/* SSA operands management for trees. Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "function.h" #include "diagnostic.h" #include "errors.h" #include "tree-flow.h" #include "tree-inline.h" #include "tree-pass.h" #include "ggc.h" #include "timevar.h" #include "langhooks.h" /* This file contains the code required to manage the operands cache of the SSA optimizer. For every stmt, we maintain an operand cache in the stmt annotation. This cache contains operands that will be of interest to optimizers and other passes wishing to manipulate the IL. The operand type are broken up into REAL and VIRTUAL operands. The real operands are represented as pointers into the stmt's operand tree. Thus any manipulation of the real operands will be reflected in the actual tree. Virtual operands are represented solely in the cache, although the base variable for the SSA_NAME may, or may not occur in the stmt's tree. Manipulation of the virtual operands will not be reflected in the stmt tree. The routines in this file are concerned with creating this operand cache from a stmt tree. get_stmt_operands() in the primary entry point. The operand tree is the parsed by the various get_* routines which look through the stmt tree for the occurrence of operands which may be of interest, and calls are made to the append_* routines whenever one is found. There are 5 of these routines, each representing one of the 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and Virtual Must Defs. The append_* routines check for duplication, and simply keep a list of unique objects for each operand type in the build_* extendable vectors. Once the stmt tree is completely parsed, the finalize_ssa_operands() routine is called, which proceeds to perform the finalization routine on each of the 5 operand vectors which have been built up. If the stmt had a previous operand cache, the finalization routines attempt to match up the new operands with the old ones. If its a perfect match, the old vector is simply reused. If it isn't a perfect match, then a new vector is created and the new operands are placed there. For virtual operands, if the previous cache had SSA_NAME version of a variable, and that same variable occurs in the same operands cache, then the new cache vector will also get the same SSA_NAME. i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand vector for VUSE, then the new vector will also be modified such that it contains 'a_5' rather than 'a'. */ /* Flags to describe operand properties in get_stmt_operands and helpers. */ /* By default, operands are loaded. */ #define opf_none 0 /* Operand is the target of an assignment expression or a call-clobbered variable */ #define opf_is_def (1 << 0) /* Operand is the target of an assignment expression. */ #define opf_kill_def (1 << 1) /* No virtual operands should be created in the expression. This is used when traversing ADDR_EXPR nodes which have different semantics than other expressions. Inside an ADDR_EXPR node, the only operands that we need to consider are indices into arrays. For instance, &a.b[i] should generate a USE of 'i' but it should not generate a VUSE for 'a' nor a VUSE for 'b'. */ #define opf_no_vops (1 << 2) /* Array for building all the def operands. */ static GTY (()) varray_type build_defs; /* Array for building all the use operands. */ static GTY (()) varray_type build_uses; /* Array for building all the v_may_def operands. */ static GTY (()) varray_type build_v_may_defs; /* Array for building all the vuse operands. */ static GTY (()) varray_type build_vuses; /* Array for building all the v_must_def operands. */ static GTY (()) varray_type build_v_must_defs; /* True if the operands for call clobbered vars are cached and valid. */ bool ssa_call_clobbered_cache_valid; bool ssa_ro_call_cache_valid; /* These arrays are the cached operand vectors for call clobbered calls. */ static GTY (()) varray_type clobbered_v_may_defs; static GTY (()) varray_type clobbered_vuses; static GTY (()) varray_type ro_call_vuses; static bool clobbered_aliased_loads; static bool clobbered_aliased_stores; static bool ro_call_aliased_loads; static stmt_operands_p parse_old_ops = NULL; def_operand_p NULL_DEF_OPERAND_P = { NULL }; static void note_addressable (tree, stmt_ann_t); static void get_expr_operands (tree, tree *, int); static void get_asm_expr_operands (tree); static void get_indirect_ref_operands (tree, tree, int); static void get_call_expr_operands (tree, tree); static inline void append_def (tree *); static inline void append_use (tree *); static void append_v_may_def (tree); static void append_v_must_def (tree); static void add_call_clobber_ops (tree); static void add_call_read_ops (tree); static void add_stmt_operand (tree *, stmt_ann_t, int); /* Return a vector of contiguous memory for NUM def operands. */ static inline def_optype allocate_def_optype (unsigned num) { def_optype def_ops; unsigned size; size = sizeof (struct def_optype_d) + sizeof (tree *) * (num - 1); def_ops = ggc_alloc (size); def_ops->num_defs = num; return def_ops; } /* Return a vector of contiguous memory for NUM use operands. */ static inline use_optype allocate_use_optype (unsigned num) { use_optype use_ops; unsigned size; size = sizeof (struct use_optype_d) + sizeof (use_operand_type_t) * (num - 1); use_ops = ggc_alloc (size); use_ops->num_uses = num; return use_ops; } /* Return a vector of contiguous memory for NUM v_may_def operands. */ static inline v_may_def_optype allocate_v_may_def_optype (unsigned num) { v_may_def_optype v_may_def_ops; unsigned size; size = sizeof (struct v_may_def_optype_d) + sizeof (v_def_use_operand_type_t) * (num - 1); v_may_def_ops = ggc_alloc (size); v_may_def_ops->num_v_may_defs = num; return v_may_def_ops; } /* Return a vector of contiguous memory for NUM v_use operands. */ static inline vuse_optype allocate_vuse_optype (unsigned num) { vuse_optype vuse_ops; unsigned size; size = sizeof (struct vuse_optype_d) + sizeof (vuse_operand_type_t) * (num - 1); vuse_ops = ggc_alloc (size); vuse_ops->num_vuses = num; return vuse_ops; } /* Return a vector of contiguous memory for NUM v_must_def operands. */ static inline v_must_def_optype allocate_v_must_def_optype (unsigned num) { v_must_def_optype v_must_def_ops; unsigned size; size = sizeof (struct v_must_def_optype_d) + sizeof (v_def_use_operand_type_t) * (num - 1); v_must_def_ops = ggc_alloc (size); v_must_def_ops->num_v_must_defs = num; return v_must_def_ops; } /* Free memory for USES. */ static inline void free_uses (use_optype *uses) { if (*uses) { unsigned int x; use_optype use = *uses; for (x = 0; x < use->num_uses; x++) delink_imm_use (&(use->uses[x])); ggc_free (*uses); *uses = NULL; } } /* Free memory for DEFS. */ static inline void free_defs (def_optype *defs) { if (*defs) { ggc_free (*defs); *defs = NULL; } } /* Free memory for VUSES. */ static inline void free_vuses (vuse_optype *vuses) { if (*vuses) { unsigned int x; vuse_optype vuse = *vuses; for (x = 0; x < vuse->num_vuses; x++) delink_imm_use (&(vuse->vuses[x].imm_use)); ggc_free (*vuses); *vuses = NULL; } } /* Free memory for V_MAY_DEFS. */ static inline void free_v_may_defs (v_may_def_optype *v_may_defs) { if (*v_may_defs) { unsigned int x; v_may_def_optype v_may_def = *v_may_defs; for (x = 0; x < v_may_def->num_v_may_defs; x++) delink_imm_use (&(v_may_def->v_may_defs[x].imm_use)); ggc_free (*v_may_defs); *v_may_defs = NULL; } } /* Free memory for V_MUST_DEFS. */ static inline void free_v_must_defs (v_must_def_optype *v_must_defs) { if (*v_must_defs) { unsigned int x; v_must_def_optype v_must_def = *v_must_defs; for (x = 0; x < v_must_def->num_v_must_defs; x++) delink_imm_use (&(v_must_def->v_must_defs[x].imm_use)); ggc_free (*v_must_defs); *v_must_defs = NULL; } } /* Initialize the operand cache routines. */ void init_ssa_operands (void) { VARRAY_TREE_PTR_INIT (build_defs, 5, "build defs"); VARRAY_TREE_PTR_INIT (build_uses, 10, "build uses"); VARRAY_TREE_INIT (build_v_may_defs, 10, "build v_may_defs"); VARRAY_TREE_INIT (build_vuses, 10, "build vuses"); VARRAY_TREE_INIT (build_v_must_defs, 10, "build v_must_defs"); } /* Dispose of anything required by the operand routines. */ void fini_ssa_operands (void) { ggc_free (build_defs); ggc_free (build_uses); ggc_free (build_v_may_defs); ggc_free (build_vuses); ggc_free (build_v_must_defs); build_defs = NULL; build_uses = NULL; build_v_may_defs = NULL; build_vuses = NULL; build_v_must_defs = NULL; if (clobbered_v_may_defs) { ggc_free (clobbered_v_may_defs); ggc_free (clobbered_vuses); clobbered_v_may_defs = NULL; clobbered_vuses = NULL; } if (ro_call_vuses) { ggc_free (ro_call_vuses); ro_call_vuses = NULL; } } /* Initialize V_USES index INDEX to VAL for STMT. If OLD is present, preserve the position of the may-def in the immediate_use list. */ static inline void initialize_vuse_operand (vuse_optype vuses, unsigned int index, tree val, tree stmt, ssa_imm_use_t *old) { vuse_operand_type_t *ptr; ptr = &(vuses->vuses[index]); ptr->use = val; ptr->imm_use.use = &(ptr->use); if (old) relink_imm_use_stmt (&(ptr->imm_use), old, stmt); else link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt); } /* Initialize V_MAY_DEF_OPS index X to be DEF = MAY_DEF for STMT. If OLD is present, preserve the position of the may-def in the immediate_use list. */ static inline void initialize_v_may_def_operand (v_may_def_optype v_may_def_ops, unsigned int x, tree def, tree use, tree stmt, ssa_imm_use_t *old) { v_def_use_operand_type_t *ptr; ptr = &(v_may_def_ops->v_may_defs[x]); ptr->def = def; ptr->use = use; ptr->imm_use.use = &(ptr->use); if (old) relink_imm_use_stmt (&(ptr->imm_use), old, stmt); else link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt); } /* Initialize V_MUST_DEF_OPS index X to be DEF = MUST_DEF for STMT. If OLD is present, preserve the position of the may-def in the immediate_use list. */ static inline void initialize_v_must_def_operand (v_must_def_optype v_must_def_ops, unsigned int x, tree def, tree use, tree stmt, ssa_imm_use_t *old) { v_def_use_operand_type_t *ptr; ptr = &(v_must_def_ops->v_must_defs[x]); ptr->def = def; ptr->use = use; ptr->imm_use.use = &(ptr->use); if (old) relink_imm_use_stmt (&(ptr->imm_use), old, stmt); else link_imm_use_stmt (&(ptr->imm_use), ptr->use, stmt); } /* All the finalize_ssa_* routines do the work required to turn the build_ VARRAY into an operand_vector of the appropriate type. The original vector, if any, is passed in for comparison and virtual SSA_NAME reuse. If the old vector is reused, the pointer passed in is set to NULL so that the memory is not freed when the old operands are freed. */ /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */ static def_optype finalize_ssa_defs (def_optype *old_ops_p, tree stmt) { unsigned num, x; def_optype def_ops, old_ops; bool build_diff; num = VARRAY_ACTIVE_SIZE (build_defs); if (num == 0) return NULL; /* There should only be a single real definition per assignment. */ gcc_assert ((stmt && TREE_CODE (stmt) != MODIFY_EXPR) || num <= 1); old_ops = *old_ops_p; /* Compare old vector and new array. */ build_diff = true; if (stmt && old_ops && old_ops->num_defs == num) { build_diff = false; for (x = 0; x < num; x++) if (old_ops->defs[x].def != VARRAY_TREE_PTR (build_defs, x)) { build_diff = true; break; } } if (!build_diff) { def_ops = old_ops; *old_ops_p = NULL; } else { def_ops = allocate_def_optype (num); for (x = 0; x < num ; x++) def_ops->defs[x].def = VARRAY_TREE_PTR (build_defs, x); } VARRAY_POP_ALL (build_defs); return def_ops; } /* Make sure PTR is inn the correct immediate use list. Since uses are simply pointers into the stmt TREE, there is no way of telling if anyone has changed what this pointer points to via TREE_OPERANDS (exp, 0) = <...>. THe contents are different, but the the pointer is still the same. This routine will check to make sure PTR is in the correct list, and if it isn't put it in the correct list. We cannot simply check the previous node because all nodes in the same stmt might have be changed. */ static inline void correct_use_link (ssa_imm_use_t *ptr, tree stmt) { ssa_imm_use_t *prev; tree root; /* Fold_stmt () may have changed the stmt pointers. */ if (ptr->stmt != stmt) ptr->stmt = stmt; prev = ptr->prev; if (prev) { bool stmt_mod = true; /* Find the first element which isn't a SAFE iterator, is in a sifferent stmt, and is not a a modified stmt, That node is in the correct list, see if we are too. */ while (stmt_mod) { while (prev->stmt == stmt || prev->stmt == NULL) prev = prev->prev; if (prev->use == NULL) stmt_mod = false; else if ((stmt_mod = stmt_modified_p (prev->stmt))) prev = prev->prev; } /* Get the ssa_name of the list the node is in. */ if (prev->use == NULL) root = prev->stmt; else root = *(prev->use); /* If its the right list, simply return. */ if (root == *(ptr->use)) return; } /* Its in the wrong list if we reach here. */ delink_imm_use (ptr); link_imm_use (ptr, *(ptr->use)); } /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */ static use_optype finalize_ssa_uses (use_optype *old_ops_p, tree stmt) { unsigned num, x, num_old, i; use_optype use_ops, old_ops; bool build_diff; num = VARRAY_ACTIVE_SIZE (build_uses); if (num == 0) return NULL; #ifdef ENABLE_CHECKING { unsigned x; /* If the pointer to the operand is the statement itself, something is wrong. It means that we are pointing to a local variable (the initial call to get_stmt_operands does not pass a pointer to a statement). */ for (x = 0; x < num; x++) gcc_assert (*(VARRAY_TREE_PTR (build_uses, x)) != stmt); } #endif old_ops = *old_ops_p; num_old = ((stmt && old_ops) ? old_ops->num_uses : 0); /* Check if the old vector and the new array are the same. */ build_diff = true; if (stmt && old_ops && num_old == num) { build_diff = false; for (x = 0; x < num; x++) { tree *var_p = VARRAY_TREE_PTR (build_uses, x); tree *node = old_ops->uses[x].use; /* Check the pointer values to see if they are the same. */ if (node != var_p) { build_diff = true; break; } } } if (!build_diff) { use_ops = old_ops; *old_ops_p = NULL; for (i = 0; i < num_old; i++) correct_use_link (&(use_ops->uses[i]), stmt); } else { use_ops = allocate_use_optype (num); for (x = 0; x < num ; x++) { tree *var = VARRAY_TREE_PTR (build_uses, x); use_ops->uses[x].use = var; for (i = 0; i < num_old; i++) { ssa_imm_use_t *ptr = &(old_ops->uses[i]); if (ptr->use == var) { relink_imm_use_stmt (&(use_ops->uses[x]), ptr, stmt); correct_use_link (&(use_ops->uses[x]), stmt); break; } } if (i == num_old) link_imm_use_stmt (&(use_ops->uses[x]), *var, stmt); } } VARRAY_POP_ALL (build_uses); return use_ops; } /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */ static v_may_def_optype finalize_ssa_v_may_defs (v_may_def_optype *old_ops_p, tree stmt) { unsigned num, x, i, old_num; v_may_def_optype v_may_def_ops, old_ops; tree result, var; bool build_diff; num = VARRAY_ACTIVE_SIZE (build_v_may_defs); if (num == 0) return NULL; old_ops = *old_ops_p; /* Check if the old vector and the new array are the same. */ build_diff = true; if (stmt && old_ops && old_ops->num_v_may_defs == num) { old_num = num; build_diff = false; for (x = 0; x < num; x++) { var = old_ops->v_may_defs[x].def; if (TREE_CODE (var) == SSA_NAME) var = SSA_NAME_VAR (var); if (var != VARRAY_TREE (build_v_may_defs, x)) { build_diff = true; break; } } } else old_num = (old_ops ? old_ops->num_v_may_defs : 0); if (!build_diff) { v_may_def_ops = old_ops; *old_ops_p = NULL; for (x = 0; x < num; x++) correct_use_link (&(v_may_def_ops->v_may_defs[x].imm_use), stmt); } else { v_may_def_ops = allocate_v_may_def_optype (num); for (x = 0; x < num; x++) { var = VARRAY_TREE (build_v_may_defs, x); /* Look for VAR in the old operands vector. */ for (i = 0; i < old_num; i++) { result = old_ops->v_may_defs[i].def; if (TREE_CODE (result) == SSA_NAME) result = SSA_NAME_VAR (result); if (result == var) { initialize_v_may_def_operand (v_may_def_ops, x, old_ops->v_may_defs[i].def, old_ops->v_may_defs[i].use, stmt, &(old_ops->v_may_defs[i].imm_use)); break; } } if (i == old_num) { initialize_v_may_def_operand (v_may_def_ops, x, var, var, stmt, NULL); } } } /* Empty the V_MAY_DEF build vector after VUSES have been processed. */ return v_may_def_ops; } /* Clear the in_list bits and empty the build array for v_may_defs. */ static inline void cleanup_v_may_defs (void) { unsigned x, num; num = VARRAY_ACTIVE_SIZE (build_v_may_defs); for (x = 0; x < num; x++) { tree t = VARRAY_TREE (build_v_may_defs, x); var_ann_t ann = var_ann (t); ann->in_v_may_def_list = 0; } VARRAY_POP_ALL (build_v_may_defs); } /* Return a new vuse operand vector, comparing to OLD_OPS_P. */ static vuse_optype finalize_ssa_vuses (vuse_optype *old_ops_p, tree stmt) { unsigned num, x, i, num_v_may_defs, old_num; vuse_optype vuse_ops, old_ops; bool build_diff; num = VARRAY_ACTIVE_SIZE (build_vuses); if (num == 0) { cleanup_v_may_defs (); return NULL; } /* Remove superfluous VUSE operands. If the statement already has a V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not needed because V_MAY_DEFs imply a VUSE of the variable. For instance, suppose that variable 'a' is aliased: # VUSE # a_3 = V_MAY_DEF a = a + 1; The VUSE is superfluous because it is implied by the V_MAY_DEF operation. */ num_v_may_defs = VARRAY_ACTIVE_SIZE (build_v_may_defs); if (num_v_may_defs > 0) { size_t i; tree vuse; for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++) { vuse = VARRAY_TREE (build_vuses, i); if (TREE_CODE (vuse) != SSA_NAME) { var_ann_t ann = var_ann (vuse); ann->in_vuse_list = 0; if (ann->in_v_may_def_list) { /* If we found a useless VUSE operand, remove it from the operand array by replacing it with the last active element in the operand array (unless the useless VUSE was the last operand, in which case we simply remove it. */ if (i != VARRAY_ACTIVE_SIZE (build_vuses) - 1) { VARRAY_TREE (build_vuses, i) = VARRAY_TREE (build_vuses, VARRAY_ACTIVE_SIZE (build_vuses) - 1); } VARRAY_POP (build_vuses); /* We want to rescan the element at this index, unless this was the last element, in which case the loop terminates. */ i--; } } } } else /* Clear out the in_list bits. */ for (x = 0; x < num; x++) { tree t = VARRAY_TREE (build_vuses, x); if (TREE_CODE (t) != SSA_NAME) { var_ann_t ann = var_ann (t); ann->in_vuse_list = 0; } } num = VARRAY_ACTIVE_SIZE (build_vuses); /* We could have reduced the size to zero now, however. */ if (num == 0) { cleanup_v_may_defs (); return NULL; } old_ops = *old_ops_p; /* Determine whether vuses is the same as the old vector. */ build_diff = true; if (stmt && old_ops && old_ops->num_vuses == num) { old_num = num; build_diff = false; for (x = 0; x < num ; x++) { tree v; v = old_ops->vuses[x].use; if (TREE_CODE (v) == SSA_NAME) v = SSA_NAME_VAR (v); if (v != VARRAY_TREE (build_vuses, x)) { build_diff = true; break; } } } else old_num = (old_ops ? old_ops->num_vuses : 0); if (!build_diff) { vuse_ops = old_ops; *old_ops_p = NULL; for (x = 0; x < num; x++) correct_use_link (&(vuse_ops->vuses[x].imm_use), stmt); } else { vuse_ops = allocate_vuse_optype (num); for (x = 0; x < num; x++) { tree result, var = VARRAY_TREE (build_vuses, x); /* Look for VAR in the old vector, and use that SSA_NAME. */ for (i = 0; i < old_num; i++) { result = old_ops->vuses[i].use; if (TREE_CODE (result) == SSA_NAME) result = SSA_NAME_VAR (result); if (result == var) { initialize_vuse_operand (vuse_ops, x, old_ops->vuses[i].use, stmt, &(old_ops->vuses[i].imm_use)); break; } } if (i == old_num) initialize_vuse_operand (vuse_ops, x, var, stmt, NULL); } } /* The v_may_def build vector wasn't freed because we needed it here. Free it now with the vuses build vector. */ VARRAY_POP_ALL (build_vuses); cleanup_v_may_defs (); return vuse_ops; } /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */ static v_must_def_optype finalize_ssa_v_must_defs (v_must_def_optype *old_ops_p, tree stmt) { unsigned num, x, i, old_num = 0; v_must_def_optype v_must_def_ops, old_ops; tree result, var; bool build_diff; num = VARRAY_ACTIVE_SIZE (build_v_must_defs); if (num == 0) return NULL; /* In the presence of subvars, there may be more than one V_MUST_DEF per statement (one for each subvar). It is a bit expensive to verify that all must-defs in a statement belong to subvars if there is more than one MUST-def, so we don't do it. Suffice to say, if you reach here without having subvars, and have num >1, you have hit a bug. */ old_ops = *old_ops_p; /* Check if the old vector and the new array are the same. */ build_diff = true; if (stmt && old_ops && old_ops->num_v_must_defs == num) { old_num = num; build_diff = false; for (x = 0; x < num; x++) { tree var = old_ops->v_must_defs[x].def; if (TREE_CODE (var) == SSA_NAME) var = SSA_NAME_VAR (var); if (var != VARRAY_TREE (build_v_must_defs, x)) { build_diff = true; break; } } } else old_num = (old_ops ? old_ops->num_v_must_defs : 0); if (!build_diff) { v_must_def_ops = old_ops; *old_ops_p = NULL; for (x = 0; x < num; x++) correct_use_link (&(v_must_def_ops->v_must_defs[x].imm_use), stmt); } else { v_must_def_ops = allocate_v_must_def_optype (num); for (x = 0; x < num ; x++) { var = VARRAY_TREE (build_v_must_defs, x); /* Look for VAR in the original vector. */ for (i = 0; i < old_num; i++) { result = old_ops->v_must_defs[i].def; if (TREE_CODE (result) == SSA_NAME) result = SSA_NAME_VAR (result); if (result == var) { initialize_v_must_def_operand (v_must_def_ops, x, old_ops->v_must_defs[i].def, old_ops->v_must_defs[i].use, stmt, &(old_ops->v_must_defs[i].imm_use)); break; } } if (i == old_num) { initialize_v_must_def_operand (v_must_def_ops, x, var, var, stmt, NULL); } } } VARRAY_POP_ALL (build_v_must_defs); return v_must_def_ops; } /* Finalize all the build vectors, fill the new ones into INFO. */ static inline void finalize_ssa_stmt_operands (tree stmt, stmt_operands_p old_ops, stmt_operands_p new_ops) { new_ops->def_ops = finalize_ssa_defs (&(old_ops->def_ops), stmt); new_ops->use_ops = finalize_ssa_uses (&(old_ops->use_ops), stmt); new_ops->v_must_def_ops = finalize_ssa_v_must_defs (&(old_ops->v_must_def_ops), stmt); new_ops->v_may_def_ops = finalize_ssa_v_may_defs (&(old_ops->v_may_def_ops), stmt); new_ops->vuse_ops = finalize_ssa_vuses (&(old_ops->vuse_ops), stmt); } /* Start the process of building up operands vectors in INFO. */ static inline void start_ssa_stmt_operands (void) { gcc_assert (VARRAY_ACTIVE_SIZE (build_defs) == 0); gcc_assert (VARRAY_ACTIVE_SIZE (build_uses) == 0); gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses) == 0); gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs) == 0); gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs) == 0); } /* Add DEF_P to the list of pointers to operands. */ static inline void append_def (tree *def_p) { VARRAY_PUSH_TREE_PTR (build_defs, def_p); } /* Add USE_P to the list of pointers to operands. */ static inline void append_use (tree *use_p) { VARRAY_PUSH_TREE_PTR (build_uses, use_p); } /* Add a new virtual may def for variable VAR to the build array. */ static inline void append_v_may_def (tree var) { var_ann_t ann = get_var_ann (var); /* Don't allow duplicate entries. */ if (ann->in_v_may_def_list) return; ann->in_v_may_def_list = 1; VARRAY_PUSH_TREE (build_v_may_defs, var); } /* Add VAR to the list of virtual uses. */ static inline void append_vuse (tree var) { /* Don't allow duplicate entries. */ if (TREE_CODE (var) != SSA_NAME) { var_ann_t ann = get_var_ann (var); if (ann->in_vuse_list || ann->in_v_may_def_list) return; ann->in_vuse_list = 1; } VARRAY_PUSH_TREE (build_vuses, var); } /* Add VAR to the list of virtual must definitions for INFO. */ static inline void append_v_must_def (tree var) { unsigned i; /* Don't allow duplicate entries. */ for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_must_defs); i++) if (var == VARRAY_TREE (build_v_must_defs, i)) return; VARRAY_PUSH_TREE (build_v_must_defs, var); } /* Parse STMT looking for operands. OLD_OPS is the original stmt operand cache for STMT, if it existed before. When finished, the various build_* operand vectors will have potential operands. in them. */ static void parse_ssa_operands (tree stmt) { enum tree_code code; code = TREE_CODE (stmt); switch (code) { case MODIFY_EXPR: /* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if either only part of LHS is modified or if the RHS might throw, otherwise, use V_MUST_DEF. ??? If it might throw, we should represent somehow that it is killed on the fallthrough path. */ { tree lhs = TREE_OPERAND (stmt, 0); int lhs_flags = opf_is_def; get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none); /* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether or not the entire LHS is modified; that depends on what's inside the VIEW_CONVERT_EXPR. */ if (TREE_CODE (lhs) == VIEW_CONVERT_EXPR) lhs = TREE_OPERAND (lhs, 0); if (TREE_CODE (lhs) != ARRAY_REF && TREE_CODE (lhs) != ARRAY_RANGE_REF && TREE_CODE (lhs) != BIT_FIELD_REF && TREE_CODE (lhs) != REALPART_EXPR && TREE_CODE (lhs) != IMAGPART_EXPR) lhs_flags |= opf_kill_def; get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), lhs_flags); } break; case COND_EXPR: get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none); break; case SWITCH_EXPR: get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none); break; case ASM_EXPR: get_asm_expr_operands (stmt); break; case RETURN_EXPR: get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none); break; case GOTO_EXPR: get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none); break; case LABEL_EXPR: get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none); break; /* These nodes contain no variable references. */ case BIND_EXPR: case CASE_LABEL_EXPR: case TRY_CATCH_EXPR: case TRY_FINALLY_EXPR: case EH_FILTER_EXPR: case CATCH_EXPR: case RESX_EXPR: break; default: /* Notice that if get_expr_operands tries to use &STMT as the operand pointer (which may only happen for USE operands), we will abort in append_use. This default will handle statements like empty statements, or CALL_EXPRs that may appear on the RHS of a statement or as statements themselves. */ get_expr_operands (stmt, &stmt, opf_none); break; } } /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the original operands, and if ANN is non-null, appropriate stmt flags are set in the stmt's annotation. If ANN is NULL, this is not considered a "real" stmt, and none of the operands will be entered into their respective immediate uses tables. This is to allow stmts to be processed when they are not actually in the CFG. Note that some fields in old_ops may change to NULL, although none of the memory they originally pointed to will be destroyed. It is appropriate to call free_stmt_operands() on the value returned in old_ops. The rationale for this: Certain optimizations wish to examine the difference between new_ops and old_ops after processing. If a set of operands don't change, new_ops will simply assume the pointer in old_ops, and the old_ops pointer will be set to NULL, indicating no memory needs to be cleared. Usage might appear something like: old_ops_copy = old_ops = stmt_ann(stmt)->operands; build_ssa_operands (stmt, NULL, &old_ops, &new_ops); <* compare old_ops_copy and new_ops *> free_ssa_operands (old_ops); */ static void build_ssa_operands (tree stmt, stmt_ann_t ann, stmt_operands_p old_ops, stmt_operands_p new_ops) { tree_ann_t saved_ann = stmt->common.ann; /* Replace stmt's annotation with the one passed in for the duration of the operand building process. This allows "fake" stmts to be built and not be included in other data structures which can be built here. */ stmt->common.ann = (tree_ann_t) ann; parse_old_ops = old_ops; /* Initially assume that the statement has no volatile operands, nor makes aliased loads or stores. */ if (ann) { ann->has_volatile_ops = false; ann->makes_aliased_stores = false; ann->makes_aliased_loads = false; } start_ssa_stmt_operands (); parse_ssa_operands (stmt); parse_old_ops = NULL; if (ann) finalize_ssa_stmt_operands (stmt, old_ops, new_ops); else finalize_ssa_stmt_operands (NULL, old_ops, new_ops); stmt->common.ann = saved_ann; } /* Free any operands vectors in OPS. */ static void free_ssa_operands (stmt_operands_p ops) { if (ops->def_ops) free_defs (&(ops->def_ops)); if (ops->use_ops) free_uses (&(ops->use_ops)); if (ops->vuse_ops) free_vuses (&(ops->vuse_ops)); if (ops->v_may_def_ops) free_v_may_defs (&(ops->v_may_def_ops)); if (ops->v_must_def_ops) free_v_must_defs (&(ops->v_must_def_ops)); } /* Swap operands EXP0 and EXP1 in STMT. */ static void swap_tree_operands (tree *exp0, tree *exp1) { tree op0, op1; op0 = *exp0; op1 = *exp1; /* If the operand cache is active, attempt to preserve the relative positions of these two operands in their respective immediate use lists. */ if (build_defs != NULL && op0 != op1 && parse_old_ops != NULL) { unsigned x, use0, use1; use_optype uses = parse_old_ops->use_ops; use0 = use1 = NUM_USES (uses); /* Find the 2 operands in the cache, if they are there. */ for (x = 0; x < NUM_USES (uses); x++) if (USE_OP_PTR (uses, x)->use == exp0) { use0 = x; break; } for (x = 0; x < NUM_USES (uses); x++) if (USE_OP_PTR (uses, x)->use == exp1) { use1 = x; break; } /* If both uses don't have operand entries, there isnt much we can do at this point. Presumably we dont need to worry about it. */ if (use0 != NUM_USES (uses) && use1 != NUM_USES (uses)) { tree *tmp = USE_OP_PTR (uses, use1)->use; gcc_assert (use0 != use1); USE_OP_PTR (uses, use1)->use = USE_OP_PTR (uses, use0)->use; USE_OP_PTR (uses, use0)->use = tmp; } } /* Now swap the data. */ *exp0 = op1; *exp1 = op0; } /* Get the operands of statement STMT. Note that repeated calls to get_stmt_operands for the same statement will do nothing until the statement is marked modified by a call to mark_stmt_modified(). */ void update_stmt_operands (tree stmt) { stmt_ann_t ann; stmt_operands_t old_operands; /* If get_stmt_operands is called before SSA is initialized, dont do anything. */ if (build_defs == NULL) return; /* The optimizers cannot handle statements that are nothing but a _DECL. This indicates a bug in the gimplifier. */ gcc_assert (!SSA_VAR_P (stmt)); ann = get_stmt_ann (stmt); gcc_assert (ann->modified); timevar_push (TV_TREE_OPS); old_operands = ann->operands; memset (&(ann->operands), 0, sizeof (stmt_operands_t)); build_ssa_operands (stmt, ann, &old_operands, &(ann->operands)); free_ssa_operands (&old_operands); /* Clear the modified bit for STMT. Subsequent calls to get_stmt_operands for this statement will do nothing until the statement is marked modified by a call to mark_stmt_modified(). */ ann->modified = 0; timevar_pop (TV_TREE_OPS); } /* Recursively scan the expression pointed by EXPR_P in statement referred to by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the operands found. */ static void get_expr_operands (tree stmt, tree *expr_p, int flags) { enum tree_code code; enum tree_code_class class; tree expr = *expr_p; stmt_ann_t s_ann = stmt_ann (stmt); if (expr == NULL) return; code = TREE_CODE (expr); class = TREE_CODE_CLASS (code); switch (code) { case ADDR_EXPR: /* We could have the address of a component, array member, etc which has interesting variable references. */ /* Taking the address of a variable does not represent a reference to it, but the fact that the stmt takes its address will be of interest to some passes (e.g. alias resolution). */ add_stmt_operand (expr_p, s_ann, 0); /* If the address is invariant, there may be no interesting variable references inside. */ if (is_gimple_min_invariant (expr)) return; /* There should be no VUSEs created, since the referenced objects are not really accessed. The only operands that we should find here are ARRAY_REF indices which will always be real operands (GIMPLE does not allow non-registers as array indices). */ flags |= opf_no_vops; get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); return; case SSA_NAME: case VAR_DECL: case PARM_DECL: case RESULT_DECL: case CONST_DECL: { subvar_t svars; /* Add the subvars for a variable if it has subvars, to DEFS or USES. Otherwise, add the variable itself. Whether it goes to USES or DEFS depends on the operand flags. */ if (var_can_have_subvars (expr) && (svars = get_subvars_for_var (expr))) { subvar_t sv; for (sv = svars; sv; sv = sv->next) add_stmt_operand (&sv->var, s_ann, flags); } else { add_stmt_operand (expr_p, s_ann, flags); } return; } case MISALIGNED_INDIRECT_REF: get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags); /* fall through */ case ALIGN_INDIRECT_REF: case INDIRECT_REF: get_indirect_ref_operands (stmt, expr, flags); return; case ARRAY_REF: case ARRAY_RANGE_REF: /* Treat array references as references to the virtual variable representing the array. The virtual variable for an ARRAY_REF is the VAR_DECL for the array. */ /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES according to the value of IS_DEF. Recurse if the LHS of the ARRAY_REF node is not a regular variable. */ if (SSA_VAR_P (TREE_OPERAND (expr, 0))) add_stmt_operand (expr_p, s_ann, flags); else get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none); get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none); get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none); return; case COMPONENT_REF: case REALPART_EXPR: case IMAGPART_EXPR: { tree ref; HOST_WIDE_INT offset, size; /* This component ref becomes an access to all of the subvariables it can touch, if we can determine that, but *NOT* the real one. If we can't determine which fields we could touch, the recursion will eventually get to a variable and add *all* of its subvars, or whatever is the minimum correct subset. */ ref = okay_component_ref_for_subvars (expr, &offset, &size); if (ref) { subvar_t svars = get_subvars_for_var (ref); subvar_t sv; for (sv = svars; sv; sv = sv->next) { bool exact; if (overlap_subvar (offset, size, sv, &exact)) { if (exact) flags &= ~opf_kill_def; add_stmt_operand (&sv->var, s_ann, flags); } } } else get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags & ~opf_kill_def); if (code == COMPONENT_REF) get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none); return; } case WITH_SIZE_EXPR: /* WITH_SIZE_EXPR is a pass-through reference to its first argument, and an rvalue reference to its second argument. */ get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none); get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); return; case CALL_EXPR: get_call_expr_operands (stmt, expr); return; case COND_EXPR: case VEC_COND_EXPR: get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none); get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none); get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none); return; case MODIFY_EXPR: { int subflags; tree op; get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none); op = TREE_OPERAND (expr, 0); if (TREE_CODE (op) == WITH_SIZE_EXPR) op = TREE_OPERAND (expr, 0); if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF || TREE_CODE (op) == REALPART_EXPR || TREE_CODE (op) == IMAGPART_EXPR) subflags = opf_is_def; else subflags = opf_is_def | opf_kill_def; get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags); return; } case CONSTRUCTOR: { /* General aggregate CONSTRUCTORs have been decomposed, but they are still in use as the COMPLEX_EXPR equivalent for vectors. */ tree t; for (t = TREE_OPERAND (expr, 0); t ; t = TREE_CHAIN (t)) get_expr_operands (stmt, &TREE_VALUE (t), opf_none); return; } case TRUTH_NOT_EXPR: case BIT_FIELD_REF: case VIEW_CONVERT_EXPR: do_unary: get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); return; case TRUTH_AND_EXPR: case TRUTH_OR_EXPR: case TRUTH_XOR_EXPR: case COMPOUND_EXPR: case OBJ_TYPE_REF: do_binary: { tree op0 = TREE_OPERAND (expr, 0); tree op1 = TREE_OPERAND (expr, 1); /* If it would be profitable to swap the operands, then do so to canonicalize the statement, enabling better optimization. By placing canonicalization of such expressions here we transparently keep statements in canonical form, even when the statement is modified. */ if (tree_swap_operands_p (op0, op1, false)) { /* For relationals we need to swap the operands and change the code. */ if (code == LT_EXPR || code == GT_EXPR || code == LE_EXPR || code == GE_EXPR) { TREE_SET_CODE (expr, swap_tree_comparison (code)); swap_tree_operands (&TREE_OPERAND (expr, 0), &TREE_OPERAND (expr, 1)); } /* For a commutative operator we can just swap the operands. */ else if (commutative_tree_code (code)) { swap_tree_operands (&TREE_OPERAND (expr, 0), &TREE_OPERAND (expr, 1)); } } get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags); return; } case REALIGN_LOAD_EXPR: { get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags); get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags); get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags); return; } case BLOCK: case FUNCTION_DECL: case EXC_PTR_EXPR: case FILTER_EXPR: case LABEL_DECL: /* Expressions that make no memory references. */ return; default: if (class == tcc_unary) goto do_unary; if (class == tcc_binary || class == tcc_comparison) goto do_binary; if (class == tcc_constant || class == tcc_type) return; } /* If we get here, something has gone wrong. */ #ifdef ENABLE_CHECKING fprintf (stderr, "unhandled expression in get_expr_operands():\n"); debug_tree (expr); fputs ("\n", stderr); internal_error ("internal error"); #endif gcc_unreachable (); } /* Scan operands in the ASM_EXPR stmt referred to in INFO. */ static void get_asm_expr_operands (tree stmt) { stmt_ann_t s_ann = stmt_ann (stmt); int noutputs = list_length (ASM_OUTPUTS (stmt)); const char **oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *)); int i; tree link; const char *constraint; bool allows_mem, allows_reg, is_inout; for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link)) { oconstraints[i] = constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg, &is_inout); /* This should have been split in gimplify_asm_expr. */ gcc_assert (!allows_reg || !is_inout); /* Memory operands are addressable. Note that STMT needs the address of this operand. */ if (!allows_reg && allows_mem) { tree t = get_base_address (TREE_VALUE (link)); if (t && DECL_P (t)) note_addressable (t, s_ann); } get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def); } for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link)) { constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints, &allows_mem, &allows_reg); /* Memory operands are addressable. Note that STMT needs the address of this operand. */ if (!allows_reg && allows_mem) { tree t = get_base_address (TREE_VALUE (link)); if (t && DECL_P (t)) note_addressable (t, s_ann); } get_expr_operands (stmt, &TREE_VALUE (link), 0); } /* Clobber memory for asm ("" : : : "memory"); */ for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link)) if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0) { unsigned i; bitmap_iterator bi; /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we decided to group them). */ if (global_var) add_stmt_operand (&global_var, s_ann, opf_is_def); else EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi) { tree var = referenced_var (i); add_stmt_operand (&var, s_ann, opf_is_def); } /* Now clobber all addressables. */ EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi) { tree var = referenced_var (i); /* Subvars are explicitly represented in this list, so we don't need the original to be added to the clobber ops, but the original *will* be in this list because we keep the addressability of the original variable up-to-date so we don't screw up the rest of the backend. */ if (var_can_have_subvars (var) && get_subvars_for_var (var) != NULL) continue; add_stmt_operand (&var, s_ann, opf_is_def); } break; } } /* A subroutine of get_expr_operands to handle INDIRECT_REF, ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */ static void get_indirect_ref_operands (tree stmt, tree expr, int flags) { tree *pptr = &TREE_OPERAND (expr, 0); tree ptr = *pptr; stmt_ann_t s_ann = stmt_ann (stmt); /* Stores into INDIRECT_REF operands are never killing definitions. */ flags &= ~opf_kill_def; if (SSA_VAR_P (ptr)) { struct ptr_info_def *pi = NULL; /* If PTR has flow-sensitive points-to information, use it. */ if (TREE_CODE (ptr) == SSA_NAME && (pi = SSA_NAME_PTR_INFO (ptr)) != NULL && pi->name_mem_tag) { /* PTR has its own memory tag. Use it. */ add_stmt_operand (&pi->name_mem_tag, s_ann, flags); } else { /* If PTR is not an SSA_NAME or it doesn't have a name tag, use its type memory tag. */ var_ann_t v_ann; /* If we are emitting debugging dumps, display a warning if PTR is an SSA_NAME with no flow-sensitive alias information. That means that we may need to compute aliasing again. */ if (dump_file && TREE_CODE (ptr) == SSA_NAME && pi == NULL) { fprintf (dump_file, "NOTE: no flow-sensitive alias info for "); print_generic_expr (dump_file, ptr, dump_flags); fprintf (dump_file, " in "); print_generic_stmt (dump_file, stmt, dump_flags); } if (TREE_CODE (ptr) == SSA_NAME) ptr = SSA_NAME_VAR (ptr); v_ann = var_ann (ptr); if (v_ann->type_mem_tag) add_stmt_operand (&v_ann->type_mem_tag, s_ann, flags); } } /* If a constant is used as a pointer, we can't generate a real operand for it but we mark the statement volatile to prevent optimizations from messing things up. */ else if (TREE_CODE (ptr) == INTEGER_CST) { if (s_ann) s_ann->has_volatile_ops = true; return; } /* Everything else *should* have been folded elsewhere, but users are smarter than we in finding ways to write invalid code. We cannot just abort here. If we were absolutely certain that we do handle all valid cases, then we could just do nothing here. That seems optimistic, so attempt to do something logical... */ else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR) && TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST) { /* Make sure we know the object is addressable. */ pptr = &TREE_OPERAND (ptr, 0); add_stmt_operand (pptr, s_ann, 0); /* Mark the object itself with a VUSE. */ pptr = &TREE_OPERAND (*pptr, 0); get_expr_operands (stmt, pptr, flags); return; } /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */ else gcc_unreachable (); /* Add a USE operand for the base pointer. */ get_expr_operands (stmt, pptr, opf_none); } /* A subroutine of get_expr_operands to handle CALL_EXPR. */ static void get_call_expr_operands (tree stmt, tree expr) { tree op; int call_flags = call_expr_flags (expr); /* If aliases have been computed already, add V_MAY_DEF or V_USE operands for all the symbols that have been found to be call-clobbered. Note that if aliases have not been computed, the global effects of calls will not be included in the SSA web. This is fine because no optimizer should run before aliases have been computed. By not bothering with virtual operands for CALL_EXPRs we avoid adding superfluous virtual operands, which can be a significant compile time sink (See PR 15855). */ if (aliases_computed_p && !bitmap_empty_p (call_clobbered_vars) && !(call_flags & ECF_NOVOPS)) { /* A 'pure' or a 'const' functions never call clobber anything. A 'noreturn' function might, but since we don't return anyway there is no point in recording that. */ if (TREE_SIDE_EFFECTS (expr) && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN))) add_call_clobber_ops (stmt); else if (!(call_flags & ECF_CONST)) add_call_read_ops (stmt); } /* Find uses in the called function. */ get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none); for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op)) get_expr_operands (stmt, &TREE_VALUE (op), opf_none); get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none); } /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to the statement's real operands, otherwise it is added to virtual operands. */ static void add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags) { bool is_real_op; tree var, sym; var_ann_t v_ann; var = *var_p; STRIP_NOPS (var); /* If the operand is an ADDR_EXPR, add its operand to the list of variables that have had their address taken in this statement. */ if (TREE_CODE (var) == ADDR_EXPR) { note_addressable (TREE_OPERAND (var, 0), s_ann); return; } /* If the original variable is not a scalar, it will be added to the list of virtual operands. In that case, use its base symbol as the virtual variable representing it. */ is_real_op = is_gimple_reg (var); if (!is_real_op && !DECL_P (var)) var = get_virtual_var (var); /* If VAR is not a variable that we care to optimize, do nothing. */ if (var == NULL_TREE || !SSA_VAR_P (var)) return; sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var); v_ann = var_ann (sym); /* Mark statements with volatile operands. Optimizers should back off from statements having volatile operands. */ if (TREE_THIS_VOLATILE (sym) && s_ann) s_ann->has_volatile_ops = true; if (is_real_op) { /* The variable is a GIMPLE register. Add it to real operands. */ if (flags & opf_is_def) append_def (var_p); else append_use (var_p); } else { varray_type aliases; /* The variable is not a GIMPLE register. Add it (or its aliases) to virtual operands, unless the caller has specifically requested not to add virtual operands (used when adding operands inside an ADDR_EXPR expression). */ if (flags & opf_no_vops) return; aliases = v_ann->may_aliases; if (aliases == NULL) { /* The variable is not aliased or it is an alias tag. */ if (flags & opf_is_def) { if (flags & opf_kill_def) { /* Only regular variables or struct fields may get a V_MUST_DEF operand. */ gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG || v_ann->mem_tag_kind == STRUCT_FIELD); /* V_MUST_DEF for non-aliased, non-GIMPLE register variable definitions. */ append_v_must_def (var); } else { /* Add a V_MAY_DEF for call-clobbered variables and memory tags. */ append_v_may_def (var); } } else { append_vuse (var); if (s_ann && v_ann->is_alias_tag) s_ann->makes_aliased_loads = 1; } } else { size_t i; /* The variable is aliased. Add its aliases to the virtual operands. */ gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0); if (flags & opf_is_def) { /* If the variable is also an alias tag, add a virtual operand for it, otherwise we will miss representing references to the members of the variable's alias set. This fixes the bug in gcc.c-torture/execute/20020503-1.c. */ if (v_ann->is_alias_tag) append_v_may_def (var); for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++) append_v_may_def (VARRAY_TREE (aliases, i)); if (s_ann) s_ann->makes_aliased_stores = 1; } else { /* Similarly, append a virtual uses for VAR itself, when it is an alias tag. */ if (v_ann->is_alias_tag) append_vuse (var); for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++) append_vuse (VARRAY_TREE (aliases, i)); if (s_ann) s_ann->makes_aliased_loads = 1; } } } } /* Record that VAR had its address taken in the statement with annotations S_ANN. */ static void note_addressable (tree var, stmt_ann_t s_ann) { tree ref; subvar_t svars; HOST_WIDE_INT offset; HOST_WIDE_INT size; if (!s_ann) return; /* If this is a COMPONENT_REF, and we know exactly what it touches, we only take the address of the subvariables it will touch. Otherwise, we take the address of all the subvariables, plus the real ones. */ if (var && TREE_CODE (var) == COMPONENT_REF && (ref = okay_component_ref_for_subvars (var, &offset, &size))) { subvar_t sv; svars = get_subvars_for_var (ref); if (s_ann->addresses_taken == NULL) s_ann->addresses_taken = BITMAP_GGC_ALLOC (); for (sv = svars; sv; sv = sv->next) { if (overlap_subvar (offset, size, sv, NULL)) bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid); } return; } var = get_base_address (var); if (var && SSA_VAR_P (var)) { if (s_ann->addresses_taken == NULL) s_ann->addresses_taken = BITMAP_GGC_ALLOC (); if (var_can_have_subvars (var) && (svars = get_subvars_for_var (var))) { subvar_t sv; for (sv = svars; sv; sv = sv->next) bitmap_set_bit (s_ann->addresses_taken, var_ann (sv->var)->uid); } else bitmap_set_bit (s_ann->addresses_taken, var_ann (var)->uid); } } /* Add clobbering definitions for .GLOBAL_VAR or for each of the call clobbered variables in the function. */ static void add_call_clobber_ops (tree stmt) { unsigned i; tree t; bitmap_iterator bi; stmt_ann_t s_ann = stmt_ann (stmt); struct stmt_ann_d empty_ann; /* Functions that are not const, pure or never return may clobber call-clobbered variables. */ if (s_ann) s_ann->makes_clobbering_call = true; /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases for the heuristic used to decide whether to create .GLOBAL_VAR or not. */ if (global_var) { add_stmt_operand (&global_var, s_ann, opf_is_def); return; } /* If cache is valid, copy the elements into the build vectors. */ if (ssa_call_clobbered_cache_valid) { for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_vuses); i++) { t = VARRAY_TREE (clobbered_vuses, i); gcc_assert (TREE_CODE (t) != SSA_NAME); var_ann (t)->in_vuse_list = 1; VARRAY_PUSH_TREE (build_vuses, t); } for (i = 0; i < VARRAY_ACTIVE_SIZE (clobbered_v_may_defs); i++) { t = VARRAY_TREE (clobbered_v_may_defs, i); gcc_assert (TREE_CODE (t) != SSA_NAME); var_ann (t)->in_v_may_def_list = 1; VARRAY_PUSH_TREE (build_v_may_defs, t); } if (s_ann) { s_ann->makes_aliased_loads = clobbered_aliased_loads; s_ann->makes_aliased_stores = clobbered_aliased_stores; } return; } memset (&empty_ann, 0, sizeof (struct stmt_ann_d)); /* Add a V_MAY_DEF operand for every call clobbered variable. */ EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi) { tree var = referenced_var (i); if (TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var))) add_stmt_operand (&var, &empty_ann, opf_none); else add_stmt_operand (&var, &empty_ann, opf_is_def); } clobbered_aliased_loads = empty_ann.makes_aliased_loads; clobbered_aliased_stores = empty_ann.makes_aliased_stores; /* Set the flags for a stmt's annotation. */ if (s_ann) { s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads; s_ann->makes_aliased_stores = empty_ann.makes_aliased_stores; } /* Prepare empty cache vectors. */ if (clobbered_v_may_defs) { VARRAY_POP_ALL (clobbered_vuses); VARRAY_POP_ALL (clobbered_v_may_defs); } else { VARRAY_TREE_INIT (clobbered_v_may_defs, 10, "clobbered_v_may_defs"); VARRAY_TREE_INIT (clobbered_vuses, 10, "clobbered_vuses"); } /* Now fill the clobbered cache with the values that have been found. */ for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++) VARRAY_PUSH_TREE (clobbered_vuses, VARRAY_TREE (build_vuses, i)); for (i = 0; i < VARRAY_ACTIVE_SIZE (build_v_may_defs); i++) VARRAY_PUSH_TREE (clobbered_v_may_defs, VARRAY_TREE (build_v_may_defs, i)); ssa_call_clobbered_cache_valid = true; } /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the function. */ static void add_call_read_ops (tree stmt) { unsigned i; tree t; bitmap_iterator bi; stmt_ann_t s_ann = stmt_ann (stmt); struct stmt_ann_d empty_ann; /* if the function is not pure, it may reference memory. Add a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var for the heuristic used to decide whether to create .GLOBAL_VAR. */ if (global_var) { add_stmt_operand (&global_var, s_ann, opf_none); return; } /* If cache is valid, copy the elements into the build vector. */ if (ssa_ro_call_cache_valid) { for (i = 0; i < VARRAY_ACTIVE_SIZE (ro_call_vuses); i++) { t = VARRAY_TREE (ro_call_vuses, i); gcc_assert (TREE_CODE (t) != SSA_NAME); var_ann (t)->in_vuse_list = 1; VARRAY_PUSH_TREE (build_vuses, t); } if (s_ann) s_ann->makes_aliased_loads = ro_call_aliased_loads; return; } memset (&empty_ann, 0, sizeof (struct stmt_ann_d)); /* Add a VUSE for each call-clobbered variable. */ EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi) { tree var = referenced_var (i); add_stmt_operand (&var, &empty_ann, opf_none); } ro_call_aliased_loads = empty_ann.makes_aliased_loads; if (s_ann) s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads; /* Prepare empty cache vectors. */ if (ro_call_vuses) VARRAY_POP_ALL (ro_call_vuses); else VARRAY_TREE_INIT (ro_call_vuses, 10, "ro_call_vuses"); /* Now fill the clobbered cache with the values that have been found. */ for (i = 0; i < VARRAY_ACTIVE_SIZE (build_vuses); i++) VARRAY_PUSH_TREE (ro_call_vuses, VARRAY_TREE (build_vuses, i)); ssa_ro_call_cache_valid = true; } /* Copies virtual operands from SRC to DST. */ void copy_virtual_operands (tree dst, tree src) { unsigned i; vuse_optype vuses = STMT_VUSE_OPS (src); v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (src); v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (src); vuse_optype *vuses_new = &stmt_ann (dst)->operands.vuse_ops; v_may_def_optype *v_may_defs_new = &stmt_ann (dst)->operands.v_may_def_ops; v_must_def_optype *v_must_defs_new = &stmt_ann (dst)->operands.v_must_def_ops; if (vuses) { *vuses_new = allocate_vuse_optype (NUM_VUSES (vuses)); for (i = 0; i < NUM_VUSES (vuses); i++) initialize_vuse_operand (*vuses_new, i, VUSE_OP (vuses, i), dst, NULL); } if (v_may_defs) { *v_may_defs_new = allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs)); for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++) { initialize_v_may_def_operand (*v_may_defs_new, i, V_MAY_DEF_RESULT (v_may_defs, i), V_MAY_DEF_OP (v_may_defs, i), dst, NULL); } } if (v_must_defs) { *v_must_defs_new = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs)); for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++) { initialize_v_must_def_operand (*v_must_defs_new, i, V_MUST_DEF_RESULT (v_must_defs, i), V_MUST_DEF_KILL (v_must_defs, i), dst, NULL); } } } /* Specifically for use in DOM's expression analysis. Given a store, we create an artificial stmt which looks like a load from the store, this can be used to eliminate redundant loads. OLD_OPS are the operands from the store stmt, and NEW_STMT is the new load which represents a load of the values stored. */ void create_ssa_artficial_load_stmt (stmt_operands_p old_ops, tree new_stmt) { stmt_ann_t ann; tree op; stmt_operands_t tmp; unsigned j; memset (&tmp, 0, sizeof (stmt_operands_t)); ann = get_stmt_ann (new_stmt); /* Free operands just in case is was an existing stmt. */ free_ssa_operands (&(ann->operands)); build_ssa_operands (new_stmt, NULL, &tmp, &(ann->operands)); free_vuses (&(ann->operands.vuse_ops)); free_v_may_defs (&(ann->operands.v_may_def_ops)); free_v_must_defs (&(ann->operands.v_must_def_ops)); /* For each VDEF on the original statement, we want to create a VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new statement. */ for (j = 0; j < NUM_V_MAY_DEFS (old_ops->v_may_def_ops); j++) { op = V_MAY_DEF_RESULT (old_ops->v_may_def_ops, j); append_vuse (op); } for (j = 0; j < NUM_V_MUST_DEFS (old_ops->v_must_def_ops); j++) { op = V_MUST_DEF_RESULT (old_ops->v_must_def_ops, j); append_vuse (op); } /* Now set the vuses for this new stmt. */ ann->operands.vuse_ops = finalize_ssa_vuses (&(tmp.vuse_ops), NULL); } /* Issue immediate use error for VAR to debug file F. */ static void verify_abort (FILE *f, ssa_imm_use_t *var) { tree stmt; stmt = var->stmt; if (stmt) { if (stmt_modified_p(stmt)) { fprintf (f, " STMT MODIFIED. - <%p> ", (void *)stmt); print_generic_stmt (f, stmt, TDF_SLIM); } } fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)var, (void *)var->use); print_generic_expr (f, USE_FROM_PTR (var), TDF_SLIM); fprintf(f, "\n"); } /* Scan the immediate_use list for VAR making sure its linked properly. return RTUE iof there is a problem. */ bool verify_imm_links (FILE *f, tree var) { ssa_imm_use_t *ptr, *prev; ssa_imm_use_t *list; int count; gcc_assert (TREE_CODE (var) == SSA_NAME); list = &(SSA_NAME_IMM_USE_NODE (var)); gcc_assert (list->use == NULL); if (list->prev == NULL) { gcc_assert (list->next == NULL); return false; } prev = list; count = 0; for (ptr = list->next; ptr != list; ) { if (prev != ptr->prev) { verify_abort (f, ptr); return true; } if (ptr->use == NULL) { verify_abort (f, ptr); /* 2 roots, or SAFE guard node. */ return true; } else if (*(ptr->use) != var) { verify_abort (f, ptr); return true; } prev = ptr; ptr = ptr->next; /* Avoid infinite loops. */ if (count++ > 30000) { verify_abort (f, ptr); return true; } } /* Verify list in the other direction. */ prev = list; for (ptr = list->prev; ptr != list; ) { if (prev != ptr->next) { verify_abort (f, ptr); return true; } prev = ptr; ptr = ptr->prev; if (count-- < 0) { verify_abort (f, ptr); return true; } } if (count != 0) { verify_abort (f, ptr); return true; } return false; } /* Dump all the immediate uses to FILE. */ void dump_immediate_uses_for (FILE *file, tree var) { imm_use_iterator iter; use_operand_p use_p; gcc_assert (var && TREE_CODE (var) == SSA_NAME); print_generic_expr (file, var, TDF_SLIM); fprintf (file, " : -->"); if (has_zero_uses (var)) fprintf (file, " no uses.\n"); else if (has_single_use (var)) fprintf (file, " single use.\n"); else fprintf (file, "%d uses.\n", num_imm_uses (var)); FOR_EACH_IMM_USE_FAST (use_p, iter, var) { print_generic_stmt (file, USE_STMT (use_p), TDF_SLIM); } fprintf(file, "\n"); } /* Dump all the immediate uses to FILE. */ void dump_immediate_uses (FILE *file) { tree var; unsigned int x; fprintf (file, "Immediate_uses: \n\n"); for (x = 1; x < num_ssa_names; x++) { var = ssa_name(x); if (!var) continue; dump_immediate_uses_for (file, var); } } /* Dump def-use edges on stderr. */ void debug_immediate_uses (void) { dump_immediate_uses (stderr); } /* Dump def-use edges on stderr. */ void debug_immediate_uses_for (tree var) { dump_immediate_uses_for (stderr, var); } #include "gt-tree-ssa-operands.h"