); bool one_over = true; if (!sqrtfn) return NULL_TREE; if (TREE_CODE (arg1) != REAL_CST) return NULL_TREE; REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1); gcc_assert (max_depth > 0); tree *cache = XALLOCAVEC (tree, max_depth + 1); struct pow_synth_sqrt_info synth_info; synth_info.factors = XALLOCAVEC (bool, max_depth + 1); synth_info.deepest = 0; synth_info.num_mults = 0; bool neg_exp = REAL_VALUE_NEGATIVE (exp_init); REAL_VALUE_TYPE exp = real_value_abs (&exp_init); /* The whole and fractional parts of exp. */ REAL_VALUE_TYPE whole_part; REAL_VALUE_TYPE frac_part; real_floor (&whole_part, mode, &exp); REAL_ARITHMETIC (frac_part, MINUS_EXPR, exp, whole_part); REAL_VALUE_TYPE ceil_whole = dconst0; REAL_VALUE_TYPE ceil_fract = dconst0; if (neg_exp) { real_ceil (&ceil_whole, mode, &exp); REAL_ARITHMETIC (ceil_fract, MINUS_EXPR, ceil_whole, exp); } if (!representable_as_half_series_p (frac_part, max_depth, &synth_info)) return NULL_TREE; /* Check whether it's more profitable to not use 1.0 / ... */ if (neg_exp) { struct pow_synth_sqrt_info alt_synth_info; alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1); alt_synth_info.deepest = 0; alt_synth_info.num_mults = 0; if (representable_as_half_series_p (ceil_fract, max_depth, &alt_synth_info) && alt_synth_info.deepest <= synth_info.deepest && alt_synth_info.num_mults < synth_info.num_mults) { whole_part = ceil_whole; frac_part = ceil_fract; synth_info.deepest = alt_synth_info.deepest; synth_info.num_mults = alt_synth_info.num_mults; memcpy (synth_info.factors, alt_synth_info.factors, (max_depth + 1) * sizeof (bool)); one_over = false; } } HOST_WIDE_INT n = real_to_integer (&whole_part); REAL_VALUE_TYPE cint; real_from_integer (&cint, VOIDmode, n, SIGNED); if (!real_identical (&whole_part, &cint)) return NULL_TREE; if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS) return NULL_TREE; memset (cache, 0, (max_depth + 1) * sizeof (tree)); tree integer_res = n == 0 ? build_real (type, dconst1) : arg0; /* Calculate the integer part of the exponent. */ if (n > 1) { integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n); if (!integer_res) return NULL_TREE; } if (dump_file) { char string[64]; real_to_decimal (string, &exp_init, sizeof (string), 0, 1); fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string); if (neg_exp) { if (one_over) { fprintf (dump_file, "1.0 / ("); dump_integer_part (dump_file, "x", n); if (n > 0) fprintf (dump_file, " * "); dump_fractional_sqrt_sequence (dump_file, "x", &synth_info); fprintf (dump_file, ")"); } else { dump_fractional_sqrt_sequence (dump_file, "x", &synth_info); fprintf (dump_file, " / ("); dump_integer_part (dump_file, "x", n); fprintf (dump_file, ")"); } } else { dump_fractional_sqrt_sequence (dump_file, "x", &synth_info); if (n > 0) fprintf (dump_file, " * "); dump_integer_part (dump_file, "x", n); } fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest); } tree fract_res = NULL_TREE; cache[0] = arg0; /* Calculate the fractional part of the exponent. */ for (unsigned i = 0; i < synth_info.deepest; i++) { if (synth_info.factors[i]) { tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache); if (!fract_res) fract_res = sqrt_chain; else fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, fract_res, sqrt_chain); } } tree res = NULL_TREE; if (neg_exp) { if (one_over) { if (n > 0) res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, fract_res, integer_res); else res = fract_res; res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR, build_real (type, dconst1), res); } else { res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR, fract_res, integer_res); } } else res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, fract_res, integer_res); return res; } /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI with location info LOC. If possible, create an equivalent and less expensive sequence of statements prior to GSI, and return an expession holding the result. */ static tree gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc, tree arg0, tree arg1) { REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6; REAL_VALUE_TYPE c2, dconst3; HOST_WIDE_INT n; tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x; machine_mode mode; bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi)); bool hw_sqrt_exists, c_is_int, c2_is_int; dconst1_4 = dconst1; SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2); /* If the exponent isn't a constant, there's nothing of interest to be done. */ if (TREE_CODE (arg1) != REAL_CST) return NULL_TREE; /* If the exponent is equivalent to an integer, expand to an optimal multiplication sequence when profitable. */ c = TREE_REAL_CST (arg1); n = real_to_integer (&c); real_from_integer (&cint, VOIDmode, n, SIGNED); c_is_int = real_identical (&c, &cint); if (c_is_int && ((n >= -1 && n <= 2) || (flag_unsafe_math_optimizations && speed_p && powi_cost (n) <= POWI_MAX_MULTS))) return gimple_expand_builtin_powi (gsi, loc, arg0, n); /* Attempt various optimizations using sqrt and cbrt. */ type = TREE_TYPE (arg0); mode = TYPE_MODE (type); sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe unless signed zeros must be maintained. pow(-0,0.5) = +0, while sqrt(-0) = -0. */ if (sqrtfn && REAL_VALUES_EQUAL (c, dconsthalf) && !HONOR_SIGNED_ZEROS (mode)) return build_and_insert_call (gsi, loc, sqrtfn, arg0); hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing; /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math optimizations since 1./3. is not exactly representable. If x is negative and finite, the correct value of pow(x,1./3.) is a NaN with the "invalid" exception raised, because the value of 1./3. actually has an even denominator. The correct value of cbrt(x) is a negative real value. */ cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT); dconst1_3 = real_value_truncate (mode, dconst_third ()); if (flag_unsafe_math_optimizations && cbrtfn && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode)) && REAL_VALUES_EQUAL (c, dconst1_3)) return build_and_insert_call (gsi, loc, cbrtfn, arg0); /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization if we don't have a hardware sqrt insn. */ dconst1_6 = dconst1_3; SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1); if (flag_unsafe_math_optimizations && sqrtfn && cbrtfn && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode)) && speed_p && hw_sqrt_exists && REAL_VALUES_EQUAL (c, dconst1_6)) { /* sqrt(x) */ sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0); /* cbrt(sqrt(x)) */ return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0); } /* Attempt to expand the POW as a product of square root chains. Expand the 0.25 case even when otpimising for size. */ if (flag_unsafe_math_optimizations && sqrtfn && hw_sqrt_exists && (speed_p || REAL_VALUES_EQUAL (c, dconst1_4)) && !HONOR_SIGNED_ZEROS (mode)) { unsigned int max_depth = speed_p ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH) : 2; tree expand_with_sqrts = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth); if (expand_with_sqrts) return expand_with_sqrts; } real_arithmetic (&c2, MULT_EXPR, &c, &dconst2); n = real_to_integer (&c2); real_from_integer (&cint, VOIDmode, n, SIGNED); c2_is_int = real_identical (&c2, &cint); /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into powi(x, n/3) * powi(cbrt(x), n%3), n > 0; 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0. Do not calculate the first factor when n/3 = 0. As cbrt(x) is different from pow(x, 1./3.) due to rounding and behavior with negative x, we need to constrain this transformation to unsafe math and positive x or finite math. */ real_from_integer (&dconst3, VOIDmode, 3, SIGNED); real_arithmetic (&c2, MULT_EXPR, &c, &dconst3); real_round (&c2, mode, &c2); n = real_to_integer (&c2); real_from_integer (&cint, VOIDmode, n, SIGNED); real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3); real_convert (&c2, mode, &c2); if (flag_unsafe_math_optimizations && cbrtfn && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode)) && real_identical (&c2, &c) && !c2_is_int && optimize_function_for_speed_p (cfun) && powi_cost (n / 3) <= POWI_MAX_MULTS) { tree powi_x_ndiv3 = NULL_TREE; /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not possible or profitable, give up. Skip the degenerate case when abs(n) < 3, where the result is always 1. */ if (absu_hwi (n) >= 3) { powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0, abs_hwi (n / 3)); if (!powi_x_ndiv3) return NULL_TREE; } /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi as that creates an unnecessary variable. Instead, just produce either cbrt(x) or cbrt(x) * cbrt(x). */ cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0); if (absu_hwi (n) % 3 == 1) powi_cbrt_x = cbrt_x; else powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, cbrt_x, cbrt_x); /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */ if (absu_hwi (n) < 3) result = powi_cbrt_x; else result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR, powi_x_ndiv3, powi_cbrt_x); /* If n is negative, reciprocate the result. */ if (n < 0) result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR, build_real (type, dconst1), result); return result; } /* No optimizations succeeded. */ return NULL_TREE; } /* ARG is the argument to a cabs builtin call in GSI with location info LOC. Create a sequence of statements prior to GSI that calculates sqrt(R*R + I*I), where R and I are the real and imaginary components of ARG, respectively. Return an expression holding the result. */ static tree gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg) { tree real_part, imag_part, addend1, addend2, sum, result; tree type = TREE_TYPE (TREE_TYPE (arg)); tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT); machine_mode mode = TYPE_MODE (type); if (!flag_unsafe_math_optimizations || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi))) || !sqrtfn || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing) return NULL_TREE; real_part = build_and_insert_ref (gsi, loc, type, "cabs", REALPART_EXPR, arg); addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR, real_part, real_part); imag_part = build_and_insert_ref (gsi, loc, type, "cabs", IMAGPART_EXPR, arg); addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR, imag_part, imag_part); sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2); result = build_and_insert_call (gsi, loc, sqrtfn, sum); return result; } /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1 on the SSA_NAME argument of each of them. Also expand powi(x,n) into an optimal number of multiplies, when n is a constant. */ namespace { const pass_data pass_data_cse_sincos = { GIMPLE_PASS, /* type */ "sincos", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_cse_sincos : public gimple_opt_pass { public: pass_cse_sincos (gcc::context *ctxt) : gimple_opt_pass (pass_data_cse_sincos, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { /* We no longer require either sincos or cexp, since powi expansion piggybacks on this pass. */ return optimize; } virtual unsigned int execute (function *); }; // class pass_cse_sincos unsigned int pass_cse_sincos::execute (function *fun) { basic_block bb; bool cfg_changed = false; calculate_dominance_info (CDI_DOMINATORS); memset (&sincos_stats, 0, sizeof (sincos_stats)); FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator gsi; bool cleanup_eh = false; for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); tree fndecl; /* Only the last stmt in a bb could throw, no need to call gimple_purge_dead_eh_edges if we change something in the middle of a basic block. */ cleanup_eh = false; if (is_gimple_call (stmt) && gimple_call_lhs (stmt) && (fndecl = gimple_call_fndecl (stmt)) && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) { tree arg, arg0, arg1, result; HOST_WIDE_INT n; location_t loc; switch (DECL_FUNCTION_CODE (fndecl)) { CASE_FLT_FN (BUILT_IN_COS): CASE_FLT_FN (BUILT_IN_SIN): CASE_FLT_FN (BUILT_IN_CEXPI): /* Make sure we have either sincos or cexp. */ if (!targetm.libc_has_function (function_c99_math_complex) && !targetm.libc_has_function (function_sincos)) break; arg = gimple_call_arg (stmt, 0); if (TREE_CODE (arg) == SSA_NAME) cfg_changed |= execute_cse_sincos_1 (arg); break; CASE_FLT_FN (BUILT_IN_POW): arg0 = gimple_call_arg (stmt, 0); arg1 = gimple_call_arg (stmt, 1); loc = gimple_location (stmt); result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1); if (result) { tree lhs = gimple_get_lhs (stmt); gassign *new_stmt = gimple_build_assign (lhs, result); gimple_set_location (new_stmt, loc); unlink_stmt_vdef (stmt); gsi_replace (&gsi, new_stmt, true); cleanup_eh = true; if (gimple_vdef (stmt)) release_ssa_name (gimple_vdef (stmt)); } break; CASE_FLT_FN (BUILT_IN_POWI): arg0 = gimple_call_arg (stmt, 0); arg1 = gimple_call_arg (stmt, 1); loc = gimple_location (stmt); if (real_minus_onep (arg0)) { tree t0, t1, cond, one, minus_one; gassign *stmt; t0 = TREE_TYPE (arg0); t1 = TREE_TYPE (arg1); one = build_real (t0, dconst1); minus_one = build_real (t0, dconstm1); cond = make_temp_ssa_name (t1, NULL, "powi_cond"); stmt = gimple_build_assign (cond, BIT_AND_EXPR, arg1, build_int_cst (t1, 1)); gimple_set_location (stmt, loc); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); result = make_temp_ssa_name (t0, NULL, "powi"); stmt = gimple_build_assign (result, COND_EXPR, cond, minus_one, one); gimple_set_location (stmt, loc); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); } else { if (!tree_fits_shwi_p (arg1)) break; n = tree_to_shwi (arg1); result = gimple_expand_builtin_powi (&gsi, loc, arg0, n); } if (result) { tree lhs = gimple_get_lhs (stmt); gassign *new_stmt = gimple_build_assign (lhs, result); gimple_set_location (new_stmt, loc); unlink_stmt_vdef (stmt); gsi_replace (&gsi, new_stmt, true); cleanup_eh = true; if (gimple_vdef (stmt)) release_ssa_name (gimple_vdef (stmt)); } break; CASE_FLT_FN (BUILT_IN_CABS): arg0 = gimple_call_arg (stmt, 0); loc = gimple_location (stmt); result = gimple_expand_builtin_cabs (&gsi, loc, arg0); if (result) { tree lhs = gimple_get_lhs (stmt); gassign *new_stmt = gimple_build_assign (lhs, result); gimple_set_location (new_stmt, loc); unlink_stmt_vdef (stmt); gsi_replace (&gsi, new_stmt, true); cleanup_eh = true; if (gimple_vdef (stmt)) release_ssa_name (gimple_vdef (stmt)); } break; default:; } } } if (cleanup_eh) cfg_changed |= gimple_purge_dead_eh_edges (bb); } statistics_counter_event (fun, "sincos statements inserted", sincos_stats.inserted); free_dominance_info (CDI_DOMINATORS); return cfg_changed ? TODO_cleanup_cfg : 0; } } // anon namespace gimple_opt_pass * make_pass_cse_sincos (gcc::context *ctxt) { return new pass_cse_sincos (ctxt); } /* A symbolic number is used to detect byte permutation and selection patterns. Therefore the field N contains an artificial number consisting of octet sized markers: 0 - target byte has the value 0 FF - target byte has an unknown value (eg. due to sign extension) 1..size - marker value is the target byte index minus one. To detect permutations on memory sources (arrays and structures), a symbolic number is also associated a base address (the array or structure the load is made from), an offset from the base address and a range which gives the difference between the highest and lowest accessed memory location to make such a symbolic number. The range is thus different from size which reflects the size of the type of current expression. Note that for non memory source, range holds the same value as size. For instance, for an array char a[], (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this time a range of 1. */ struct symbolic_number { uint64_t n; tree type; tree base_addr; tree offset; HOST_WIDE_INT bytepos; tree alias_set; tree vuse; unsigned HOST_WIDE_INT range; }; #define BITS_PER_MARKER 8 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1) #define MARKER_BYTE_UNKNOWN MARKER_MASK #define HEAD_MARKER(n, size) \ ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER))) /* The number which the find_bswap_or_nop_1 result should match in order to have a nop. The number is masked according to the size of the symbolic number before using it. */ #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \ (uint64_t)0x08070605 << 32 | 0x04030201) /* The number which the find_bswap_or_nop_1 result should match in order to have a byte swap. The number is masked according to the size of the symbolic number before using it. */ #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \ (uint64_t)0x01020304 << 32 | 0x05060708) /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic number N. Return false if the requested operation is not permitted on a symbolic number. */ static inline bool do_shift_rotate (enum tree_code code, struct symbolic_number *n, int count) { int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; unsigned head_marker; if (count % BITS_PER_UNIT != 0) return false; count = (count / BITS_PER_UNIT) * BITS_PER_MARKER; /* Zero out the extra bits of N in order to avoid them being shifted into the significant bits. */ if (size < 64 / BITS_PER_MARKER) n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1; switch (code) { case LSHIFT_EXPR: n->n <<= count; break; case RSHIFT_EXPR: head_marker = HEAD_MARKER (n->n, size); n->n >>= count; /* Arithmetic shift of signed type: result is dependent on the value. */ if (!TYPE_UNSIGNED (n->type) && head_marker) for (i = 0; i < count / BITS_PER_MARKER; i++) n->n |= (uint64_t) MARKER_BYTE_UNKNOWN << ((size - 1 - i) * BITS_PER_MARKER); break; case LROTATE_EXPR: n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count)); break; case RROTATE_EXPR: n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count)); break; default: return false; } /* Zero unused bits for size. */ if (size < 64 / BITS_PER_MARKER) n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1; return true; } /* Perform sanity checking for the symbolic number N and the gimple statement STMT. */ static inline bool verify_symbolic_number_p (struct symbolic_number *n, gimple stmt) { tree lhs_type; lhs_type = gimple_expr_type (stmt); if (TREE_CODE (lhs_type) != INTEGER_TYPE) return false; if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type)) return false; return true; } /* Initialize the symbolic number N for the bswap pass from the base element SRC manipulated by the bitwise OR expression. */ static bool init_symbolic_number (struct symbolic_number *n, tree src) { int size; n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE; /* Set up the symbolic number N by setting each byte to a value between 1 and the byte size of rhs1. The highest order byte is set to n->size and the lowest order byte to 1. */ n->type = TREE_TYPE (src); size = TYPE_PRECISION (n->type); if (size % BITS_PER_UNIT != 0) return false; size /= BITS_PER_UNIT; if (size > 64 / BITS_PER_MARKER) return false; n->range = size; n->n = CMPNOP; if (size < 64 / BITS_PER_MARKER) n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1; return true; } /* Check if STMT might be a byte swap or a nop from a memory source and returns the answer. If so, REF is that memory source and the base of the memory area accessed and the offset of the access from that base are recorded in N. */ bool find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n) { /* Leaf node is an array or component ref. Memorize its base and offset from base to compare to other such leaf node. */ HOST_WIDE_INT bitsize, bitpos; machine_mode mode; int unsignedp, volatilep; tree offset, base_addr; /* Not prepared to handle PDP endian. */ if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) return false; if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt)) return false; base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode, &unsignedp, &volatilep, false); if (TREE_CODE (base_addr) == MEM_REF) { offset_int bit_offset = 0; tree off = TREE_OPERAND (base_addr, 1); if (!integer_zerop (off)) { offset_int boff, coff = mem_ref_offset (base_addr); boff = wi::lshift (coff, LOG2_BITS_PER_UNIT); bit_offset += boff; } base_addr = TREE_OPERAND (base_addr, 0); /* Avoid returning a negative bitpos as this may wreak havoc later. */ if (wi::neg_p (bit_offset)) { offset_int mask = wi::mask (LOG2_BITS_PER_UNIT, false); offset_int tem = bit_offset.and_not (mask); /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf. Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */ bit_offset -= tem; tem = wi::arshift (tem, LOG2_BITS_PER_UNIT); if (offset) offset = size_binop (PLUS_EXPR, offset, wide_int_to_tree (sizetype, tem)); else offset = wide_int_to_tree (sizetype, tem); } bitpos += bit_offset.to_shwi (); } if (bitpos % BITS_PER_UNIT) return false; if (bitsize % BITS_PER_UNIT) return false; if (!init_symbolic_number (n, ref)) return false; n->base_addr = base_addr; n->offset = offset; n->bytepos = bitpos / BITS_PER_UNIT; n->alias_set = reference_alias_ptr_type (ref); n->vuse = gimple_vuse (stmt); return true; } /* Compute the symbolic number N representing the result of a bitwise OR on 2 symbolic number N1 and N2 whose source statements are respectively SOURCE_STMT1 and SOURCE_STMT2. */ static gimple perform_symbolic_merge (gimple source_stmt1, struct symbolic_number *n1, gimple source_stmt2, struct symbolic_number *n2, struct symbolic_number *n) { int i, size; uint64_t mask; gimple source_stmt; struct symbolic_number *n_start; /* Sources are different, cancel bswap if they are not memory location with the same base (array, structure, ...). */ if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2)) { int64_t inc; HOST_WIDE_INT start_sub, end_sub, end1, end2, end; struct symbolic_number *toinc_n_ptr, *n_end; if (!n1->base_addr || !n2->base_addr || !operand_equal_p (n1->base_addr, n2->base_addr, 0)) return NULL; if (!n1->offset != !n2->offset || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0))) return NULL; if (n1->bytepos < n2->bytepos) { n_start = n1; start_sub = n2->bytepos - n1->bytepos; source_stmt = source_stmt1; } else { n_start = n2; start_sub = n1->bytepos - n2->bytepos; source_stmt = source_stmt2; } /* Find the highest address at which a load is performed and compute related info. */ end1 = n1->bytepos + (n1->range - 1); end2 = n2->bytepos + (n2->range - 1); if (end1 < end2) { end = end2; end_sub = end2 - end1; } else { end = end1; end_sub = end1 - end2; } n_end = (end2 > end1) ? n2 : n1; /* Find symbolic number whose lsb is the most significant. */ if (BYTES_BIG_ENDIAN) toinc_n_ptr = (n_end == n1) ? n2 : n1; else toinc_n_ptr = (n_start == n1) ? n2 : n1; n->range = end - n_start->bytepos + 1; /* Check that the range of memory covered can be represented by a symbolic number. */ if (n->range > 64 / BITS_PER_MARKER) return NULL; /* Reinterpret byte marks in symbolic number holding the value of bigger weight according to target endianness. */ inc = BYTES_BIG_ENDIAN ? end_sub : start_sub; size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT; for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER) { unsigned marker = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK; if (marker && marker != MARKER_BYTE_UNKNOWN) toinc_n_ptr->n += inc; } } else { n->range = n1->range; n_start = n1; source_stmt = source_stmt1; } if (!n1->alias_set || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set)) n->alias_set = n1->alias_set; else n->alias_set = ptr_type_node; n->vuse = n_start->vuse; n->base_addr = n_start->base_addr; n->offset = n_start->offset; n->bytepos = n_start->bytepos; n->type = n_start->type; size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER) { uint64_t masked1, masked2; masked1 = n1->n & mask; masked2 = n2->n & mask; if (masked1 && masked2 && masked1 != masked2) return NULL; } n->n = n1->n | n2->n; return source_stmt; } /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform the operation given by the rhs of STMT on the result. If the operation could successfully be executed the function returns a gimple stmt whose rhs's first tree is the expression of the source operand and NULL otherwise. */ static gimple find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit) { enum tree_code code; tree rhs1, rhs2 = NULL; gimple rhs1_stmt, rhs2_stmt, source_stmt1; enum gimple_rhs_class rhs_class; if (!limit || !is_gimple_assign (stmt)) return NULL; rhs1 = gimple_assign_rhs1 (stmt); if (find_bswap_or_nop_load (stmt, rhs1, n)) return stmt; if (TREE_CODE (rhs1) != SSA_NAME) return NULL; code = gimple_assign_rhs_code (stmt); rhs_class = gimple_assign_rhs_class (stmt); rhs1_stmt = SSA_NAME_DEF_STMT (rhs1); if (rhs_class == GIMPLE_BINARY_RHS) rhs2 = gimple_assign_rhs2 (stmt); /* Handle unary rhs and binary rhs with integer constants as second operand. */ if (rhs_class == GIMPLE_UNARY_RHS || (rhs_class == GIMPLE_BINARY_RHS && TREE_CODE (rhs2) == INTEGER_CST)) { if (code != BIT_AND_EXPR && code != LSHIFT_EXPR && code != RSHIFT_EXPR && code != LROTATE_EXPR && code != RROTATE_EXPR && !CONVERT_EXPR_CODE_P (code)) return NULL; source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1); /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and we have to initialize the symbolic number. */ if (!source_stmt1) { if (gimple_assign_load_p (stmt) || !init_symbolic_number (n, rhs1)) return NULL; source_stmt1 = stmt; } switch (code) { case BIT_AND_EXPR: { int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; uint64_t val = int_cst_value (rhs2), mask = 0; uint64_t tmp = (1 << BITS_PER_UNIT) - 1; /* Only constants masking full bytes are allowed. */ for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT) if ((val & tmp) != 0 && (val & tmp) != tmp) return NULL; else if (val & tmp) mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER); n->n &= mask; } break; case LSHIFT_EXPR: case RSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2))) return NULL; break; CASE_CONVERT: { int i, type_size, old_type_size; tree type; type = gimple_expr_type (stmt); type_size = TYPE_PRECISION (type); if (type_size % BITS_PER_UNIT != 0) return NULL; type_size /= BITS_PER_UNIT; if (type_size > 64 / BITS_PER_MARKER) return NULL; /* Sign extension: result is dependent on the value. */ old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT; if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size && HEAD_MARKER (n->n, old_type_size)) for (i = 0; i < type_size - old_type_size; i++) n->n |= (uint64_t) MARKER_BYTE_UNKNOWN << ((type_size - 1 - i) * BITS_PER_MARKER); if (type_size < 64 / BITS_PER_MARKER) { /* If STMT casts to a smaller type mask out the bits not belonging to the target type. */ n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1; } n->type = type; if (!n->base_addr) n->range = type_size; } break; default: return NULL; }; return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL; } /* Handle binary rhs. */ if (rhs_class == GIMPLE_BINARY_RHS) { struct symbolic_number n1, n2; gimple source_stmt, source_stmt2; if (code != BIT_IOR_EXPR) return NULL; if (TREE_CODE (rhs2) != SSA_NAME) return NULL; rhs2_stmt = SSA_NAME_DEF_STMT (rhs2); switch (code) { case BIT_IOR_EXPR: source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1); if (!source_stmt1) return NULL; source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1); if (!source_stmt2) return NULL; if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type)) return NULL; if (!n1.vuse != !n2.vuse || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0))) return NULL; source_stmt = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n); if (!source_stmt) return NULL; if (!verify_symbolic_number_p (n, stmt)) return NULL; break; default: return NULL; } return source_stmt; } return NULL; } /* Check if STMT completes a bswap implementation or a read in a given endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP accordingly. It also sets N to represent the kind of operations performed: size of the resulting expression and whether it works on a memory source, and if so alias-set and vuse. At last, the function returns a stmt whose rhs's first tree is the source expression. */ static gimple find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap) { /* The number which the find_bswap_or_nop_1 result should match in order to have a full byte swap. The number is shifted to the right according to the size of the symbolic number before using it. */ uint64_t cmpxchg = CMPXCHG; uint64_t cmpnop = CMPNOP; gimple source_stmt; int limit; /* The last parameter determines the depth search limit. It usually correlates directly to the number n of bytes to be touched. We increase that number by log2(n) + 1 here in order to also cover signed -> unsigned conversions of the src operand as can be seen in libgcc, and for initial shift/and operation of the src operand. */ limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt))); limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit); source_stmt = find_bswap_or_nop_1 (stmt, n, limit); if (!source_stmt) return NULL; /* Find real size of result (highest non-zero byte). */ if (n->base_addr) { int rsize; uint64_t tmpn; for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++); n->range = rsize; } /* Zero out the extra bits of N and CMP*. */ if (n->range < (int) sizeof (int64_t)) { uint64_t mask; mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1; cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER; cmpnop &= mask; } /* A complete byte swap should make the symbolic number to start with the largest digit in the highest order byte. Unchanged symbolic number indicates a read with same endianness as target architecture. */ if (n->n == cmpnop) *bswap = false; else if (n->n == cmpxchg) *bswap = true; else return NULL; /* Useless bit manipulation performed by code. */ if (!n->base_addr && n->n == cmpnop) return NULL; n->range *= BITS_PER_UNIT; return source_stmt; } namespace { const pass_data pass_data_optimize_bswap = { GIMPLE_PASS, /* type */ "bswap", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_optimize_bswap : public gimple_opt_pass { public: pass_optimize_bswap (gcc::context *ctxt) : gimple_opt_pass (pass_data_optimize_bswap, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_expensive_optimizations && optimize; } virtual unsigned int execute (function *); }; // class pass_optimize_bswap /* Perform the bswap optimization: replace the expression computed in the rhs of CUR_STMT by an equivalent bswap, load or load + bswap expression. Which of these alternatives replace the rhs is given by N->base_addr (non null if a load is needed) and BSWAP. The type, VUSE and set-alias of the load to perform are also given in N while the builtin bswap invoke is given in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the load statements involved to construct the rhs in CUR_STMT and N->range gives the size of the rhs expression for maintaining some statistics. Note that if the replacement involve a load, CUR_STMT is moved just after SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT changing of basic block. */ static bool bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type, tree load_type, struct symbolic_number *n, bool bswap) { gimple_stmt_iterator gsi; tree src, tmp, tgt; gimple bswap_stmt; gsi = gsi_for_stmt (cur_stmt); src = gimple_assign_rhs1 (src_stmt); tgt = gimple_assign_lhs (cur_stmt); /* Need to load the value from memory first. */ if (n->base_addr) { gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt); tree addr_expr, addr_tmp, val_expr, val_tmp; tree load_offset_ptr, aligned_load_type; gimple addr_stmt, load_stmt; unsigned align; HOST_WIDE_INT load_offset = 0; align = get_object_alignment (src); /* If the new access is smaller than the original one, we need to perform big endian adjustment. */ if (BYTES_BIG_ENDIAN) { HOST_WIDE_INT bitsize, bitpos; machine_mode mode; int unsignedp, volatilep; tree offset; get_inner_reference (src, &bitsize, &bitpos, &offset, &mode, &unsignedp, &volatilep, false); if (n->range < (unsigned HOST_WIDE_INT) bitsize) { load_offset = (bitsize - n->range) / BITS_PER_UNIT; unsigned HOST_WIDE_INT l = (load_offset * BITS_PER_UNIT) & (align - 1); if (l) align = l & -l; } } if (bswap && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type)) && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align)) return false; /* Move cur_stmt just before one of the load of the original to ensure it has the same VUSE. See PR61517 for what could go wrong. */ gsi_move_before (&gsi, &gsi_ins); gsi = gsi_for_stmt (cur_stmt); /* Compute address to load from and cast according to the size of the load. */ addr_expr = build_fold_addr_expr (unshare_expr (src)); if (is_gimple_mem_ref_addr (addr_expr)) addr_tmp = addr_expr; else { addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL, "load_src"); addr_stmt = gimple_build_assign (addr_tmp, addr_expr); gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT); } /* Perform the load. */ aligned_load_type = load_type; if (align < TYPE_ALIGN (load_type)) aligned_load_type = build_aligned_type (load_type, align); load_offset_ptr = build_int_cst (n->alias_set, load_offset); val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp, load_offset_ptr); if (!bswap) { if (n->range == 16) nop_stats.found_16bit++; else if (n->range == 32) nop_stats.found_32bit++; else { gcc_assert (n->range == 64); nop_stats.found_64bit++; } /* Convert the result of load if necessary. */ if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type)) { val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst"); load_stmt = gimple_build_assign (val_tmp, val_expr); gimple_set_vuse (load_stmt, n->vuse); gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT); gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp); } else { gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr); gimple_set_vuse (cur_stmt, n->vuse); } update_stmt (cur_stmt); if (dump_file) { fprintf (dump_file, "%d bit load in target endianness found at: ", (int) n->range); print_gimple_stmt (dump_file, cur_stmt, 0, 0); } return true; } else { val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst"); load_stmt = gimple_build_assign (val_tmp, val_expr); gimple_set_vuse (load_stmt, n->vuse); gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT); } src = val_tmp; } if (n->range == 16) bswap_stats.found_16bit++; else if (n->range == 32) bswap_stats.found_32bit++; else { gcc_assert (n->range == 64); bswap_stats.found_64bit++; } tmp = src; /* Convert the src expression if necessary. */ if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type)) { gimple convert_stmt; tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc"); convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src); gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT); } /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values are considered as rotation of 2N bit values by N bits is generally not equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which gives 0x03040102 while a bswap for that value is 0x04030201. */ if (bswap && n->range == 16) { tree count = build_int_cst (NULL, BITS_PER_UNIT); src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count); bswap_stmt = gimple_build_assign (NULL, src); } else bswap_stmt = gimple_build_call (fndecl, 1, tmp); tmp = tgt; /* Convert the result if necessary. */ if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type)) { gimple convert_stmt; tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst"); convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp); gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT); } gimple_set_lhs (bswap_stmt, tmp); if (dump_file) { fprintf (dump_file, "%d bit bswap implementation found at: ", (int) n->range); print_gimple_stmt (dump_file, cur_stmt, 0, 0); } gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT); gsi_remove (&gsi, true); return true; } /* Find manual byte swap implementations as well as load in a given endianness. Byte swaps are turned into a bswap builtin invokation while endian loads are converted to bswap builtin invokation or simple load according to the target endianness. */ unsigned int pass_optimize_bswap::execute (function *fun) { basic_block bb; bool bswap32_p, bswap64_p; bool changed = false; tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE; if (BITS_PER_UNIT != 8) return 0; bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32) && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing); bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64) && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing || (bswap32_p && word_mode == SImode))); /* Determine the argument type of the builtins. The code later on assumes that the return and argument type are the same. */ if (bswap32_p) { tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32); bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } if (bswap64_p) { tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64); bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } memset (&nop_stats, 0, sizeof (nop_stats)); memset (&bswap_stats, 0, sizeof (bswap_stats)); FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator gsi; /* We do a reverse scan for bswap patterns to make sure we get the widest match. As bswap pattern matching doesn't handle previously inserted smaller bswap replacements as sub-patterns, the wider variant wouldn't be detected. */ for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);) { gimple src_stmt, cur_stmt = gsi_stmt (gsi); tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type; enum tree_code code; struct symbolic_number n; bool bswap; /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt might be moved to a different basic block by bswap_replace and gsi must not points to it if that's the case. Moving the gsi_prev there make sure that gsi points to the statement previous to cur_stmt while still making sure that all statements are considered in this basic block. */ gsi_prev (&gsi); if (!is_gimple_assign (cur_stmt)) continue; code = gimple_assign_rhs_code (cur_stmt); switch (code) { case LROTATE_EXPR: case RROTATE_EXPR: if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt)) || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt)) % BITS_PER_UNIT) continue; /* Fall through. */ case BIT_IOR_EXPR: break; default: continue; } src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap); if (!src_stmt) continue; switch (n.range) { case 16: /* Already in canonical form, nothing to do. */ if (code == LROTATE_EXPR || code == RROTATE_EXPR) continue; load_type = bswap_type = uint16_type_node; break; case 32: load_type = uint32_type_node; if (bswap32_p) { fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32); bswap_type = bswap32_type; } break; case 64: load_type = uint64_type_node; if (bswap64_p) { fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64); bswap_type = bswap64_type; } break; default: continue; } if (bswap && !fndecl && n.range != 16) continue; if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type, &n, bswap)) changed = true; } } statistics_counter_event (fun, "16-bit nop implementations found", nop_stats.found_16bit); statistics_counter_event (fun, "32-bit nop implementations found", nop_stats.found_32bit); statistics_counter_event (fun, "64-bit nop implementations found", nop_stats.found_64bit); statistics_counter_event (fun, "16-bit bswap implementations found", bswap_stats.found_16bit); statistics_counter_event (fun, "32-bit bswap implementations found", bswap_stats.found_32bit); statistics_counter_event (fun, "64-bit bswap implementations found", bswap_stats.found_64bit); return (changed ? TODO_update_ssa : 0); } } // anon namespace gimple_opt_pass * make_pass_optimize_bswap (gcc::context *ctxt) { return new pass_optimize_bswap (ctxt); } /* Return true if stmt is a type conversion operation that can be stripped when used in a widening multiply operation. */ static bool widening_mult_conversion_strippable_p (tree result_type, gimple stmt) { enum tree_code rhs_code = gimple_assign_rhs_code (stmt); if (TREE_CODE (result_type) == INTEGER_TYPE) { tree op_type; tree inner_op_type; if (!CONVERT_EXPR_CODE_P (rhs_code)) return false; op_type = TREE_TYPE (gimple_assign_lhs (stmt)); /* If the type of OP has the same precision as the result, then we can strip this conversion. The multiply operation will be selected to create the correct extension as a by-product. */ if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type)) return true; /* We can also strip a conversion if it preserves the signed-ness of the operation and doesn't narrow the range. */ inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt)); /* If the inner-most type is unsigned, then we can strip any intermediate widening operation. If it's signed, then the intermediate widening operation must also be signed. */ if ((TYPE_UNSIGNED (inner_op_type) || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type)) && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type)) return true; return false; } return rhs_code == FIXED_CONVERT_EXPR; } /* Return true if RHS is a suitable operand for a widening multiplication, assuming a target type of TYPE. There are two cases: - RHS makes some value at least twice as wide. Store that value in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT. - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so, but leave *TYPE_OUT untouched. */ static bool is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out, tree *new_rhs_out) { gimple stmt; tree type1, rhs1; if (TREE_CODE (rhs) == SSA_NAME) { stmt = SSA_NAME_DEF_STMT (rhs); if (is_gimple_assign (stmt)) { if (! widening_mult_conversion_strippable_p (type, stmt)) rhs1 = rhs; else { rhs1 = gimple_assign_rhs1 (stmt); if (TREE_CODE (rhs1) == INTEGER_CST) { *new_rhs_out = rhs1; *type_out = NULL; return true; } } } else rhs1 = rhs; type1 = TREE_TYPE (rhs1); if (TREE_CODE (type1) != TREE_CODE (type) || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type)) return false; *new_rhs_out = rhs1; *type_out = type1; return true; } if (TREE_CODE (rhs) == INTEGER_CST) { *new_rhs_out = rhs; *type_out = NULL; return true; } return false; } /* Return true if STMT performs a widening multiplication, assuming the output type is TYPE. If so, store the unwidened types of the operands in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and *RHS2_OUT such that converting those operands to types *TYPE1_OUT and *TYPE2_OUT would give the operands of the multiplication. */ static bool is_widening_mult_p (gimple stmt, tree *type1_out, tree *rhs1_out, tree *type2_out, tree *rhs2_out) { tree type = TREE_TYPE (gimple_assign_lhs (stmt)); if (TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != FIXED_POINT_TYPE) return false; if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out, rhs1_out)) return false; if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out, rhs2_out)) return false; if (*type1_out == NULL) { if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out)) return false; *type1_out = *type2_out; } if (*type2_out == NULL) { if (!int_fits_type_p (*rhs2_out, *type1_out)) return false; *type2_out = *type1_out; } /* Ensure that the larger of the two operands comes first. */ if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out)) { std::swap (*type1_out, *type2_out); std::swap (*rhs1_out, *rhs2_out); } return true; } /* Process a single gimple statement STMT, which has a MULT_EXPR as its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return value is true iff we converted the statement. */ static bool convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi) { tree lhs, rhs1, rhs2, type, type1, type2; enum insn_code handler; machine_mode to_mode, from_mode, actual_mode; optab op; int actual_precision; location_t loc = gimple_location (stmt); bool from_unsigned1, from_unsigned2; lhs = gimple_assign_lhs (stmt); type = TREE_TYPE (lhs); if (TREE_CODE (type) != INTEGER_TYPE) return false; if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2)) return false; to_mode = TYPE_MODE (type); from_mode = TYPE_MODE (type1); from_unsigned1 = TYPE_UNSIGNED (type1); from_unsigned2 = TYPE_UNSIGNED (type2); if (from_unsigned1 && from_unsigned2) op = umul_widen_optab; else if (!from_unsigned1 && !from_unsigned2) op = smul_widen_optab; else op = usmul_widen_optab; handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode, 0, &actual_mode); if (handler == CODE_FOR_nothing) { if (op != smul_widen_optab) { /* We can use a signed multiply with unsigned types as long as there is a wider mode to use, or it is the smaller of the two types that is unsigned. Note that type1 >= type2, always. */ if ((TYPE_UNSIGNED (type1) && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode)) || (TYPE_UNSIGNED (type2) && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode))) { from_mode = GET_MODE_WIDER_MODE (from_mode); if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode)) return false; } op = smul_widen_optab; handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode, 0, &actual_mode); if (handler == CODE_FOR_nothing) return false; from_unsigned1 = from_unsigned2 = false; } else return false; } /* Ensure that the inputs to the handler are in the correct precison for the opcode. This will be the full mode size. */ actual_precision = GET_MODE_PRECISION (actual_mode); if (2 * actual_precision > TYPE_PRECISION (type)) return false; if (actual_precision != TYPE_PRECISION (type1) || from_unsigned1 != TYPE_UNSIGNED (type1)) rhs1 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned1), rhs1); if (actual_precision != TYPE_PRECISION (type2) || from_unsigned2 != TYPE_UNSIGNED (type2)) rhs2 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned2), rhs2); /* Handle constants. */ if (TREE_CODE (rhs1) == INTEGER_CST) rhs1 = fold_convert (type1, rhs1); if (TREE_CODE (rhs2) == INTEGER_CST) rhs2 = fold_convert (type2, rhs2); gimple_assign_set_rhs1 (stmt, rhs1); gimple_assign_set_rhs2 (stmt, rhs2); gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR); update_stmt (stmt); widen_mul_stats.widen_mults_inserted++; return true; } /* Process a single gimple statement STMT, which is found at the iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its rhs (given by CODE), and try to convert it into a WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value is true iff we converted the statement. */ static bool convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt, enum tree_code code) { gimple rhs1_stmt = NULL, rhs2_stmt = NULL; gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt; tree type, type1, type2, optype; tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs; enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK; optab this_optab; enum tree_code wmult_code; enum insn_code handler; machine_mode to_mode, from_mode, actual_mode; location_t loc = gimple_location (stmt); int actual_precision; bool from_unsigned1, from_unsigned2; lhs = gimple_assign_lhs (stmt); type = TREE_TYPE (lhs); if (TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != FIXED_POINT_TYPE) return false; if (code == MINUS_EXPR) wmult_code = WIDEN_MULT_MINUS_EXPR; else wmult_code = WIDEN_MULT_PLUS_EXPR; rhs1 = gimple_assign_rhs1 (stmt); rhs2 = gimple_assign_rhs2 (stmt); if (TREE_CODE (rhs1) == SSA_NAME) { rhs1_stmt = SSA_NAME_DEF_STMT (rhs1); if (is_gimple_assign (rhs1_stmt)) rhs1_code = gimple_assign_rhs_code (rhs1_stmt); } if (TREE_CODE (rhs2) == SSA_NAME) { rhs2_stmt = SSA_NAME_DEF_STMT (rhs2); if (is_gimple_assign (rhs2_stmt)) rhs2_code = gimple_assign_rhs_code (rhs2_stmt); } /* Allow for one conversion statement between the multiply and addition/subtraction statement. If there are more than one conversions then we assume they would invalidate this transformation. If that's not the case then they should have been folded before now. */ if (CONVERT_EXPR_CODE_P (rhs1_code)) { conv1_stmt = rhs1_stmt; rhs1 = gimple_assign_rhs1 (rhs1_stmt); if (TREE_CODE (rhs1) == SSA_NAME) { rhs1_stmt = SSA_NAME_DEF_STMT (rhs1); if (is_gimple_assign (rhs1_stmt)) rhs1_code = gimple_assign_rhs_code (rhs1_stmt); } else return false; } if (CONVERT_EXPR_CODE_P (rhs2_code)) { conv2_stmt = rhs2_stmt; rhs2 = gimple_assign_rhs1 (rhs2_stmt); if (TREE_CODE (rhs2) == SSA_NAME) { rhs2_stmt = SSA_NAME_DEF_STMT (rhs2); if (is_gimple_assign (rhs2_stmt)) rhs2_code = gimple_assign_rhs_code (rhs2_stmt); } else return false; } /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call is_widening_mult_p, but we still need the rhs returns. It might also appear that it would be sufficient to use the existing operands of the widening multiply, but that would limit the choice of multiply-and-accumulate instructions. If the widened-multiplication result has more than one uses, it is probably wiser not to do the conversion. */ if (code == PLUS_EXPR && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR)) { if (!has_single_use (rhs1) || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1, &type2, &mult_rhs2)) return false; add_rhs = rhs2; conv_stmt = conv1_stmt; } else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR) { if (!has_single_use (rhs2) || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1, &type2, &mult_rhs2)) return false; add_rhs = rhs1; conv_stmt = conv2_stmt; } else return false; to_mode = TYPE_MODE (type); from_mode = TYPE_MODE (type1); from_unsigned1 = TYPE_UNSIGNED (type1); from_unsigned2 = TYPE_UNSIGNED (type2); optype = type1; /* There's no such thing as a mixed sign madd yet, so use a wider mode. */ if (from_unsigned1 != from_unsigned2) { if (!INTEGRAL_TYPE_P (type)) return false; /* We can use a signed multiply with unsigned types as long as there is a wider mode to use, or it is the smaller of the two types that is unsigned. Note that type1 >= type2, always. */ if ((from_unsigned1 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode)) || (from_unsigned2 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode))) { from_mode = GET_MODE_WIDER_MODE (from_mode); if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode)) return false; } from_unsigned1 = from_unsigned2 = false; optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode), false); } /* If there was a conversion between the multiply and addition then we need to make sure it fits a multiply-and-accumulate. The should be a single mode change which does not change the value. */ if (conv_stmt) { /* We use the original, unmodified data types for this. */ tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt)); tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt)); int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2); bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2); if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type)) { /* Conversion is a truncate. */ if (TYPE_PRECISION (to_type) < data_size) return false; } else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type)) { /* Conversion is an extend. Check it's the right sort. */ if (TYPE_UNSIGNED (from_type) != is_unsigned && !(is_unsigned && TYPE_PRECISION (from_type) > data_size)) return false; } /* else convert is a no-op for our purposes. */ } /* Verify that the machine can perform a widening multiply accumulate in this mode/signedness combination, otherwise this transformation is likely to pessimize code. */ this_optab = optab_for_tree_code (wmult_code, optype, optab_default); handler = find_widening_optab_handler_and_mode (this_optab, to_mode, from_mode, 0, &actual_mode); if (handler == CODE_FOR_nothing) return false; /* Ensure that the inputs to the handler are in the correct precison for the opcode. This will be the full mode size. */ actual_precision = GET_MODE_PRECISION (actual_mode); if (actual_precision != TYPE_PRECISION (type1) || from_unsigned1 != TYPE_UNSIGNED (type1)) mult_rhs1 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned1), mult_rhs1); if (actual_precision != TYPE_PRECISION (type2) || from_unsigned2 != TYPE_UNSIGNED (type2)) mult_rhs2 = build_and_insert_cast (gsi, loc, build_nonstandard_integer_type (actual_precision, from_unsigned2), mult_rhs2); if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs))) add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs); /* Handle constants. */ if (TREE_CODE (mult_rhs1) == INTEGER_CST) mult_rhs1 = fold_convert (type1, mult_rhs1); if (TREE_CODE (mult_rhs2) == INTEGER_CST) mult_rhs2 = fold_convert (type2, mult_rhs2); gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2, add_rhs); update_stmt (gsi_stmt (*gsi)); widen_mul_stats.maccs_inserted++; return true; } /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2 with uses in additions and subtractions to form fused multiply-add operations. Returns true if successful and MUL_STMT should be removed. */ static bool convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2) { tree mul_result = gimple_get_lhs (mul_stmt); tree type = TREE_TYPE (mul_result); gimple use_stmt, neguse_stmt; gassign *fma_stmt; use_operand_p use_p; imm_use_iterator imm_iter; if (FLOAT_TYPE_P (type) && flag_fp_contract_mode == FP_CONTRACT_OFF) return false; /* We don't want to do bitfield reduction ops. */ if (INTEGRAL_TYPE_P (type) && (TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type)))) return false; /* If the target doesn't support it, don't generate it. We assume that if fma isn't available then fms, fnma or fnms are not either. */ if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing) return false; /* If the multiplication has zero uses, it is kept around probably because of -fnon-call-exceptions. Don't optimize it away in that case, it is DCE job. */ if (has_zero_uses (mul_result)) return false; /* Make sure that the multiplication statement becomes dead after the transformation, thus that all uses are transformed to FMAs. This means we assume that an FMA operation has the same cost as an addition. */ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result) { enum tree_code use_code; tree result = mul_result; bool negate_p = false; use_stmt = USE_STMT (use_p); if (is_gimple_debug (use_stmt)) continue; /* For now restrict this operations to single basic blocks. In theory we would want to support sinking the multiplication in m = a*b; if () ma = m + c; else d = m; to form a fma in the then block and sink the multiplication to the else block. */ if (gimple_bb (use_stmt) != gimple_bb (mul_stmt)) return false; if (!is_gimple_assign (use_stmt)) return false; use_code = gimple_assign_rhs_code (use_stmt); /* A negate on the multiplication leads to FNMA. */ if (use_code == NEGATE_EXPR) { ssa_op_iter iter; use_operand_p usep; result = gimple_assign_lhs (use_stmt); /* Make sure the negate statement becomes dead with this single transformation. */ if (!single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt)) return false; /* Make sure the multiplication isn't also used on that stmt. */ FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE) if (USE_FROM_PTR (usep) == mul_result) return false; /* Re-validate. */ use_stmt = neguse_stmt; if (gimple_bb (use_stmt) != gimple_bb (mul_stmt)) return false; if (!is_gimple_assign (use_stmt)) return false; use_code = gimple_assign_rhs_code (use_stmt); negate_p = true; } switch (use_code) { case MINUS_EXPR: if (gimple_assign_rhs2 (use_stmt) == result) negate_p = !negate_p; break; case PLUS_EXPR: break; default: /* FMA can only be formed from PLUS and MINUS. */ return false; } /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed by a MULT_EXPR that we'll visit later, we might be able to get a more profitable match with fnma. OTOH, if we don't, a negate / fma pair has likely lower latency that a mult / subtract pair. */ if (use_code == MINUS_EXPR && !negate_p && gimple_assign_rhs1 (use_stmt) == result && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing) { tree rhs2 = gimple_assign_rhs2 (use_stmt); if (TREE_CODE (rhs2) == SSA_NAME) { gimple stmt2 = SSA_NAME_DEF_STMT (rhs2); if (has_single_use (rhs2) && is_gimple_assign (stmt2) && gimple_assign_rhs_code (stmt2) == MULT_EXPR) return false; } } /* We can't handle a * b + a * b. */ if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt)) return false; /* While it is possible to validate whether or not the exact form that we've recognized is available in the backend, the assumption is that the transformation is never a loss. For instance, suppose the target only has the plain FMA pattern available. Consider a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we still have 3 operations, but in the FMA form the two NEGs are independent and could be run in parallel. */ } FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result) { gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt); enum tree_code use_code; tree addop, mulop1 = op1, result = mul_result; bool negate_p = false; if (is_gimple_debug (use_stmt)) continue; use_code = gimple_assign_rhs_code (use_stmt); if (use_code == NEGATE_EXPR) { result = gimple_assign_lhs (use_stmt); single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt); gsi_remove (&gsi, true); release_defs (use_stmt); use_stmt = neguse_stmt; gsi = gsi_for_stmt (use_stmt); use_code = gimple_assign_rhs_code (use_stmt); negate_p = true; } if (gimple_assign_rhs1 (use_stmt) == result) { addop = gimple_assign_rhs2 (use_stmt); /* a * b - c -> a * b + (-c) */ if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR) addop = force_gimple_operand_gsi (&gsi, build1 (NEGATE_EXPR, type, addop), true, NULL_TREE, true, GSI_SAME_STMT); } else { addop = gimple_assign_rhs1 (use_stmt); /* a - b * c -> (-b) * c + a */ if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR) negate_p = !negate_p; } if (negate_p) mulop1 = force_gimple_operand_gsi (&gsi, build1 (NEGATE_EXPR, type, mulop1), true, NULL_TREE, true, GSI_SAME_STMT); fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt), FMA_EXPR, mulop1, op2, addop); gsi_replace (&gsi, fma_stmt, true); widen_mul_stats.fmas_inserted++; } return true; } /* Find integer multiplications where the operands are extended from smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR where appropriate. */ namespace { const pass_data pass_data_optimize_widening_mul = { GIMPLE_PASS, /* type */ "widening_mul", /* name */ OPTGROUP_NONE, /* optinfo_flags */ TV_NONE, /* tv_id */ PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_update_ssa, /* todo_flags_finish */ }; class pass_optimize_widening_mul : public gimple_opt_pass { public: pass_optimize_widening_mul (gcc::context *ctxt) : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *) { return flag_expensive_optimizations && optimize; } virtual unsigned int execute (function *); }; // class pass_optimize_widening_mul unsigned int pass_optimize_widening_mul::execute (function *fun) { basic_block bb; bool cfg_changed = false; memset (&widen_mul_stats, 0, sizeof (widen_mul_stats)); FOR_EACH_BB_FN (bb, fun) { gimple_stmt_iterator gsi; for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);) { gimple stmt = gsi_stmt (gsi); enum tree_code code; if (is_gimple_assign (stmt)) { code = gimple_assign_rhs_code (stmt); switch (code) { case MULT_EXPR: if (!convert_mult_to_widen (stmt, &gsi) && convert_mult_to_fma (stmt, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt))) { gsi_remove (&gsi, true); release_defs (stmt); continue; } break; case PLUS_EXPR: case MINUS_EXPR: convert_plusminus_to_widen (&gsi, stmt, code); break; default:; } } else if (is_gimple_call (stmt) && gimple_call_lhs (stmt)) { tree fndecl = gimple_call_fndecl (stmt); if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) { switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_POWF: case BUILT_IN_POW: case BUILT_IN_POWL: if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST && REAL_VALUES_EQUAL (TREE_REAL_CST (gimple_call_arg (stmt, 1)), dconst2) && convert_mult_to_fma (stmt, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 0))) { unlink_stmt_vdef (stmt); if (gsi_remove (&gsi, true) && gimple_purge_dead_eh_edges (bb)) cfg_changed = true; release_defs (stmt); continue; } break; default:; } } } gsi_next (&gsi); } } statistics_counter_event (fun, "widening multiplications inserted", widen_mul_stats.widen_mults_inserted); statistics_counter_event (fun, "widening maccs inserted", widen_mul_stats.maccs_inserted); statistics_counter_event (fun, "fused multiply-adds inserted", widen_mul_stats.fmas_inserted); return cfg_changed ? TODO_cleanup_cfg : 0; } } // anon namespace gimple_opt_pass * make_pass_optimize_widening_mul (gcc::context *ctxt) { return new pass_optimize_widening_mul (ctxt); }